1
|
Ferreira G, Cardozo R, Chavarria L, Santander A, Sobrevia L, Chang W, Gundersen G, Nicolson GL. The LINC complex in blood vessels: from physiology to pathological implications in arterioles. J Physiol 2025. [PMID: 39898417 DOI: 10.1113/jp285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a critical component of the cellular architecture that bridges the nucleoskeleton and cytoskeleton and mediates mechanotransduction to and from the nucleus. Though it plays important roles in all blood vessels, it is in arterioles that this complex plays a pivotal role in maintaining endothelial cell integrity, regulating vascular tone, forming new microvessels and modulating responses to mechanical and biochemical stimuli. It is also important in vascular smooth muscle cells and fibroblasts, where it possibly plays a role in the contractile to secretory phenotypic transformation during atherosclerosis and vascular ageing, and in fibroblasts' migration and inflammatory responses in the adventitia. Physiologically, the LINC complex contributes to the stability of arteriolar structure, adaptations to changes in blood flow and injury repair mechanisms. Pathologically, dysregulation or mutations in LINC complex components can lead to compromised endothelial function, vascular remodelling and exacerbation of cardiovascular diseases such as atherosclerosis (arteriolosclerosis). This review summarizes our current understanding of the roles of the LINC complex in cells from arterioles, highlighting its most important physiological functions, exploring its implications for vascular pathology and emphasizing some of its functional characteristics in endothelial cells. By elucidating the LINC complex's role in health and disease, we aim to provide insights that could improve future therapeutic strategies targeting LINC complex-related vascular disorders.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Romina Cardozo
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luisina Chavarria
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Axel Santander
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Sao Paulo, Brazil
- Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, QLD, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gregg Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
2
|
Geng J, Zheng K, Wang P, Su B, Wei Q, Liu X. Focal Adhesion Regulation as a Strategy against Kidney Fibrosis. ACS Chem Biol 2025. [PMID: 39818722 DOI: 10.1021/acschembio.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Chronic kidney fibrosis poses a significant global health challenge with effective therapeutic strategies remaining elusive. While cell-extracellular matrix (ECM) interactions are known to drive fibrosis progression, the specific role of focal adhesions (FAs) in kidney fibrosis is not fully understood. In this study, we investigated the role of FAs in kidney tubular epithelial cell fibrosis by employing precise nanogold patterning to modulate integrin distribution. We demonstrate that increasing ligand spacing disrupts integrin clustering, thereby inhibiting FA formation and attenuating fibrosis. Importantly, enhanced FA activity is associated with kidney fibrosis in both human disease specimens and murine models. Mechanistically, FAs regulate fibrosis through mechanotransduction pathways, and our in vivo experiments show that suppressing mechanotransduction significantly mitigates kidney fibrosis in mice. These findings highlight the potential of targeting FAs as a therapeutic strategy, offering new insights into clinical intervention in kidney fibrosis.
Collapse
Affiliation(s)
- Jiwen Geng
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Kaikai Zheng
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Peng Wang
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Baihai Su
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Xiaojing Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, and Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
3
|
Alqabandi JA, David R, Abdel-Motal UM, ElAbd RO, Youcef-Toumi K. An innovative cellular medicine approach via the utilization of novel nanotechnology-based biomechatronic platforms as a label-free biomarker for early melanoma diagnosis. Sci Rep 2024; 14:30107. [PMID: 39627312 PMCID: PMC11615046 DOI: 10.1038/s41598-024-79154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Innovative cellular medicine (ICM) is an exponentially emerging field with a promising approach to combating complex and ubiquitous life-threatening diseases such as multiple sclerosis (MS), arthritis, Parkinson's disease, Alzheimer's, heart disease, and cancer. Together with the advancement of nanotechnology and bio-mechatronics, ICM revolutionizes cellular therapy in understanding the essence and nature of the disease initiated at a single-cell level. This paper focuses on the intricate nature of cancer that requires multi-disciplinary efforts to characterize it well in order to achieve the objectives of modern world contemporary medicine in the early detection of the disease at a cellular level and potentially arrest its proliferation mechanism. This justifies the multidisciplinary research backgrounds of the authors of this paper in advancing cellular medicine by bridging the gap between experimental biology and the engineering field. Thus, in pursuing this approach, two novel miniaturized and highly versatile biomechatronic platforms with dedicated operating software and microelectronics are designed, modeled, nanofabricated, and tested in numerous in vitro experiments to investigate a hypothesis and arrive at a proven theorem in carcinogenesis by interrelating cellular contractile force, membrane potential, and cellular morphology for early detection and characterization of melanoma cancer cells. The novelties that flourished within this work are manifested in sixfold: (1) developing a mathematical model that utilizes a Heaviside step function, as well as a pin-force model to compute the contractile force of a living cell, (2) deriving an expression of cell-membrane potential based on Laplace and Fourier Transform and their Inverse Transform functions by encountering Warburg diffusion impedance factor, (3) nano-fabricating novel biomechatronic platforms with associated microelectronics and customized software that extract cellular physics and mechanics, (4) developing a label-free biomarker, (5) arrive at a proved theorem in developing a mathematical expression in relating cancer cell mechanobiology to its biophysics in connection to the stage of the disease, and (6) to the first time in literature, and to the best of the authors' knowledge, discriminating different stages and morphology of cancer cell melanoma based on their cell-membrane potentials, and associated contractile forces that could introduce a new venue of cellular therapeutic modalities, preclinical early cancer diagnosis, and a novel approach in immunotherapy drug development. The proposed innovative technology-based versatile bio-mechatronic platforms shall be extended for future studies, investigating the role of electrochemical signaling of the nervous system in cancer formation that will significantly impact modern oncology by pursuing a targeted immunotherapy approach. This work also provides a robust platform for immunotherapy practitioners in extending the study of cellular biophysics in stalling neural-cancer interactions, of which the FDA-approved chimeric antigen receptor (CAR)-T cell therapies can be enhanced (genetically engineered) in a lab by improving its receptors to capture cancer antigens. This work amplifies the importance of studying neurotransmitters and electrochemical signaling molecules in shaping the immune T-cell function and its effectiveness in arresting cancer proliferation rate (mechanobiology mechanism).
Collapse
Affiliation(s)
- Jassim A Alqabandi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Mechatronics in Medicine Laboratory, Imperial College London, London, UK.
- Department of Manufacturing Engineering Technology (Bio-Mechatronics) Department, PAAET, Kuwait, State of Kuwait.
| | - Rhiannon David
- Division of Computational and Systems Medicine (CSM), Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Ussama M Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rawan O ElAbd
- McGill University Health Center, Montreal, QC, Canada
| | - Kamal Youcef-Toumi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| |
Collapse
|
4
|
Bathrinarayanan PV, Hallam SM, Grover LM, Vigolo D, Simmons MJH. Microfluidics as a Powerful Tool to Investigate Microvascular Dysfunction in Trauma Conditions: A Review of the State-of-the-Art. Adv Biol (Weinh) 2024; 8:e2400037. [PMID: 39031943 DOI: 10.1002/adbi.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Indexed: 07/22/2024]
Abstract
Skeletal muscle trauma such as fracture or crush injury can result in a life-threatening condition called acute compartment syndrome (ACS), which involves elevated compartmental pressure within a closed osteo-fascial compartment, leading to collapse of the microvasculature and resulting in necrosis of the tissue due to ischemia. Diagnosis of ACS is complex and controversial due to the lack of standardized objective methods, which results in high rates of misdiagnosis/late diagnosis, leading to permanent neuro-muscular damage. ACS pathophysiology is poorly understood at a cellular level due to the lack of physiologically relevant models. In this context, microfluidics organ-on-chip systems (OOCs) provide an exciting opportunity to investigate the cellular mechanisms of microvascular dysfunction that leads to ACS. In this article, the state-of-the-art OOCs designs and strategies used to investigate microvasculature dysfunction mechanisms is reviewed. The differential effects of hemodynamic shear stress on endothelial cell characteristics such as morphology, permeability, and inflammation, all of which are altered during microvascular dysfunction is highlighted. The article then critically reviews the importance of microfluidics to investigate closely related microvascular pathologies that cause ACS. The article concludes by discussing potential biomarkers of ACS with a special emphasis on glycocalyx and providing a future perspective.
Collapse
Affiliation(s)
- P Vasanthi Bathrinarayanan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S M Hallam
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - D Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
5
|
Lemmens TP, Bröker V, Rijpkema M, Hughes CCW, Schurgers LJ, Cosemans JMEM. Fundamental considerations for designing endothelialized in vitro models of thrombosis. Thromb Res 2024; 236:179-190. [PMID: 38460307 DOI: 10.1016/j.thromres.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Endothelialized in vitro models for cardiovascular disease have contributed greatly to our current understanding of the complex molecular mechanisms underlying thrombosis. To further elucidate these mechanisms, it is important to consider which fundamental aspects to incorporate into an in vitro model. In this review, we will focus on the design of in vitro endothelialized models of thrombosis. Expanding our understanding of the relation and interplay between the different pathways involved will rely in part on complex models that incorporate endothelial cells, blood, the extracellular matrix, and flow. Importantly, the use of tissue-specific endothelial cells will help in understanding the heterogeneity in thrombotic responses between different vascular beds. The dynamic and complex responses of endothelial cells to different shear rates underlines the importance of incorporating appropriate shear in in vitro models. Alterations in vascular extracellular matrix composition, availability of bioactive molecules, and gradients in concentration and composition of these molecules can all regulate the function of both endothelial cells and perivascular cells. Factors modulating these elements in in vitro models should therefore be considered carefully depending on the research question at hand. As the complexity of in vitro models increases, so can the variability. A bottom-up approach to designing such models will remain an important tool for researchers studying thrombosis. As new techniques are continuously being developed and new pathways are brought to light, research question-dependent considerations will have to be made regarding what aspects of thrombosis to include in in vitro models.
Collapse
Affiliation(s)
- Titus P Lemmens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Vanessa Bröker
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Minke Rijpkema
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, and Department of Biomedical Engineering, University of California, Irvine, USA
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Luik AL, Hannocks MJ, Loismann S, Kapupara K, Cerina M, van der Stoel M, Tsytsyura Y, Glyvuk N, Nordenvall C, Klingauf J, Huveneers S, Meuth S, Jakobsson L, Sorokin L. Endothelial basement membrane laminins - new players in mouse and human myoendothelial junctions and shear stress communication. Matrix Biol 2023; 121:56-73. [PMID: 37311512 DOI: 10.1016/j.matbio.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Basement membranes (BMs) are critical but frequently ignored components of the vascular system. Using high-resolution confocal imaging of whole-mount-stained mesenteric arteries, we identify integrins, vinculin, focal adhesion kinase (FAK) and several BM proteins including laminins as novel components of myoendothelial junctions (MEJs), anatomical microdomains that are emerging as regulators of cross-talk between endothelium and smooth muscle cells (SMCs). Electron microscopy revealed multiple layers of the endothelial BM that surround endothelial projections into the smooth muscle layer as structural characteristics of MEJs. The shear-responsive calcium channel TRPV4 is broadly distributed in endothelial cells and occurs in a proportion of MEJs where it localizes to the tips of the endothelial projections that are in contact with the underlying SMCs. In mice lacking the major endothelial laminin isoform, laminin 411 (Lama4-/-), which we have previously shown over-dilate in response to shear and exhibit a compensatory laminin 511 upregulation, localization of TRPV4 at the endothelial-SMC interface in MEJs was increased. Endothelial laminins do not affect TRPV4 expression, rather in vitro electrophysiology studies using human umbilical cord arterial endothelial cells revealed enhanced TRPV4 signalling upon culturing on an RGD-motif containing domain of laminin 511. Hence, integrin-mediated interactions with laminin 511 in MEJ structures unique to resistance arteries modulate TRPV4 localization at the endothelial-smooth muscle interface in MEJs and signalling over this shear-response molecule.
Collapse
Affiliation(s)
- Anna-Liisa Luik
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Sophie Loismann
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Kishan Kapupara
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Manuela Cerina
- Cells in Motion Interfaculty Centre; Institute of Translational Neurology and Department of Neurology, University of Muenster, Germany
| | - Miesje van der Stoel
- Dept of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, the Netherlands
| | - Yaroslav Tsytsyura
- Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Nataliya Glyvuk
- Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Caroline Nordenvall
- Dept of Molecular Medicine and Surgery, Karolinska Institute, Sweden; Dept of Pelvic Cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Sweden
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Stephan Huveneers
- Dept of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, the Netherlands
| | - Sven Meuth
- Cells in Motion Interfaculty Centre; Institute of Translational Neurology and Department of Neurology, University of Muenster, Germany; Neurology Clinic, Medical Faculty, University of Düsseldorf, Germany
| | - Lars Jakobsson
- Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre.
| |
Collapse
|
7
|
Alamilla-Sanchez ME, Alcala-Salgado MA, Cerezo Samperio B, Prado Lozano P, Diaz Garcia JD, Gonzalez Fuentes C, Yama Estrella MB, Morales Lopez EF. Advances in the Physiology of Transvascular Exchange and A New Look At Rational Fluid Prescription. Int J Gen Med 2023; 16:2753-2770. [PMID: 37408844 PMCID: PMC10319290 DOI: 10.2147/ijgm.s405926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023] Open
Abstract
The Starling principle is a model that explains the transvascular distribution of fluids essentially governed by hydrostatic and oncotic forces, which dynamically allow vascular refilling according to the characteristics of the blood vessel. However, careful analysis of fluid physiology has shown that the principle, while correct, is not complete. The revised Starling principle (Michel-Weinbaum model) provides relevant information on fluid kinetics. Special emphasis has been placed on the endothelial glycocalyx, whose subendothelial area allows a restricted oncotic pressure that limits the reabsorption of fluid from the interstitial space, so that transvascular refilling occurs mainly from the lymphatic vessels. The close correlation between pathological states of the endothelium (eg: sepsis, acute inflammation, or chronic kidney disease) and the prescription of fluids forces the physician to understand the dynamics of fluids in the organism; this will allow rational fluid prescriptions. A theory that integrates the physiology of exchange and transvascular refilling is the "microconstant model", whose variables include dynamic mechanisms that can explain edematous states, management of acute resuscitation, and type of fluids for common clinical conditions. The clinical-physiological integration of the concepts will be the hinges that allow a rational and dynamic prescription of fluids.
Collapse
Affiliation(s)
| | | | | | - Pamela Prado Lozano
- Department of Nephrology, Centro Medico Nacional “20 de Noviembre”, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
8
|
Aitken C, Mehta V, Schwartz MA, Tzima E. Mechanisms of endothelial flow sensing. NATURE CARDIOVASCULAR RESEARCH 2023; 2:517-529. [PMID: 39195881 DOI: 10.1038/s44161-023-00276-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 08/29/2024]
Abstract
Fluid shear stress plays a key role in sculpting blood vessels during development, in adult vascular homeostasis and in vascular pathologies. During evolution, endothelial cells evolved several mechanosensors that convert physical forces into biochemical signals, a process termed mechanotransduction. This Review discusses our understanding of endothelial flow sensing and suggests important questions for future investigation.
Collapse
Affiliation(s)
- Claire Aitken
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vedanta Mehta
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Ellie Tzima
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
9
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
10
|
Zhao H, Liu P, Zha X, Zhang S, Cao J, Wei H, Wang M, Huang H, Wang W. Integrin ligands block mechanical signal transduction in baroreceptors. Life Sci Alliance 2023; 6:6/3/e202201785. [PMID: 36625204 PMCID: PMC9768909 DOI: 10.26508/lsa.202201785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Baroreceptors are nerve endings located in the adventitia of the carotid sinus and aortic arch. They act as a mechanoelectrical transducer that can sense the tension stimulation exerted on the blood vessel wall by the rise in blood pressure and transduce the mechanical force into discharge of the nerve endings. However, the molecular identity of mechanical signal transduction from the vessel wall to the baroreceptor is not clear. We discovered that exogenous integrin ligands, such as RGD, IKVAV, YIGSR, PHSRN, and KNEED, could restrain pressure-dependent discharge of the aortic nerve in a dose-dependent and reversible manner. Perfusion of RGD at the baroreceptor site in vivo can block the baroreceptor reflex. An immunohistochemistry study showed the binding of exogenous RGD to the nerve endings under the adventitia of the rat aortic arch, which may competitively block the binding of integrins to ligand motifs in extracellular matrix. These findings suggest that connection of integrins with extracellular matrix plays an important role in the mechanical coupling process between vessel walls and arterial baroreceptors.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Yanjing Medical College, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Ping Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Xu Zha
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sitao Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hua Wei
- Medical Experiment and Test Center, Capital Medical University, Beijing, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China .,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| |
Collapse
|
11
|
Abstract
Despite enormous advances, cardiovascular disorders are still a major threat to global health and are responsible for one-third of deaths worldwide. Research for new therapeutics and the investigation of their effects on vascular parameters is often limited by species-specific pathways and a lack of high-throughput methods. The complex 3-dimensional environment of blood vessels, intricate cellular crosstalks, and organ-specific architectures further complicate the quest for a faithful human in vitro model. The development of novel organoid models of various tissues such as brain, gut, and kidney signified a leap for the field of personalized medicine and disease research. By utilizing either embryonic- or patient-derived stem cells, different developmental and pathological mechanisms can be modeled and investigated in a controlled in vitro environment. We have recently developed self-organizing human capillary blood vessel organoids that recapitulate key processes of vasculogenesis, angiogenesis, and diabetic vasculopathy. Since then, this organoid system has been utilized as a model for other disease processes, refined, and adapted for organ specificity. In this review, we will discuss novel and alternative approaches to blood vessel engineering and explore the cellular identity of engineered blood vessels in comparison to in vivo vasculature. Future perspectives and the therapeutic potential of blood vessel organoids will be discussed.
Collapse
Affiliation(s)
- Kirill Salewskij
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna (K.S., J.M.P.).,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Austria (K.S.)
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna (K.S., J.M.P.).,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada (J.M.P.)
| |
Collapse
|
12
|
The Role of Membrane-Type 1 Matrix Metalloproteinase-Substrate Interactions in Pathogenesis. Int J Mol Sci 2023; 24:ijms24032183. [PMID: 36768503 PMCID: PMC9917210 DOI: 10.3390/ijms24032183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A protease is an enzyme with a proteolytic activity that facilitates the digestion of its substrates. Membrane-type I matrix metalloproteinase (MT1-MMP), a member of the broader matrix metalloproteinases (MMP) family, is involved in the regulation of diverse cellular activities. MT1-MMP is a very well-known enzyme as an activator of pro-MMP-2 and two collagenases, MMP-8 and MMP-13, all of which are essential for cell migration. As an anchored membrane enzyme, MT1-MMP has the ability to interact with a diverse group of molecules, including proteins that are not part of the extracellular matrix (ECM). Therefore, MT1-MMP can regulate various cellular activities not only by changing the extra-cellular environment but also by regulating cell signaling. The presence of both intracellular and extra-cellular portions of MT1-MMP can allow it to interact with proteins on both sides of the cell membrane. Here, we reviewed the MT1-MMP substrates involved in disease pathogenesis.
Collapse
|
13
|
Abdalrahman T, Checa S. On the role of mechanical signals on sprouting angiogenesis through computer modeling approaches. Biomech Model Mechanobiol 2022; 21:1623-1640. [PMID: 36394779 PMCID: PMC9700567 DOI: 10.1007/s10237-022-01648-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022]
Abstract
Sprouting angiogenesis, the formation of new vessels from preexisting vasculature, is an essential process in the regeneration of new tissues as well as in the development of some diseases like cancer. Although early studies identified chemical signaling as the main driver of this process, many recent studies have shown a strong role of mechanical signals in the formation of new capillaries. Different types of mechanical signals (e.g., external forces, cell traction forces, and blood flow-induced shear forces) have been shown to play distinct roles in the process; however, their interplay remains still largely unknown. During the last decades, mathematical and computational modeling approaches have been developed to investigate and better understand the mechanisms behind mechanically driven angiogenesis. In this manuscript, we review computational models of angiogenesis with a focus on models investigating the role of mechanics on the process. Our aim is not to provide a detailed review on model methodology but to describe what we have learnt from these models. We classify models according to the mechanical signals being investigated and describe how models have looked into their role on the angiogenic process. We show that a better understanding of the mechanobiology of the angiogenic process will require the development of computer models that incorporate the interactions between the multiple mechanical signals and their effect on cellular responses, since they all seem to play a key in sprout patterning. In the end, we describe some of the remaining challenges of computational modeling of angiogenesis and discuss potential avenues for future research.
Collapse
|
14
|
Li M, Zhao YY, Cui JF. Matrix stiffness in regulation of tumor angiogenesis. Shijie Huaren Xiaohua Zazhi 2022; 30:871-878. [DOI: 10.11569/wcjd.v30.i20.871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the most common malignant features of solid tumors such as liver cancer, pancreatic cancer, and gastrointestinal tumors, which is the basis of tumor growth, invasion, and metastasis. It is also an important target of anti-tumor therapy. Tumor angiogenesis is usually triggered by biochemical, hypoxic, and biomechanical factors in the microenvironment. The regulation of biochemical signals and hypoxic microenvironment in tumor angiogenesis have been widely documented, but the role of biomechanical signals in tumor angiogenesis has gradually begun to be uncovered in recent years. The vasculature system is naturally sensitive to mechanical stimuli. Recent studies have highlighted the important regulatory effects of biomechanical stimuli, such as matrix stiffness, fluid shear stress, and vascular lumen pressure, on the phenotype and functions of tumor blood vessels. In this paper, we summarize the new progress and internal mechanisms of matrix stiffness-mediated effects on tumor angiogenesis.
Collapse
Affiliation(s)
- Miao Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying-Ying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
15
|
Barbacena P, Dominguez-Cejudo M, Fonseca CG, Gómez-González M, Faure LM, Zarkada G, Pena A, Pezzarossa A, Ramalho D, Giarratano Y, Ouarné M, Barata D, Fortunato IC, Misikova LH, Mauldin I, Carvalho Y, Trepat X, Roca-Cusachs P, Eichmann A, Bernabeu MO, Franco CA. Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina. Dev Cell 2022; 57:2321-2333.e9. [PMID: 36220082 PMCID: PMC9552591 DOI: 10.1016/j.devcel.2022.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022]
Abstract
Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.
Collapse
Affiliation(s)
- Pedro Barbacena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Dominguez-Cejudo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina G Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Laura M Faure
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Georgia Zarkada
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andreia Pena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
| | - Daniela Ramalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ylenia Giarratano
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Marie Ouarné
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - David Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Isabela C Fortunato
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lenka Henao Misikova
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ian Mauldin
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK; School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Yulia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Université de Paris, PARCC, INSERM, 75006 Paris, France
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK; The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| | - Cláudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Lisbon, Portugal.
| |
Collapse
|
16
|
Lai A, Thurgood P, Cox CD, Chheang C, Peter K, Jaworowski A, Khoshmanesh K, Baratchi S. Piezo1 Response to Shear Stress Is Controlled by the Components of the Extracellular Matrix. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40559-40568. [PMID: 36047858 DOI: 10.1021/acsami.2c09169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Piezo1 is a recently discovered Ca2+ permeable ion channel that has emerged as an integral sensor of hemodynamic forces within the cardiovascular system, contributing to vascular development and blood pressure regulation. However, how the composition of the extracellular matrix (ECM) affects the mechanosensitivity of Piezo1 in response to hemodynamic forces remains poorly understood. Using a combination of microfluidics and calcium imaging techniques, we probe the shear stress sensitivity of single HEK293T cells engineered to stably express Piezo1 in the presence of different ECM proteins. Our experiments show that Piezo1 sensitivity to shear stress is not dependent on the presence of ECM proteins. However, different ECM proteins regulate the sensitivity of Piezo1 depending on the shear stress level. Under high shear stress, fibronectin sensitizes Piezo1 response to shear, while under low shear stress, Piezo1 mechanosensitivity is improved in the presence of collagen types I and IV and laminin. Moreover, we report that α5β1 and αvβ3 integrins are involved in Piezo1 sensitivity at high shear, while αvβ3 and αvβ5 integrins are involved in regulating the Piezo1 response at low shear stress. These results demonstrate that the ECM/integrin interactions influence Piezo1 mechanosensitivity and could represent a mechanism whereby extracellular forces are transmitted to Piezo1 channels, providing new insights into the mechanism by which Piezo1 senses shear stress.
Collapse
Affiliation(s)
- Austin Lai
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| | - Chanly Chheang
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony Jaworowski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
| | | | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Ren Y, Liu J, Xu H, Wang S, Li S, Xiang M, Chen S. Knockout of integrin β1 in induced pluripotent stem cells accelerates skin-wound healing by promoting cell migration in extracellular matrix. Stem Cell Res Ther 2022; 13:389. [PMID: 35908001 PMCID: PMC9338467 DOI: 10.1186/s13287-022-03085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Induced pluripotent stem cells (iPSCs) have the potential to promote wound healing; however, their adhesion to the extracellular matrix (ECM) might decrease iPSC migration, thereby limiting their therapeutic potential. Integrin β1 (Itgb1) is the major integrin subunit that mediates iPSC-ECM adhesion, suggesting that knocking out Itgb1 might be an effective method for enhancing the therapeutic efficacy of iPSCs. Methods We knocked out Itgb1 in mouse iPSCs and evaluated its effects on the therapeutic potential of topically applied iPSCs, as well as their underlying in vivo and in vitro mechanisms. Results The Itgb1-knockout (Itgb1-KO) did not change iPSC pluripotency, function, or survival in the absence of embedding in an ECM gel but did accelerate wound healing, angiogenesis, blood perfusion, and survival in skin-wound lesions. However, embedding in an ECM gel inhibited the in vivo effects of wild-type iPSCs but not those of Itgb1-knockout iPSCs. Additionally, in vitro results showed that Itgb1-knockout decreased iPSC-ECM adhesion while increasing ECM-crossing migration. Moreover, ECM coating on the culture surface did not change cell survival, regardless of Itgb1 status; however, the in vivo and in vitro functions of both Itgb1-knockout and wild-type iPSCs were not affected by the presence of agarose gel, which does not contain integrin-binding sites. Knockout of Integrin α4 (Itga4) did not change the above-mentioned cellular and therapeutic functions of iPSCs. Conclusions Itgb1-knockout increased iPSCs migration and the wound-healing-promoting effect of topically applied iPSCs. These findings suggest the inhibition of Itgb1 expression is a possible strategy for increasing the efficacy of iPSC therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03085-7.
Collapse
Affiliation(s)
- Yansong Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jinbo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huijun Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shun Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shirui Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Meng Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
18
|
Urbanczyk M, Zbinden A, Schenke-Layland K. Organ-specific endothelial cell heterogenicity and its impact on regenerative medicine and biomedical engineering applications. Adv Drug Deliv Rev 2022; 186:114323. [PMID: 35568103 DOI: 10.1016/j.addr.2022.114323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) are a key cellular component of the vascular system as they form the inner lining of the blood vessels. Recent findings highlight that ECs express extensive phenotypic heterogenicity when following the vascular tree from the major vasculature down to the organ capillaries. However, in vitro models, used for drug development and testing, or to study the role of ECs in health and disease, rarely acknowledge this EC heterogenicity. In this review, we highlight the main differences between different EC types, briefly summarize their different characteristics and focus on the use of ECs in in vitro models. We introduce different approaches on how ECs can be utilized in co-culture test systems in the field of brain, pancreas, and liver research to study the role of the endothelium in health and disease. Finally, we discuss potential improvements to current state-of-the-art in vitro models and future directions.
Collapse
|
19
|
Salvador J, Iruela-Arispe ML. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Front Cell Dev Biol 2022; 10:905927. [PMID: 35784481 PMCID: PMC9247619 DOI: 10.3389/fcell.2022.905927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular cells are constantly subjected to physical forces associated with the rhythmic activities of the heart, which combined with the individual geometry of vessels further imposes oscillatory, turbulent, or laminar shear stresses on vascular cells. These hemodynamic forces play an important role in regulating the transcriptional program and phenotype of endothelial and smooth muscle cells in different regions of the vascular tree. Within the aorta, the lesser curvature of the arch is characterized by disturbed, oscillatory flow. There, endothelial cells become activated, adopting pro-inflammatory and athero-prone phenotypes. This contrasts the descending aorta where flow is laminar and endothelial cells maintain a quiescent and atheroprotective phenotype. While still unclear, the specific mechanisms involved in mechanosensing flow patterns and their molecular mechanotransduction directly impact the nucleus with consequences to transcriptional and epigenetic states. The linker of nucleoskeleton and cytoskeleton (LINC) protein complex transmits both internal and external forces, including shear stress, through the cytoskeleton to the nucleus. These forces can ultimately lead to changes in nuclear integrity, chromatin organization, and gene expression that significantly impact emergence of pathology such as the high incidence of atherosclerosis in progeria. Therefore, there is strong motivation to understand how endothelial nuclei can sense and respond to physical signals and how abnormal responses to mechanical cues can lead to disease. Here, we review the evidence for a critical role of the nucleus as a mechanosensor and the importance of maintaining nuclear integrity in response to continuous biophysical forces, specifically shear stress, for proper vascular function and stability.
Collapse
Affiliation(s)
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
20
|
Polk T, Schmitt S, Aldrich JL, Long DS. Human dermal microvascular endothelial cell morphological response to fluid shear stress. Microvasc Res 2022; 143:104377. [PMID: 35561754 DOI: 10.1016/j.mvr.2022.104377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
As the cells that line the vasculature, endothelial cells are continually exposed to fluid shear stress by blood flow. Recent studies suggest that the morphological response of endothelial cells to fluid shear stress depends on the endothelial cell type. Thus, the present study characterizes the morphological response of human dermal microvascular endothelial cells (HMEC-1) and nuclei to steady, laminar, and unidirectional fluid shear stress. Cultured HMEC-1 monolayers were exposed to shear stress of 0.3 dyn/cm2, 16 dyn/cm2, or 32 dyn/cm2 for 72 h with hourly live-cell imaging capturing both the nuclear and cellular morphology. Despite changes in elongation and alignment occurring with increasing fluid shear stress, there was a lack of elongation and alignment over time under each fluid shear stress condition. Conversely, changes in cellular and nuclear area exhibited dependence on both time and fluid shear stress magnitude. The trends in cellular morphology differed at shear stress levels above and below 16 dyn/cm2, whereas the nuclear orientation was independent of fluid shear stress magnitude. These findings show the complex morphological response of HMEC-1 to fluid shear stress.
Collapse
Affiliation(s)
- Tabatha Polk
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA
| | - Sarah Schmitt
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA
| | - Jessica L Aldrich
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA
| | - David S Long
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA.
| |
Collapse
|
21
|
Hua Y, Zhang J, Liu Q, Su J, Zhao Y, Zheng G, Yang Z, Zhuo D, Ma C, Fan G. The Induction of Endothelial Autophagy and Its Role in the Development of Atherosclerosis. Front Cardiovasc Med 2022; 9:831847. [PMID: 35402552 PMCID: PMC8983858 DOI: 10.3389/fcvm.2022.831847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Increasing attention is now being paid to the important role played by autophagic flux in maintaining normal blood vessel walls. Endothelial cell dysfunction initiates the development of atherosclerosis. In the endothelium, a variety of critical triggers ranging from shear stress to circulating blood lipids promote autophagy. Furthermore, emerging evidence links autophagy to a range of important physiological functions such as redox homeostasis, lipid metabolism, and the secretion of vasomodulatory substances that determine the life and death of endothelial cells. Thus, the promotion of autophagy in endothelial cells may have the potential for treating atherosclerosis. This paper reviews the role of endothelial cells in the pathogenesis of atherosclerosis and explores the molecular mechanisms involved in atherosclerosis development.
Collapse
Affiliation(s)
- Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhang
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianqian Liu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Su
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guobin Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Aliaghaei M, Haun JB. Optimization of Mechanical Tissue Dissociation Using an Integrated Microfluidic Device for Improved Generation of Single Cells Following Digestion. Front Bioeng Biotechnol 2022; 10:841046. [PMID: 35211466 PMCID: PMC8861371 DOI: 10.3389/fbioe.2022.841046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
The dissociation of tissue and cell aggregates into single cells is of high interest for single cell analysis studies, primary cultures, tissue engineering, and regenerative medicine. However, current methods are slow, poorly controlled, variable, and can introduce artifacts. We previously developed a microfluidic device that contains two separate dissociation modules, a branching channel array and nylon mesh filters, which was used as a polishing step after tissue processing with a microfluidic digestion device. Here, we employed the integrated disaggregation and filtration (IDF) device as a standalone method with both cell aggregates and traditionally digested tissue to perform a well-controlled and detailed study into the effect of mechanical forces on dissociation, including modulation of flow rate, device pass number, and even the mechanism. Using a strongly cohesive cell aggregate model, we found that single cell recovery was highest using flow rates exceeding 40 ml/min and multiple passes through the filter module, either with or without the channel module. For minced and digested kidney tissue, recovery of diverse cell types was maximal using multiple passes through the channel module and only a single pass through the filter module. Notably, we found that epithelial cell recovery from the optimized IDF device alone exceeded our previous efforts, and this result was maintained after reducing digestion time to 20 min. However, endothelial cells and leukocytes still required extended digestion time for maximal recover. These findings highlight the significance of parameter optimization to achieve the highest cell yield and viability based on tissue sample size, extracellular matrix content, and strength of cell-cell interactions.
Collapse
Affiliation(s)
- Marzieh Aliaghaei
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, United States
| | - Jered B Haun
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States.,Center for Advanced Design and Manufacturing of Integrated Microfluidics, University of California, Irvine, Irvine, CA, United States.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
23
|
Seymour AJ, Westerfield AD, Cornelius VC, Skylar-Scott MA, Heilshorn SC. Bioprinted microvasculature: progressing from structure to function. Biofabrication 2022; 14:10.1088/1758-5090/ac4fb5. [PMID: 35086069 PMCID: PMC8988885 DOI: 10.1088/1758-5090/ac4fb5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Three-dimensional (3D) bioprinting seeks to unlock the rapid generation of complex tissue constructs, but long-standing challenges with efficientin vitromicrovascularization must be solved before this can become a reality. Microvasculature is particularly challenging to biofabricate due to the presence of a hollow lumen, a hierarchically branched network topology, and a complex signaling milieu. All of these characteristics are required for proper microvascular-and, thus, tissue-function. While several techniques have been developed to address distinct portions of this microvascularization challenge, no single approach is capable of simultaneously recreating all three microvascular characteristics. In this review, we present a three-part framework that proposes integration of existing techniques to generate mature microvascular constructs. First, extrusion-based 3D bioprinting creates a mesoscale foundation of hollow, endothelialized channels. Second, biochemical and biophysical cues induce endothelial sprouting to create a capillary-mimetic network. Third, the construct is conditioned to enhance network maturity. Across all three of these stages, we highlight the potential for extrusion-based bioprinting to become a central technique for engineering hierarchical microvasculature. We envision that the successful biofabrication of functionally engineered microvasculature will address a critical need in tissue engineering, and propel further advances in regenerative medicine andex vivohuman tissue modeling.
Collapse
Affiliation(s)
- Alexis J. Seymour
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Ashley D. Westerfield
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Vincent C. Cornelius
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Mark A. Skylar-Scott
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Sarah C. Heilshorn
- Department of Materials Science & Engineering, Stanford University, 476 Lomita Mall, McCullough Room 246, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Langeveld SAG, Meijlink B, Beekers I, Olthof M, van der Steen AFW, de Jong N, Kooiman K. Theranostic Microbubbles with Homogeneous Ligand Distribution for Higher Binding Efficacy. Pharmaceutics 2022; 14:pharmaceutics14020311. [PMID: 35214044 PMCID: PMC8878664 DOI: 10.3390/pharmaceutics14020311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Phospholipid-coated targeted microbubbles are used for ultrasound molecular imaging and locally enhanced drug delivery, with the binding efficacy being an important trait. The use of organic solvent in microbubble production makes the difference between a heterogeneous or homogeneous ligand distribution. This study demonstrates the effect of ligand distribution on the binding efficacy of phospholipid-coated ανβ3-targeted microbubbles in vitro using a monolayer of human umbilical-vein endothelial cells and in vivo using chicken embryos. Microbubbles with a homogeneous ligand distribution had a higher binding efficacy than those with a heterogeneous ligand distribution both in vitro and in vivo. In vitro, 1.55× more microbubbles with a homogeneous ligand distribution bound under static conditions, while this was 1.49× more under flow with 1.25 dyn/cm2, 1.56× more under flow with 2.22 dyn/cm2, and 1.25× more in vivo. The in vitro dissociation rate of bound microbubbles with homogeneous ligand distribution was lower at low shear stresses (1–5 dyn/cm2). The internalized depth of bound microbubbles was influenced by microbubble size, not by ligand distribution. In conclusion, for optimal binding the use of organic solvent in targeted microbubble production is preferable over directly dispersing phospholipids in aqueous medium.
Collapse
Affiliation(s)
- Simone A. G. Langeveld
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Correspondence:
| | - Bram Meijlink
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Inés Beekers
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Department of Health, ORTEC B.V., 2719 EA Zoetermeer, The Netherlands
| | - Mark Olthof
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Antonius F. W. van der Steen
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Nico de Jong
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Klazina Kooiman
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| |
Collapse
|
25
|
Adams Y, Jensen AR. Chip-Based Assay of Adhesion of Plasmodium falciparum-Infected Erythrocytes to Cells Under Flow. Methods Mol Biol 2022; 2470:545-556. [PMID: 35881374 DOI: 10.1007/978-1-0716-2189-9_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unique to Plasmodium falciparum malaria parasites, the mature asexual stages of the life cycle are absent from the peripheral blood stream. Using syringe pumps and commercially available microslides, it is possible to mimic the blood flow, and investigate the interactions of erythrocytes infected by well-defined P. falciparum isolates for their ability to bind to various tissue receptors under physiological flow conditions. This chapter outlines the techniques needed to investigate how parasites bind to endothelial cells under physiological sheer stress conditions.
Collapse
Affiliation(s)
- Yvonne Adams
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| | - Anja Ramstedt Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Yu H, He J, Su G, Wang Y, Fang F, Yang W, Gu K, Fu N, Wang Y, Shen Y, Liu X. Fluid shear stress activates YAP to promote epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Oncol 2021; 15:3164-3183. [PMID: 34260811 PMCID: PMC8564657 DOI: 10.1002/1878-0261.13061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) mediated by fluid shear stress (FSS) in the tumor microenvironment plays an important role in driving metastasis of the malignant tumor. As a mechanotransducer, Yes-associated protein (YAP) is known to translocate into the nucleus to initiate transcription of genes involved in cell proliferation upon extracellular biophysical stimuli. Here, we showed that FSS facilitated cytoskeleton rearrangement in hepatocellular carcinoma cells, which led to the release of YAP from its binding partner, integrin β subunit, in the cytomembrane. Moreover, we found that upregulation of guanine nucleotide exchange factor (GEF)-H1, a microtubule-associated Rho GEF, is a critical step in the FSS-induced translocation of YAP. Nuclear YAP activated the expression of the EMT-regulating transcription factor SNAI1, but suppressed the expression of N6-methyladenosine (m6 A) modulators; together, this promoted the expression of EMT-related genes. We also observed that FSS-treated HepG2 cells showed markedly increased tumorigenesis and metastasis in vivo. Collectively, our findings unravel the underlying molecular processes by which FSS induces translocation of YAP from the cytomembrane to the nucleus, contributes to EMT and enhances metastasis in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hongchi Yu
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- National Engineering Research Center for BiomaterialsChengduChina
| | - Jia He
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Guanyue Su
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Yuelong Wang
- West China HospitalSichuan UniversityChengduChina
| | - Fei Fang
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Wenxing Yang
- Department of PhysiologyWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Kaiyun Gu
- National Clinical Research Center for Child HealthZhejiang UniversityHangzhouChina
| | - Naiyang Fu
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore
| | - Yunbing Wang
- National Engineering Research Center for BiomaterialsChengduChina
| | - Yang Shen
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Xiaoheng Liu
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| |
Collapse
|
27
|
Mishchenko EL, Mishchenko AM, Ivanisenko VA. Mechanosensitive molecular interactions in atherogenic regions of the arteries: development of atherosclerosis. Vavilovskii Zhurnal Genet Selektsii 2021; 25:552-561. [PMID: 34595377 PMCID: PMC8453358 DOI: 10.18699/vj21.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
A terrible disease of the cardiovascular system, atherosclerosis, develops in the areas of bends and
branches of arteries, where the direction and modulus of the blood flow velocity vector change, and consequently
so does the mechanical effect on endothelial cells in contact with the blood flow. The review focuses on topical
research studies on the development of atherosclerosis – mechanobiochemical events that transform the proatherogenic
mechanical stimulus of blood flow – low and low/oscillatory arterial wall shear stress in the chains of biochemical
reactions in endothelial cells, leading to the expression of specific proteins that cause the progression
of the pathological process. The stages of atherogenesis, systemic risk factors for atherogenesis and its important
hemodynamic factor, low and low/oscillatory wall shear stress exerted by blood flow on the endothelial cells lining
the arterial walls, have been described. The interactions of cell adhesion molecules responsible for the development
of atherosclerosis under low and low/oscillating shear stress conditions have been demonstrated. The activation
of the regulator of the expression of cell adhesion molecules, the transcription factor NF-κB, and the factors
regulating its activation under these conditions have been described. Mechanosensitive signaling pathways leading
to the expression of NF-κB in endothelial cells have been described. Studies of the mechanobiochemical signaling
pathways and interactions involved in the progression of atherosclerosis provide valuable information for the
development of approaches that delay or block the development of this disease.
Key words: atherogenesis; shear stress; transcription factor NF-κB; RelA expression; mechanosensitive receptors;
cell adhesion molecules; signaling pathways; mechanotransduction.
Collapse
Affiliation(s)
- E L Mishchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - V A Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
28
|
Guo Y, Mei F, Huang Y, Ma S, Wei Y, Zhang X, Xu M, He Y, Heng BC, Chen L, Deng X. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis. Bioact Mater 2021; 7:364-376. [PMID: 34466738 PMCID: PMC8379356 DOI: 10.1016/j.bioactmat.2021.05.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Endothelial tip cell outgrowth of blood-vessel sprouts marks the initiation of angiogenesis which is critical in physiological and pathophysiological procedures. However, how mechanical characteristics of extracellular matrix (ECM) modulates tip cell formation has been largely neglected. In this study, we found enhanced CD31 expression in the stiffening outer layer of hepatocellular carcinoma than in surrounding soft tissues. Stiffened matrix promoted sprouting from endothelial cell (EC) spheroids and upregulated expressions of tip cell-enriched genes in vitro. Moreover, tip cells showed increased cellular stiffness, more actin cytoskeleton organization and enhanced YAP nuclear transfer than stalk and phalanx ECs. We further uncovered that substrate stiffness regulates FAK and Paxillin phosphorylation in focal adhesion of ECs promoting Rac1 transition from inactive to active state. YAP is subsequently activated and translocated into nucleus, leading to increased tip cell specification. p-Paxillin can also loosen the intercellular connection which also facilitates tip cell specification. Collectively our present study shows that matrix stiffness modulates tip cell formation through p-PXN-Rac1-YAP signaling axis, shedding light on the role of mechanotransduction in tip cell formation. This is of special significance in biomaterial design and treatment of some pathological situations. Mechanotransduction is implicated in angiogenesis and tip cell formation. Tip cells showed different mechanical properties from stalk and phalanx ECs. Paxillin, Rac1 and YAP might be novel treatment targets for some diseases. Material stiffness affects tip cell specification.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Siqin Ma
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xuehui Zhang
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Corresponding author. Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- Corresponding author. Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
29
|
Wacker M, Riedel J, Walles H, Scherner M, Awad G, Varghese S, Schürlein S, Garke B, Veluswamy P, Wippermann J, Hülsmann J. Comparative Evaluation on Impacts of Fibronectin, Heparin-Chitosan, and Albumin Coating of Bacterial Nanocellulose Small-Diameter Vascular Grafts on Endothelialization In Vitro. NANOMATERIALS 2021; 11:nano11081952. [PMID: 34443783 PMCID: PMC8398117 DOI: 10.3390/nano11081952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/18/2022]
Abstract
In this study, we contrast the impacts of surface coating bacterial nanocellulose small-diameter vascular grafts (BNC-SDVGs) with human albumin, fibronectin, or heparin–chitosan upon endothelialization with human saphenous vein endothelial cells (VEC) or endothelial progenitor cells (EPC) in vitro. In one scenario, coated grafts were cut into 2D circular patches for static colonization of a defined inner surface area; in another scenario, they were mounted on a customized bioreactor and subsequently perfused for cell seeding. We evaluated the colonization by emerging metabolic activity and the preservation of endothelial functionality by water soluble tetrazolium salts (WST-1), acetylated low-density lipoprotein (AcLDL) uptake assays, and immune fluorescence staining. Uncoated BNC scaffolds served as controls. The fibronectin coating significantly promoted adhesion and growth of VECs and EPCs, while albumin only promoted adhesion of VECs, but here, the cells were functionally impaired as indicated by missing AcLDL uptake. The heparin–chitosan coating led to significantly improved adhesion of EPCs, but not VECs. In summary, both fibronectin and heparin–chitosan coatings could beneficially impact the endothelialization of BNC-SDVGs and might therefore represent promising approaches to help improve the longevity and reduce the thrombogenicity of BNC-SDVGs in the future.
Collapse
Affiliation(s)
- Max Wacker
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
- Correspondence: ; Tel.: +49-391-67-14102
| | - Jan Riedel
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Heike Walles
- Core Facility Tissue Engineering, Otto-Von-Guericke University Magdeburg, 39106 Magdeburg, Germany;
| | - Maximilian Scherner
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - George Awad
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Sam Varghese
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Sebastian Schürlein
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany;
| | - Bernd Garke
- Institute of Experimental Physics, Otto-Von-Guericke University Magdeburg, 39106 Magdeburg, Germany;
| | - Priya Veluswamy
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Jens Wippermann
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Jörn Hülsmann
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| |
Collapse
|
30
|
Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021; 9:biomedicines9070781. [PMID: 34356845 PMCID: PMC8301477 DOI: 10.3390/biomedicines9070781] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/16/2022] Open
Abstract
Maintenance of endothelial cell integrity is an important component of human health and disease since the endothelium can perform various functions including regulation of vascular tone, control of hemostasis and thrombosis, cellular adhesion, smooth muscle cell proliferation, and vascular inflammation. Endothelial dysfunction is encompassed by complex pathophysiology that is based on endothelial nitric oxide synthase uncoupling and endothelial activation following stimulation from various inflammatory mediators (molecular patterns, oxidized lipoproteins, cytokines). The downstream signaling via nuclear factor-κB leads to overexpression of adhesion molecules, selectins, and chemokines that facilitate leukocyte adhesion, rolling, and transmigration to the subendothelial space. Moreover, oscillatory shear stress leads to pro-inflammatory endothelial activation with increased monocyte adhesion and endothelial cell apoptosis, an effect that is dependent on multiple pathways and flow-sensitive microRNA regulation. Moreover, the role of neutrophil extracellular traps and NLRP3 inflammasome as inflammatory mechanisms contributing to endothelial dysfunction has recently been unveiled and is under further investigation. Consequently, and following their activation, injured endothelial cells release inflammatory mediators and enter a pro-thrombotic state through activation of coagulation pathways, downregulation of thrombomodulin, and an increase in platelet adhesion and aggregation owing to the action of von-Willebrand factor, ultimately promoting atherosclerosis progression.
Collapse
|
31
|
Chowdhury F, Huang B, Wang N. Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton (Hoboken) 2021; 78:249-276. [PMID: 33754478 PMCID: PMC8518377 DOI: 10.1002/cm.21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence demonstrates that mechanical forces, in addition to soluble molecules, impact cell and tissue functions in physiology and diseases. How living cells integrate mechanical signals to perform appropriate biological functions is an area of intense investigation. Here, we review the evidence of the central role of cytoskeletal prestress in mechanotransduction and mechanobiology. Elevating cytoskeletal prestress increases cell stiffness and reinforces cell stiffening, facilitates long-range cytoplasmic mechanotransduction via integrins, enables direct chromatin stretching and rapid gene expression, spurs embryonic development and stem cell differentiation, and boosts immune cell activation and killing of tumor cells whereas lowering cytoskeletal prestress maintains embryonic stem cell pluripotency, promotes tumorigenesis and metastasis of stem cell-like malignant tumor-repopulating cells, and elevates drug delivery efficiency of soft-tumor-cell-derived microparticles. The overwhelming evidence suggests that the cytoskeletal prestress is the governing principle and the cellular hallmark in mechanobiology. The application of mechanobiology to medicine (mechanomedicine) is rapidly emerging and may help advance human health and improve diagnostics, treatment, and therapeutics of diseases.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Engineering and Energy ProcessesSouthern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Wang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
32
|
Okamoto T, Park EJ, Kawamoto E, Usuda H, Wada K, Taguchi A, Shimaoka M. Endothelial connexin-integrin crosstalk in vascular inflammation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166168. [PMID: 33991620 DOI: 10.1016/j.bbadis.2021.166168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases including blood vessel disorders represent a major cause of death globally. The essential roles played by local and systemic vascular inflammation in the pathogenesis of cardiovascular diseases have been increasingly recognized. Vascular inflammation triggers the aberrant activation of endothelial cells, which leads to the functional and structural abnormalities in vascular vessels. In addition to humoral mediators such as pro-inflammatory cytokines and prostaglandins, the alteration of physical and mechanical microenvironment - including vascular stiffness and shear stress - modify the gene expression profiles and metabolic profiles of endothelial cells via mechano-transduction pathways, thereby contributing to the pathogenesis of vessel disorders. Notably, connexins and integrins crosstalk each other in response to the mechanical stress, and, thereby, play an important role in regulating the mechano-transduction of endothelial cells. Here, we provide an overview on how the inter-play between connexins and integrins in endothelial cells unfold during the mechano-transduction in vascular inflammation.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan.
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Haruki Usuda
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan.
| |
Collapse
|
33
|
Schofield CL, Rodrigo-Navarro A, Dalby MJ, Van Agtmael T, Salmeron-Sanchez M. Biochemical‐ and Biophysical‐Induced Barriergenesis in the Blood–Brain Barrier: A Review of Barriergenic Factors for Use in In Vitro Models. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow UK
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow UK
| | | |
Collapse
|
34
|
Anney P, Thériault M, Proulx S. Hydrodynamic forces influence the gene transcription of mechanosensitive intercellular junction associated genes in corneal endothelial cells. Exp Eye Res 2021; 206:108532. [PMID: 33684456 DOI: 10.1016/j.exer.2021.108532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Mechanicals forces are known to influence cell behavior. In vivo, the corneal endothelium is under the influence of various mechanical forces, such as intraocular pressure (IOP) and fluid flow. In this study, we used a corneal bioreactor to understand the effect of these hydrodynamic forces on the transcription of intercellular junctions associated genes in the corneal endothelium. Native and tissue-engineered (TE) corneal endothelium were cultured in a corneal bioreactor for 7 days with 16 mmHg IOP and 5 μl/ml of medium flow. RNA was harvested, and gene expression was quantified. Cells that were used to reconstruct the TE corneal endothelia were also seeded on plastic to characterize their morphology by calculating their circularity index. For native endothelia, hydrodynamic forces increased gene expression of GJA1 (connexin 43), CDH2 (N-cadherin), TJP1 (ZO-1), ITGAV (integrin subunit αv), ITGB5 (integrin subunit β5) and CTNND1 (p120-ctn) by 1.68 ± 0.40, 1.10 ± 0.27, 3.80 ± 0.56, 1.82 ± 0.33, 1.32 ± 0.21 and 3.04 ± 0.63, respectively. For TE corneal endothelium, this fold change was 1.72 ± 0.31, 1.58 ± 0.41, 6.18 ± 1.03, 1.80 ± 0.71, 1.77 ± 0.55, 2.42 ± 0.71. Furthermore, gene transcription fold changes (hydrodynamic/control) increased linearly with TE corneal endothelium cells population morphology with r = 0.83 for TJP1 (ZO-1) and r = 0.58 for CTNND1 (p120-ctn). In fact, the more elongated the cells populations were, the greater hydrodynamic conditions increased the transcription of TJP1 (ZO-1) and CTNND1 (p120-ctn). These results suggest that hydrodynamic forces contribute to the maintenance of tight and adherens junctions of native corneal endothelial cells, as well as to the formation of tight and adherens junctions of corneal endothelial cells that are in the process of forming a functional endothelial barrier.
Collapse
Affiliation(s)
- Princia Anney
- Centre de recherche du CHU de Québec-Université Laval, axe médecine régénératrice, Québec, Québec, Canada; Centre LOEX de l'Université Laval, Québec, Québec, Canada; Département, d'ophtalmologie et ORL-CCF, Université Laval, Québec, Québec, Canada
| | - Mathieu Thériault
- Centre de recherche du CHU de Québec-Université Laval, axe médecine régénératrice, Québec, Québec, Canada; Centre LOEX de l'Université Laval, Québec, Québec, Canada
| | - Stéphanie Proulx
- Centre de recherche du CHU de Québec-Université Laval, axe médecine régénératrice, Québec, Québec, Canada; Centre LOEX de l'Université Laval, Québec, Québec, Canada; Département, d'ophtalmologie et ORL-CCF, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
35
|
Guessoum O, de Goes Martini A, Sequeira-Lopez MLS, Gomez RA. Deciphering the Identity of Renin Cells in Health and Disease. Trends Mol Med 2021; 27:280-292. [PMID: 33162328 PMCID: PMC7914220 DOI: 10.1016/j.molmed.2020.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/11/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Hypotension and changes in fluid-electrolyte balance pose immediate threats to survival. Juxtaglomerular cells respond to such threats by increasing the synthesis and secretion of renin. In addition, smooth muscle cells (SMCs) along the renal arterioles transform into renin cells until homeostasis has been regained. However, chronic unrelenting stimulation of renin cells leads to severe kidney damage. Here, we discuss the origin, distribution, function, and plasticity of renin cells within the kidney and immune compartments and the consequences of distorting the renin program. Understanding how chronic stimulation of these cells in the context of hypertension may lead to vascular pathology will serve as a foundation for targeted molecular therapies.
Collapse
Affiliation(s)
- Omar Guessoum
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Pediatrics, University of Virginia, Charlottesville, VA, USA; Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - Alexandre de Goes Martini
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA; Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - Maria Luisa S Sequeira-Lopez
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Pediatrics, University of Virginia, Charlottesville, VA, USA; Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - R Ariel Gomez
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Pediatrics, University of Virginia, Charlottesville, VA, USA; Child Health Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
36
|
Zhang Q, Cao Y, Liu Y, Huang W, Ren J, Wang P, Song C, Fan K, Ba L, Wang L, Sun H. Shear stress inhibits cardiac microvascular endothelial cells apoptosis to protect against myocardial ischemia reperfusion injury via YAP/miR-206/PDCD4 signaling pathway. Biochem Pharmacol 2021; 186:114466. [PMID: 33610591 DOI: 10.1016/j.bcp.2021.114466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/09/2023]
Abstract
Cardiac microvascular endothelial cells (CMECs), derived from coronary circulation microvessel, are the main barrier for the exchange of energy and nutrients between myocardium and blood. However, microvascular I/R injury is a severely neglected topic, and few strategies can reverse this pathology. In this study, we investigated the mechanism of shear stress in microvascular I/R injury, and try to elucidate the downstream signaling pathways that inhibit CMECs apoptosis to reduce I/R injury. Our results demonstrated that shear stress inhibited the apoptosis protein, increased PECAM-1 expression and eNOS phosphorylation in hypoxia reoxygenated (H/R) CMECs. The mechanism of shear stress was related to up-regulated expression of YAP, the increased number of YAP entering the nucleus by dephosphorylation, the reduced number of TUNEL positive cells, increased miR-206 and inhibited protein level of PDCD4 in CMECs. However, siRNA-mediated knockdown of YAP abolished the protective effects of shear stress on CMECs apoptosis, similar results obtained from administration with AMO-miR-206, and also prevented PDCD4 (target gene of miR-206) increasing when treatment with both AMO-miR-206 and mimics-miR-206. In vivo, restoring the blood fluid with nitroglycerin (NTG) to mimic in vitro shear stress levels, which subsequently improved cardiac function, reduced infarcted area, lowered microvascular perfusion defects. Functional investigations clearly illustrated that increased the protein expression of PECAM-1 and eNOS phosphorylation, activated YAP, strengthened miR-206 expression, and suppressed PDCD4 expression. In summary, this study confirmed that shear stress reversed CMECs apoptosis, relieved microvascular I/R injury, the mechanism of which involving through YAP/miR-206/PDCD4 signaling pathway to finally suppress myocardial I/R injury.
Collapse
Affiliation(s)
- Qianlong Zhang
- Department of Physiology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yongsheng Liu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Jing Ren
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Peng Wang
- Department of Physiology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Chao Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Kai Fan
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Lina Ba
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Lixin Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China.
| |
Collapse
|
37
|
Kim B, Arany Z. Could shear stress mimetics delay complications in COVID-19? Trends Cardiovasc Med 2021; 32:71-72. [PMID: 33515686 PMCID: PMC7838584 DOI: 10.1016/j.tcm.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Boa Kim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
38
|
Hu Y, Chen M, Wang M, Li X. Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends Cardiovasc Med 2021; 32:61-70. [PMID: 33406458 DOI: 10.1016/j.tcm.2020.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
Currently, endothelium-dependent vasodilatation involves three main mechanisms: production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS), synthesis of prostanoids by cyclooxygenase, and/or opening of calcium-sensitive potassium channels. Researchers have proposed multiple mechanosensors that may be involved in flow-mediated vasodilation (FMD), including G protein-coupled receptors (GPCRs), ion channels, and intercellular junction proteins, among others. However, GPCRs are considered the major mechanosensors that play a pivotal role in shear stress signal transduction. Among mechanosensitive GPCRs, G protein-coupled receptor 68, histamine H1 receptors, sphingosine-1-phosphate receptor 1, and bradykinin B2 receptors have been identified as endothelial sensors of flow shear stress regulating flow-mediated vasodilation. Thus, this review aims to expound on the mechanism whereby flow shear stress promotes vasodilation through the proposed mechanosensitive GPCRs in ECs.
Collapse
Affiliation(s)
- Yong Hu
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Street, Jinan, Shandong Province, 250031, China.
| | - Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun, Jilin Province, 130021, China.
| | - Meili Wang
- Department of Obstetrics, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, NO.238, Jingshi East Road, Jinan, Shandong, 250012, China.
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Street, Jinan, Shandong Province, 250031, China; Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, NO.44, Wenhua West Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
39
|
Bibli SI, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, Drekolia MK, Tombor L, Randriamboavonjy V, Leisegang MS, Goymann P, Delgado Lagos F, Fisslthaler B, Zukunft S, Kyselova A, Justo AFO, Heidler J, Tsilimigras D, Brandes RP, Dimmeler S, Papapetropoulos A, Knapp S, Offermanns S, Wittig I, Nishimura SL, Sigala F, Fleming I. Mapping the Endothelial Cell S-Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. Circulation 2020; 143:935-948. [PMID: 33307764 DOI: 10.1161/circulationaha.120.051877] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and β3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on β3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the β leg. β3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between β3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect β3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Jiong Hu
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Mario Looso
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Germany (A.W.)
| | - Corina Ratiu
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Janina Wittig
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Maria Kyriaki Drekolia
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany
| | - Lukas Tombor
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Matthias S Leisegang
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Philipp Goymann
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fredy Delgado Lagos
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Beate Fisslthaler
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Sven Zukunft
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Anastasia Kyselova
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Alberto Fernando Oliveira Justo
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Juliana Heidler
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Diamantis Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ralf P Brandes
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy (A.P.), National and Kapodistrian University of Athens Medical School, Greece.,Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece (A.P.)
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (S.K.), Goethe University, Frankfurt am Main, Germany
| | - Stefan Offermanns
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Department of Pharmacology (S.O.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ilka Wittig
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany
| | | | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ingrid Fleming
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| |
Collapse
|
40
|
Shear Stress Increases V-H + -ATPase and Acidic Vesicle Number Density, and p-mTORC2 Activation in Prostate Cancer Cells. Cell Mol Bioeng 2020; 13:591-604. [PMID: 33281989 DOI: 10.1007/s12195-020-00632-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Cells in the tumor microenvironment experience mechanical stresses, such as compression generated by uncontrolled cell growth within a tissue, increased substrate stiffness due to tumor cell extracellular matrix (ECM) remodeling, and leaky angiogenic vessels which involve low fluid shear stress. With our hypothesis that shear stress increases V-H + -ATPase number density in prostate cancer cells via activation of the mTORC1 and mTORC2 pathways, we demonstrated and quantified such a mechanism in prostate cancer cells. Methods Moderately metastatic DU145 and highly metastatic PC3 prostate cancer cells were subjected to 0.05 dynes cm - 2 wall shear stress for 24 h, followed by immunocytochemistry and fluorescence measurements of β 1 integrin, endosome, lysosome, V-H + -ATPase proton pump, mTORC1, and p-mTORC2 antibodies. Post shear stress migration assays, and the effects of vacuolar proton pump inhibitor Bafilomycin A1 (60 nM, 24 h) as well as shear stress on the ICC fluorescence intensity of the proteins of interest were conducted with DU145 cells. Results Low fluid shear stress increases the fluorescence intensity of β 1 integrin, endosome, lysosome, V-H + -ATPase, mTORC1, and p-mTORC2 antibodies in PC3 and DU145 cells, and also increased cell migration. However, Bafilomycin A1 decreased fluorescence intensity of all of these proteins in DU145 cells exposed to shear stress, revealing that V-H + -ATPase controls the expression of these proteins. Conclusions Prostate cancer cell mechanotransduction increases endosomes, lysosomes, and proton pumps-where increases have been associated with enhanced cancer aggressiveness. We also show that the prostate cancer cell's response to force promotes the cancer drivers mTORC1 and mTORC2.
Collapse
|
41
|
Tsata V, Beis D. In Full Force. Mechanotransduction and Morphogenesis during Homeostasis and Tissue Regeneration. J Cardiovasc Dev Dis 2020; 7:jcdd7040040. [PMID: 33019569 PMCID: PMC7711708 DOI: 10.3390/jcdd7040040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
The interactions of form and function have been the focus of numerous studies in the context of development and more recently regeneration. Our understanding on how cells, tissues and organs sense and interpret external cues, such as mechanical forces, is becoming deeper as novel techniques in imaging are applied and the relevant signaling pathways emerge. These cellular responses can be found from bacteria to all multicellular organisms such as plants and animals. In this review, we focus on hemodynamic flow and endothelial shear stress during cardiovascular development and regeneration, where the interactions of morphogenesis and proper function are more prominent. In addition, we address the recent literature on the role of extracellular matrix and fibrotic response during tissue repair and regeneration. Finally, we refer to examples where the integration of multi-disciplinary approaches to understand the biomechanics of cellular responses could be utilized in novel medical applications.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Correspondence: (V.T.); (D.B.); Tel.: +3021-0659-7439 (V.T. & D.B.)
| | - Dimitris Beis
- Correspondence: (V.T.); (D.B.); Tel.: +3021-0659-7439 (V.T. & D.B.)
| |
Collapse
|
42
|
Kim DH, Ahn J, Kang HK, Kim MS, Kim NG, Kook MG, Choi SW, Jeon NL, Woo HM, Kang KS. Development of highly functional bioengineered human liver with perfusable vasculature. Biomaterials 2020; 265:120417. [PMID: 32987272 DOI: 10.1016/j.biomaterials.2020.120417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/28/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
Liver tissue engineering offers a promising strategy for liver failure patients. Since transplantation rejection resulting in vessel thrombosis is regarded as a major hurdle, vascular reconstruction is one of indispensable requirements of whole organ engineering. Here we demonstrated a novel strategy for reconstruction of a vascularized bioengineered human liver (VBHL) using decellularized liver scaffolds in an efficient manner. First we achieved fully functional endothelial coverage of scaffolds by adopting the anti-CD31 aptamer as a potent coating agent for re-endothelialization. Through an ex vivo human blood perfusion that recapitulates the blood coagulation response in humans, we demonstrated significantly reduced platelet aggregation in anti-CD31 aptamer coated scaffolds. We then produced VBHL constructs using liver parenchymal cells and nonparenchymal cells, properly organized into liver-like structures with an aligned vasculature. Interestingly, VBHL constructs displayed prominently enhanced long-term liver-specific functions that are affected by vascular functionality. The VBHL constructs formed perfusable vessel networks in vivo as evidenced by the direct vascular connection between the VBHL constructs and the renal circulation. Furthermore, heterotopic transplantation of VBHL constructs supported liver functions in a rat model of liver fibrosis. Overall, we proposed a new strategy to generate transplantable bioengineered livers characterized by highly functional vascular reconstruction.
Collapse
Affiliation(s)
- Da-Hyun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jungho Ahn
- School of Mechanical Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyun Kyoung Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min-Soo Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Nam-Gyo Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Myung Geun Kook
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Noo Li Jeon
- School of Mechanical Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Heung-Myong Woo
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Leclech C, Natale CF, Barakat AI. The basement membrane as a structured surface - role in vascular health and disease. J Cell Sci 2020; 133:133/18/jcs239889. [PMID: 32938688 DOI: 10.1242/jcs.239889] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The basement membrane (BM) is a thin specialized extracellular matrix that functions as a cellular anchorage site, a physical barrier and a signaling hub. While the literature on the biochemical composition and biological activity of the BM is extensive, the central importance of the physical properties of the BM, most notably its mechanical stiffness and topographical features, in regulating cellular function has only recently been recognized. In this Review, we focus on the biophysical attributes of the BM and their influence on cellular behavior. After a brief overview of the biochemical composition, assembly and function of the BM, we describe the mechanical properties and topographical structure of various BMs. We then focus specifically on the vascular BM as a nano- and micro-scale structured surface and review how its architecture can modulate endothelial cell structure and function. Finally, we discuss the pathological ramifications of the biophysical properties of the vascular BM and highlight the potential of mimicking BM topography to improve the design of implantable endovascular devices and advance the burgeoning field of vascular tissue engineering.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Carlo F Natale
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France.,Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Abdul I Barakat
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
44
|
Qu D, Wang L, Huo M, Song W, Lau CW, Xu J, Xu A, Yao X, Chiu JJ, Tian XY, Huang Y. Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation. Cardiovasc Res 2020; 116:226-236. [PMID: 30785200 DOI: 10.1093/cvr/cvz046] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/19/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Disturbed blood flow at arterial branches and curvatures modulates endothelial function and predisposes the region to endothelial inflammation and subsequent development of atherosclerotic lesions. Activation of the endothelial Toll-like receptors (TLRs), in particular TLR4, contributes to vascular inflammation. Therefore, we investigate whether TLR4 can sense disturbed flow (DF) to mediate the subsequent endothelial inflammation. METHODS AND RESULTS En face staining of endothelium revealed that TLR4 expression, activation, and its downstream inflammatory markers were elevated in mouse aortic arch compared with thoracic aorta, which were absent in Tlr4mut mice. Similar results were observed in the partial carotid ligation model where TLR4 signalling was activated in response to ligation-induced flow disturbance in mouse carotid arteries, and such effect was attenuated in Tlr4mut mice. DF in vitro increased TLR4 expression and activation in human endothelial cells (ECs) and promoted monocyte-EC adhesion, which were inhibited in TLR4-knockdown ECs. Among endogenous TLR4 ligands examined as candidate mediators of DF-induced TLR4 activation, fibronectin containing the extra domain A (FN-EDA) expressed by ECs was increased by DF and was revealed to directly interact with and activate TLR4. CONCLUSION Our findings demonstrate the indispensable role of TLR4 in DF-induced endothelial inflammation and pinpoint FN-EDA as the endogenous TLR4 activator in this scenario. This novel mechanism of vascular inflammation under DF condition may serve as a critical initiating step in atherogenesis.
Collapse
Affiliation(s)
- Dan Qu
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Mingyu Huo
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Wencong Song
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Wai Lau
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jian Xu
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Xiao Yu Tian
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Daems M, Peacock HM, Jones EAV. Fluid flow as a driver of embryonic morphogenesis. Development 2020; 147:147/15/dev185579. [PMID: 32769200 DOI: 10.1242/dev.185579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluid flow is a powerful morphogenic force during embryonic development. The physical forces created by flowing fluids can either create morphogen gradients or be translated by mechanosensitive cells into biological changes in gene expression. In this Primer, we describe how fluid flow is created in different systems and highlight the important mechanosensitive signalling pathways involved for sensing and transducing flow during embryogenesis. Specifically, we describe how fluid flow helps establish left-right asymmetry in the early embryo and discuss the role of flow of blood, lymph and cerebrospinal fluid in sculpting the embryonic cardiovascular and nervous system.
Collapse
Affiliation(s)
- Margo Daems
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
46
|
Butler PJ. Mechanobiology of dynamic enzyme systems. APL Bioeng 2020; 4:010907. [PMID: 32161834 PMCID: PMC7054122 DOI: 10.1063/1.5133645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022] Open
Abstract
This Perspective paper advances a hypothesis of mechanosensation by endothelial cells in which the cell is a dynamic crowded system, driven by continuous enzyme activity, that can be shifted from one non-equilibrium state to another by external force. The nature of the shift will depend on the direction, rate of change, and magnitude of the force. Whether force induces a pathophysiological or physiological change in cell biology will be determined by whether the dynamics of a cellular system can accommodate the dynamics and magnitude of the force application. The complex interplay of non-static cytoskeletal structures governs internal cellular rheology, dynamic spatial reorganization, and chemical kinetics of proteins such as integrins, and a flaccid membrane that is dynamically supported; each may constitute the necessary dynamic properties able to sense external fluid shear stress and reorganize in two and three dimensions. The resulting reorganization of enzyme systems in the cell membrane and cytoplasm may drive the cell to a new physiological state. This review focuses on endothelial cell mechanotransduction of shear stress, but may lead to new avenues of investigation of mechanobiology in general requiring new tools for interrogation of mechanobiological systems, tools that will enable the synthesis of large amounts of spatial and temporal data at the molecular, cellular, and system levels.
Collapse
Affiliation(s)
- Peter J. Butler
- Department of Biomedical Engineering The Pennsylvania State University University Park, Pennsylvania 16802, USA
| |
Collapse
|
47
|
Mehta V, Pang KL, Rozbesky D, Nather K, Keen A, Lachowski D, Kong Y, Karia D, Ameismeier M, Huang J, Fang Y, Del Rio Hernandez A, Reader JS, Jones EY, Tzima E. The guidance receptor plexin D1 is a mechanosensor in endothelial cells. Nature 2020; 578:290-295. [PMID: 32025034 PMCID: PMC7025890 DOI: 10.1038/s41586-020-1979-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/05/2019] [Indexed: 01/09/2023]
Abstract
Shear stress on arteries produced by blood flow is important for vascular development and homeostasis but can also initiate atherosclerosis1. Endothelial cells that line the vasculature use molecular mechanosensors to directly detect shear stress profiles that will ultimately lead to atheroprotective or atherogenic responses2. Plexins are key cell-surface receptors of the semaphorin family of cell-guidance signalling proteins and can regulate cellular patterning by modulating the cytoskeleton and focal adhesion structures3-5. However, a role for plexin proteins in mechanotransduction has not been examined. Here we show that plexin D1 (PLXND1) has a role in mechanosensation and mechanically induced disease pathogenesis. PLXND1 is required for the response of endothelial cells to shear stress in vitro and in vivo and regulates the site-specific distribution of atherosclerotic lesions. In endothelial cells, PLXND1 is a direct force sensor and forms a mechanocomplex with neuropilin-1 and VEGFR2 that is necessary and sufficient for conferring mechanosensitivity upstream of the junctional complex and integrins. PLXND1 achieves its binary functions as either a ligand or a force receptor by adopting two distinct molecular conformations. Our results establish a previously undescribed mechanosensor in endothelial cells that regulates cardiovascular pathophysiology, and provide a mechanism by which a single receptor can exhibit a binary biochemical nature.
Collapse
Affiliation(s)
- Vedanta Mehta
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kar-Lai Pang
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel Rozbesky
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katrin Nather
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam Keen
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Youxin Kong
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dimple Karia
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Michael Ameismeier
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jianhua Huang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Armando Del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - John S Reader
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - E Yvonne Jones
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ellie Tzima
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
48
|
Wei D, Liu A, Sun J, Chen S, Wu C, Zhu H, Chen Y, Luo H, Fan H. Mechanics-Controlled Dynamic Cell Niches Guided Osteogenic Differentiation of Stem Cells via Preserved Cellular Mechanical Memory. ACS APPLIED MATERIALS & INTERFACES 2020; 12:260-274. [PMID: 31800206 DOI: 10.1021/acsami.9b18425] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stem cells sense and respond to their local dynamic mechanical niches, which further regulate the cellular behaviors. While in naturally, instead of instantly responding to real-time mechanical changes of their surrounding niches, stem cells often present a delayed cellular response over a time scale, namely cellular mechanical memory, which may finally influence their lineage choice. Here, we aim to build a dynamic mechanical niche model with alginate-based hydrogel, therein the dynamic mechanical switching can be easily realized via the introduce or removal of Ca2+. The results show that stiffening hydrogel (from soft to stiff) suppresses osteogenic differentiation of human mesenchymal stem cells (hMSCs) early on, though it finally promoted osteogenic differentiation over a long time period. Instead, softening hydrogel (from stiff to soft) still retains the strong osteogenic differentiation in the early days, though it finally showed a lower level of osteogenic differentiation compared with stiff hydrogel. Further, microRNA miR-21 has been found as a long-term mechanical memory sensor of the osteogenic program in hMSCs, as its level remains to match early mechanics of substrate over a period of time. Regulation of miR-21 level is efficient to erase the past mechanical memory and resensitize hMSCs to subsequent substrate mechanics. Our findings highlight cellular mechanical memory effect as a key factor of cell and cellular microenvironment interactions, which has been largely neglected before, and as a crucial design element of biomaterials for cell culture.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongjun Chen
- Chengdu Konjin Biotech Co., Ltd. , Chengdu 611100 , Sichuan , P. R. China
| | | | | |
Collapse
|
49
|
Seo S, Kim H, Sung JH, Choi N, Lee K, Kim HN. Microphysiological systems for recapitulating physiology and function of blood-brain barrier. Biomaterials 2019; 232:119732. [PMID: 31901694 DOI: 10.1016/j.biomaterials.2019.119732] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases are emerging as a major issue in an aging society. Although extensive research has focused on the development of CNS drugs, the limited transport of therapeutic agents across the blood-brain barrier (BBB) remains a major challenge. Conventional two-dimensional culture dishes do not recapitulate in vivo physiology and real-time observations of molecular transport are not possible in animal models. Recent advances in engineering techniques have enabled the generation of more physiologically relevant in vitro BBB models, and their applications have expanded from fundamental biological research to practical applications in the pharmaceutical industry. In this article, we provide an overview of recent advances in the development of in vitro BBB models, with a particular focus on the recapitulation of BBB function. The development of biomimetic BBB models is postulated to revolutionize not only fundamental biological studies but also drug screening.
Collapse
Affiliation(s)
- Suyeong Seo
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwieun Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kangwon Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
50
|
Fustin JM, Li M, Gao B, Chen Q, Cheng T, Stewart AG. Rhythm on a chip: circadian entrainment in vitro is the next frontier in body-on-a chip technology. Curr Opin Pharmacol 2019; 48:127-136. [PMID: 31600661 DOI: 10.1016/j.coph.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023]
Abstract
Organoids, bioprinted mini-tissues and body-on-a-chip technologies are poised to transform the practice of preclinical pharmacology, with a view to achieving better predictive value. We review the need for further refinement in static and dynamic biomechanical aspects of such microenvironments. Further consideration of the developments required in perfusion systems to enable delivery of an appropriate soluble microenvironment are argued. We place particular emphasis on a major deficiency in these systems, being the absence or aberrant circadian behaviour of cells used in such settings, and consider the technical challenges that are needing to be met in order to achieve rhythm-on-a-chip.
Collapse
Affiliation(s)
- Jean-Michel Fustin
- Laboratory of Molecular Metabology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Meina Li
- ARC Centre for Personalised Therapeutics Technologies, Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bryan Gao
- ARC Centre for Personalised Therapeutics Technologies, Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qianyu Chen
- ARC Centre for Personalised Therapeutics Technologies, Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tianhong Cheng
- ARC Centre for Personalised Therapeutics Technologies, Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair G Stewart
- ARC Centre for Personalised Therapeutics Technologies, Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|