1
|
Powell AF, Feder A, Li J, Schmidt MHW, Courtney L, Alseekh S, Jobson EM, Vogel A, Xu Y, Lyon D, Dumschott K, McHale M, Sulpice R, Bao K, Lal R, Duhan A, Hallab A, Denton AK, Bolger ME, Fernie AR, Hind SR, Mueller LA, Martin GB, Fei Z, Martin C, Giovannoni JJ, Strickler SR, Usadel B. A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1791-1810. [PMID: 35411592 DOI: 10.1111/tpj.15770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome-scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein-coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity-associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β-cyclase whose function we demonstrate.
Collapse
Affiliation(s)
| | - Ari Feder
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Jie Li
- Department of Biochemistry and Metabolism, The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Maximilian H-W Schmidt
- Institute for Biology I, BioSC, RWTH Aachen University, 52474, Aachen, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Lance Courtney
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Emma M Jobson
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Alexander Vogel
- Institute for Biology I, BioSC, RWTH Aachen University, 52474, Aachen, Germany
| | - Yimin Xu
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - David Lyon
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Kathryn Dumschott
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Marcus McHale
- Plant Systems Biology Lab, Ryan Institute, National University of Ireland, H91 TK33, Galway, Ireland
| | - Ronan Sulpice
- Plant Systems Biology Lab, Ryan Institute, National University of Ireland, H91 TK33, Galway, Ireland
| | - Kan Bao
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Rohit Lal
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Asha Duhan
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Asis Hallab
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alisandra K Denton
- Institute for Biology I, BioSC, RWTH Aachen University, 52474, Aachen, Germany
| | - Marie E Bolger
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Sarah R Hind
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Gregory B Martin
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA, and
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Cathie Martin
- Department of Biochemistry and Metabolism, The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - James J Giovannoni
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | | | - Björn Usadel
- Institute for Biology I, BioSC, RWTH Aachen University, 52474, Aachen, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| |
Collapse
|
2
|
Roberts R, Mainiero S, Powell AF, Liu AE, Shi K, Hind SR, Strickler SR, Collmer A, Martin GB. Natural variation for unusual host responses and flagellin-mediated immunity against Pseudomonas syringae in genetically diverse tomato accessions. THE NEW PHYTOLOGIST 2019; 223:447-461. [PMID: 30861136 DOI: 10.1111/nph.15788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 05/20/2023]
Abstract
The interaction between tomato and Pseudomonas syringae pv tomato (Pst) is a well-developed model for investigating the molecular basis of the plant immune system. There is extensive natural variation in Solanum lycopersicum (tomato) but it has not been fully leveraged to enhance our understanding of the tomato-Pst pathosystem. We screened 216 genetically diverse accessions of cultivated tomato and a wild tomato species for natural variation in their response to three strains of Pst. The host response to Pst was investigated using multiple Pst strains, tomato accessions with available genome sequences, reactive oxygen species (ROS) assays, reporter genes and bacterial population measurements. The screen uncovered a broad range of previously unseen host symptoms in response to Pst, and one of these, stem galls, was found to be simply inherited. The screen also identified tomato accessions that showed enhanced responses to flagellin in bacterial population assays and in ROS assays upon exposure to flagellin-derived peptides, flg22 and flgII-28. Reporter genes confirmed that the host responses were due primarily to pattern recognition receptor-triggered immunity. This study revealed extensive natural variation in tomato for susceptibility and resistance to Pst and will enable elucidation of the molecular mechanisms underlying these host responses.
Collapse
Affiliation(s)
- Robyn Roberts
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Adrian F Powell
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Alexander E Liu
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Kai Shi
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Sarah R Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Alan Collmer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Korea
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Velásquez AC, Oney M, Huot B, Xu S, He SY. Diverse mechanisms of resistance to Pseudomonas syringae in a thousand natural accessions of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 214:1673-1687. [PMID: 28295393 PMCID: PMC5423860 DOI: 10.1111/nph.14517] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/07/2017] [Indexed: 05/03/2023]
Abstract
Plants are continuously threatened by pathogen attack and, as such, they have evolved mechanisms to evade, escape and defend themselves against pathogens. However, it is not known what types of defense mechanisms a plant would already possess to defend against a potential pathogen that has not co-evolved with the plant. We addressed this important question in a comprehensive manner by studying the responses of 1041 accessions of Arabidopsis thaliana to the foliar pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. We characterized the interaction using a variety of established methods, including different inoculation techniques, bacterial mutant strains, and assays for the hypersensitive response, salicylic acid (SA) accumulation and reactive oxygen species production . Fourteen accessions showed resistance to infection by Pst DC3000. Of these, two accessions had a surface-based mechanism of resistance, six showed a hypersensitive-like response while three had elevated SA levels. Interestingly, A. thaliana was discovered to have a recognition system for the effector AvrPto, and HopAM1 was found to modulate Pst DC3000 resistance in two accessions. Our comprehensive study has significant implications for the understanding of natural disease resistance mechanisms at the species level and for the ecology and evolution of plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Matthew Oney
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
| | - Bethany Huot
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shu Xu
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, P. R. China
| | - Sheng Yang He
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Venkatesh J, Jahn M, Kang BC. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper. PLoS One 2016; 11:e0161545. [PMID: 27536870 PMCID: PMC4990186 DOI: 10.1371/journal.pone.0161545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Plant Science and Plant Genomics and Breeding Institute, Vegetable Breeding Research Center, Seoul National University, Seoul, 151–921, Korea
| | - Molly Jahn
- University of Wisconsin, Madison, Wisconsin, WI 53706, United States of America
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, Vegetable Breeding Research Center, Seoul National University, Seoul, 151–921, Korea
| |
Collapse
|
5
|
Kraus CM, Munkvold KR, Martin GB. Natural Variation in Tomato Reveals Differences in the Recognition of AvrPto and AvrPtoB Effectors from Pseudomonas syringae. MOLECULAR PLANT 2016; 9:639-649. [PMID: 26993968 DOI: 10.1016/j.molp.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 05/13/2023]
Abstract
The Pto protein kinase from Solanum pimpinellifolium interacts with Pseudomonas syringae effectors AvrPto or AvrPtoB to activate effector-triggered immunity. The previously solved crystal structures of the AvrPto-Pto and AvrPtoB-Pto complexes revealed that Pto binds each effector through both a shared and a unique interface. Here we use natural variation in wild species of tomato to further investigate Pto recognition of these two effectors. One species, Solanum chmielewskii, was found to have many accessions that recognize only AvrPtoB. The Pto ortholog from one of these accessions was responsible for recognition of AvrPtoB and it differed from Solanum pimpinellifolium Pto by only 14 amino acids, including two in the AvrPto-specific interface, glutamate-49/glycine-51. Converting these two residues to those in Pto (histidine-49/valine-51) did not restore recognition of AvrPto. Subsequent experiments revealed that a single substitution of a histidine-to-aspartate at position 193 in Pto, which is not near the AvrPto-specific interface, was sufficient for conferring recognition of AvrPto in plant cells. The reciprocal substitution of aspartate-to-histidine-193 in Pto abolished AvrPto recognition, confirming the importance of this residue. Our results reveal new aspects about effector recognition by Pto and demonstrate the value of using natural variation to understand the interaction between resistance proteins and pathogen effectors.
Collapse
Affiliation(s)
- Christine M Kraus
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA; Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kathy R Munkvold
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA; Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Bao Z, Meng F, Strickler SR, Dunham DM, Munkvold KR, Martin GB. Identification of a Candidate Gene in Solanum habrochaites for Resistance to a Race 1 Strain of Pseudomonas syringae pv. tomato. THE PLANT GENOME 2015; 8:eplantgenome2015.02.0006. [PMID: 33228271 DOI: 10.3835/plantgenome2015.02.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/01/2015] [Indexed: 06/11/2023]
Abstract
Bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst) is a persistent problem on tomato (Solanum lycopersicum L.). Resistance against race 0 Pst strains is conferred by the Pto protein, which recognizes either of two pathogen effectors: AvrPto or AvrPtoB. However, current tomato varieties do not have resistance to the increasingly common race 1 strains, which lack these effectors. We identified accessions of Solanum habrochaites S. Knapp & D. M. Spooner that are resistant to the race 1 strain T1. Genome sequence comparisons of T1 and two Pst strains that are virulent on these accessions suggested that known microbe-associated molecular patterns (MAMPs) or effectors are not involved in the resistance. We developed an F2 population from a cross between one T1-resistant accession, LA2109, and a susceptible tomato cultivar to investigate the genetic basis of this resistance. Linkage analysis using whole-genome sequence of 58 F2 plants identified quantitative trait loci (QTL), qRph1, in a 5.8-Mb region on chromosome 2, and qRph2, in a 52.4-Mb region on chromosome 8, which account for 24 and 26% of the phenotypic variability, respectively. High-resolution mapping of qRph1 confirmed it contributed to T1 resistance and delimited it to a 1060-kb region containing 139 genes, including three encoding receptor-like proteins (RLPs) and 17 encoding receptor-like protein kinases (RLKs). One RLK gene, Solyc02g072470, is a promising candidate for qRph1, as it is highly expressed in LA2109 and induced on treatment with MAMPs. qRph1 might be useful for enhancing resistance to race 1 strains and its future characterization could provide insights into the plant immune system.
Collapse
Affiliation(s)
- Zhilong Bao
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853
| | - Fanhong Meng
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853
| | | | - Diane M Dunham
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853
| | | | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853
| |
Collapse
|
7
|
Chien CF, Mathieu J, Hsu CH, Boyle P, Martin GB, Lin NC. Nonhost resistance of tomato to the bean pathogen Pseudomonas syringae pv. syringae B728a is due to a defective E3 ubiquitin ligase domain in avrptobb728a. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:387-97. [PMID: 23252461 PMCID: PMC3882120 DOI: 10.1094/mpmi-08-12-0190-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The bean pathogen Pseudomonas syringae pv. syringae B728a expresses homologs of the type III effectors AvrPto and AvrPtoB, either of which can trigger resistance in tomato cultivars expressing Pto and Prf genes. We found that strain B728a also elicits nonhost resistance in tomato cultivars VFNT Cherry and Moneymaker that lack Pto but express other members of the Pto family (e.g., SlFen and SlPtoC). Here, we show that the AvrPtoB homolog from B728a, termed AvrPtoBB728a (also known as HopAB1), is recognized by 'VFNT Cherry' and 'Moneymaker' when the effector is expressed in P. syringae pv. syringae 61, a strain lacking the avrPto or avrPtoB homolog. Using a gene-silencing approach, this recognition was shown to involve one or more Pto family members and Prf. AvrPtoBB728a interacted with SlFen, SlPtoC, and SlPtoD, in addition to Pto, in a yeast two-hybrid assay. In P. syringae pv. tomato DC3000, the C-terminal domain of AvrPtoB is an E3 ubiquitin ligase that ubiquitinates Fen, causing its degradation and leading to disease susceptibility. Although the C-terminal domain of AvrPtoBB728a shares 69% amino acid identity with that of AvrPtoB, we found that it has greatly reduced E3 ligase activity and is unable to ubiquitinate Fen in an in vitro ubiquitination assay. Thus, the nonhost resistance of 'VFNT Cherry' and 'Moneymaker' to B728a appears to be due to recognition of AvrPtoBB728 as a result of the effector's reduced E3 ligase activity, which prevents it from facilitating degradation of a Pto family member. We speculate that the primary plant host of B728a lacks a Fen-like protein and that, therefore, the E3 ligase of AvrPtoBB728 was unnecessary for pathogenicity and has diverged and become ineffective.
Collapse
Affiliation(s)
- Ching-Fang Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1523-30. [PMID: 22876960 DOI: 10.1094/mpmi-06-12-0148-ta] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nicotiana benthamiana is a widely used model plant species for the study of fundamental questions in molecular plant-microbe interactions and other areas of plant biology. This popularity derives from its well-characterized susceptibility to diverse pathogens and, especially, its amenability to virus-induced gene silencing and transient protein expression methods. Here, we report the generation of a 63-fold coverage draft genome sequence of N. benthamiana and its availability on the Sol Genomics Network for both BLAST searches and for downloading to local servers. The estimated genome size of N. benthamiana is 3 Gb (gigabases). The current assembly consists of approximately 141,000 scaffolds, spanning 2.6 Gb with 50% of the genome sequence contained within scaffolds >89 kilobases. Of the approximately 16,000 N. benthamiana unigenes available in GenBank, >90% are represented in the assembly. The usefulness of the sequence was demonstrated by the retrieval of N. benthamiana orthologs for 24 immunity-associated genes from other species including Ago2, Ago7, Bak1, Bik1, Crt1, Fls2, Pto, Prf, Rar1, and mitogen-activated protein kinases. The sequence will also be useful for comparative genomics in the Solanaceae family as shown here by the discovery of microsynteny between N. benthamiana and tomato in the region encompassing the Pto and Prf genes.
Collapse
|
9
|
Wu K, Xu T, Guo C, Zhang X, Yang S. Heterogeneous evolutionary rates of Pi2/9 homologs in rice. BMC Genet 2012; 13:73. [PMID: 22900499 PMCID: PMC3492116 DOI: 10.1186/1471-2156-13-73] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Pi2/9 locus contains multiple nucleotide binding site-leucine-rich repeat (NBS-LRR) genes in the rice genome. Although three functional R-genes have been cloned from this locus, little is known about the origin and evolutionary history of these genes. Herein, an extensive genome-wide survey of Pi2/9 homologs in rice, sorghum, Brachypodium and Arabidopsis, was conducted to explore this theme. RESULTS In our study, 1, 1, 5 and 156 Pi2/9 homologs were detected in Arabidopsis, Brachypodium, sorghum and rice genomes, respectively. Two distinct evolutionary patterns of Pi2/9 homologs, Type I and Type II, were observed in rice lines. Type I Pi2/9 homologs showed evidence of rapid gene diversification, including substantial copy number variations, obscured orthologous relationships, high levels of nucleotide diversity or/and divergence, frequent sequence exchanges and strong positive selection, whereas Type II Pi2/9 homologs exhibited a fairly slow evolutionary rate. Interestingly, the three cloned R-genes from the Pi2/9 locus all belonged to the Type I genes. CONCLUSIONS Our data show that the Pi2/9 locus had an ancient origin predating the common ancestor of gramineous species. The existence of two types of Pi2/9 homologs suggest that diversifying evolution should be an important strategy of rice to cope with different types of pathogens. The relationship of cloned Pi2/9 genes and Type I genes also suggests that rapid gene diversification might facilitate rice to adapt quickly to the changing spectrum of the fungal pathogen M. grisea. Based on these criteria, other potential candidate genes that might confer novel resistance specificities to rice blast could be predicted.
Collapse
Affiliation(s)
- Kejing Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Ting Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Changjiang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
10
|
Ercolano MR, Sanseverino W, Carli P, Ferriello F, Frusciante L. Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects. PLANT CELL REPORTS 2012; 31:973-85. [PMID: 22350316 PMCID: PMC3351601 DOI: 10.1007/s00299-012-1234-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 05/22/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the world's most important vegetable crops. Managing the health of this crop can be particularly challenging; crop resistance may be overcome by new pathogen races while new pathogens have been introduced by global agricultural markets. Tomato is extensively used as a model plant for resistance studies and much has been attained through both genetic and biotechnological approaches. In this paper, we illustrate genomic methods currently employed to preserve resistant germplasm and to facilitate the study and transfer of resistance genes, and we describe the genomic organization of R-genes. Patterns of gene activation during disease resistance response, identified through functional approaches, are depicted. We also describe the opportunities offered by the use of new genomic technologies, including high-throughput DNA sequencing, large-scale expression data production and the comparative hybridization technique, whilst reporting multifaceted approaches to achieve genetic tomato disease control. Future strategies combining the huge amount of genomic and genetic data will be able to accelerate development of novel resistance varieties sustainably on a worldwide basis. Such strategies are discussed in the context of the latest insights obtained in this field.
Collapse
Affiliation(s)
- M R Ercolano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples 'Federico II', Via Università 100, 80055 Portici, Italy.
| | | | | | | | | |
Collapse
|
11
|
Rose LE, Grzeskowiak L, Hörger AC, Groth M, Stephan W. Targets of selection in a disease resistance network in wild tomatoes. MOLECULAR PLANT PATHOLOGY 2011; 12:921-7. [PMID: 21726387 PMCID: PMC6640331 DOI: 10.1111/j.1364-3703.2011.00720.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Studies combining comparative genomics and information on biochemical pathways have revealed that protein evolution can be affected by the amount of pleiotropy associated with a particular gene. The amount of pleiotropy, in turn, can be a function of the position at which a gene operates in a pathway and the pathway structure. Genes that serve as convergence points and have several partners (so-called hubs) often show the greatest constraint and hence the slowest rate of protein evolution. In this article, we have studied five genes (Pto, Fen, Rin4, Prf and Pfi) in a defence signalling network in a wild tomato species, Solanum peruvianum. These proteins operate together and contribute to bacterial resistance in tomato. We predicted that Prf (and possibly Pfi), which serves as a convergence point for upstream signals, should show greater evolutionary constraint. However, we found instead that two of the genes which potentially interact with pathogen ligands, Rin4 and Fen, have evolved under strong evolutionary constraint, whereas Prf and Pfi, which probably function further downstream in the network, show evidence of balancing selection. This counterintuitive observation may be probable in pathogen defence networks, because pathogens may target positions throughout resistance networks to manipulate or nullify host resistance, thereby leaving a molecular signature of host-parasite co-evolution throughout a single network.
Collapse
Affiliation(s)
- Laura E Rose
- Section of Evolutionary Biology, LMU Munich, Planegg, Germany.
| | | | | | | | | |
Collapse
|
12
|
Chen NWG, Sévignac M, Thareau V, Magdelenat G, David P, Ashfield T, Innes RW, Geffroy V. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 187:941-956. [PMID: 20561214 PMCID: PMC2922445 DOI: 10.1111/j.1469-8137.2010.03337.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
*In plants, the evolution of specific resistance is poorly understood. Pseudomonas syringae effectors AvrB and AvrRpm1 are recognized by phylogenetically distinct resistance (R) proteins in Arabidopsis thaliana (Brassicaceae) and soybean (Glycine max, Fabaceae). In soybean, these resistances are encoded by two tightly linked R genes, Rpg1-b and Rpg1-r. To study the evolution of these specific resistances, we investigated AvrB- and AvrRpm1-induced responses in common bean (Phaseolus vulgaris, Fabaceae). *Common bean genotypes of various geographical origins were inoculated with P. syringae strains expressing AvrB or AvrRpm1. A common bean recombinant inbred line (RIL) population was used to map R genes to AvrRpm1. *No common bean genotypes recognized AvrB. By contrast, multiple genotypes responded to AvrRpm1, and two independent R genes conferring AvrRpm1-specific resistance were mapped to the ends of linkage group B11 (Rpsar-1, for resistance to Pseudomonas syringae effector AvrRpm1 number 1) and B8 (Rpsar-2). Rpsar-1 is located in a region syntenic with the soybean Rpg1 cluster. However, mapping of specific Rpg1 homologous genes suggests that AvrRpm1 recognition evolved independently in common bean and soybean. *The conservation of the genomic position of AvrRpm1-specific genes between soybean and common bean suggests a model whereby specific clusters of R genes are predisposed to evolve recognition of the same effector molecules.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Mireille Sévignac
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Vincent Thareau
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Ghislaine Magdelenat
- Genoscope/Commissariat à l’Energie Atomique-Centre National de Séquençage, 2 rue Gaston Crémieux CP5706 91057 Evry cedex, France
| | - Perrine David
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Tom Ashfield
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Valérie Geffroy
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
- Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Agronomique, 91190 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Luo Y, Caldwell KS, Wroblewski T, Wright ME, Michelmore RW. Proteolysis of a negative regulator of innate immunity is dependent on resistance genes in tomato and Nicotiana benthamiana and induced by multiple bacterial effectors. THE PLANT CELL 2009; 21:2458-72. [PMID: 19671880 PMCID: PMC2751963 DOI: 10.1105/tpc.107.056044] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 06/17/2009] [Accepted: 07/16/2009] [Indexed: 05/19/2023]
Abstract
RPM1-interacting protein 4 (RIN4), a negative regulator of the basal defense response in plants, is targeted by multiple bacterial virulence effectors. We show that RIN4 degradation is induced by the effector AvrPto from Pseudomonas syringae and that this degradation in Solanaceous plants is dependent on the resistance protein, Pto, a protein kinase, and Prf, a nucleotide binding site-leucine-rich repeat protein. Our data demonstrate overlap between two of the best-characterized pathways for recognition of pathogen virulence effectors in plants. RIN4 interacts with multiple plant signaling components and bacterial effectors in yeast and in planta. AvrPto induces an endogenous proteolytic activity in both tomato (Solanum lycopersicum) and Nicotiana benthamiana that degrades RIN4 and requires the consensus site cleaved by the protease effector AvrRpt2. The interaction between AvrPto and Pto, but not the kinase activity of Pto, is required for proteolysis of RIN4. Analysis of many of the effectors comprising the secretome of P. syringae pv tomato DC3000 led to the identification of two additional sequence-unrelated effectors that can also induce degradation of RIN4. Therefore, multiple bacterial effectors besides AvrRpt2 elicit proteolysis of RIN4 in planta.
Collapse
Affiliation(s)
- Yao Luo
- The Genome Center, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
14
|
Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmeester K, Vosman B, Visser RGF, Jacobsen E, Govers F, Kamoun S, Van der Vossen EAG. Effector genomics accelerates discovery and functional profiling of potato disease resistance and phytophthora infestans avirulence genes. PLoS One 2008; 3:e2875. [PMID: 18682852 PMCID: PMC2483939 DOI: 10.1371/journal.pone.0002875] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/08/2008] [Indexed: 11/18/2022] Open
Abstract
Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R) genes into potato (Solanum tuberosum) is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity) on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR) in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.
Collapse
|
15
|
Mirlohi A, Brueggeman R, Drader T, Nirmala J, Steffenson BJ, Kleinhofs A. Allele sequencing of the barley stem rust resistance gene Rpg1 identifies regions relevant to disease resistance. PHYTOPATHOLOGY 2008; 98:910-918. [PMID: 18943209 DOI: 10.1094/phyto-98-8-0910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The stem rust resistance gene Rpg1 has protected North American barley cultivars from significant yield losses for over 65 years. The remarkable durability of this gene warrants further study as to its possible origin and allelic variation. Eight Swiss barley (Hordeum vulgare) landraces and eight wild barley (H. vulgare subsp. spontaneum) accessions from diverse geographic regions were analyzed to uncover new alleles of Rpg1 and learn about its possible origin. The two germplasm groups included accessions that were resistant and susceptible to Puccinia graminis f. sp. tritici pathotype MCCF. Allele-specific primers were utilized to amplify 1 kbp overlapping fragments spanning the Rpg1 gene and sequenced if a polymerase chain reaction (PCR) fragment was generated. Variation among the PCR products revealed significant polymorphisms among these Hordeum accessions. Landraces and wild barley accessions susceptible to pathotype MCCF exhibited the highest degree of Rpg1 polymorphism. One resistant landrace (Hv672) and one resistant wild barley accession (WBDC040) yielded all seven Rpg1-specific PCR fragments, but only landrace Hv672 coded for an apparently functional Rpg1 as determined by comparison to previously characterized resistant and susceptible alleles and also resistance to HKHJ, a stem rust pathotype that can specifically detect Rpg1 in the presence of other resistance genes. Accessions resistant to stem rust pathotype MCCF, but completely lacking Rpg1-specific PCR amplification and hybridization with an Rpg1-specific probe, suggested the presence of stem rust resistant gene(s) different from Rpg1 in the Hordeum germplasm pool. Some Rpg1 alleles that retained the ability to autophosphorylate did not confer resistance to Puccinia graminis f. sp. tritici pathotype MCCF, confirming our previous observations that autophosphorylation is essential, but not sufficient for disease resistance. Thus, the RPG1 protein plays a complex role in the stem rust disease resistance-signaling pathway.
Collapse
Affiliation(s)
- A Mirlohi
- College of Agriculture, Isfahan University of Technology, Esfahan, Iran
| | | | | | | | | | | |
Collapse
|
16
|
Xiao F, He P, Abramovitch RB, Dawson JE, Nicholson LK, Sheen J, Martin GB. The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:595-614. [PMID: 17764515 PMCID: PMC2265002 DOI: 10.1111/j.1365-313x.2007.03259.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Resistance to bacterial speck disease in tomato is activated by the physical interaction of the host Pto kinase with either of the sequence-dissimilar type III effector proteins AvrPto or AvrPtoB (HopAB2) from Pseudomonas syringae pv. tomato. Pto-mediated immunity requires Prf, a protein with a nucleotide-binding site and leucine-rich repeats. The N-terminal 307 amino acids of AvrPtoB were previously reported to interact with the Pto kinase, and we show here that this region (AvrPtoB(1-307)) is sufficient for eliciting Pto/Prf-dependent immunity against P. s. pv. tomato. AvrPtoB(1-307) was also found to be sufficient for a virulence activity that enhances ethylene production and increases growth of P. s. pv. tomato and severity of speck disease on susceptible tomato lines lacking either Pto or Prf. Moreover, we found that residues 308-387 of AvrPtoB are required for the previously reported ability of AvrPtoB to suppress pathogen-associated molecular patterns-induced basal defenses in Arabidopsis. Thus, the N-terminal region of AvrPtoB has two structurally distinct domains involved in different virulence-promoting mechanisms. Random and targeted mutagenesis identified five tightly clustered residues in AvrPtoB(1-307) that are required for interaction with Pto and for elicitation of immunity to P. s. pv. tomato. Mutation of one of the five clustered residues abolished the ethylene-associated virulence activity of AvrPtoB(1-307). However, individual mutations of the other four residues, despite abolishing interaction with Pto and avirulence activity, had no effect on AvrPtoB(1-307) virulence activity. None of these mutations affected the basal defense-suppressing activity of AvrPtoB(1-387). Based on sequence alignments, estimates of helical propensity, and the previously reported structure of AvrPto, we hypothesize that the Pto-interacting domains of AvrPto and AvrPtoB(1-307) have structural similarity. Together, these data support a model in which AvrPtoB(1-307) promotes ethylene-associated virulence by interaction not with Pto but with another unknown host protein.
Collapse
Affiliation(s)
- Fangming Xiao
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | - Ping He
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Robert B. Abramovitch
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer E. Dawson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Linda K. Nicholson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jen Sheen
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
- *For correspondence (fax +1 607 255 6695; e-mail )
| |
Collapse
|
17
|
Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, Martin GB. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 2007; 448:370-4. [PMID: 17637671 PMCID: PMC2265072 DOI: 10.1038/nature05966] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/29/2007] [Indexed: 11/09/2022]
Abstract
Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB(1-387)) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB(1-387 )and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB(1-387 )and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.
Collapse
Affiliation(s)
- Tracy R Rosebrock
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
18
|
Xing W, Zou Y, Liu Q, Liu J, Luo X, Huang Q, Chen S, Zhu L, Bi R, Hao Q, Wu JW, Zhou JM, Chai J. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 2007; 449:243-7. [PMID: 17694048 DOI: 10.1038/nature06109] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 07/24/2007] [Indexed: 11/08/2022]
Abstract
Pathogenic microbes use effectors to enhance susceptibility in host plants. However, plants have evolved a sophisticated immune system to detect these effectors using cognate disease resistance proteins, a recognition that is highly specific, often elicits rapid and localized cell death, known as a hypersensitive response, and thus potentially limits pathogen growth. Despite numerous genetic and biochemical studies on the interactions between pathogen effector proteins and plant resistance proteins, the structural bases for such interactions remain elusive. The direct interaction between the tomato protein kinase Pto and the Pseudomonas syringae effector protein AvrPto is known to trigger disease resistance and programmed cell death through the nucleotide-binding site/leucine-rich repeat (NBS-LRR) class of disease resistance protein Prf. Here we present the crystal structure of an AvrPto-Pto complex. Contrary to the widely held hypothesis that AvrPto activates Pto kinase activity, our structural and biochemical analyses demonstrated that AvrPto is an inhibitor of Pto kinase in vitro. The AvrPto-Pto interaction is mediated by the phosphorylation-stabilized P+1 loop and a second loop in Pto, both of which negatively regulate the Prf-mediated defences in the absence of AvrPto in tomato plants. Together, our results show that AvrPto derepresses host defences by interacting with the two defence-inhibition loops of Pto.
Collapse
Affiliation(s)
- Weiman Xing
- National Institute of Biological Sciences, No. 7 Science Park Road, Beijing 102206, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin NC, Martin GB. Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse pseudomonas syringae pathovars to infect tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:806-15. [PMID: 17601168 DOI: 10.1094/mpmi-20-7-0806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The molecular basis underlying the ability of pathogens to infect certain plant species and not others is largely unknown. Pseudomonas syringae is a useful model species for investigating this phenomenon because it comprises more than 50 pathovars which have narrow host range specificities. Tomato (Solanum lycopersicum) is a host for P. syringae pv. tomato, the causative agent of bacterial speck disease, but is considered a nonhost for other P. syringae pathovars. Host resistance in tomato to bacterial speck disease is conferred by the Pto protein kinase which acts in concert with the Prf nucleotide-binding lucine-rich repeat protein to recognize P. syringae pv. tomato strains expressing the type III effectors AvrPto or AvrPtoB (HopAB2). The Pto and Prf genes were isolated from the wild tomato species S. pimpinellifolium and functional alleles of both of these genes now are known to exist in many species of tomato and in other Solanaceous species. Here, we extend earlier reports that avrPto and avrPtoB genes are widely distributed among pathovars of P. syringae which are considered nonhost pathogens of tomato. This observation prompted us to examine the possibility that recognition of these type III effectors by Pto or Prf might contribute to the inability of many P. syringae pathovars to infect tomato species. We show that 10 strains from presumed nonhost P. syringae pathovars are able to grow and cause pathovar-unique disease symptoms in tomato leaves lacking Pto or Prf, although they did not reach the population levels or cause symptoms as severe as a control P. syringae pv. tomato strain. Seven of these strains were found to express avrPto or avrPtoB. The AvrPto- and AvrPtoB-expressing strains elicited disease resistance on tomato leaves expressing Pto and Prf. Thus, a gene-for-gene recognition event may contribute to host range restriction of many P. syringae pathovars on tomato species. Furthermore, we conclude that the diverse disease symptoms caused by different Pseudomonas pathogens on their normal plant hosts are due largely to the array of virulence factors expressed by each pathovar and not to specific molecular or morphological attributes of the plant host.
Collapse
Affiliation(s)
- Nai-Chun Lin
- Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853-1801, USA
| | | |
Collapse
|
20
|
Peraza-Echeverria S, James-Kay A, Canto-Canché B, Castillo-Castro E. Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana. Mol Genet Genomics 2007; 278:443-53. [PMID: 17587056 DOI: 10.1007/s00438-007-0262-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/30/2007] [Indexed: 01/10/2023]
Abstract
The tomato Pto gene encodes a serine/threonine kinase (STK) whose molecular characterization has provided valuable insights into the disease resistance mechanism of tomato and it is considered as a promising candidate for engineering broad-spectrum pathogen resistance in this crop. In this study, a pair of degenerate primers based on conserved subdomains of plant STKs similar to the tomato Pto protein was used to amplify similar sequences in banana. A fragment of approximately 550 bp was amplified, cloned and sequenced. The sequence analysis of several clones revealed 13 distinct sequences highly similar to STKs. Based on their significant similarity with the tomato Pto protein (BLASTX E value <3e-53), seven of them were classified as Pto resistance gene candidates (Pto-RGCs). Multiple sequence alignment of the banana Pto-RGC products revealed that these sequences contain several conserved subdomains present in most STKs and also several conserved residues that are crucial for Pto function. Moreover, the phylogenetic analysis showed that the banana Pto-RGCs were clustered with Pto suggesting a common evolutionary origin with this R gene. The Pto-RGCs isolated in this study represent a valuable sequence resource that could assist in the development of disease resistance in banana.
Collapse
Affiliation(s)
- Santy Peraza-Echeverria
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, No. 130, Col. Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, México.
| | | | | | | |
Collapse
|
21
|
de Vries JS, Andriotis VME, Wu AJ, Rathjen JP. Tomato Pto encodes a functional N-myristoylation motif that is required for signal transduction in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:31-45. [PMID: 16367952 DOI: 10.1111/j.1365-313x.2005.02590.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pto kinase of tomato (Lycopersicon esculentum) confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato expressing avrPto or avrPtoB. Pto interacts directly with these type-III secreted effectors, leading to induction of defence responses including the hypersensitive response (HR). Signalling by Pto requires the nucleotide-binding site-leucine-rich repeat (NBS-LRR) protein Prf. Little is known of how Pto is controlled prior to or during stimulation, although kinase activity is required for Avr-dependent activation. Here we demonstrate a role for the N-terminus in signalling by Pto. N-terminal residues outside the kinase domain were required for induction of the HR in Nicotiana benthamiana. The N-terminus also contributed to both AvrPto-binding and phosphorylation abilities. Pto residues 1-10 comprise a consensus motif for covalent attachment of myristate, a hydrophobic 14-carbon saturated fatty acid, to the Gly-2 residue. Several lines of evidence indicate that this motif is important for Pto function. A heterologous N-myristoylation motif complemented N-terminal deletion mutants of Pto for Prf-dependent signalling. Signalling by wild-type and mutant forms of Pto was strictly dependent on the Gly-2 residue. The N-myristoylation motif of Pto complemented the cognate motif of AvrPto for avirulence function and membrane association. Furthermore, Pto was myristoylated in vivo dependent on the presence of Gly-2. The subcellular localization of Pto was independent of N-myristoylation, indicating that N-myristoylation is required for some function other than membrane affinity. Consistent with this idea, AvrPtoB was also found to be a soluble protein. The data indicate an important role(s) for the myristoylated N-terminus in Pto signalling.
Collapse
Affiliation(s)
- Jeroen S de Vries
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | | | | | | |
Collapse
|
22
|
Kruijt M, Kip DJ, Joosten MHAJ, Brandwagt BF, de Wit PJGM. The Cf-4 and Cf-9 resistance genes against Cladosporium fulvum are conserved in wild tomato species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1011-21. [PMID: 16167771 DOI: 10.1094/mpmi-18-1011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Cf-4 and Cf-9 genes originate from the wild tomato species Lycopersicon hirsutum and L. pimpinellifolium and confer resistance to strains of the leaf mold fungus Cladosporium fulvum that secrete the Avr4 and Avr9 elicitor proteins, respectively. Homologs of Cf-4 and Cf-9 (Hcr9s) are located in several clusters and evolve mainly through sequence exchange between homologs. To study the evolution of Cf genes, we set out to identify functional Hcr9s that mediate recognition of Avr4 and Avr9 (designated Hcr9-Avr4s and Hcr9-Avr9s) in all wild tomato species. Plants responsive to the Avr4 and Avr9 elicitor proteins were identified throughout the genus Lycopersicon. Open reading frames of Hcr9s from Avr4- and Avr9-responsive tomato plants were polymerase chain reaction-amplified. Several Hcr9s that mediate Avr4 or Avr9 recognition were identified in diverged tomato species by agroinfiltration assays. These Hcr9-Avr4s and Hcr9-Avr9s are highly identical to Cf-4 and Cf-9, respectively. Therefore, we conclude that both Cf-4 and Cf-9 predate Lycopersicon speciation. These results further suggest that C. fulvum is an ancient pathogen of the genus Lycopersicon, in which Cf-4 and Cf-9 have been maintained by selection pressure imposed by C. fulvum.
Collapse
Affiliation(s)
- Marco Kruijt
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Huang B, Liu X, Wang X, Pi Y, Lin J, Fei J, Sun X, Tang K. Isolation and Expression Profiling of the Pto-Like Gene SsPto from Solanum surattense. Mol Biol 2005. [DOI: 10.1007/s11008-005-0083-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Abramovitch RB, Martin GB. AvrPtoB: a bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity. FEMS Microbiol Lett 2005; 245:1-8. [PMID: 15796972 DOI: 10.1016/j.femsle.2005.02.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 02/20/2005] [Accepted: 02/21/2005] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 is a model pathogen for studying the molecular basis of plant immunity and disease susceptibility in tomato and Arabidopsis. DC3000 uses a type III secretion system to inject effector proteins into the plant cell. Type III effectors are thought to promote bacterial virulence by suppressing plant defenses and enhancing access to nutrients trapped in the plant cell. The AvrPtoB type III effector elicits immunity-associated programmed cell death (PCD) when expressed in tomato plants carrying the Pto resistance protein. However, in the absence of Pto, AvrPtoB functions to suppress PCD and immunity in tomato. Here, we review current research examining the molecular basis of AvrPtoB-mediated elicitation and suppression of plant PCD. In addition, the "trump model" is proposed to explain how resistance proteins successfully elicit immunity-associated PCD in response to effectors that suppress PCD.
Collapse
Affiliation(s)
- Robert B Abramovitch
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
25
|
Rose LE, Langley CH, Bernal AJ, Michelmore RW. Natural variation in the Pto pathogen resistance gene within species of wild tomato (Lycopersicon). I. Functional analysis of Pto alleles. Genetics 2005; 171:345-57. [PMID: 15944360 PMCID: PMC1456525 DOI: 10.1534/genetics.104.039339] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the cultivated tomato, Lycopersicon esculentum, and the closely related L. pimpinellifolium is triggered by the physical interaction between plant disease resistance protein, Pto, and the pathogen avirulence protein, AvrPto. To investigate the extent to which variation in the Pto gene is responsible for naturally occurring variation in resistance to Pst, we determined the resistance phenotype of 51 accessions from seven species of Lycopersicon to isogenic strains of Pst differing in the presence of avrPto. One-third of the plants displayed resistance specifically when the pathogen expressed AvrPto, consistent with a gene-for-gene interaction. To test whether this resistance in these species was conferred specifically by the Pto gene, alleles of Pto were amplified and sequenced from 49 individuals and a subset (16) of these alleles was tested in planta using Agrobacterium-mediated transient assays. Eleven alleles conferred a hypersensitive resistance response (HR) in the presence of AvrPto, while 5 did not. Ten amino acid substitutions associated with the absence of AvrPto recognition and HR were identified, none of which had been identified in previous structure-function studies. Additionally, 3 alleles encoding putative pseudogenes of Pto were isolated from two species of Lycopersicon. Therefore, a large proportion, but not all, of the natural variation in the reaction to strains of Pst expressing AvrPto can be attributed to sequence variation in the Pto gene.
Collapse
Affiliation(s)
- Laura E Rose
- Center for Population Biology, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
26
|
Isidore E, Scherrer B, Chalhoub B, Feuillet C, Keller B. Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res 2005; 15:526-36. [PMID: 15805493 PMCID: PMC1074367 DOI: 10.1101/gr.3131005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plant genomes, in particular grass genomes, evolve very rapidly. The closely related A genomes of diploid, tetraploid, and hexaploid wheat are derived from a common ancestor that lived <3 million years ago and represent a good model to study molecular mechanisms involved in such rapid evolution. We have sequenced and compared physical contigs at the Lr10 locus on chromosome 1AS from diploid (211 kb), tetraploid (187 kb), and hexaploid wheat (154 kb). A maximum of 33% of the sequences were conserved between two species. The sequences from diploid and tetraploid wheat shared all of the genes, including Lr10 and RGA2 and define a first haplotype (H1). The 130-kb intergenic region between Lr10 and RGA2 was conserved in size despite its activity as a hot spot for transposon insertion, which resulted in >70% of sequence divergence. The hexaploid wheat sequence lacks both Lr10 and RGA2 genes and defines a second haplotype, H2, which originated from ancient and extensive rearrangements. These rearrangements included insertions of retroelements and transposons deletions, as well as unequal recombination within elements. Gene disruption in haplotype H2 was caused by a deletion and subsequent large inversion. Gene conservation between H1 haplotypes, as well as conservation of rearrangements at the origin of the H2 haplotype at three different ploidy levels indicate that the two haplotypes are ancient and had a stable gene content during evolution, whereas the intergenic regions evolved rapidly. Polyploidization during wheat evolution had no detectable consequences on the structure and evolution of the two haplotypes.
Collapse
Affiliation(s)
- Edwige Isidore
- Institute of Plant Biology, University of Zürich, 8008 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Lin NC, Martin GB. An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:43-51. [PMID: 15672817 DOI: 10.1094/mpmi-18-0043] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
AvrPto and AvrPtoB are type III effector proteins expressed by Pseudomonas syringae pv. tomato strain DC3000, a pathogen of both tomato and Arabidopsis spp. Each effector physically interacts with the tomato Pto kinase and elicits a hypersensitive response when expressed in tomato leaves containing Pto. An avrPto deletion mutant of DC3000 previously was shown to retain avirulence activity on Pto-expressing tomato plants. We developed an avrPtoB deletion mutant of DC3000 and found that it also retains Pto-specific avirulence on tomato. These observations suggested that avrPto and avrPtoB both contribute to avirulence. To test this hypothesis, we developed an deltaavrPtodeltaavrPtoB double mutant in DC3000. This double mutant was able to cause disease on a Pto-expressing tomato line. Thus, avrPto and avrPtoB are the only avirulence genes in DC3000 that elicit Pto-mediated defense responses in tomato. When inoculated onto susceptible tomato leaves and compared with wild-type DC3000, the mutants DC3000deltaavrPto and DC3000deltaavrPtoB each caused slightly less severe disease symptoms, although their growth rate was unaffected. However, DC3000deltaavr PtodeltaavrPtoB caused even less severe disease symptoms than the single mutants and grew more slowly than them on susceptible leaves. Our results indicate that AvrPto and AvrPtoB have phenotypically redundant avirulence activity on Pto-expressing tomato and additive virulence activities on susceptible tomato plants.
Collapse
Affiliation(s)
- Nai-Chun Lin
- Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853-1801, USA
| | | |
Collapse
|
28
|
Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. THE PLANT CELL 2004; 16:2870-94. [PMID: 15494555 PMCID: PMC527186 DOI: 10.1105/tpc.104.025502] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/02/2004] [Indexed: 05/05/2023]
Abstract
Resistance Gene Candidate2 (RGC2) genes belong to a large, highly duplicated family of nucleotide binding site-leucine rich repeat (NBS-LRR) encoding disease resistance genes located at a single locus in lettuce (Lactuca sativa). To investigate the genetic events occurring during the evolution of this locus, approximately 1.5- to 2-kb 3' fragments of 126 RGC2 genes from seven genotypes were sequenced from three species of Lactuca, and 107 additional RGC2 sequences were obtained from 40 wild accessions of Lactuca spp. The copy number of RGC2 genes varied from 12 to 32 per genome in the seven genotypes studied extensively. LRR number varied from 40 to 47; most of this variation had resulted from 13 events duplicating two to five LRRs because of unequal crossing-over within or between RGC2 genes at one of two recombination hot spots. Two types of RGC2 genes (Type I and Type II) were initially distinguished based on the pattern of sequence identities between their 3' regions. The existence of two types of RGC2 genes was further supported by intron similarities, the frequency of sequence exchange, and their prevalence in natural populations. Type I genes are extensive chimeras caused by frequent sequence exchanges. Frequent sequence exchanges between Type I genes homogenized intron sequences, but not coding sequences, and obscured allelic/orthologous relationships. Sequencing of Type I genes from additional wild accessions confirmed the high frequency of sequence exchange and the presence of numerous chimeric RGC2 genes in nature. Unlike Type I genes, Type II genes exhibited infrequent sequence exchange between paralogous sequences. Type II genes from different genotype/species within the genus Lactuca showed obvious allelic/orthologous relationships. Trans-specific polymorphism was observed for different groups of orthologs, suggesting balancing selection. Unequal crossover, insertion/deletion, and point mutation events were distributed unequally through the gene. Different evolutionary forces have impacted different parts of the LRR.
Collapse
Affiliation(s)
- Hanhui Kuang
- Department of Vegetable Crops, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
29
|
Ling HQ, Qiu J, Singh RP, Keller B. Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:1133-8. [PMID: 15258740 DOI: 10.1007/s00122-004-1734-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aegilops tauschii (goat grass) is the progenitor of the D genome in hexaploid bread wheat. We have screened more than 200 Ae. tauschii accessions for resistance against leaf rust (Puccinia triticina) isolates,which are avirulent on the leaf rust resistance gene Lrl. Approximately 3.5% of the Ae. tauschii accessions displayed the same low infection type as the tester line Thatcher Lrl. The accession Tr.t. 213, which showed resistance after artificial infection with Lrl isolates both in Mexico and in Switzerland, was chosen for further analysis. Genetic analysis showed that the resistance in this accession is controlled by a single dominant gene,which mapped at the same chromosomal position as Lrl in wheat. It was delimited in a 1.3-cM region between the restriction fragment length polymorphism (RFLP) markers ABC718 and PSR567 on chromosome 5DL of Ae.tauschii. The gene was more tightly linked to PSR567(0.47 cM) than to ABC718 (0.79 cM). These results indicate that the resistance gene in Ae. tauschii accession Tr.t. 213 is an ortholog of the leaf rust resistance gene Lrlof bread wheat, suggesting that Lrl originally evolved in diploid goat grass and was introgressed into the wheat D genome during or after domestication of hexaploidwheat. Compared to hexaploid wheat, higher marker polymorphism and recombination frequencies were ob-served in the region of the Lrl ortholog in Ae. tauschii. The identification of LrlAe, the orthologous gene of wheatLrl, in Ae. tauschii will allow map-based cloning of Lrlfrom this genetically simpler, diploid genome.
Collapse
Affiliation(s)
- Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China.
| | | | | | | |
Collapse
|
30
|
de Kock MJD, Iskandar HM, Brandwagt BF, Laugé R, de Wit PJGM, Lindhout P. Recognition of Cladosporium fulvum Ecp2 elicitor by non-host Nicotiana spp. is mediated by a single dominant gene that is not homologous to known Cf-genes. MOLECULAR PLANT PATHOLOGY 2004; 5:397-408. [PMID: 20565616 DOI: 10.1111/j.1364-3703.2004.00239.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Cladosporium fulvum is a fungal pathogen of tomato that grows exclusively in the intercellular spaces of leaves. Ecp2 is one of the elicitor proteins that is secreted by C. fulvum and is specifically recognized by tomato plants containing the resistance gene Cf-Ecp2. Recognition is followed by a hypersensitive response (HR) resulting in resistance. HR-associated recognition of Ecp2 has been observed in Nicotiana paniculata, N. sylvestris, N. tabacum and N. undulata that are non-host plants of C. fulvum. Absence of Ecp2-recognition did not lead to growth of C. fulvum on Nicotiana plants. We show that HR-associated recognition of Ecp2 is mediated by a single dominant gene in N. paniculata. However, based on PCR and hybridization analysis this gene is not homologous to known Cf-genes.
Collapse
Affiliation(s)
- Maarten J D de Kock
- Laboratory of Plant Breeding, Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The resistance genes Rpg1-b in soybean and RPM1 in Arabidopsis recognize the same bacterial avirulence protein (AvrB). Recent map-based cloning of Rpg1-b has provided the first opportunity to compare functionally analogous R genes in distantly related species. Rpg1-b and RPM1 are not orthologs. Rather, these genes descended from distinct evolutionary lineages in which recognition of AvrB has probably evolved independently. This result, together with new insights into RPM1-mediated recognition of AvrB, provides an exciting opportunity to reconsider classical views on the evolution of pathogen recognition specificity.
Collapse
Affiliation(s)
- John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Fralin Biotechnology Center, Virginia Tech, Blacksburg, VA 24061-0346, USA.
| |
Collapse
|
32
|
Clément D, Lanaud C, Sabau X, Fouet O, Le Cunff L, Ruiz E, Risterucci AM, Glaszmann JC, Piffanelli P. Creation of BAC genomic resources for cocoa ( Theobroma cacao L.) for physical mapping of RGA containing BAC clones. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:1627-1634. [PMID: 15235775 DOI: 10.1007/s00122-004-1593-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 01/05/2004] [Indexed: 05/24/2023]
Abstract
We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.
Collapse
Affiliation(s)
- D Clément
- TA 43/02, Centre de coopération internationale en recherche pour le développement (CIRAD), Avenue d'Agropolis, 34398 Montpellier, Cedex 5, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ashfield T, Ong LE, Nobuta K, Schneider CM, Innes RW. Convergent evolution of disease resistance gene specificity in two flowering plant families. THE PLANT CELL 2004. [PMID: 14742871 DOI: 10.1105/tpc.016725.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant disease resistance (R) genes that mediate recognition of the same pathogen determinant sometimes can be found in distantly related plant families. This observation implies that some R gene alleles may have been conserved throughout the diversification of land plants. To address this question, we have compared R genes from Glycine max (soybean), Rpg1-b, and Arabidopsis thaliana, RPM1, that mediate recognition of the same type III effector protein from Pseudomonas syringae, AvrB. RPM1 has been cloned previously, and here, we describe the isolation of Rpg1-b. Although RPM1 and Rpg1-b both belong to the coiled-coil nucleotide binding site (NBS) Leu-rich repeat (LRR) class of R genes, they share only limited sequence similarity outside the conserved domains characteristic of this class. Phylogenetic analyses of A. thaliana and legume NBS-LRR sequences demonstrate that Rpg1-b and RPM1 are not orthologous. We conclude that convergent evolution, rather than the conservation of an ancient specificity, is responsible for the generation of these AvrB-specific genes.
Collapse
Affiliation(s)
- Tom Ashfield
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7107, USA
| | | | | | | | | |
Collapse
|
34
|
Ashfield T, Ong LE, Nobuta K, Schneider CM, Innes RW. Convergent evolution of disease resistance gene specificity in two flowering plant families. THE PLANT CELL 2004; 16:309-18. [PMID: 14742871 PMCID: PMC341905 DOI: 10.1105/tpc.016725] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 11/06/2003] [Indexed: 05/18/2023]
Abstract
Plant disease resistance (R) genes that mediate recognition of the same pathogen determinant sometimes can be found in distantly related plant families. This observation implies that some R gene alleles may have been conserved throughout the diversification of land plants. To address this question, we have compared R genes from Glycine max (soybean), Rpg1-b, and Arabidopsis thaliana, RPM1, that mediate recognition of the same type III effector protein from Pseudomonas syringae, AvrB. RPM1 has been cloned previously, and here, we describe the isolation of Rpg1-b. Although RPM1 and Rpg1-b both belong to the coiled-coil nucleotide binding site (NBS) Leu-rich repeat (LRR) class of R genes, they share only limited sequence similarity outside the conserved domains characteristic of this class. Phylogenetic analyses of A. thaliana and legume NBS-LRR sequences demonstrate that Rpg1-b and RPM1 are not orthologous. We conclude that convergent evolution, rather than the conservation of an ancient specificity, is responsible for the generation of these AvrB-specific genes.
Collapse
Affiliation(s)
- Tom Ashfield
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7107, USA
| | | | | | | | | |
Collapse
|
35
|
Malvas CC, Melotto M, Truffi D, Camargo LE. A homolog of the RPS2 disease resistance gene is constitutively expressed in Brassica oleracea. Genet Mol Biol 2003. [DOI: 10.1590/s1415-47572003000400015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Martin GB, Bogdanove AJ, Sessa G. Understanding the functions of plant disease resistance proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2003; 54:23-61. [PMID: 14502984 DOI: 10.1146/annurev.arplant.54.031902.135035] [Citation(s) in RCA: 523] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many disease resistance (R) proteins of plants detect the presence of disease-causing bacteria, viruses, or fungi by recognizing specific pathogen effector molecules that are produced during the infection process. Effectors are often pathogen proteins that probably evolved to subvert various host processes for promotion of the pathogen life cycle. Five classes of effector-specific R proteins are known, and their sequences suggest roles in both effector recognition and signal transduction. Although some R proteins may act as primary receptors of pathogen effector proteins, most appear to play indirect roles in this process. The functions of various R proteins require phosphorylation, protein degradation, or specific localization within the host cell. Some signaling components are shared by many R gene pathways whereas others appear to be pathway specific. New technologies arising from the genomics and proteomics revolution will greatly expand our ability to investigate the role of R proteins in plant disease resistance.
Collapse
Affiliation(s)
- Gregory B Martin
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
37
|
Pedley KF, Martin GB. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:215-43. [PMID: 14527329 DOI: 10.1146/annurev.phyto.41.121602.143032] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The Pto gene in tomato confers gene-for-gene resistance to Pseudomonas syringae pv. tomato, the causative agent of bacterial speck disease. Pto was first introgressed from a wild species of tomato into cultivated tomato varieties over 60 years ago and is now widely used to control speck disease. Cloning of the Pto gene revealed that it encodes a cytoplasmically localized serine-threonine protein kinase. The molecular basis of gene-for-gene recognition in this pathosystem is the direct physical interaction of the Pto kinase with either of two Pseudomonas effector proteins, AvrPto and AvrPtoB. Upon recognition of AvrPto or AvrPtoB, the Pto kinase acts in concert with Prf, a leucine-rich repeat-containing protein, to activate multiple signal transduction pathways. There has been much progress in understanding the evolutionary origin of the Pto gene, structural details about how the Pto kinase interacts with AvrPto and AvrPtoB, signaling steps downstream of Pto, and defense responses activated by the Pto pathway. Future work on this model system will focus on how the interaction of the Pto kinase with bacterial effector proteins activates signal transduction, defining the specific role of signaling components, and ultimately, determining which host defense responses are most responsible for inhibiting growth of the pathogen and suppressing symptoms of bacterial speck disease.
Collapse
Affiliation(s)
- Kerry F Pedley
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
38
|
Jakob K, Goss EM, Araki H, Van T, Kreitman M, Bergelson J. Pseudomonas viridiflava and P. syringae--natural pathogens of Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1195-203. [PMID: 12481991 DOI: 10.1094/mpmi.2002.15.12.1195] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the isolation and identification of two natural pathogens of Arabidopsis thaliana, Pseudomonas viridiflava and Pseudomonas syringae, in the midwestern United States. P. viridiflava was found in six of seven surveyed Arabidopsis thaliana populations. We confirmed the presence in the isolates of the critical pathogenicity genes hrpS and hrpL. The pathogenicity of these isolates was verified by estimating in planta bacterial growth rates and by testing for disease symptoms and hypersensitive responses to A. thaliana. Infection of 21 A. thaliana ecotypes with six locally collected P. viridiflava isolates and with one P. syringae isolate showed both compatible (disease) and incompatible (resistance) responses. Significant variation in response to infection was evident among Arabidopsis ecotypes, both in terms of symptom development and in planta bacterial growth. The ability to grow and cause disease symptoms on particular ecotypes also varied for some P. viridiflava isolates. We believe that these pathogens will provide a powerful system for exploring coevolution in natural plant-pathogen interactions.
Collapse
Affiliation(s)
- Katrin Jakob
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bogdanove AJ. Protein-protein interactions in pathogen recognition by plants. PLANT MOLECULAR BIOLOGY 2002; 50:981-989. [PMID: 12516866 DOI: 10.1023/a:1021263027600] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein-protein interactions have emerged as key determinants of whether plant encounters with pathogens result in disease or successful plant defense. Genetic interactions between plant resistance genes and pathogen avirulence genes enable pathogen recognition by plants and activate plant defense. These gene-for-gene interactions in some cases have been shown to involve direct interactions of the products of the genes, and have indicated plant intracellular localization for certain avirulence proteins. Incomplete specificity of some of the interactions in laboratory assays suggests that additional proteins might be required to confer specificity in the plant. In many cases, resistance and avirulence protein interactions have not been demonstrable, and in some cases, other plant components that interact with avirulence proteins have been found. Investigation to date has relied heavily on biochemical and cytological methods including in vitro binding assays and immunoprecipitation, as well as genetic tools such as the yeast two-hybrid system. Observations so far, however, point to the likely requirement for multiple, interdependent protein associations in pathogen recognition, for which these techniques can be insufficient. This article reviews the protein-protein interactions that have been described in pathogen recognition by plants, and provides examples of how rapid future progress will hinge on the adoption of new and developing technologies.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Department of Plant Pathology, Iowa State University, 351 Bessey Hall, Ames, IA 50011, USA.
| |
Collapse
|
40
|
Mysore KS, Crasta OR, Tuori RP, Folkerts O, Swirsky PB, Martin GB. Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:299-315. [PMID: 12410809 DOI: 10.1046/j.1365-313x.2002.01424.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The disease resistance gene Pto encodes a serine/threonine protein kinase that confers resistance in tomato to Pseudomonas syringae pv. tomato strains that express the effector protein AvrPto. Pto-mediated resistance to bacterial speck disease also requires Prf, a protein with leucine-rich repeats and a putative nucleotide-binding site, although the role of Prf in the defense pathway is not known. We used GeneCalling, an open-architecture, mRNA-profiling technology, to identify genes that are either induced or suppressed in leaves 4 h after bacterial infection in the Pto- and Prf-mediated tomato-Pseudomonas(avrPto) interaction. Over 135 000 individual cDNA fragments representing an estimated 90% of the transcripts expressed in tomato leaves were examined and 432 differentially expressed genes were identified. The genes encode over 25 classes of proteins including 11 types of transcription factors and many signal transduction components. Differential expression of 91% of the genes required both Pto and Prf. Interestingly, differential expression of 32 genes did not require Pto but was dependent on Prf. Thus, our data support a role for Prf early in the Pto pathway and indicate that Prf can also function as an independent host recognition determinant of bacterial infection. Comprehensive expression profiling of the Pto-mediated defense response allows the development of many new hypotheses about the molecular basis of resistance to bacterial speck disease.
Collapse
|
41
|
Bogdanove AJ. Pto update: recent progress on an ancient plant defence response signalling pathway. MOLECULAR PLANT PATHOLOGY 2002; 3:283-288. [PMID: 20569336 DOI: 10.1046/j.1364-3703.2002.00117.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Summary The Pto resistance gene in a gene-for-gene interaction with the avrPto avirulence gene governs resistance to bacterial speck of tomato. A member of a small gene family in tomato, Pto encodes a serine/threonine kinase that interacts in the yeast two-hybrid system with the product of avrPto, an 18-kDa hydrophilic protein. Over the past decade, studies of these genes, their products, and the defence response signalling pathway they govern have led to significant advances in our understanding of the biochemistry of Pto, the bacterial delivery and Pto recognition specificity for AvrPto, and candidate components in the pathway and their potential functions. This article provides an update of recent advances, which include the discovery of AvrPto structure-function relationships in disease and resistance, discovery of a second avirulence protein (AvrPtoB) recognized by Pto and its limited similarity to AvrPto, expression analysis and functional characterization of transcription factors Pti4, Pti5, and Pti6 that interact with Pto, analyses of Pto over-expression that activates defence responses independent of AvrPto, and comparisons of Pto gene family members and homologues in tomato and other Solanaceae, as well as other plant species. These comparisons, in particular, have provided exciting new insight into the antiquity of the Pto gene family and of the capacity for specific recognition of AvrPto that activates plant defence.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
42
|
Kim YJ, Lin NC, Martin GB. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 2002; 109:589-98. [PMID: 12062102 DOI: 10.1016/s0092-8674(02)00743-2] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Pto serine/threonine kinase of tomato confers resistance to speck disease by recognizing strains of Pseudomonas syringae that express the protein AvrPto. Pto and AvrPto physically interact, and this interaction is required for activation of host resistance. We identified a second Pseudomonas protein, AvrPtoB, that interacts specifically with Pto and is widely distributed among plant pathogens. AvrPtoB is delivered into the plant cell by the bacterial type III secretion system, and it elicits Pto-specific defenses. AvrPtoB has little overall sequence similarity with AvrPto. However, AvrPto amino acids, which are required for interaction with Pto, are present in AvrPtoB and required for its interaction with Pto. Thus, two distinct bacterial effectors activate plant immunity by interacting with the same host protein kinase through a similar structural mechanism.
Collapse
Affiliation(s)
- Young Jin Kim
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
43
|
Chang JH, Tai YS, Bernal AJ, Lavelle DT, Staskawicz BJ, Michelmore RW. Functional analyses of the Pto resistance gene family in tomato and the identification of a minor resistance determinant in a susceptible haplotype. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:281-291. [PMID: 11952131 DOI: 10.1094/mpmi.2002.15.3.281] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pto is a member of a multigene family and encodes a serine/threonine kinase that mediates gene-for-gene resistance to strains of Pseudomonas syringae pv. tomato expressing avrPto. The inferred amino acid sequence of the Pto homologs from both resistant (LpimPth2 to LpimPth4) and susceptible (LescFen, LescPth2 to LescPth5) haplotypes suggested that most could encode functional serine/threonine kinases. In addition, the activation segments of the homologs are similar in sequence to that of Pto, and some have residues previously identified as required for binding of AvrPto by Pto in the yeast two-hybrid system. The Pto homologs were therefore characterized for transcription, for the ability of their products to interact with AvrPto in the yeast two-hybrid system, for their autophosphorylation activity, and for their potential to elicit cell death in the presence of and absence of a ligand, as well as their dependence on Prf. LpimPth5, LpimPth4, and LescPth4 were not transcribed at levels detectable by reverse transcription-polymerase chain reaction. The interaction with AvrPto was unique to Pto in the yeast two-hybrid system. LescPth2 autophosphorylated in vitro as a fusion protein. LpimPth2, LpimPth3, LpimPth4, LescPth3, and LescPth4 did not autophosphorylate in vitro. Transient expression of wild-type Fen and wild-type LpimPth3, as well as LescFen, LescPth3, and LescPth5 with perturbations in their P+1 loop caused cell death in Nicotiana benthamiana. LpimPth3 and LescPth3 with amino acid substitutions in the P+1 loop also elicited cell death in tomato; this was dependent on the presence of wild-type Prf. Consequently, some homologs could potentially encode functional resistance proteins. LescPth5 induced cell death specifically in response to expression of AvrPto in tobacco in a Prf-dependent manner; this is consistent with a homolog from a 'susceptible' haplotype encoding a minor recognition determinant.
Collapse
Affiliation(s)
- Jeff H Chang
- NSF Center for Engineering Plants for Resistance Against Pathogens, University of California, Davis, 95616 USA
| | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- R Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
45
|
Van der Hoorn RA, Kruijt M, Roth R, Brandwagt BF, Joosten MH, De Wit PJ. Intragenic recombination generated two distinct Cf genes that mediate AVR9 recognition in the natural population of Lycopersicon pimpinellifolium. Proc Natl Acad Sci U S A 2001; 98:10493-8. [PMID: 11517316 PMCID: PMC56988 DOI: 10.1073/pnas.181241798] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resistance gene Cf-9 of cultivated tomato (Lycopersicon esculentum) confers recognition of the AVR9 elicitor protein of the fungal pathogen Cladosporium fulvum. The Cf-9 locus, containing Cf-9 and four homologs (Hcr9s), originates from Lycopersicon pimpinellifolium (Lp). We examined naturally occurring polymorphism in Hcr9s that confer AVR9 recognition in the Lp population. AVR9 recognition occurs frequently throughout this population. In addition to Cf-9, we discovered a second gene in Lp, designated 9DC, which also confers AVR9 recognition. Compared with Cf-9, 9DC is more polymorphic, occurs more frequently, and is more widely spread throughout the Lp population, suggesting that 9DC is older than Cf-9. The sequences of Cf-9 and 9DC suggest that Cf-9 evolved from 9DC by intragenic recombination between 9DC and another Hcr9. The fact that the 9DC and Cf-9 proteins differ in 61 aa residues, and both mediate recognition of AVR9, shows that in nature Hcr9 proteins with the same recognitional specificity can vary significantly.
Collapse
Affiliation(s)
- R A Van der Hoorn
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 9, 6709 PD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Jones JD. Putting knowledge of plant disease resistance genes to work. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:281-7. [PMID: 11418336 DOI: 10.1016/s1369-5266(00)00174-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant disease resistance genes trigger defence mechanisms upon recognition of pathogen compatibility factors, which are encoded by avirulence genes. Isolation of the barley powdery mildew resistance gene Mla opens the door to understanding the extensive allelic diversity of this locus. Completion of the Arabidopsis genome sequence enables the analysis of the complete set of R-gene homologues in a flowering plant. A new R gene, RPW8, conferring resistance in Arabidopsis to powdery mildew, reveals a new class of protein associated with pathogen recognition. New prospects for using R-gene polymorphism in agriculture are becoming apparent.
Collapse
Affiliation(s)
- J D Jones
- Sainsbury Laboratory, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK.
| |
Collapse
|
47
|
Abstract
Plants cannot move to escape environmental challenges. Biotic stresses result from a battery of potential pathogens: fungi, bacteria, nematodes and insects intercept the photosynthate produced by plants, and viruses use replication machinery at the host's expense. Plants, in turn, have evolved sophisticated mechanisms to perceive such attacks, and to translate that perception into an adaptive response. Here, we review the current knowledge of recognition-dependent disease resistance in plants. We include a few crucial concepts to compare and contrast plant innate immunity with that more commonly associated with animals. There are appreciable differences, but also surprising parallels.
Collapse
Affiliation(s)
- J L Dangl
- Department of Biology and Curriculum in Genetics, University of North Carolina at Chapel Hill, 27599-3280, USA.
| | | |
Collapse
|