1
|
Chen WL, Luo DF, Gao C, Ding Y, Wang SY. The consensus sequence of FAMLF alternative splice variants is overexpressed in undifferentiated hematopoietic cells. ACTA ACUST UNITED AC 2015; 48:603-9. [PMID: 26083996 PMCID: PMC4512098 DOI: 10.1590/1414-431x20154430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 01/01/2023]
Abstract
The familial acute myeloid leukemia related factor gene (FAMLF) was previously identified from a familial AML subtractive cDNA library and shown to undergo alternative splicing. This study used real-time quantitative PCR to investigate the expression of the FAMLF alternative-splicing transcript consensus sequence (FAMLF-CS) in peripheral blood mononuclear cells (PBMCs) from 119 patients with de novo acute leukemia (AL) and 104 healthy controls, as well as in CD34+ cells from 12 AL patients and 10 healthy donors. A 429-bp fragment from a novel splicing variant of FAMLF was obtained, and a 363-bp consensus sequence was targeted to quantify total FAMLF expression. Kruskal-Wallis, Nemenyi, Spearman's correlation, and Mann-Whitney U-tests were used to analyze the data. FAMLF-CS expression in PBMCs from AL patients and CD34+ cells from AL patients and controls was significantly higher than in control PBMCs (P < 0.0001). Moreover, FAMLF-CS expression in PBMCs from the AML group was positively correlated with red blood cell count (rs =0.317, P=0.006), hemoglobin levels (rs = 0.210, P = 0.049), and percentage of peripheral blood blasts (rs = 0.256, P = 0.027), but inversely correlated with hemoglobin levels in the control group (rs = -0.391, P < 0.0001). AML patients with high CD34+ expression showed significantly higher FAMLF-CS expression than those with low CD34+ expression (P = 0.041). Our results showed that FAMLF is highly expressed in both normal and malignant immature hematopoietic cells, but that expression is lower in normal mature PBMCs.
Collapse
Affiliation(s)
- W L Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - D F Luo
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - C Gao
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Y Ding
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - S Y Wang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Activity-dependent neuroprotective protein (ADNP) exhibits striking sexual dichotomy impacting on autistic and Alzheimer's pathologies. Transl Psychiatry 2015; 5:e501. [PMID: 25646590 PMCID: PMC4445743 DOI: 10.1038/tp.2014.138] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/04/2014] [Accepted: 11/17/2014] [Indexed: 11/08/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) is a most frequent autism spectrum disorder (ASD)-associated gene and the only protein significantly decreasing in the serum of Alzheimer's disease (AD) patients. Is ADNP associated with ASD being more prevalent in boys and AD more prevalent in women? Our results revealed sex-related learning/memory differences in mice, reflecting hippocampal expression changes in ADNP and ADNP-controlled AD/ASD risk genes. Hippocampal ADNP transcript content was doubled in male vs female mice, with females showing equal expression to ADNP haploinsufficient (ADNP(+/)(-)) males and no significant genotype-associated reduction. Increased male ADNP expression was replicated in human postmortem hippocampal samples. The hippocampal transcript for apolipoprotein E (the major risk gene for AD) was doubled in female mice compared with males, and further doubled in the ADNP(+/-) females, contrasting a decrease in ADNP(+/-) males. Previously, overexpression of the eukaryotic translation initiation factor 4E (eIF4E) led to ASD-like phenotype in mice. Here, we identified binding sites on ADNP for eIF4E and co-immunoprecipitation. Furthermore, hippocampal eIF4E expression was specifically increased in young ADNP(+/-) male mice. Behaviorally, ADNP(+/-) male mice exhibited deficiencies in object recognition and social memory compared with ADNP(+/+) mice, while ADNP(+/-) females were partially spared. Contrasting males, which preferred novel over familiar mice, ADNP(+/+) females showed no preference to novel mice and ADNP(+/-) females did not prefer mice over object. ADNP expression, positioned as a master regulator of key ASD and AD risk genes, introduces a novel concept of hippocampal gene-regulated sexual dimorphism and an ADNP(+/-) animal model for translational psychiatry.
Collapse
|
3
|
The role of translation initiation regulation in haematopoiesis. Comp Funct Genomics 2012; 2012:576540. [PMID: 22649283 PMCID: PMC3357504 DOI: 10.1155/2012/576540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/25/2012] [Indexed: 02/06/2023] Open
Abstract
Organisation of RNAs into functional subgroups that are translated in response to extrinsic and intrinsic factors underlines a relatively unexplored gene expression modulation that drives cell fate in the same manner as regulation of the transcriptome by transcription factors. Recent studies on the molecular mechanisms of inflammatory responses and haematological disorders indicate clearly that the regulation of mRNA translation at the level of translation initiation, mRNA stability, and protein isoform synthesis is implicated in the tight regulation of gene expression. This paper outlines how these posttranscriptional control mechanisms, including control at the level of translation initiation factors and the role of RNA binding proteins, affect hematopoiesis. The clinical relevance of these mechanisms in haematological disorders indicates clearly the potential therapeutic implications and the need of molecular tools that allow measurement at the level of translational control. Although the importance of miRNAs in translation control is well recognised and studied extensively, this paper will exclude detailed account of this level of control.
Collapse
|
4
|
Conte C, Ainaoui N, Delluc-Clavières A, Khoury MP, Azar R, Pujol F, Martineau Y, Pyronnet S, Prats AC. Fibroblast growth factor 1 induced during myogenesis by a transcription-translation coupling mechanism. Nucleic Acids Res 2009; 37:5267-78. [PMID: 19561198 PMCID: PMC2760804 DOI: 10.1093/nar/gkp550] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fibroblast growth factor 1 (FGF1) is involved in muscle development and regeneration. The FGF1 gene contains four tissue-specific promoters allowing synthesis of four transcripts with distinct leader regions. Two of these transcripts contain internal ribosome entry sites (IRESs), which are RNA elements allowing mRNA translation to occur in conditions of blockade of the classical cap-dependent mechanism. Here, we investigated the function and the regulation of FGF1 during muscle differentiation and regeneration. Our data show that FGF1 protein expression is induced in differentiating myoblasts and regenerating mouse muscle, whereas siRNA knock-down demonstrated FGF1 requirement for myoblast differentiation. FGF1 induction occurred at both transcriptional and translational levels, involving specific activation of both promoter A and IRES A, whereas global cap-dependent translation was inhibited. Furthermore, we identified, in the FGF1 promoter A distal region, a cis-acting element able to activate the IRES A-driven translation. These data revealed a mechanism of molecular coupling of mRNA transcription and translation, involving a unique process of IRES activation by a promoter element. The crucial role of FGF1 in myoblast differentiation provides physiological relevance to this novel mechanism. This finding also provides a new insight into the molecular mechanisms linking different levels of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Conte
- Inserm, U858 and Institut de Médecine Moléculaire de Rangueil, Université de Toulouse, UPS, IFR150, F-31432 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jimenez J, Jang GM, Semler BL, Waterman ML. An internal ribosome entry site mediates translation of lymphoid enhancer factor-1. RNA (NEW YORK, N.Y.) 2005; 11:1385-99. [PMID: 16120831 PMCID: PMC1370822 DOI: 10.1261/rna.7226105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The lymphoid enhancer factor-1 LEF1 locus produces multiple mRNAs via alternative promoters. Full-length LEF-1 protein is produced via translation of an mRNA with a 1.2-kb, GC-rich 5'-untranslated region (UTR), whereas a truncated LEF-1 isoform is produced by an mRNA with a short, 60-nucleotide (nt) 5'-UTR. Full-length LEF-1 promotes cell growth via its interaction with the WNT signaling mediator beta-catenin. Truncated LEF-1 lacks the beta-catenin binding domain and opposes WNT signaling as a competitive inhibitor for WNT response elements. In this study we tested the hypothesis that the long, GC-rich 5'-UTR within the full-length LEF1 mRNA contains an internal ribosome entry site (IRES). Using a dicistronic vector in transient DNA transfections, we show that the LEF1 5'-UTR mediates cap-independent translation. Additional experiments involving a promoter-less dicistronic vector, Northern blot analysis, and transient transfections of dicistronic mRNAs into cultured mammalian cells compromised for cap-dependent translation demonstrate that the 5'-UTR of full-length LEF1 mRNA contains a bona fide IRES. Deletion analysis of the 5'-UTR shows that maximal IRES activity requires the majority of the 5'-UTR, consistent with the notion that cellular IRESs require multiple modules for efficient activity. This study demonstrates that full-length LEF1 mRNA has evolved to utilize a cap-independent mechanism for translation of full-length LEF-1, whereas the truncated isoform is produced via the canonical cap-dependent ribosome scanning mechanism.
Collapse
Affiliation(s)
- Judith Jimenez
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697-4025, USA
| | | | | | | |
Collapse
|
6
|
Vladychenskaya IP, Dergunova LV, Dmitrieva VG, Limborska SA. Human gene MOB: structure specification and aspects of transcriptional activity. Gene 2004; 338:257-65. [PMID: 15315829 DOI: 10.1016/j.gene.2004.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 04/15/2004] [Accepted: 06/01/2004] [Indexed: 11/27/2022]
Abstract
Prior investigation of human brain cDNA libraries revealed an evolutionarily conserved gene MOB that has been cloned in silico on chromosome 10. To elucidate its biological role, we performed structural and functional analysis of its transcripts. Applying an expressed sequence tag (EST) approach, we specified the sequence of the predicted MOB transcript and found another four exons to belong to the 5'- end of the MOB gene; the newly constructed MOB transcript was detected in vitro. Here, we report MOB to comprise at least 11 exons and 10 introns and to span more than 320 kb of the genomic sequence. We propose complex regulation of MOB gene activity at a transcriptional level, based on its expression pattern. Thus, in the human cerebellum, we discovered multiple alternatively spliced products of MOB differing in their coding portion; one of the alternative transcripts was demonstrated to lack the longest coding exon VII. MOB was expressed at very low levels in a wide spectrum of human tissues: most abundantly in the brain and in the kidney. Two transcription initiation sites were found for MOB and two alternative promoters were suggested to govern its expression. We believe that MOB activity is also regulated at the posttranscriptional level. In the constructed MOB transcript, the extended multiexon 5'-untranslated region (UTR) together with the weak context of the translation start ATG codon are considered as potent translator inhibitors. Modulation of MOB translation efficiency is proposed based on the appropriate alternative splicing events within the 5'-UTR. The MOB 3'-UTR is anticipated to mediate message instability. We thus suggest that this MOB transcript may be a labile short-lived molecule with strong regulation of its translational efficiency. We believe that MOB gene activity is controlled at least at the transcriptional and the posttranscriptional levels, strictly regulating the amount of the encoded protein product.
Collapse
Affiliation(s)
- Irina P Vladychenskaya
- Department of Human Molecular Genetics, Institute of Molecular Genetics RAS, Kurchatov sq., 2, 123182 Moscow, Russia.
| | | | | | | |
Collapse
|
7
|
Fukuda T, Ashizuka M, Nakamura T, Shibahara K, Maeda K, Izumi H, Kohno K, Kuwano M, Uchiumi T. Characterization of the 5'-untranslated region of YB-1 mRNA and autoregulation of translation by YB-1 protein. Nucleic Acids Res 2004; 32:611-22. [PMID: 14752049 PMCID: PMC373347 DOI: 10.1093/nar/gkh223] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2003] [Revised: 11/06/2003] [Accepted: 12/17/2003] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic Y-box binding protein YB-1 is involved in various biological processes, including DNA repair, cell proliferation and the regulation of transcription and translation. YB-1 protein is abundant and expressed ubiquitously in human cells, functioning in cell proliferation and transformation. Its concentration is thought to be highly regulated at both the levels of transcription and translation. Therefore, we investigated whether or not the 5'-UTR of YB-1 mRNA affects the translation of YB-1 protein, thus influencing expression levels. Luciferase mRNA ligated to the YB-1 mRNA 5'-UTR was used as a reporter construct. Ligation of the full-length YB-1 5'-UTR (331 bases) enhanced translation as assessed by in vitro and in vivo translation assays. Deletion constructs of the YB-1 5'-UTR also resulted in a higher efficiency of translation, especially in the region mapped to +197 to +331 from the major transcription start site. RNA gel shift assays revealed that the affinity of YB-1 for various 5'-UTR probe sequences was higher for the full-length 5'-UTR than for deleted 5'-UTR sequences. An in vitro translation assay was used to demonstrate that recombinant YB-1 protein inhibited translation of the full-length 5'-UTR of YB-1 mRNA. Thus, our findings provide evidence for the autoregulation of YB-1 mRNA translation via the 5'-UTR.
Collapse
Affiliation(s)
- Takao Fukuda
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lyons AJ, Robertson HD. Detection of tRNA-like structure through RNase P cleavage of viral internal ribosome entry site RNAs near the AUG start triplet. J Biol Chem 2003; 278:26844-50. [PMID: 12746454 DOI: 10.1074/jbc.m304052200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 9600-base RNA genome of hepatitis C virus (HCV) has an internal ribosome entry site (IRES) in its first 370 bases, including the AUG start triplet at bases 342-344. Structural elements of this and other IRES domains substitute for a 5' terminal cap structure in protein synthesis. Recent work (Nadal, A., Martell, M., Lytle, J. R., Lyons, A. J., Robertson, H. D., Cabot, B., Esteban, J. I., Esteban, R., Guardia, J., and Gomez, J. (2002) J. Biol. Chem. 277, 30606-30613) has demonstrated that the host pre-tRNA processing enzyme, RNase P, can cleave the HCV RNA genome at a site in the IRES near the AUG initiator triplet. Although this step is unlikely to be part of the HCV life cycle, such a reaction could indicate the presence of a tRNA-like structure in this IRES. Because susceptibility to cleavage by mammalian RNase P is a strong indicator of tRNA-like structure, we have conducted the studies reported here to test whether such tRNA mimicry is unique to HCV or is a general property of IRES structure. We have assayed IRES domains of several viral RNA genomes: two pestiviruses related to HCV, classical swine fever virus and bovine viral diarrhea virus; and two unrelated viruses, encephalomyocarditis virus and cricket paralysis virus. We have found similarly placed RNase P cleavage sites in these IRESs. Thus a tRNA-like domain could be a general structural feature of IRESs, the first IRES structure to be identified with a functional correlate. Such tRNA-like features could be recognized by pre-existing ribosomal tRNA-binding sites as part of the IRES initiation cycle.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Classical Swine Fever Virus/genetics
- Classical Swine Fever Virus/metabolism
- Codon, Initiator/chemistry
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/metabolism
- Endoribonucleases/metabolism
- Hepacivirus/genetics
- Hepacivirus/metabolism
- Humans
- Nucleic Acid Conformation
- RNA, Catalytic/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease P
Collapse
Affiliation(s)
- Alita J Lyons
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
9
|
Abstract
Selection of the translational initiation site in most eukaryotic mRNAs appears to occur via a scanning mechanism which predicts that proximity to the 5' end plays a dominant role in identifying the start codon. This "position effect" is seen in cases where a mutation creates an AUG codon upstream from the normal start site and translation shifts to the upstream site. The position effect is evident also in cases where a silent internal AUG codon is activated upon being relocated closer to the 5' end. Two mechanisms for escaping the first-AUG rule--reinitiation and context-dependent leaky scanning--enable downstream AUG codons to be accessed in some mRNAs. Although these mechanisms are not new, many new examples of their use have emerged. Via these escape pathways, the scanning mechanism operates even in extreme cases, such as a plant virus mRNA in which translation initiates from three start sites over a distance of 900 nt. This depends on careful structural arrangements, however, which are rarely present in cellular mRNAs. Understanding the rules for initiation of translation enables understanding of human diseases in which the expression of a critical gene is reduced by mutations that add upstream AUG codons or change the context around the AUG(START) codon. The opposite problem occurs in the case of hereditary thrombocythemia: translational efficiency is increased by mutations that remove or restructure a small upstream open reading frame in thrombopoietin mRNA, and the resulting overproduction of the cytokine causes the disease. This and other examples support the idea that 5' leader sequences are sometimes structured deliberately in a way that constrains scanning in order to prevent harmful overproduction of potent regulatory proteins. The accumulated evidence reveals how the scanning mechanism dictates the pattern of transcription--forcing production of monocistronic mRNAs--and the pattern of translation of eukaryotic cellular and viral genes.
Collapse
Key Words
- translational control
- aug context
- 5′ untranslated region
- reinitiation
- leaky scanning
- dicistronic mrna
- internal ribosome entry site
- adometdc, s-adenosylmethionine decarboxylase
- a2ar, a2a adenosine receptor
- c/ebp, ccaat/enhancer binding protein
- ctl, cytotoxic t-lymphocyte
- egfp, enhanced green fluorescent protein
- eif, eukaryotic initiation factor
- hiv-1, human immunodeficiency virus 1
- ires, internal ribosome entry site
- lef1, lymphoid enhancer factor-1
- ogp, osteogenic growth peptide
- orf, open reading frame
- r, purine
- tpo, thrombopoietin
- uporf, upstream open reading frame
- utr, untranslated region
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Prats AC, Prats H. Translational control of gene expression: role of IRESs and consequences for cell transformation and angiogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:367-413. [PMID: 12206457 DOI: 10.1016/s0079-6603(02)72075-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Translational control of gene expression has, over the last 10 years, become appreciated as an important process in its regulation in eukaryotes. Among a series of control mechanisms exerted at the translational level, the use of alternative codons provides a very subtle means of increasing gene diversity by expressing several proteins from a single mRNA. The internal ribosome entry sites (IRESs) act as specific translational enhancers that allow translation initiation to occur independently of the classic cap-dependent mechanism, in response to specific stimuli and under the control of different trans-acting factors. It is striking to observe that the two processes mostly concern genes coding for control proteins such as growth factors, protooncogenes, angiogenesis factors, and apoptosis regulators. Here, we focus on the translational regulation of four mRNAs, with both IRESs and alternative initiation codons, which are the messengers of retroviral murine leukemia virus, fibroblast growth factor 2, vascular endothelial growth factor, and protooncogene c-myc. Four of them are involved in cell transformation and/or angiogenesis, with important consequences for such translation regulations in these pathophysiological processes.
Collapse
Affiliation(s)
- Anne-Catherine Prats
- Institut National de la Santé et de la Recherche Médicale U397, Endocrinologie et Communication Cellulaire, CHU Rangueil Toulouse, France
| | | |
Collapse
|
11
|
Gerlitz G, Jagus R, Elroy-Stein O. Phosphorylation of initiation factor-2 alpha is required for activation of internal translation initiation during cell differentiation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2810-9. [PMID: 12047392 DOI: 10.1046/j.1432-1033.2002.02974.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The long uORF-burdened 5'UTRs of many genes encoding regulatory proteins involved in cell growth and differentiation contain internal ribosomal entry site (IRES) elements. In a previous study we showed that utilization of the weak IRES of platelet-derived growth factor (PDGF2) is activated during megakaryocytic differentiation. The establishment of permissive conditions for IRES-mediated translation during differentiation has been confirmed by our demonstration of the enhanced activity of vascular endothelial growth factor, c-Myc and encephalomyocarditis virus IRES elements under these conditions, although their mRNAs are not naturally expressed in differentiated K562 cells. In contrast with the enhancement of IRES-mediated protein synthesis during differentiation, global protein synthesis is reduced, as judged by polysomal profiles and radiolabelled amino acid incorporation rate. The reduction in protein synthesis rate correlates with increased phosphorylation of the translation initiation factor eIF2 alpha. Furthermore, IRES use is decreased by over-expression of the dominant-negative form of the eIF2 alpha kinase, PKR, the vaccinia virus K3L gene, or the eIF2 alpha-S51A variant which result in decreased eIF2 alpha phosphorylation. These data demonstrate a connection between eIF2 alpha phosphorylation and activation of cellular IRES elements. It suggests that phosphorylation of eIF2 alpha, known to be important for cap-dependent translational control, serves to fine-tune the translation efficiency of different mRNA subsets during the course of differentiation and has the potential to regulate expression of IRES-containing mRNAs under a range of physiological circumstances.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
12
|
Morley SJ. The regulation of eIF4F during cell growth and cell death. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:1-37. [PMID: 11575157 DOI: 10.1007/978-3-662-09889-9_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S J Morley
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
13
|
Jousse C, Bruhat A, Carraro V, Urano F, Ferrara M, Ron D, Fafournoux P. Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5'UTR. Nucleic Acids Res 2001; 29:4341-51. [PMID: 11691921 PMCID: PMC60176 DOI: 10.1093/nar/29.21.4341] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chop is a ubiquitously expressed mammalian gene encoding a small nuclear protein related to the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors. CHOP protein plays an important role in various cellular processes such as growth, differentiation and programmed cell death. CHOP expression is strongly increased in response to a large variety of stresses including perturbation of the endoplasmic reticulum function, DNA damage and nutrient deprivation. Multiple mechanisms including transcriptional and post-transcriptional controls are involved in the regulation of CHOP expression. We show here that the 5'UTR of the Chop transcript plays an important role in controlling the synthesis of CHOP protein. In particular, the 5'UTR contains a conserved uORF which encodes a 31 amino acid peptide that inhibits the expression of the downstream ORF. Mutational analysis of the 5' leader region and peptide coding sequences suggests that the peptide itself inhibits expression of the downstream ORF. Such results suggest a role for uORF in limiting ribosomal access to downstream initiation sites. With respect to the importance of CHOP protein in the regulation of cellular functions, the mechanisms that regulate its basal level are of considerable interest.
Collapse
Affiliation(s)
- C Jousse
- UR 238 - Unité de Nutrition Cellulaire et Moléculaire, INRA de Theix, 63122 Saint Genès Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Mahoney TS, Weyrich AS, Dixon DA, McIntyre T, Prescott SM, Zimmerman GA. Cell adhesion regulates gene expression at translational checkpoints in human myeloid leukocytes. Proc Natl Acad Sci U S A 2001; 98:10284-9. [PMID: 11517314 PMCID: PMC56953 DOI: 10.1073/pnas.181201398] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Engagement of adhesion molecules on monocytes and other myeloid leukocytes, which are effector cells of the innate immune system, not only tethers the leukocytes in place but also transmits outside-in signals that induce functional changes and alter gene expression. We found that a subset of mRNAs that are induced or amplified by adhesion of human monocytes to P-selectin via its surface ligand, P-selectin glycoprotein 1, have characteristics that suggest specialized translational control. One of these codes for urokinase plasminogen activator receptor (UPAR), a critical surface protease receptor and regulator of cell adhesion and migration. Although UPAR transcripts are induced by adhesion, rapid synthesis of the protein uses constitutive mRNA without a requirement for new transcription and is regulated by mammalian target of rapamycin, demonstrating new biologic roles for the signal-dependent translation pathway controlled by this intracellular kinase. The synthesis of UPAR in monocytic cells is also regulated by eukaryotic translation initiation factor 4E, a second key translational checkpoint, and phosphorylation of eukaryotic translation initiation factor 4E is induced by adhesion of monocytes to P-selectin. Translationally controlled display of UPAR by monocytes confers recognition of the matrix protein, vitronectin. Adhesion-dependent signaling from the plasma membrane to translational checkpoints represents a previously unrecognized mechanism for regulating surface phenotype that may be particularly important for myeloid leukocytes and other cells that are specialized for rapid inflammatory and vascular responses.
Collapse
Affiliation(s)
- T S Mahoney
- The Eccles Program in Human Molecular Biology and Genetics, and Department of Internal Medicine and Experimental Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
15
|
Meijer HA, Dictus WJ, Keuning ED, Thomas AA. Translational control of the Xenopus laevis connexin-41 5'-untranslated region by three upstream open reading frames. J Biol Chem 2000; 275:30787-93. [PMID: 10896676 DOI: 10.1074/jbc.m005531200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Xenopus laevis Connexin-41 (Cx41) mRNA contains three upstream open reading frames (uORFs) in the 5'-untranslated region (UTR). We analyzed the translation efficiency of constructs containing the Cx41 5'-UTR linked to the green fluorescent protein reporter after injection of transcripts into one-cell stage Xenopus embryos. The translational efficiency of the wild-type Cx41 5'-UTR was only 2% compared with that of the beta-globin 5'-UTR. Mutation of each of the three uAUGs into AAG codons enhanced translation 82-, 9-, and 4-fold compared with the wild-type Cx41 5'-UTR. Based on these increased translation efficiencies, the percentages of ribosomes that recognized the uAUGs were calculated. Only 0.03% of the ribosomes that entered at the cap structure scanned the entire 5'-UTR and translated the main ORF. The results indicate that all uAUGs are recognized by the majority of the scanning ribosomes and that the three uAUGs strongly modulate translation efficiency in Xenopus laevis embryos. Based on these data, a model of ribosomal flow along the mRNA is postulated. We conclude that the three uORFs may play an important role in the regulation of Cx41 expression.
Collapse
Affiliation(s)
- H A Meijer
- Department of Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
16
|
Abstract
Transcription factors derived from CCAAT/enhancer binding protein (C/EBP)α and C/EBPβ genes control differentiation and proliferation in a number of cell types. Various C/EBP isoforms arise from unique C/EBPβ and C/EBPα mRNAs by differential initiation of translation. These isoforms retain different parts of the amino terminus and therefore display different functions in gene regulation and proliferation control. We show that PKR and mTOR signaling pathways control the ratio of C/EBP isoform expression through the eukaryotic translation initiation factors eIF-2α and eIF-4E, respectively. An evolutionary conserved upstream open reading frame in C/EBPα and C/EBPβ mRNAs is a prerequisite for regulated initiation from the different translation initiation sites and integrates translation factor activity. Deregulated translational control leading to aberrant C/EBPα and C/EBPβ isoform expression or ectopic expression of truncated isoforms disrupts terminal differentiation and induces a transformed phenotype in 3T3-L1 cells. Our results demonstrate that the translational controlled ratio of C/EBPα and C/EBPβ isoform expression determines cell fate.
Collapse
|
17
|
Fiaschi T, Chiarugi P, Veggi D, Raugei G, Ramponi G. The inhibitory effect of the 5' untranslated region of muscle acylphosphatase mRNA on protein expression is relieved during cell differentiation. FEBS Lett 2000; 473:42-6. [PMID: 10802056 DOI: 10.1016/s0014-5793(00)01496-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous experiments suggested that the upstream AUG triplet present in the 5' untranslated region (UTR) of muscle acylphosphatase mRNA is involved in the regulation of protein expression. In this paper, we study the involvement of the 5'UTR secondary structure and upstream peptide on mRNA stability and protein translation. Our data, obtained using deletion and frame-shift mutants, demonstrate that the 5'UTR controls protein expression regulating translation together with mRNA stability. Furthermore, we demonstrate that the inhibitory effect of the 5'UTR of muscle acylphosphatase is relieved during the differentiation process in agreement with previous data reporting an increase of acylphosphatase content during cell differentiation. Finally, UV cross-linking experiments show that specific mRNA-binding proteins are associated with the 5'UTR of the muscle acylphosphatase mRNA.
Collapse
Affiliation(s)
- T Fiaschi
- Dipartimento di Scienze Biochimiche, Università di Firenze, viale Morgagni 50, 50134, Florence, Italy
| | | | | | | | | |
Collapse
|
18
|
Pozner A, Goldenberg D, Negreanu V, Le SY, Elroy-Stein O, Levanon D, Groner Y. Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry site-dependent mechanisms. Mol Cell Biol 2000; 20:2297-307. [PMID: 10713153 PMCID: PMC85390 DOI: 10.1128/mcb.20.7.2297-2307.2000] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AML1/RUNX1 belongs to the runt domain transcription factors that are important regulators of hematopoiesis and osteogenesis. Expression of AML1 is regulated at the level of transcription by two promoters, distal (D) and proximal (P), that give rise to mRNAs bearing two distinct 5' untranslated regions (5'UTRs) (D-UTR and P-UTR). Here we show that these 5'UTRs act as translation regulators in vivo. AML1 mRNAs bearing the uncommonly long (1,631-bp) P-UTR are poorly translated, whereas those with the shorter (452-bp) D-UTR are readily translated. The low translational efficiency of the P-UTR is attributed to its length and the cis-acting elements along it. Transfections and in vitro assays with bicistronic constructs demonstrate that the D-UTR mediates cap-dependent translation whereas the P-UTR mediates cap-independent translation and contains a functional internal ribosome entry site (IRES). The IRES-containing bicistronic constructs are more active in hematopoietic cell lines that normally express the P-UTR-containing mRNAs. Furthermore, we show that the IRES-dependent translation increases during megakaryocytic differentiation but not during erythroid differentiation, of K562 cells. These results strongly suggest that the function of the P-UTR IRES-dependent translation in vivo is to tightly regulate the translation of AML1 mRNAs. The data show that AML1 expression is regulated through usage of alternative promoters coupled with IRES-mediated translation control. This IRES-mediated translation regulation adds an important new dimension to the fine-tuned control of AML1 expression.
Collapse
Affiliation(s)
- A Pozner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76000, Israel
| | | | | | | | | | | | | |
Collapse
|
19
|
Gosert R, Chang KH, Rijnbrand R, Yi M, Sangar DV, Lemon SM. Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites In vivo. Mol Cell Biol 2000; 20:1583-95. [PMID: 10669736 PMCID: PMC85342 DOI: 10.1128/mcb.20.5.1583-1595.2000] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The regulation of cap-independent translation directed by the internal ribosome entry sites (IRESs) present in some viral and cellular RNAs is poorly understood. Polypyrimidine-tract binding protein (PTB) binds specifically to several viral IRESs. IRES-directed translation may be reduced in cell-free systems that are depleted of PTB and restored by reconstitution of lysates with recombinant PTB. However, there are no data concerning the effects of PTB on IRES-directed translation in vivo. We transfected cells with plasmids expressing dicistronic transcripts in which the upstream cistron encoded PTB or PTB deletion mutants (including a null mutant lacking amino acid residues 87 to 531). The downstream cistron encoded a reporter protein (chloramphenicol acetyltransferase [CAT]) under translational control of the poliovirus IRES which was placed within the intercistronic space. In transfected BS-C-1 cells, transcripts expressing wild-type PTB produced 12-fold more reporter protein than similar transcripts encoding the PTB null mutant. There was a 2.4-fold difference in CAT produced from these transcripts in HeLa cells, which contain a greater natural abundance of PTB. PTB similarly stimulated CAT production from transcripts containing the IRES of hepatitis A virus or hepatitis C virus in BS-C-1 cells and Huh-7 cells (37- to 44-fold increase and 5 to 5.3-fold increase, respectively). Since PTB had no quantitative or qualitative effect on transcription from these plasmids, we conclude that PTB stimulates translation of representative picornaviral and flaviviral RNAs in vivo. This is likely to reflect the stabilization of higher ordered RNA structures within the IRES and was not observed with PTB mutants lacking RNA recognition motifs located in the C-terminal third of the molecule.
Collapse
Affiliation(s)
- R Gosert
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7030, USA
| | | | | | | | | | | |
Collapse
|
20
|
Sella O, Gerlitz G, Le SY, Elroy-Stein O. Differentiation-induced internal translation of c-sis mRNA: analysis of the cis elements and their differentiation-linked binding to the hnRNP C protein. Mol Cell Biol 1999; 19:5429-40. [PMID: 10409733 PMCID: PMC84385 DOI: 10.1128/mcb.19.8.5429] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous reports we showed that the long 5' untranslated region (5' UTR) of c-sis, the gene encoding the B chain of platelet-derived growth factor, has translational modulating activity due to its differentiation-activated internal ribosomal entry site (D-IRES). Here we show that the 5' UTR contains three regions with a computer-predicted Y-shaped structure upstream of an AUG codon, each of which can confer some degree of internal translation by itself. In nondifferentiated cells, the entire 5' UTR is required for maximal basal IRES activity. The elements required for the differentiation-sensing ability (i.e., D-IRES) were mapped to a 630-nucleotide fragment within the central portion of the 5' UTR. Even though the region responsible for IRES activation is smaller, the full-length 5' UTR is capable of mediating the maximal translation efficiency in differentiated cells, since only the entire 5' UTR is able to confer the maximal basal IRES activity. Interestingly, a 43-kDa protein, identified as hnRNP C, binds in a differentiation-induced manner to the differentiation-sensing region. Using UV cross-linking experiments, we show that while hnRNP C is mainly a nuclear protein, its binding activity to the D-IRES is mostly nuclear in nondifferentiated cells, whereas in differentiated cells such binding activity is associated with the ribosomal fraction. Since the c-sis 5' UTR is a translational modulator in response to cellular changes, it seems that the large number of cross-talking structural entities and the interactions with regulated trans-acting factors are important for the strength of modulation in response to cellular changes. These characteristics may constitute the major difference between strong IRESs, such as those seen in some viruses, and IRESs that serve as translational modulators in response to developmental signals, such as that of c-sis.
Collapse
Affiliation(s)
- O Sella
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
21
|
Krichevsky AM, Metzer E, Rosen H. Translational control of specific genes during differentiation of HL-60 cells. J Biol Chem 1999; 274:14295-305. [PMID: 10318851 DOI: 10.1074/jbc.274.20.14295] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic gene expression can be regulated through selective translation of specific mRNA species. Nevertheless, the limited number of known examples hampers the identification of common mechanisms that regulate translation of specific groups of genes in mammalian cells. We developed a method to identify translationally regulated genes. This method was used to examine the regulation of protein synthesis in HL-60 cells undergoing monocytic differentiation. A partial screening of cellular mRNAs identified five mRNAs whose translation was specifically inhibited and five others that were activated as was indicated by their mobilization onto polysomes. The specifically inhibited mRNAs encoded ribosomal proteins, identified as members of the 5'-terminal oligopyrimidine tract mRNA family. Most of the activated transcripts represented uncharacterized genes. The most actively mobilized transcript (termed TA-40) was an untranslated 1.3-kilobase polyadenylated RNA with unusual structural features, including two Alu-like elements. Following differentiation, a significant change in the cytoplasmic distribution of Alu-containing mRNAs was observed, namely, the enhancement of Alu-containing mRNAs in the polysomes. Our findings support the notion that protein synthesis is regulated during differentiation of HL-60 cells by both global and gene-specific mechanisms and that Alu-like sequences within cytoplasmic mRNAs are involved in such specific regulation.
Collapse
Affiliation(s)
- A M Krichevsky
- Department of Molecular Virology, The Faculty of Medicine, Hebrew University of Jerusalem, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
22
|
Abstract
Regulation of translation initiation is a central control point in animal cells. We review our current understanding of the mechanisms of regulation, drawing particularly on examples in which the biological consequences of the regulation are clear. Specific mRNAs can be controlled via sequences in their 5' and 3' untranslated regions (UTRs) and by alterations in the translation machinery. The 5'UTR sequence can determine which initiation pathway is used to bring the ribosome to the initiation codon, how efficiently initiation occurs, and which initiation site is selected. 5'UTR-mediated control can also be accomplished via sequence-specific mRNA-binding proteins. Sequences in the 3' untranslated region and the poly(A) tail can have dramatic effects on initiation frequency, with particularly profound effects in oogenesis and early development. The mechanism by which 3'UTRs and poly(A) regulate initiation may involve contacts between proteins bound to these regions and the basal translation apparatus. mRNA localization signals in the 3'UTR can also dramatically influence translational activation and repression. Modulations of the initiation machinery, including phosphorylation of initiation factors and their regulated association with other proteins, can regulate both specific mRNAs and overall translation rates and thereby affect cell growth and phenotype.
Collapse
Affiliation(s)
- N K Gray
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
23
|
Ioannidis P, Courtis N, Havredaki M, Michailakis E, Tsiapalis CM, Trangas T. The polyadenylation inhibitor cordycepin (3'dA) causes a decline in c-MYC mRNA levels without affecting c-MYC protein levels. Oncogene 1999; 18:117-25. [PMID: 9926926 DOI: 10.1038/sj.onc.1202255] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Study of the distribution of the poly(A) tail length of c-myc mRNA in several cell lines revealed a distinct, prevailing population with short poly(A) tails, derived through sequential deadenylation. To elucidate the possible in vivo function of this distinct short tailed c-myc mRNA population, the polyadenylation inhibitor cordycepin was used. This resulted in a decline in steady state c-myc mRNA levels with the remaining messenger mostly oligoadenylated. However, c-MYC proteins did not follow the reduction of the c-myc mRNA. On the other hand, in cells exposed to physiological agents known to downregulate c-myc expression, the reduction of mRNA steady state levels, was reflected upon c-MYC protein levels. The dissociation between c-myc mRNA and protein levels caused by cordycepin was not due to the stabilization of the c-MYC proteins and was not an indiscriminate effect since in the presence of cordycepin, c-fos mRNA and protein levels concomitantly declined. Our data indicate that under these conditions, a long poly(A) tail is not instrumental for c-myc mRNA translation and furthermore, the discrepancy in the steady state of c-myc mRNA level: c-MYC protein ratio between control cells and cells treated with cordycepin indicates that c-myc mRNA is subjected to translational control.
Collapse
Affiliation(s)
- P Ioannidis
- Papanikolaou Research Center of Oncology, St Savvas Hospital, Athens, Greece
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The double-stranded (ds) RNA-regulated serine/threonine protein kinase, PKR, is an interferon-inducible enzyme of widespread occurrence in mammalian cells. PKR is activated by dsRNA via a mechanism involving autophosphorylation. Once activated, the enzyme phosphorylates the alpha-subunit of protein synthesis initiation factor eIF2, thereby inhibiting translation. Accumulating data suggest that PKR has additional substrates, and that the kinase may also regulate gene transcription and signal transduction pathways. Although PKR plays an important role in mediating the antiviral effects of interferons, PKR is also implicated in regulating cell proliferation in uninfected cells and may have a tumor suppressor function under normal conditions. Studies of human malignancies and tumor cell lines suggest that, in general, patients bearing tumors with a higher PKR content have a more favorable prognosis. However, in human breast carcinoma cells, dysregulation of PKR may be associated with the establishment or maintenance of the transformed state.
Collapse
Affiliation(s)
- R Jagus
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, USA.
| | | | | |
Collapse
|
25
|
Abstract
Control of translation is now understood to be one of the major regulatory events in eukaryotic gene expression. Moreover there is evidence which suggests that aberrant expression of growth-related genes by translational mechanisms makes a significant contribution to cell transformation. However, the mechanisms which regulate translation of specific growth-related mRNAs have yet to be fully elucidated. The majority of these mRNAs have long 5' untranslated regions (UTRs) and three features which are important in translational control have been identified, namely (i) structured regions which inhibit the scanning mechanisms of translation, (ii) regulatory upstream open reading frames and (iii) internal ribosome entry segments which are capable of initiating cap-independent translation. In this review the translational regulation of specific mRNAs encoding growth factors and proto-oncogenes by these three mechanisms will be discussed, together with examples of altered translational regulation in neoplasia.
Collapse
Affiliation(s)
- A E Willis
- Department of Biochemistry, University of Leicester, UK
| |
Collapse
|
26
|
van der Velden AW, Thomas AA. The role of the 5' untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 1999; 31:87-106. [PMID: 10216946 DOI: 10.1016/s1357-2725(98)00134-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cap-dependent ribosomal scanning occurs on the majority of cellular 5' UTRs. This process is severely hampered on long 5' UTRs, containing AUGs and secondary structure. These characteristics are often found in mRNAs encoding regulatory proteins like proto-oncogenes, growth factors, their receptors, and homeodomain proteins. A number of these mRNAs use an alternative mechanism of translation initiation, involving an internal ribosomal entry site (IRES). Cellular mRNAs containing a complex 5' UTR or an IRES share an intriguing characteristic: their translational efficiency can be very specifically regulated by their 5' UTR, providing post-transcriptional regulation. During embryonic development, the 5' UTRs of Antp. Ubx RAR beta 2 c-mos and c-myc regulate protein expression in a spatio-temporal manner. Translation initiation on a number of growth factor RNAs (IGFII, PDGF2, TGF beta, FGF-2, and VEGF) is specifically regulated during differentiation, growth, and stress. Furthermore, 5' UTR activity, mutations in the 5' UTR, or the occurrence of alternative 5' UTRs have been implicated in the progression of various forms of cancer. The mechanisms involved in 5' UTR mediated control are not well understood. Binding of trans-acting factors could mediate translation stimulation or repression. Furthermore, the precise localization of upstream AUGs and the activity of the cap-binding initiation factor 4E are suggested to be important for translation regulation of these mRNAs. This review focuses on 5' UTRs whose activity is regulated, the processes during which this regulation occurs, and as far as known the mechanisms involved.
Collapse
Affiliation(s)
- A W van der Velden
- Department of Molecular Cell Biology, Utrecht University, The Netherlands.
| | | |
Collapse
|
27
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
28
|
Morgan R, Sargent MG. The role in neural patterning of translation initiation factor eIF4AII; induction of neural fold genes. Development 1997; 124:2751-60. [PMID: 9226446 DOI: 10.1242/dev.124.14.2751] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the RNA-helicase translation initiation factor, eIF4AII, in animal cap explants of Xenopus specifically upregulates genes expressed early in the neural plate border such as Xsna, Xslu, Pax-3 and XANF and also the cement gland marker XCG-1. eIF4AII is expressed specifically in the prospective neurectoderm from stage 11.5 and appears to have a significant role in mediating early patterning of the neurectoderm. It is induced by all known neural inducing regimes including secreted factors such as noggin, follistatin and chordin, transcription factors such as XlPou-2 and constructs that overcome repression of neural induction (tBMP-4R, lim-m3 and Xbra delta 304). It is also upregulated when neurulization occurs in embryonic ectoderm that has been disaggregated and reaggregated. While high amounts of injected mRNA of the neural inducers noggin, tBMP-4R and Xlpou-2 downregulate Xslu and upregulate the neural plate NCAM, smaller amounts of these mRNAs activate expression of eIF4AII and Xslu and suppress expression of epidermal keratin in animal cap assays. Ectopic expression of eIF4AII mRNA also upregulates transcription of the PKC alpha and beta genes. The sensitivity of the upregulation of neurectodermal markers to GF109203X indicates that the activity of a calcium activated protein kinase C (PKC) is also required. Furthermore ectopic expression of mouse eIF4AII mRNA upregulates the endogenous eIF4AII gene by a process that requires the activity of PKC. The effects of eIF4AII appear to be direct as conditional expression of eIF4AII in animal cap explants at the equivalent of stage 11.5 induces the endogenous eIF4AII and neural fold genes within 40 minutes. Expression of eIF4AII and activation of PKC sensitizes the embryonic ectoderm to the neuralising effect of noggin. We suggest that in developing embryos the neuralizing signal emanating from the organiser at first induces eIF4AII and the prospective neural crest in an arc low on the dorsal aspect of the embryo. As the neuralizing signal increases in intensity close to the organizer region, the tissue becomes committed to a neural plate phenotype. Expression of Xash-3A may suppress further expression of neural plate border genes within the prospective neural plate thereby subdividing the neurectoderm into two distinct regions.
Collapse
Affiliation(s)
- R Morgan
- Division of Developmental Biology, National Institute for Medical Research, Mill Hill, London, UK
| | | |
Collapse
|
29
|
|
30
|
Bernstein J, Sella O, Le SY, Elroy-Stein O. PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). J Biol Chem 1997; 272:9356-62. [PMID: 9083072 DOI: 10.1074/jbc.272.14.9356] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has become clear that a given cell type can qualitatively and quantitatively affect the expression of the platelet-derived growth factor B (PDGF2/c-sis) gene at multiple levels. In a previous report, we showed that PDGF2/c-sis 5'-untranslated region has a translational modulating activity during megakaryocytic differentiation of K562 cells. This study points to the mechanism used for this translational modulation. The unusual mRNA leader, which imposes a major barrier to conventional ribosomal scanning, was found to contain an internal ribosomal entry site that becomes more potent in differentiating cells and was termed differentiation-linked internal ribosomal entry site (D-IRES). The D-IRES element defines a functional role for the cumbersome 1022-nucleotide-long mRNA leader and accounts for its uncommon, evolutionary conserved architecture. The differentiation-linked enhancement of internal translation, which provides an additional step to the fine tuning of PDGF2/c-sis gene expression, might be employed by numerous critical regulatory genes with unusual mRNA leaders and might have widespread implications for cellular growth and development.
Collapse
Affiliation(s)
- J Bernstein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
31
|
Knoepfler PS, Kamps MP. The Pbx family of proteins is strongly upregulated by a post-transcriptional mechanism during retinoic acid-induced differentiation of P19 embryonal carcinoma cells. Mech Dev 1997; 63:5-14. [PMID: 9178252 DOI: 10.1016/s0925-4773(97)00669-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Retinoic acid (RA) induces expression of genes encoding the Hox family of transcription factors, whose differential expression orchestrates developmental programs specifying anterior-posterior structures during embryogenesis. Hox proteins bind DNA as monomers and heterodimers with Pbx proteins. Here we show that RA upregulates Pbx protein abundance coincident with transcriptional activation of Hox genes in P19 embryonal carcinoma cells undergoing neuronal differentiation. However, in contrast to Hox induction, Pbx upregulation is predominantly a result of post-transcriptional mechanisms. Interestingly, Pbx1, Pbx2, and Pbx3 exhibit different profiles of upregulation, suggesting possible functional divergence. The parallel upregulation of Pbx and Hox proteins in this model suggests an important role for transcriptional control by Pbx-Hox heterodimers during neurogenesis, and argues for precise control by RA.
Collapse
Affiliation(s)
- P S Knoepfler
- Department of Pathology, University of California, School of Medicine, La Jalla 92093, USA
| | | |
Collapse
|
32
|
Jackson RJ, Wickens M. Translational controls impinging on the 5'-untranslated region and initiation factor proteins. Curr Opin Genet Dev 1997; 7:233-41. [PMID: 9115426 DOI: 10.1016/s0959-437x(97)80133-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Translation of eukaryotic mRNAs is generally initiated by the scanning ribosome mechanism. This can be downregulated by high affinity protein binding to cap-proximal RNA motifs. Translation can also be regulated by short open reading frames within the 5' -untranslated region. A key factor for initiation is elF4F, in which one of the polypeptide chains, elF4G, seems to have a bridging function and binds three other factors at separate sites: elF4E (the cap-binding factor), the helicase elF4A, and elF3, which also interacts with 40S ribosomal subunits. Initiation is regulated by the MAP kinase and rapamycin-sensitive signalling pathways, which control phosphorylation of elF4E and 4E-BP1, a protein which in the dephosphorylated form binds and sequesters elF4E.
Collapse
Affiliation(s)
- R J Jackson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | | |
Collapse
|
33
|
Abstract
This review discusses some rules for assessing the completeness of a cDNA sequence and identifying the start site for translation. Features commonly invoked-such as an ATG codon in a favorable context for initiation, or the presence of an upstream in-frame terminator codon, or the prediction of a signal peptide-like sequence at the amino terminus-have some validity; but examples drawn from the literature illustrate limitations to each of these criteria. The best advice is to inspect a cDNA sequence not only for these positive features but also for the absence of certain negative indicators. Three specific warning signs are discussed and documented: (i) The presence of numerous ATG codons upstream from the presumptive start site for translation often indicates an aberration (sometimes a retained intron) at the 5' end of the cDNA. (ii) Even one strong, upstream, out-of-frame ATG codon poses a problem if the reading frame set by the upstream ATG overlaps the presumptive start of the major open reading frame. Many cDNAs that display this arrangement turn out to be incomplete; that is, the out-of-frame ATG codon is within, rather than upstream from, the protein coding domain. (iii) A very weak context at the putative start site for translation often means that the cDNA lacks the authentic initiator codon. In addition to presenting some criteria that may aid in recognizing incomplete cDNA sequences, the review includes some advice for using in vitro translation systems for the expression of cDNAs. Some unresolved questions about translational regulation are discussed by way of illustrating the importance of verifying mRNA structures before making deductions about translation.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| |
Collapse
|
34
|
Abstract
It is becoming increasingly apparent that translational control plays an important role in the regulation of gene expression in eukaryotic cells. Most of the known physiological effects on translation are exerted at the level of polypeptide chain initiation. Research on initiation of translation over the past five years has yielded much new information, which can be divided into three main areas: (a) structure and function of initiation factors (including identification by sequencing studies of consensus domains and motifs) and investigation of protein-protein and protein-RNA interactions during initiation; (b) physiological regulation of initiation factor activities and (c) identification of features in the 5' and 3' untranslated regions of messenger RNA molecules that regulate the selection of these mRNAs for translation. This review aims to assess recent progress in these three areas and to explore their interrelationships.
Collapse
Affiliation(s)
- V M Pain
- School of Biological Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
35
|
Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996; 271:736-41. [PMID: 8557680 DOI: 10.1074/jbc.271.2.736] [Citation(s) in RCA: 751] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is induced by various growth factors and cytokines that act either directly or indirectly. Vascular endothelial growth factor (VEGF) is a specific mitogen for vascular endothelial cells and therefore has a central role in physiological events of angiogenesis. Interleukin-6 (IL-6) expression on the other hand is elevated in tissues that undergo active angiogenesis but does not induce proliferation of endothelial cells. We demonstrate using Northern analysis that treatment of various cell lines with IL-6 for 6-48 h results in a significant induction of VEGF mRNA. The level of induction is comparable to the documented induction of VEGF mRNA by hypoxia or cobalt chloride, an activator of hypoxia-induced genes. In addition, it is demonstrated by transient transfection assays that the effect of IL-6 is mediated not only by DNA elements at the promoter region but also through specific motif(s) located in the 5'-untranslated region (5'-UTR) of VEGF mRNA. Our results imply that IL-6 may induce angiogenesis indirectly by inducing VEGF expression. It is also shown that the 5'-UTR is important for the expression of VEGF. The 5'-UTR of VEGF is exceptionally long (1038 base pairs) and very rich in G + C. This suggests that secondary structures in the 5'-UTR might be essential for VEGF expression through transcriptional and post-transcriptional control mechanisms.
Collapse
Affiliation(s)
- T Cohen
- Department of Food Engineering and Biotechnology, Technion, Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
36
|
Abstract
PDGF is an important polypeptide growth factor that plays an essential role during early vertebrate development and is associated with tissue repair and wound healing in the adult vertebrate. Moreover, PDGF is thought to play a role in a variety of pathological phenomena, such as cancer, fibrosis and atherosclerosis. PDGF is expressed as a dimer of A and/or B chains, the precursors of which are encoded by two single copy genes. Although the PDGF genes are expressed coordinately in a number of cell types, they are independently expressed in a majority of cell types. The expression of either PDGF gene can be affected by very diverse extracellular stimuli and the type of response is dependent on the cell type that is exposed to the stimulus. Expression of the PDGF chains can be modulated at every imaginable level: by regulating accessibility of the transcription start site, by varying the transcription initiation rate, by using alternative transcription start sites, by alternative splicing, by using alternative polyadenylation signals, by varying mRNA decay rates, by regulating efficiency of translation, by protein modification, and by regulating secretion. Even upon secretion, the activity of PDGF can be modulated by non-specific or specific PDGF-binding proteins. This review provides an overview of the cell types in which the PDGF genes are expressed, of the factors that are known to affect the expression of PDGF, and of the various levels at which the expression of PDGF genes can be regulated.
Collapse
Affiliation(s)
- R P Dirks
- Department of Molecular Biology, University of Nijmegen, The Netherlands
| | | |
Collapse
|