1
|
Factor P, Akhmedov AT, McDonald JD, Qu A, Wu J, Jiang H, Dasgupta T, Panettieri RA, Perera F, Miller RL. Polycyclic aromatic hydrocarbons impair function of β2-adrenergic receptors in airway epithelial and smooth muscle cells. Am J Respir Cell Mol Biol 2011; 45:1045-9. [PMID: 21617201 PMCID: PMC3262692 DOI: 10.1165/rcmb.2010-0499oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/06/2011] [Indexed: 11/24/2022] Open
Abstract
Incomplete combustion produces a pollutant mixture that includes polycyclic aromatic hydrocarbons (PAHs). Previous work by the Columbia Center for Children's Environmental Health (CCCEH) and others linked exposure to PAH with symptoms of asthma and other adverse health effects in young children. Inhaled β(2)-adrenergic agonists are mainstays in the treatment of reactive airway diseases. These exogenous catecholamines engage membrane-bound β(2)-adrenergic receptors (β(2)AR) on airway epithelial and smooth muscle cells to cause airway dilation. We hypothesized that exposure to PAH might similarly interfere with the function of β(2)AR in airway epithelial or smooth muscle cells, reducing the efficacy of a medication important for the treatment of asthma symptoms. A PAH mixture was devised, based on ambient levels measured prenatally among a cohort of pregnant women participating at the CCCEH. Primary airway epithelial and smooth muscle cells were exposed to varying concentrations of the PAH mixture, and expression, function, and signaling of β(2)AR were assessed. Murine tracheal epithelial cells and human airway smooth muscle cells, after exposure to a PAH mixture, exhibited reduced expression and function of β(2)AR. These findings support our hypothesis that environmentally relevant PAHs can impede β(2)AR-mediated airway relaxation, and suggest a new paradigm where air pollutants not only contribute to the pathogenesis of childhood asthma, but also diminish responsiveness to standard therapy.
Collapse
Affiliation(s)
- Phillip Factor
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Hospital, New York, NY 10003, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L259-71. [PMID: 17496061 DOI: 10.1152/ajplung.00112.2007] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular mechanisms of surfactant delivery to the air/liquid interface in the lung, which is crucial to lower the surface tension, have been studied for more than two decades. Lung surfactant is synthesized in the alveolar type II cells. Its delivery to the cell surface is preceded by surfactant component synthesis, packaging into specialized organelles termed lamellar bodies, delivery to the apical plasma membrane and fusion. Secreted surfactant undergoes reuptake, intracellular processing, and finally resecretion of recycled material. This review focuses on the mechanisms of delivery of surfactant components to and their secretion from lamellar bodies. Lamellar bodies-independent secretion is also considered. Signal transduction pathways involved in regulation of these processes are discussed as well as disorders associated with their malfunction.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois College of Medicine, Center for Lung and Vascular Biology, Chicago, IL, USA
| | | | | |
Collapse
|
3
|
Chang LC, Wang CJ, Lin YL, Wang JP. Expression of adenylyl cyclase isoforms in neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:53-60. [PMID: 12676354 DOI: 10.1016/s0167-4889(03)00003-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we have identified the expression of adenylyl cyclase (AC) isoforms in rat neutrophils according to the mRNA analysis and the distinct mode of regulation of isoform activity. Agarose gel electrophoresis of reverse transcription-polymerase chain reaction (RT-PCR)-amplified products resulted in a single band of the expected size for each product with nucleotide sequences corresponding to AC1 to AC9. AC1 was abundant, while AC2, 6 and 9 were of moderate expression among the AC isoforms in neutrophils based on the quantitative real-time RT-PCR analysis. Exposure of neutrophils to Ca(2+) ionophore A23187, isoproterenol and forskolin stimulated cellular cyclic AMP accumulation. EDTA and the calmodulin (CaM) antagonist, trifluoperazine, prevented the A23187-induced response. Pretreatment with pertussis toxin (PTX) inhibited the alpha(2)-adrenergic agonist, UK14304-induced cellular cyclic AMP elevation. In addition, UK14304 augmented the cyclic AMP elevation when cells were stimulated by isoproterenol. Phorbol 12-myristate 13-acetate (PMA) attenuated the augmentation response of UK14304 and isoproterenol. Treatment of the membrane preparations from rat neutrophils with Ca(2+)/CaM, forskolin, isoproterenol, GTPgammaS or Gbetagamma all increased cyclic AMP production. The addition of protein kinase C (PKC) catalytic fragment and Gbetagamma augmented the Ca(2+)/CaM- and isoproterenol-stimulated AC activity, respectively. However, forskolin and the activated protein kinase A (PKA) attenuated the GTPgammaS- and isoproterenol-stimulated AC activity, respectively. KT5720, a PKA inhibitor, reversed the inhibition by PKA. Taken together, these data suggest the presence of four groups of AC isoforms in rat neutrophils.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Department of Education and Research, Taichung Veterans General Hospital, 160, Chung Kang Road, Sec. 3, 407, Taichung, Taiwan, ROC
| | | | | | | |
Collapse
|
4
|
Näsman J, Kukkonen JP, Holmqvist T, Akerman KEO. Different roles for Gi and Go proteins in modulation of adenylyl cyclase type-2 activity. J Neurochem 2002; 83:1252-61. [PMID: 12472880 DOI: 10.1046/j.1471-4159.2002.01270.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of Gi/o protein-coupled receptors on adenylyl cyclase type 2 (AC2) has been studied in Sf9 insect cells. Stimulation of cells expressing AC2 with the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) led to a twofold stimulation of cAMP synthesis that could be blocked with the protein kinase C inhibitor GF109203X. Activation of a coexpressed alpha2A-adrenoceptor or muscarinic M4 receptor inhibited the stimulation by TPA almost completely in a pertussis toxin-sensitive manner. Activation of Gs proteins switched the response of the alpha2A-adrenoceptor to potentiation of prestimulated AC2 activity. The potentiation, but not the inhibition, could be blocked by a Gbetagamma scavenger. A novel methodological approach, whereby signalling through endogenous G proteins was ablated, was used to assess specific G protein species in the signal pathway. Expression of Go proteins (alphao1 + beta1gamma2) restored both the inhibition and the potentiation, whereas expression of Gi proteins (alphai1 + beta1gamma2) resulted in a potentiation of both the TPA- and the Gs-stimulated AC2 activity. The data presented supports the view of AC2 as a molecular switch and implicates this isoform as a target for Go protein-linked signalling.
Collapse
Affiliation(s)
- Johnny Näsman
- Department of Neuroscience, Division of Physiology, Uppsala University, BMC, Uppsala, Sweden
| | | | | | | |
Collapse
|
5
|
Abstract
Lung surfactant is synthesized in the alveolar type II cell. Its lipids and hydrophobic proteins (SP-B and SP-C) are stored in lamellar bodies and secreted by regulated exocytosis. In contrast, the hydrophilic proteins (SP-A and SP-D) appear to be secreted independently of lamellar bodies. Regulation of surfactant secretion is mediated by at least three distinct signaling mechanisms: activation of adenylate cyclase with formation of cAMP and activation of cAMP-dependent protein kinase; activation of protein kinase C; and a Ca(2+)-regulated mechanism that likely results in the activation of Ca(2+)-calmodulin-dependent protein kinase. These signaling mechanisms are activated by a variety of agonists, some of which may have a physiological role. ATP is one such agent and it activates all three signaling mechanisms. There is increasing information on the identity of several of the signaling proteins involved in surfactant secretion although others remain to be established. In particular the identity of the phospholipase C, protein kinase C and phospholipase D isomers expressed in the type II cell and/or involved in surfactant secretion has been established. Distal steps in the secretory pathway beyond protein kinase activation as well as the physiological regulation of surfactant secretion, are major issues that need to be addressed.
Collapse
Affiliation(s)
- S A Rooney
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, P.O. Box 208064, New Haven, CT 06520-8064, USA.
| |
Collapse
|
6
|
Jourdan KB, Mason NA, Long L, Philips PG, Wilkins MR, Morrell NW. Characterization of adenylyl cyclase isoforms in rat peripheral pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1359-69. [PMID: 11350817 DOI: 10.1152/ajplung.2001.280.6.l1359] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of adenylyl cyclase (AC), of which there are 10 diversely regulated isoforms, is important in regulating pulmonary vascular tone and remodeling. Immunohistochemistry in rat lungs demonstrated that AC2, AC3, and AC5/6 predominated in vascular and bronchial smooth muscle. Isoforms 1, 4, 7, and 8 localized to the bronchial epithelium. Exposure of animals to hypoxia did not change the pattern of isoform expression. RT-PCR confirmed mRNA expression of AC2, AC3, AC5, and AC6 and demonstrated AC7 and AC8 transcripts in smooth muscle. Western blotting confirmed the presence of AC2, AC3, and AC5/6 proteins. Functional studies provided evidence of cAMP regulation by Ca(2+) and protein kinase C-activated but not G(i)-inhibited pathways, supporting a role for AC2 and a Ca(2+)-stimulated isoform, AC8. However, NKH-477, an AC5-selective activator, was more potent than forskolin in elevating cAMP and inhibiting serum-stimulated [(3)H]thymidine incorporation, supporting the presence of AC5. These studies demonstrate differential expression of AC isoforms in rat lungs and provide evidence that AC2, AC5, and AC8 are functionally important in cAMP regulation and growth pathways in pulmonary artery myocytes.
Collapse
MESH Headings
- Adenylyl Cyclases/chemistry
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Blotting, Western
- Cell Division/drug effects
- Cells, Cultured
- Colforsin/analogs & derivatives
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Enzyme Activators/pharmacology
- Enzyme Inhibitors/pharmacology
- Hypertension, Pulmonary/metabolism
- Hypoxia/enzymology
- Immunohistochemistry
- Isoenzymes/chemistry
- Isoenzymes/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Organ Specificity
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/enzymology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred WKY
- Reverse Transcriptase Polymerase Chain Reaction
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- K B Jourdan
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
7
|
Chander A, Sen N, Spitzer AR. Synexin and GTP increase surfactant secretion in permeabilized alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 2001; 280:L991-8. [PMID: 11290524 DOI: 10.1152/ajplung.2001.280.5.l991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have previously suggested that synexin (annexin VII), a Ca(2+)-dependent phospholipid binding protein, may have a role in surfactant secretion, since it promotes membrane fusion between isolated lamellar bodies (the surfactant-containing organelles) and plasma membranes. In this study, we investigated whether exogenous synexin can augment surfactant phosphatidylcholine (PC) secretion in synexin-deficient lung epithelial type II cells. Isolated rat type II cells were cultured for 20-22 h with [(3)H]choline to label cellular PC. The cells were then treated with beta-escin, which forms pores in the cell membrane and releases cytoplasmic proteins including synexin. These cells, however, retained lamellar bodies. The permeabilized type II cells were evaluated for PC secretion during a 30-min incubation. Compared with PC secretion under basal conditions, the presence of Ca(2+) (up to 10 microM) did not increase PC secretion. In the presence of 1 microM Ca(2+), synexin increased PC secretion in a concentration-dependent manner, which reached a maximum at approximately 5 microg/ml synexin. The secretagogue effect of synexin was abolished when synexin was inactivated by heat treatment (30 min at 65 degrees C) or by treatment with synexin antibodies. GTP or its nonhydrolyzable analog beta:gamma-imidoguanosine-5'-triphosphate also increased PC secretion in permeabilized type II cells. The PC secretion was further increased in an additive manner when a maximally effective concentration of synexin was added in the presence of 1 mM GTP, suggesting that GTP acts by a synexin-independent mechanism to increase membrane fusion. Thus our results support a direct role for synexin in surfactant secretion. Our study also suggests that membrane fusion during surfactant secretion may be mediated by two independent mechanisms.
Collapse
Affiliation(s)
- A Chander
- Division of Neonatology, Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
8
|
Pinter JH, Janovick JA, Conn PM. Gonadotropin-releasing hormone receptor concentration differentially regulates intracellular signaling pathways in GGH3 cells. Pituitary 1999; 2:181-90. [PMID: 11081152 DOI: 10.1023/a:1009946807430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pituitary cell lines (GGH3) expressing the GnRH receptor (GnRHR) were used to investigate the effect of GnRHR concentration on the ability of a GnRH agonist to activate second messenger systems. Four different strategies were utilized to generate cells expressing functionally different concentrations of receptors: (1) transient transfection with different concentrations of wild type GnRHR into GH3 cells, (2) utilization of two cell lines derived from a common stably transfected line expressing high (4,209 +/- 535 receptors/cell) or low (1,031 +/- 36 receptors/cell) concentrations of GnRHR, (3) co-incubation of GGH3-1' cells with a GnRH agonist (Buserelin) and a GnRH antagonist to compete for binding sites, and (4) photo-affinity binding to GnRHR with a GnRH antagonist to change effective receptor concentration. A range of receptor concentrations (1,000-8,000 receptors/cell) were generated by these techniques. Inositol phosphate (IP) and cAMP accumulation were quantified to assess the effect of receptor concentration on receptor-effector coupling. Under all four paradigms, the efficacy and potency of Buserelin stimulated IP production was dependent on receptor concentration. In contrast, Buserelin stimulated cAMP release was relatively unchanged at varying concentrations of GnRHR. This suggests that the cellular concentration of GnRHR affects the induction of cell signaling pathways. These results demonstrate that a single ligand-receptor-complex can differentially activate second messenger systems and present a mechanism by which multiple physiological endpoints can be differentially regulated by a single hormone/receptor interaction.
Collapse
Affiliation(s)
- J H Pinter
- Division of Neuroscience, Oregon Regional Primate Research Center, Beaverton 97006-3499, USA
| | | | | |
Collapse
|
9
|
Regulation and immunohistochemical localization of betagamma-stimulated adenylyl cyclases in mouse hippocampus. J Neurosci 1999. [PMID: 9870949 DOI: 10.1523/jneurosci.19-01-00180.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Specific forms of synaptic plasticity such as long-term potentiation (LTP) are modulated by or require increases in cAMP. The various adenylyl cyclase isoforms possess unique regulatory properties, and thus cAMP increases in a given cell type or tissue in response to converging signals are subject to the properties of the adenylyl cyclase isoforms expressed. In most tissues, adenylyl cyclase activity is stimulated by neurotransmitters or hormones via stimulatory G-protein (Gs)-coupled receptors and is inhibited via inhibitory G-protein (Gi)-linked receptors. However, in the hippocampus, stimulation of Gi-coupled receptors potentiates Gs-stimulated cAMP levels. This effect may be associated with the regulatory properties of adenylyl cyclase types 2 and 4 (AC2 and AC4), isoforms that are potentiated by the betagamma subunit of Gi in vitro. Although AC2 has been shown to be stimulated by betagamma in whole cells, reports describing the sensitivity of AC4 to betagamma in vivo have yet to emerge. Our results demonstrate that Gs-mediated stimulation of AC4 is potentiated by betagamma released from activated Gi-coupled receptors in intact human embryonic kidney (HEK) 293 cells. Furthermore, we show that the AC2 and AC4 proteins are expressed in the mouse hippocampal formation and that they colocalize with MAP2, a dendritic and/or postsynaptic marker. The presence of AC2 and AC4 in the hippocampus and the ability of each of these enzymes to detect coincident activation of Gs- and Gi-coupled receptors suggest that they may play a crucial role in certain forms of synaptic plasticity by coordinating such overlapping synaptic inputs.
Collapse
|
10
|
Batenburg JJ, Haagsman HP. The lipids of pulmonary surfactant: dynamics and interactions with proteins. Prog Lipid Res 1998; 37:235-76. [PMID: 10193527 DOI: 10.1016/s0163-7827(98)00011-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- J J Batenburg
- Laboratory of Veterinary Biochemistry, Graduate School of Animal Health, Utrecht University, The Netherlands.
| | | |
Collapse
|
11
|
Marjamaki A, Sato M, Bouet-Alard R, Yang Q, Limon-Boulez I, Legrand C, Lanier SM. Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. Integration of stimulatory and inhibitory input to the effector adenylyl cyclase. J Biol Chem 1997; 272:16466-73. [PMID: 9195955 DOI: 10.1074/jbc.272.26.16466] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To define the integration of multiple signals by different types of adenylyl cyclase (AC) within the cell, we altered the population of enzymes expressed in the cell and determined the subsequent processing of stimulatory and inhibitory input. DDT1-MF2 cells expressed AC VI-IX and were stably transfected with AC II, III, or IV. Enzyme expression was confirmed by RNA blot analysis and functional assays. Basal enzyme activity was only increased in AC II transfectants (6-fold). Maximum stimulation of enzyme activity was increased in each of the AC transfectants to varying extents. alpha2A/D-AR activation elicited enzyme type-specific responses. alpha2-AR activation inhibited the effect of isoproterenol in control transfectants, and this action was magnified in AC III transfectants. In AC II and AC IV transfectants, alpha2-AR activation initiated both positive (Gbetagamma) and negative signals (Gialpha) to the Gsalpha-stimulated enzyme, and both types of signals were blocked by cell pretreatment with pertussis toxin. The negative input to AC II from the alpha2-AR was blocked by protein kinase C activation in AC II transfectants, but it was the positive input to AC IV that was compromised by protein kinase C activation. These data indicate that the integration of multiple signals by adenylyl cyclases is a dynamic process depending upon the enzyme type and phosphorylation status.
Collapse
Affiliation(s)
- A Marjamaki
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Ahmed AH, Heppel LA. Evidence for a role of G protein beta gamma subunits in the enhancement of cAMP accumulation and DNA synthesis by adenosine in human cells. J Cell Physiol 1997; 170:263-71. [PMID: 9066783 DOI: 10.1002/(sici)1097-4652(199703)170:3<263::aid-jcp7>3.0.co;2-m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expression of both A1- and A2a-adenosine receptors occurs in human foreskin and lung fibroblasts (Ahmed et al., 1995, Biochem. Biophys. Res. Commun. 208:871-878). Studies with highly specific A1- and A2a-adenosine receptor agonists provide indirect evidence that binding of adenosine activates Gs and Gi, after which Gs alpha interacts with beta gamma subunits released from Gi. The interaction of Gs alpha with beta gamma augments cyclic adenosine monophosphate (cAMP) accumulation, more than does Gs alpha alone. In the present study, we have provided direct evidence for a role of the beta gamma complex in the augmentation of cAMP accumulation by using a recombinant His6 fusion protein containing the carboxyl third of beta ARK1. This portion of beta ARK1 contains G beta gamma binding sequences and acts as a specific beta gamma scavenger (Koch et al., 1994, Proc. Natl. Acad. Sci. USA 91:12706-12710). In permeabilized fibroblasts, the His6 fusion protein inhibited the augmentation of cAMP accumulation resulting from adenosine binding to both A1 and A2a receptors. In addition, the specific G beta gamma scavenger inhibited the further rise in cellular cAMP levels caused by pretreating cells with pertussis toxin before incubation with adenosine. Finally, we observed that specific A1-adenosine receptor agonists augmented the cAMP accumulation stimulated by A2a-receptor agonists, and this cAMP augmentation was also suppressed by the G beta gamma scavenger. Similar results were obtained when the cells were treated with extracellular ATP and lysophosphatidic acid (LPA) to stimulate Gs and release G beta gamma subunits, respectively.
Collapse
Affiliation(s)
- A H Ahmed
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
13
|
del Pozo MA, Sánchez-Mateos P, Nieto M, Sánchez-Madrid F. Chemokines regulate cellular polarization and adhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway. J Cell Biol 1995; 131:495-508. [PMID: 7593174 PMCID: PMC2199975 DOI: 10.1083/jcb.131.2.495] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Leukocyte recruitment is a key step in the inflammatory reaction. Several changes in the cell morphology take place during lymphocyte activation and migration: spheric-shaped resting T cells become polarized during activation, developing a well defined cytoplasmic projection designated as cellular uropod. We found that the chemotactic and proinflammatory chemokines RANTES, MCP-1, and, to a lower extent, MIP-1 alpha, MIP-1 beta, and IL-8, were able to induce uropod formation and ICAM-3 redistribution in T lymphoblasts adhered to ICAM-1 or VCAM-1. A similar chemokine-mediated effect was observed during T cells binding to the fibronectin fragments of 38- and 80-kD, that contain the binding sites for the integrins VLA-4 and VLA-5, respectively. The uropod structure concentrated the ICAM-3 adhesion molecule (a ligand for LFA-1), and emerged to the outer milieu from the area of contact between lymphocyte and protein ligands. In addition, we found that other adhesion molecules such as ICAM-1, CD43, and CD44, also redistributed to the lymphocyte uropod upon RANTES stimulation, whereas a wide number of other cell surface receptors did not redistribute. Chemokines displayed a selective effect among different T cell subsets; MIP-1 beta had more potent action on CD8+ T cells and tumor infiltrating lymphocytes (TIL), whereas RANTES and MIP-1 alpha targeted selectively CD4+ T cells. We have also examined the involvement of cAMP signaling pathway in uropod formation. Interestingly, several cAMP agonists were able to induce uropod formation and ICAM-3 redistribution, whereas H-89, a specific inhibitor of the cAMP-dependent protein kinase, abrogated the chemokine-mediated uropod formation, thus pointing out a role for cAMP-dependent signaling in the development of this cytoplasmic projection. Since the lymphocyte uropod induced by chemokines was completely abrogated by Bordetella pertussis toxin, the formation of this membrane projection appears to be dependent on G proteins signaling pathways. In addition, the involvement of myosin-based cytoskeleton in uropod formation and ICAM-3 redistribution in response to chemokines was suggested by the prevention of this phenomenon with the myosin-disrupting agent butanedione monoxime. Interestingly, this agent also inhibited the ICAM-3-mediated cell aggregation, but not the cell adhesion to substrata. Altogether, these results demonstrate that uropod formation and adhesion receptor redistribution is a novel function mediated by chemokines; this phenomenon may represent a mechanism that significantly contributes to the recruitment of circulating leukocytes to inflammatory foci.
Collapse
Affiliation(s)
- M A del Pozo
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|