1
|
Wei D, Wu D, Zeng W, Che L, Xu S, Fang Z, Feng B, Li J, Zhuo Y, Wu C, Zhang J, Lin Y. Arginine promotes testicular development in boars through nitric oxide and putrescine. J Anim Physiol Anim Nutr (Berl) 2021; 106:266-275. [PMID: 34212433 DOI: 10.1111/jpn.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/01/2022]
Abstract
The present work aimed to explore the influence and underlying mechanisms involving arginine in testicular development in boars. To this end, thirty 30-day-old male Duroc piglets (7.00 ± 0.30 kg) were randomly sorted into two groups, maintained on either a basal diet (CON, n = 15) or a diet supplemented with 0.8% arginine (ARG, n = 15). Blood and testicular samples were collected during the experimental period to analyse amino acid composition and arginine metabolite levels. The results showed that dietary supplementation with arginine increased number of spermatogonia and height of the seminiferous epithelium (p < 0.05). Sperm density, total number and effective number of sperm of the boars in the ARG group increased significantly compared with those in the CON group (p < 0.05). Although arginine supplementation did not affect plasma amino acid levels, testicular arginine levels in 150-day-old boars exhibited a significant increase (p < 0.05). The level of serum nitric oxide (NO) and activity of nitric oxide synthase (NOS) also increased in 150-day-old boars in the ARG group (p < 0.05). Interestingly, dietary supplementation with arginine increased testicular levels of putrescine in 150-day-old boars (p < 0.05). These results indicated that arginine supplementation increased serum NO levels and testicular arginine and putrescine abundance, thereby improving testicular development and semen quality in boars.
Collapse
Affiliation(s)
- Dongqin Wei
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Caimei Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Junjie Zhang
- School of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
3
|
Halloran KM, Stenhouse C, Wu G, Bazer FW. Arginine, Agmatine, and Polyamines: Key Regulators of Conceptus Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:85-105. [PMID: 34251640 DOI: 10.1007/978-3-030-74180-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arginine is a key amino acid in pregnant females as it is the precursor for nitric oxide (NO) via nitric oxide synthase and for polyamines (putrescine, spermidine, and spermine) by either arginase II and ornithine decarboxylase to putrescine or via arginine decarboxylase to agmatine and agmatine to putrescine via agmatinase. Polyamines are critical for placental growth and vascularization. Polyamines stabilize DNA and mRNA for gene transcription and mRNA translation, stimulate proliferation of trophectoderm, and formation of multinucleated trophectoderm cells that give rise to giant cells in the placentae of species such as mice. Polyamines activate MTOR cell signaling to stimulate protein synthesis and they are important for motility through modification of beta-catenin phosphorylation, integrin signaling via focal adhesion kinases, cytoskeletal organization, and invasiveness or superficial implantation of blastocysts. Physiological levels of arginine, agmatine, and polyamines are critical to the secretion of interferon tau for pregnancy recognition in ruminants. Arginine, polyamines, and agmatine are very abundant in fetal fluids, fetal blood, and tissues of the conceptus during gestation. The polyamines are thus available to influence a multitude of events including activation of development of blastocysts, implantation, placentation, fetal growth, and development required for the successful establishment and maintenance of pregnancy in mammals.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Ghanem N, Salilew-Wondim D, Hoelker M, Schellander K, Tesfaye D. Transcriptome profile and association study revealed STAT3 gene as a potential quality marker of bovine gametes. ZYGOTE 2020; 28:1-15. [PMID: 31928565 DOI: 10.1017/s0967199419000765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was aimed to investigate differences in molecular signatures in oocytes derived from Holstein-Friesian heifers with different genetic merit for fertility, euthanized during day 0 or day 12 of the estrous cycle. Moreover, association between single nucleotide polymorphisms (SNPs) of ODC1 and STAT3 genes and bull fertility traits was investigated. The gene expression patterns were analyzed using cDNA array and validated with quantitative real-time polymerase chain reaction (PCR). The result revealed that several genes have shown not only to be regulated by fertility merit but also by the day of oocyte recovery during the estrous cycle. The STAT3 gene was found to be upregulated in oocytes recovered from animals with high fertility merit at both day 0 and day 12. Some other genes like PTTG1, ODC1 and TUBA1C were downregulated at day 0 and upregulated at day 12 in high, compared with low, fertility merit recovered oocytes. In contrast, the transcript abundance of TPM3 was upregulated at day 0 and downregulated at day 12 in high, compared with low, fertility merit recovered oocytes. In addition, ODC1 and STAT3 were found to be associated (P < 0.05) with sperm quality traits as well as flow cytometry parameters. Therefore, the expression of several candidate genes including ODC1 and STAT3 was related to the genetic merit of the cow. In addition polymorphisms in these two genes were found to be associated with bull semen quality.
Collapse
Affiliation(s)
- Nasser Ghanem
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory (ARBL), Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Abaandou L, Shiloach J. Knocking out Ornithine Decarboxylase Antizyme 1 ( OAZ1) Improves Recombinant Protein Expression in the HEK293 Cell Line. Med Sci (Basel) 2018; 6:medsci6020048. [PMID: 29890687 PMCID: PMC6024716 DOI: 10.3390/medsci6020048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Creating efficient cell lines is a priority for the biopharmaceutical industry, which produces biologicals for various uses. A recent approach to achieving this goal is the use of non-coding RNAs, microRNA (miRNA) and small interfering RNA (siRNA), to identify key genes that can potentially improve production or growth. The ornithine decarboxylase antizyme 1 (OAZ1) gene, a negative regulator of polyamine biosynthesis, was identified in a genome-wide siRNA screen as a potential engineering target, because its knock down by siRNA increased recombinant protein expression from human embryonic kidney 293 (HEK293) cells by two-fold. To investigate this further, the OAZ1 gene in HEK293 cells was knocked out using CRISPR genome editing. The OAZ1 knockout cell lines displayed up to four-fold higher expression of both stably and transiently expressed proteins, with comparable growth and metabolic activity to the parental cell line; and an approximately three-fold increase in intracellular polyamine content. The results indicate that genetic inactivation of OAZ1 in HEK293 cells is an effective strategy to improve recombinant protein expression in HEK293 cells.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, USA.
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
7
|
LOMOZIK L, GASOWSKA A, BASINSKI K, BREGIER-JARZEBOWSKA R, JASTRZAB R. Potentiometric and spectral studies of complex formation in the Cu(II), 3′,5′-cyclic adenosine monophosphate, and tetramine systems. J COORD CHEM 2013. [DOI: 10.1080/00958972.2012.754019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- L. LOMOZIK
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
- b Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences , Bydgoszcz , Poland
| | - A. GASOWSKA
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
| | - K. BASINSKI
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
| | | | - R. JASTRZAB
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
| |
Collapse
|
8
|
[The influence of diabetes mellitus on male reproductive function: a poorly investigated aspect of male infertility]. Urologe A 2011; 50:33-7. [PMID: 21207007 DOI: 10.1007/s00120-010-2440-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Whilst diabetes mellitus is known to have many systemic complications, male infertility, beyond impotence, retrograde ejaculation and hypogonadism, has not been widely recognised to be one of them. Due to the paucity of studies and inconsistencies regarding the condition's impact on semen quality, few fertility specialists consider the condition noteworthy. As a consequence little information exists as to its prevalence amongst infertile men. Recently the prevailing view has been challenged by findings showing that diabetes induces subtle molecular changes that are important for sperm quality and function. Diabetic men have been found to have a significantly higher percentage of sperm with nuclear DNA damage, a factor known to be associated with compromised fertility and increased miscarriage rates. The mechanism by which this diabetes-related sperm nDNA damage occurs remains unknown. The identification of high levels of advanced glycation end products (AGEs) and their receptor (RAGE) throughout the male reproductive tract coupled to changes in testicular metabolite levels and spermatogenic gene expression suggest that glycation may play an integral role in oxidative stress which in turn causes sperm nDNA damage. As glycation is a normal consequence of life and has been implicated in DNA fragmentation in a variety of seemingly unconnected conditions, it may constitute a common mechanism for the damage seen in sperm DNA.
Collapse
|
9
|
Martinović-Weigelt D, Wang RL, Villeneuve DL, Bencic DC, Lazorchak J, Ankley GT. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:447-458. [PMID: 21126777 DOI: 10.1016/j.aquatox.2010.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/25/2010] [Accepted: 10/09/2010] [Indexed: 05/30/2023]
Abstract
The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4×44K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.
Collapse
Affiliation(s)
- Dalma Martinović-Weigelt
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Madrigal Pulido J, Padilla Guerrero I, Magaña Martínez IDJ, Cacho Valadez B, Torres Guzman JC, Salazar Solis E, Felix Gutierrez Corona J, Schrank A, Jiménez Bremont F, González Hernandez A. Isolation, characterization and expression analysis of the ornithine decarboxylase gene (ODC1) of the entomopathogenic fungus, Metarhizium anisopliae. Microbiol Res 2011; 166:494-507. [PMID: 21236653 DOI: 10.1016/j.micres.2010.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 09/29/2010] [Accepted: 10/02/2010] [Indexed: 11/30/2022]
Abstract
The gene ODC1, which codes for the ornithine decarboxylase enzyme, was isolated from the entomopathogenic fungus, Metarhizium anisopliae. The deduced amino acid sequence predicted a protein of 447 amino acids with a molecular weight of 49.3 kDa that contained the canonical motifs of ornithine decarboxylases. The ODC1 cDNA sequence was expressed in Escherichia coli cells; radiometric enzyme assays showed that the purified recombinant protein had ornithine decarboxylase activity. The optimum pH of the purified Odc1 protein was 8.0-8.5, and the optimum reaction temperature was 37°C. The apparent K(m) for ornithine at a pyridoxal phosphate concentration of 20mM was 22 μM. The competitive inhibitor of ODC activity, 1,4-diamino-2-butanone (DAB), at 0.25 mM inhibited 95% of ODC activity. The ODC1 mRNA showed an increase at the beginning of appressorium formation in vitro. During the M. anisopliae invasion process into Plutella xylostella larvae, the ODC1 mRNA showed a discrete increase within the germinating spore and during appressorium formation. The second expression peak was higher and prolonged during the invasion and death of the insect. The ODC1 gene complements the polyamine auxotrophy of Yarrowia lipolytica odc null mutant.
Collapse
|
11
|
Choi SY, Park HY, Paek A, Kim GS, Jeong SE. Insect ornithine decarboxylase (ODC) complements SPE1 knock-out of yeast Saccharomyces cerevisiae. Mol Cells 2009; 28:575-81. [PMID: 19937472 DOI: 10.1007/s10059-009-0162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 11/24/2022] Open
Abstract
Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are essential for cell growth, differentiation, and proliferation. This report presents the characterization of an ODC-encoding cDNA (SlitODC) isolated from a moth species, the tobacco cutworm, Spodoptera litura (Lepidoptera); its expression in a polyamine-deficient strain of yeast, S. cerevisiae; and the recovery in polyamine levels and proliferation rate with the introduction of the insect enzyme. SlitODC encodes 448 amino acid residues, 4 amino acids longer than B. Mori ODC that has 71% identity, and has a longer C-terminus, consistent with B. mori ODC, than the reported dipteran enzymes. The null mutant yeast strain in the ODC gene, SPE1, showed remarkably depleted polyamine levels; in putrescine, spermidine, and spermine, the levels were > 7, > 1, and > 4%, respectively, of the levels in the wild-type strain. This consequently caused a significant arrest in cell proliferation of > 4% of the wild-type strain in polyaminefree media. The transformed strain, with the substituted SlitODC for the deleted endogenous ODC, grew and proliferated rapidly at even a higher rate than the wild-type strain. Furthermore, its polyamine content was significantly higher than even that in the wild-type strain as well as the spe1-null mutant, particularly with a very continuously enhanced putrescine level, reflecting no inhibition mechanism operating in the putrescine synthesis step by any corresponding insect ODC antizymes to SlitODC in this yeast system.
Collapse
Affiliation(s)
- Soon-Yong Choi
- Department of Biotechnology, Hannam University, Daejeon 306-791, Korea
| | | | | | | | | |
Collapse
|
12
|
López-Contreras AJ, Ramos-Molina B, Cremades A, Peñafiel R. Antizyme inhibitor 2: molecular, cellular and physiological aspects. Amino Acids 2009; 38:603-11. [PMID: 19956990 DOI: 10.1007/s00726-009-0419-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/24/2009] [Indexed: 01/20/2023]
Abstract
Polyamines are small organic polycations essential for cell proliferation and survival. Antizymes (AZs) are small proteins regulated by polyamines that inhibit polyamine biosynthesis and uptake in mammalian cells. In addition, antizyme functions are also regulated by antizyme inhibitors, homologue proteins of ornithine decarboxylase lacking enzymatic activity. There are two antizyme inhibitors (AZIN), known as AZIN1 and AZIN2, that bind to AZs and negate their effects on polyamine metabolism. Here, we review different molecular and cellular properties of the novel AZIN2 with particular emphasis on the role that this protein may have in brain and testis physiology. Whereas AZIN1 is ubiquitously found in mammalian tissues, AZIN2 expression appears to be restricted to brain and testis. In transfected cells, AZIN2 is mainly located in the endoplasmic reticulum-Golgi intermediate compartment and in the cis-Golgi network. AZIN2 is a labile protein that is degraded by the proteasome by a ubiquitin-dependent mechanism. Regarding its physiological role, spatial and temporal analyses of AZIN2 expression in the mouse testis suggest that this protein may have a role in spermiogenesis.
Collapse
Affiliation(s)
- Andrés J López-Contreras
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
13
|
Mallidis C, Agbaje I, O'Neill J, McClure N. The influence of type 1 diabetes mellitus on spermatogenic gene expression. Fertil Steril 2009; 92:2085-7. [DOI: 10.1016/j.fertnstert.2009.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/04/2009] [Accepted: 06/02/2009] [Indexed: 11/16/2022]
|
14
|
López-Contreras AJ, Ramos-Molina B, Martínez-de-la-Torre M, Peñafiel-Verdú C, Puelles L, Cremades A, Peñafiel R. Expression of antizyme inhibitor 2 in male haploid germinal cells suggests a role in spermiogenesis. Int J Biochem Cell Biol 2008; 41:1070-8. [PMID: 18973822 DOI: 10.1016/j.biocel.2008.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/03/2008] [Accepted: 09/30/2008] [Indexed: 02/07/2023]
Abstract
Recently, we have found that the antizyme inhibitor 2, a novel member of the antizyme binding proteins related to polyamine metabolism, was expressed mainly in the adult testes, although its function in testicular physiology is completely unknown. Therefore, in the present work, the spatial and temporal expression of antizyme inhibitor 2, and other genes related to polyamine metabolism were studied in the mouse testis, in an attempt to understand the role of antizyme inhibitor 2 in testicular functions. For that purpose, the temporal expression of different genes, during the first wave of spermatogenesis in postnatal mice, was studied by real-time RT-PCR, and the spatial distribution of transcripts and protein in the adult testis was examined by both RNA in situ hybridization and immunocytochemistry. The results indicated that antizyme inhibitor 2 was specifically expressed in the haploid germinal cells, similarly to antizyme 3, the testis specific antizyme. Conversely, ornithine decarboxylase mRNA was mainly found in the outer part of the seminiferous tubules where spermatogonia and spermatocytes are located. Functional transfection assays and co-immunoprecipitation experiments corroborated that antizyme inhibitor 2 counteracts the negative action of antizyme 3 on polyamine biosynthesis and uptake. All these results indicate that the expression of antizyme inhibitor 2 is postnatally regulated and strongly suggest that antizyme inhibitor 2 may have a role in spermiogenesis.
Collapse
Affiliation(s)
- Andrés J López-Contreras
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
López-García C, López-Contreras AJ, Cremades A, Castells MT, Marín F, Schreiber F, Peñafiel R. Molecular and morphological changes in placenta and embryo development associated with the inhibition of polyamine synthesis during midpregnancy in mice. Endocrinology 2008; 149:5012-23. [PMID: 18583422 DOI: 10.1210/en.2008-0084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyamines play an essential role in murine development, as demonstrated by both gene ablation in ornithine decarboxylase (ODC)-deficient embryos and pharmacological treatments of pregnant mice. However, the molecular and cellular mechanisms by which ODC inhibition affects embryonic development during critical periods of pregnancy are mostly unknown. Our present results demonstrate that the contragestational effect of alpha-difluoromethylornithine (DFMO), a suicide inhibitor of ODC, when given at d 7-9 of pregnancy, is associated with embryo growth arrest and marked alterations in the development of yolk sac and placenta. Blood island formation as well as the transcript levels of embryonary globins alpha-like x chain and beta-like y-chain was markedly decreased in the yolk sac. At the placental level, abnormal chorioallantoic attachment, absence of the spongiotrophoblast layer and a deficient development of the labyrinthine zone were evident. Real-time RT-PCR analysis showed that transcript levels of the steroidogenic genes steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase VI, and 17alpha-hydroxylase were markedly decreased by DFMO treatment in the developing placenta at d 9 and 10 of pregnancy. Plasma values of progesterone and androstenedione were also decreased by DFMO treatment. Transcriptomic analysis also detected changes in the expression of several genes involved in placentation and the differentiation of trophoblastic lineages. In conclusion, our results indicate that ODC inhibition at d 8 of pregnancy is related to alterations in yolk sac formation and trophoblast differentiation, affecting processes such as vasculogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Carlos López-García
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Isome M, Lortie MJ, Murakami Y, Parisi E, Matsufuji S, Satriano J. The antiproliferative effects of agmatine correlate with the rate of cellular proliferation. Am J Physiol Cell Physiol 2007; 293:C705-11. [PMID: 17475661 DOI: 10.1152/ajpcell.00084.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyamines are small cationic molecules required for cellular proliferation. Agmatine is a biogenic amine unique in its capacity to arrest proliferation in cell lines by depleting intracellular polyamine levels. We previously demonstrated that agmatine enters mammalian cells via the polyamine transport system. As polyamine transport is positively correlated with the rate of cellular proliferation, the current study examines the antiproliferative effects of agmatine on cells with varying proliferative kinetics. Herein, we evaluate agmatine transport, intracellular accumulation, and its effects on antizyme expression and cellular proliferation in nontransformed cell lines and their transformed variants. H-ras- and Src-transformed murine NIH/3T3 cells (Ras/3T3 and Src/3T3, respectively) that were exposed to exogenous agmatine exhibit increased uptake and intracellular accumulation relative to the parental NIH/3T3 cell line. Similar increases were obtained for human primary foreskin fibroblasts relative to a human fibrosarcoma cell line, HT1080. Agmatine increases expression of antizyme, a protein that inhibits polyamine biosynthesis and transport. Ras/3T3 and Src/3T3 cells demonstrated augmented increases in antizyme protein expression relative to NIH/3T3 in response to agmatine. All transformed cell lines were significantly more sensitive to the antiproliferative effects of agmatine than nontransformed lines. These effects were attenuated in the presence of exogenous polyamines or inhibitors of polyamine transport. In conclusion, the antiproliferative effects of agmatine preferentially target transformed cell lines due to the increased agmatine uptake exhibited by cells with short cycling times.
Collapse
Affiliation(s)
- Masato Isome
- University of California San Diego and Veterans Affairs San Diego Healthcare System, Division of Nephrology-Hypertension, San Diego, CA 92161, USA
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Gaboriau F, Laupen-Chassay C, Pasdeloup N, Pierre JL, Brissot P, Lescoat G. Modulation of cell proliferation and polyamine metabolism in rat liver cell cultures by the iron chelator O-trensox. Biometals 2006; 19:623-32. [PMID: 16944279 DOI: 10.1007/s10534-006-6888-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 01/21/2006] [Indexed: 10/24/2022]
Abstract
The antiproliferative effects of the iron chelator O-trensox and the ornithine-decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) were characterized in the rat hepatoma cell line FAO, the rat liver epithelial cell line (RLEC) and the primary rat hepatocyte cultures stimulated by EGF. We observed that O-trensox and DFMO decreased cell viabilty and DNA replication in the three culture models. The cytostatic effect of O-trensox was correlated to a cytotoxicity, higher than for DFMO, and to a cell cycle arrest in G0/G1 or S phases. Moreover, O-trensox and DFMO decreased the intracellular concentration of spermidine in the three models without changing significantly the spermine level. We concluded that iron, but also polyamine depletion, decrease cell growth. However, the drop in cell proliferation obtained with O-trensox was stronger compared to DFMO effect. Altogether, our data provide insights that, in the three rat liver cell culture models, the cytostatic effect of the iron chelator O-trensox may be the addition of two mechanisms: iron and polyamine depletion.
Collapse
|
19
|
Rodríguez-Caso C, Montañez R, Cascante M, Sánchez-Jiménez F, Medina MA. Mathematical modeling of polyamine metabolism in mammals. J Biol Chem 2006; 281:21799-21812. [PMID: 16709566 DOI: 10.1074/jbc.m602756200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Polyamines are considered as essential compounds in living cells, since they are involved in cell proliferation, transcription, and translation processes. Furthermore, polyamine homeostasis is necessary to cell survival, and its deregulation is involved in relevant processes, such as cancer and neurodegenerative disorders. Great efforts have been made to elucidate the nature of polyamine homeostasis, giving rise to relevant information concerning the behavior of the different components of polyamine metabolism, and a great amount of information has been generated. However, a complex regulation at transcriptional, translational, and metabolic levels as well as the strong relationship between polyamines and essential cell processes make it difficult to discriminate the role of polyamine regulation itself from the whole cell response when an experimental approach is given in vivo. To overcome this limitation, a bottom-up approach to model mathematically metabolic pathways could allow us to elucidate the systemic behavior from individual kinetic and molecular properties. In this paper, we propose a mathematical model of polyamine metabolism from kinetic constants and both metabolite and enzyme levels extracted from bibliographic sources. This model captures the tendencies observed in transgenic mice for the so-called key enzymes of polyamine metabolism, ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermine spermidine N-acetyl transferase. Furthermore, the model shows a relevant role of S-adenosylmethionine and acetyl-CoA availability in polyamine homeostasis, which are not usually considered in systemic experimental studies.
Collapse
Affiliation(s)
- Carlos Rodríguez-Caso
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga E-29071, Spain
| | - Raúl Montañez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga E-29071, Spain
| | - Marta Cascante
- Departamento de Bioquímica, Facultad de Química, Universidad de Barcelona, Barcelona E-08028, Spain
| | - Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga E-29071, Spain
| | - Miguel A Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga E-29071, Spain.
| |
Collapse
|
20
|
Segaud F, Lardeux B, Alexandre-Gouabau MC, Bleiberg-Daniel F, Nakib S, Cynober L, Moinard C. Pretreatment of starved rats with ornithine alpha-ketoglutarate: effects on hepatic mRNA levels and plasma concentrations of three liver-secreted proteins. Nutrition 2005; 21:732-9. [PMID: 15925299 DOI: 10.1016/j.nut.2004.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Ornithine alpha-ketoglutarate (OKG) displays anabolic properties at the hepatic level, but the mechanisms involved remain unclear. This study investigated in vivo the ability of OKG to modulate hepatic gene expression of three liver-secreted proteins: albumin, transthyretin, and retinol binding protein. METHODS One hundred eighty rats were fed for 5 d with a balanced regimen enriched with OKG (5 g.kg(-1).d(-1)) or an isonitrogenous mixture (alanine, glycine, and serine). Hepatic mRNA levels and plasma concentrations of the three proteins studied were determined at the end of the nutrition period and after 1, 2, and 3 d of food deprivation. Results were compared by analysis of variance and Bonferroni-Dunn tests. RESULTS At the end of the nutrition period, hepatic mRNA levels and plasma concentrations of the three proteins were not modified by OKG supplementation. However, OKG largely increased mRNA levels of albumin, transthyretin, and retinol binding protein on the first day of starvation compared with control animals (+68%, +64% and +51%, respectively; P < 0.01 versus control). OKG precociously increased albuminemia (on day 2) but had no effect on plasma concentrations of transthyretin and retinol binding protein. Neither regulation of polyamine hepatic concentration nor alteration in hepatic amino acid content seemed to be implicated in these actions. CONCLUSION This study is the first to demonstrate that OKG regulates in vivo liver gene expression during acute malnutrition by modulating hepatic mRNA levels.
Collapse
Affiliation(s)
- Frédéric Segaud
- Laboratoire de Biologie de la Nutrition EA 2498, Faculté de Pharmacie, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS. The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science 2004; 306:79-86. [PMID: 15459382 DOI: 10.1126/science.1101156] [Citation(s) in RCA: 1177] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for approximately 20% of global carbon fixation. We report the 34 million-base pair draft nuclear genome of the marine diatom Thalassiosira pseudonana and its 129 thousand-base pair plastid and 44 thousand-base pair mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, use of a range of nitrogenous compounds, and a complete urea cycle, all attributes that allow diatoms to prosper in aquatic environments.
Collapse
|
22
|
Lioliou EE, Kyriakidis DA. The role of bacterial antizyme: From an inhibitory protein to AtoC transcriptional regulator. Microb Cell Fact 2004; 3:8. [PMID: 15200682 PMCID: PMC441398 DOI: 10.1186/1475-2859-3-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/16/2004] [Indexed: 11/10/2022] Open
Abstract
This review considers the role of bacterial antizyme in the regulation of polyamine biosynthesis and gives new perspectives on the involvement of antizyme in other significant cellular mechanisms. Antizyme is a protein molecule induced by the end product of the enzymic reaction that it inhibits, in a non-competitive manner. The bacterial ornithine decarboxylase is regulated by nucleotides, phosphorylation and antizyme. The inhibition of ornithine decarboxylase by antizyme can be relieved to different degrees by DNA or by a variety of synthetic nucleic acid polymers, attributed to a specific interaction between nucleic acid and antizyme. Recently, this interplay between bacterial antizyme and nucleic acid was determined by discerning an additional function to antizyme that proved to be the atoC gene product, encoding the response regulator of the bacterial two-component system AtoS-AtoC. The gene located just upstream of atoC encodes the sensor kinase, named AtoS, that modulates AtoC activity. AtoC regulates expression of atoDAEB operon which is involved in short-chain fatty acid metabolism. Antizyme is thus referred to as AtoC, functioning both as a post-translational and transcriptional regulator. Also, the AtoS-AtoC signal transduction system in E. coli has a positive regulatory role on poly-(R)-3-hydroxybutyrate biosynthesis. The properties and gene structural similarities of antizymes from different organisms were compared. It was revealed that conserved domains are present mostly in the C-domain of all antizymes. BLAST analysis of the E. coli antizyme protein (AtoC) showed similarities around 69-58% among proteobacteria, g-proteobacteria, enterobacteria and the thermophilic bacterium Thermus thermophilus. A working hypothesis is proposed for the metabolic role of antizyme (AtoC) describing the significant biological implications of this protein molecule. Whether antizymes exist to other enzymes in different tissues, meeting the criteria discussed in the text remains to be elucidated.
Collapse
Affiliation(s)
- Efthimia E Lioliou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Dimitrios A Kyriakidis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
23
|
Jänne J, Alhonen L, Pietilä M, Keinänen TA. Genetic approaches to the cellular functions of polyamines in mammals. ACTA ACUST UNITED AC 2004; 271:877-94. [PMID: 15009201 DOI: 10.1111/j.1432-1033.2004.04009.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The polyamines putrescine, spermidine and spermine are organic cations shown to participate in a bewildering number of cellular reactions, yet their exact functions in intermediary metabolism and specific interactions with cellular components remain largely elusive. Pharmacological interventions have demonstrated convincingly that a steady supply of these compounds is a prerequisite for cell proliferation to occur. The last decade has witnessed the appearance of a substantial number of studies, in which genetic engineering of polyamine metabolism in transgenic rodents has been employed to unravel their cellular functions. Transgenic activation of polyamine biosynthesis through an overexpression of their biosynthetic enzymes has assigned specific roles for these compounds in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase, as achieved through targeted disruption of their genes, is not compatible with murine embryogenesis. Finally, the first reports of human diseases apparently caused by mutations or rearrangements of the genes involved in polyamine metabolism have appeared.
Collapse
Affiliation(s)
- Juhani Jänne
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | | | | | |
Collapse
|
24
|
Schenkel H, Hanke S, De Lorenzo C, Schmitt R, Mechler BM. P elements inserted in the vicinity of or within the Drosophila snRNP SmD3 gene nested in the first intron of the Ornithine Decarboxylase Antizyme gene affect only the expression of SmD3. Genetics 2002; 161:763-72. [PMID: 12072471 PMCID: PMC1462156 DOI: 10.1093/genetics/161.2.763] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila gene for snRNP SmD3 (SmD3) is contained in reverse orientation within the first intron of the Ornithine Decarboxylase Antizyme (AZ) gene. Previous studies show that two closely linked P elements cause the gutfeeling phenotype characterized by embryonic lethality and aberrant neuronal and muscle cell differentiation. However, the exact nature of the gene(s) affected in the gutfeeling phenotype remained unknown. This study shows that a series of P inserts located within the 5'-untranslated region (5'-UTR) of SmD3 or its promoter affects only the expression of SmD3. Our analysis reveals that the gutfeeling phenotype associated with P elements inserted in the 5'-UTR of SmD3 results from amorphic or strongly hypomorphic mutations. In contrast, P inserts in the SmD3 promoter region reduce the expression of SmD3 without abolishing it and produce larval lethality with overgrown imaginal discs, brain hemispheres, and hematopoietic organs. The lethality of these mutations could be rescued by an SmD3+ transgene. Finally, inactivation of AZ was obtained by complementing with SmD3+ the deficiency Df(2R)guf(lex47) that uncovers both SmD3 and AZ. Interestingly, AZ inactivation causes a new phenotype characterized by late larval lethality and atrophy of the brain, imaginal discs, hematopoietic organs, and salivary glands.
Collapse
Affiliation(s)
- Heide Schenkel
- Department of Developmental Genetics, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
25
|
Kornyshev AA, Leikin S. Sequence recognition in the pairing of DNA duplexes. PHYSICAL REVIEW LETTERS 2001; 86:3666-3669. [PMID: 11328049 DOI: 10.1103/physrevlett.86.3666] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2000] [Indexed: 05/23/2023]
Abstract
Pairing of DNA fragments with homologous sequences occurs in gene shuffling, DNA repair, and other vital processes. While chemical individuality of base pairs is hidden inside the double helix, x ray and NMR revealed sequence-dependent modulation of the structure of DNA backbone. Here we show that the resulting modulation of the DNA surface charge pattern enables duplexes longer than approximately 50 base pairs to recognize sequence homology electrostatically at a distance of up to several water layers. This may explain the local recognition observed in pairing of homologous chromosomes and the observed length dependence of homologous recombination.
Collapse
|