1
|
Xu C, Xu E, Xiao Y, Yang D, Wu G, Chen M. A multiscale model to explain the spatiotemporal progression of amyloid beta and tau pathology in Alzheimer's disease. Int J Biol Macromol 2025; 310:142887. [PMID: 40220824 DOI: 10.1016/j.ijbiomac.2025.142887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Amyloid-beta (Aβ) and tubulin-associated unit (tau) proteins are key biomarkers of Alzheimer's disease (AD), detectable by Positron Emission Tomography (PET) imaging and Cerebrospinal Fluid (CSF) assays. They reflect insoluble fibrils in the brain and soluble monomers in the cerebrospinal fluid, respectively. PET and CSF biomarkers have been utilized in diagnosing AD; however, their incomplete agreement significantly confounds the early detection. Additionally, the molecular mechanisms underlying the dynamics of AD biomarkers remain elusive and are yet to be quantitatively revealed. To answer these questions, we develop a multiscale mathematical model that characterizes various forms of AD biomarkers, including soluble molecules in cerebrospinal fluid, diffusive biomarkers across brain regions, and insoluble fibrils in the brain. Mathematical modeling of soluble and insoluble molecules enables the explanation of the asynchronous trajectory of AD biomarkers. Our model captures the spatiotemporal dynamics of Aβ and tau with neurodegeneration in AD. Simulation results demonstrate that the PET-CSF discordance is a typical stage in the natural history of protein aggregation, with CSF becoming abnormal before the onset of PET abnormality. Furthermore, correlation analysis reveals that neurodegeneration is more strongly associated with tau-PET than Aβ-PET. These findings suggest CSF Aβ is recognized as a biomarker at the early stage of AD, while tau-PET is more suitable for neurodegeneration assessment. The proposed multiscale model explains the underlying neurobiological factors contributing to neurodegeneration and offers a valuable tool for improving early detection and treatment strategies in clinical trials.
Collapse
Affiliation(s)
- Chunrui Xu
- School of Life Sciences, Zhengzhou University, 450000, Henan, China
| | - Enze Xu
- Depart of Computer Science, Wake Forest University, 27109, NC, USA
| | - Yang Xiao
- Depart of Computer Science, Wake Forest University, 27109, NC, USA
| | - Defu Yang
- Department of Computer Science, University of North Carolina at Chapel Hill, 27514, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, 27514, NC, USA
| | - Guorong Wu
- Department of Computer Science, University of North Carolina at Chapel Hill, 27514, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, 27514, NC, USA
| | - Minghan Chen
- Depart of Computer Science, Wake Forest University, 27109, NC, USA.
| |
Collapse
|
2
|
Islam T, Hill E, Abrahamson EE, Servaes S, Smirnov DS, Zeng X, Sehrawat A, Chen Y, Kac PR, Kvartsberg H, Olsson M, Sjons E, Gonzalez-Ortiz F, Therriault J, Tissot C, Del Popolo I, Rahmouni N, Richardson A, Mitchell V, Zetterberg H, Pascoal TA, Lashley T, Wall MJ, Galasko D, Rosa-Neto P, Ikonomovic MD, Blennow K, Karikari TK. Phospho-tau serine-262 and serine-356 as biomarkers of pre-tangle soluble tau assemblies in Alzheimer's disease. Nat Med 2025; 31:574-588. [PMID: 39930142 PMCID: PMC11835754 DOI: 10.1038/s41591-024-03400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/02/2024] [Indexed: 02/20/2025]
Abstract
Patients with Alzheimer's disease (AD) with little or no quantifiable insoluble brain tau neurofibrillary tangle (NFT) pathology demonstrate stronger clinical benefits of therapies than those with advanced NFTs. The formation of NFTs can be prevented by targeting the intermediate soluble tau assemblies (STAs). However, biochemical understanding and biomarkers of STAs are lacking. We show that Tris-buffered saline-soluble tau aggregates from autopsy-verified AD brain tissues include the core sequence ~tau258-368. In neuropathological assessments, antibodies against the phosphorylation sites serine-262 and serine-356 within the STA core almost exclusively stained granular (that is, prefibrillar) tau aggregates in pre-NFTs while antibodies against phosphorylation at serine-202 and threonine-205 and threonine-231, outside the STA core, stained the entire spectrum of tau aggregates in pre-NFTs and mature NFTs, dystrophic neurites and neuropil threads in the hippocampus. Functionally, a recombinantly produced STA core peptide robustly altered neuronal excitability and synaptic transmission in mouse hippocampal brain slices. Furthermore, we developed a cerebrospinal fluid assay that differentiated STAs in AD from non-AD tauopathies, correlated with the severity of NFT burden and cognitive decline independently of amyloid beta deposition, and with tau positron emission tomography uptake across Braak NFT stages. Together, our findings inform about the status of early-stage tau aggregation, reveal aggregation-relevant phosphorylation epitopes in tau and offer a diagnostic biomarker and targeted therapeutic opportunities for AD.
Collapse
Grants
- R01 AG075336 NIA NIH HHS
- R01 AG083874 NIA NIH HHS
- R01 AG072641 NIA NIH HHS
- P30 AG062429 NIA NIH HHS
- AARF-21-850325 Alzheimer's Association
- P01AG14449 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P01 AG014449 NIA NIH HHS
- P50 AG005133 NIA NIH HHS
- RF1 AG025516 NIA NIH HHS
- P30 AG066468 NIA NIH HHS
- R01 AG073267 NIA NIH HHS
- P01 AG025204 NIA NIH HHS
- R01AG083874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R37 AG023651 NIA NIH HHS
- U24 AG082930 NIA NIH HHS
- 2021-03244 Vetenskapsrådet (Swedish Research Council)
- P01AG025204 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P30AG066468 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1 AG052525 NIA NIH HHS
- R01 AG053952 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- ELH is supported by a Race Against Dementia Fellowship (funded by the Barbara Naylor Foundation)
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2022-01018 and #2019-02397), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003)
Collapse
Affiliation(s)
- Tohidul Islam
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Emily Hill
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eric E Abrahamson
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Denis S Smirnov
- Shiley-Marcos Alzheimer's Disease Research Center, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
- Pathology Residency Program, Mass General and Brigham and Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | - Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijun Chen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Emma Sjons
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology UCL, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tharick A Pascoal
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Douglas Galasko
- Shiley-Marcos Alzheimer's Disease Research Center, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Milos D Ikonomovic
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Bryan Iii MR, Tian X, Tseng JH, Evangelista BA, Ragusa JV, Bryan AF, Trotman W, Irwin D, Cohen TJ. Development and characterization of novel anti-acetylated tau monoclonal antibodies to probe pathogenic tau species in Alzheimer's disease. Acta Neuropathol Commun 2024; 12:163. [PMID: 39396065 PMCID: PMC11470691 DOI: 10.1186/s40478-024-01865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/14/2024] Open
Abstract
Tauopathies, including Alzheimer's disease (AD), are a class of neurodegenerative diseases characterized by the presence of insoluble tau inclusions. Tau phosphorylation has traditionally been viewed as the dominant post-translational modification (PTM) controlling tau function and pathogenesis in tauopathies. However, we and others have identified tau acetylation as a primary PTM regulating both normal tau function as well as abnormal pathogenic features including aggregation. Prior work showed robust tau acetylation in aggregation hotspots located within the 2nd and 3rd repeat regions of tau (residues K280 and K311) in tauopathy brains, including AD, compared to non-tauopathy controls. By screening thousands of hybridoma clones, we generated site-specific and modification-specific monoclonal antibodies targeting acetylated tau at residues K280 or K311. To validate these antibodies in a bona fide neuronal system, we targeted the acetyltransferase CBP to the cytoplasm of neurons to promote tau acetylation. Several antibody clones specifically detected CBP-acetylated tau and co-localized with ac-tau in neurons. Additionally, our lead optimal anti-acetylated-tau monoclonal antibodies detected robust tau pathology in tangles and neuritic plaques of human AD brains. Given the now emerging interest in acetylated tau as critical regulator of tau functions, these sensitive and highly specific tools will allow us to further unravel the tau PTM code and, importantly, could be deployed as diagnostic or disease-modifying agents.
Collapse
Affiliation(s)
- Miles R Bryan Iii
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xu Tian
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jui-Heng Tseng
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Baggio A Evangelista
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joey V Ragusa
- Department of Cell Biology and Physiology, University of North Carolia at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Audra F Bryan
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Winifred Trotman
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Todd J Cohen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, University of North Carolia at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
El Hajjar L, Page A, Bridot C, Cantrelle FX, Landrieu I, Smet-Nocca C. Regulation of Glycogen Synthase Kinase-3β by Phosphorylation and O-β-Linked N-Acetylglucosaminylation: Implications on Tau Protein Phosphorylation. Biochemistry 2024; 63:1513-1533. [PMID: 38788673 DOI: 10.1021/acs.biochem.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Glycogen synthase kinase 3 (GSK3) plays a pivotal role in signaling pathways involved in insulin metabolism and the pathogenesis of neurodegenerative disorders. In particular, the GSK3β isoform is implicated in Alzheimer's disease (AD) as one of the key kinases involved in the hyperphosphorylation of tau protein, one of the neuropathological hallmarks of AD. As a constitutively active serine/threonine kinase, GSK3 is inactivated by Akt/PKB-mediated phosphorylation of Ser9 in the N-terminal disordered domain, and for most of its substrates, requires priming (prephosphorylation) by another kinase that targets the substrate to a phosphate-specific pocket near the active site. GSK3 has also been shown to be post-translationally modified by O-linked β-N-acetylglucosaminylation (O-GlcNAcylation), with still unknown functions. Here, we have found that binding of Akt inhibits GSK3β kinase activity on both primed and unprimed tau substrates. Akt-mediated Ser9 phosphorylation restores the GSK3β kinase activity only on primed tau, thereby selectively inactivating GSK3β toward unprimed tau protein. Additionally, we have shown that GSK3β is highly O-GlcNAcylated at multiple sites within the kinase domain and the disordered N- and C-terminal domains, including Ser9. In contrast to Akt-mediated regulation, neither the O-GlcNAc transferase nor O-GlcNAcylation significantly alters GSK3β kinase activity, but high O-GlcNAc levels reduce Ser9 phosphorylation by Akt. Reciprocally, Akt phosphorylation downregulates the overall O-GlcNAcylation of GSK3β, indicating a crosstalk between both post-translational modifications. Our results indicate that specific O-GlcNAc profiles may be involved in the phosphorylation-dependent Akt-mediated regulation of GSK3β kinase activity.
Collapse
Affiliation(s)
- Léa El Hajjar
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Adeline Page
- Protein Science Facility, SFR Biosciences Univ Lyon, ENS de Lyon, CNRS UAR3444, Inserm US8, Université Claude Bernard Lyon 1, 50 Avenue Tony Garnier, Lyon F-69007, France
| | - Clarisse Bridot
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - François-Xavier Cantrelle
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Isabelle Landrieu
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Caroline Smet-Nocca
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| |
Collapse
|
5
|
Rajendran K, Krishnan UM. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease. Ageing Res Rev 2024; 97:102309. [PMID: 38615895 DOI: 10.1016/j.arr.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India.
| |
Collapse
|
6
|
Chinnathambi S, Chidambaram H. G-protein coupled receptors regulates Tauopathy in neurodegeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:467-493. [PMID: 38960483 DOI: 10.1016/bs.apcsb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
In Alzheimer's disease, the microtubule-associated protein, Tau misfolds to form aggregates and filaments in the intra- and extracellular region of neuronal cells. Microglial cells are the resident brain macrophage cells involved in constant surveillance and activated by the extracellular deposits. Purinergic receptors are involved in the chemotactic migration of microglial cells towards the site of inflammation. From our recent study, we have observed that the microglial P2Y12 receptor is involved in phagocytosis of full-length Tau species such as monomers, oligomers and aggregates by actin-driven chemotaxis. This study shows the interaction of repeat-domain of Tau (TauRD) with the microglial P2Y12 receptor and the corresponding residues for interaction have been analyzed by various in-silico approaches. In the cellular studies, TauRD was found to interact with microglial P2Y12R and induces its cellular expression confirmed by co-immunoprecipitation and western blot analysis. Furthermore, the P2Y12R-mediated TauRD internalization has demonstrated activation of microglia with an increase in the Iba1 level, and TauRD becomes accumulated at the peri-nuclear region for the degradation.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| | - Hariharakrishnan Chidambaram
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
7
|
Sultanakhmetov G, Kato I, Asada A, Saito T, Ando K. Microtubule-affinity regulating kinase family members distinctively affect tau phosphorylation and promote its toxicity in a Drosophila model. Genes Cells 2024; 29:337-346. [PMID: 38329182 PMCID: PMC11447834 DOI: 10.1111/gtc.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Accumulation of abnormally phosphorylated tau and its aggregation constitute a significant hallmark of Alzheimer's disease (AD). Tau phosphorylation at Ser262 and Ser356 in the KXGS motifs of microtubule-binding repeats plays a critical role in its physiological function and AD disease progression. Major tau kinases to phosphorylate tau at Ser262 and Ser356 belong to the Microtubule Affinity Regulating Kinase family (MARK1-4), which are considered one of the major contributors to tau abnormalities in AD. However, whether and how each member affects tau toxicity in vivo is unclear. We used transgenic Drosophila as a model to compare the effect on tau-induced neurodegeneration among MARKs in vivo. MARK4 specifically promotes tau accumulation and Ser396 phosphorylation, which yields more tau toxicity than was caused by other MARKs. Interestingly, MARK1, 2, and 4 increased tau phosphorylation at Ser262 and Ser356, but only MARK4 caused tau accumulation, indicating that these sites alone did not cause pathological tau accumulation. Our results revealed MARKs are different in their effect on tau toxicity, and also in tau phosphorylation at pathological sites other than Ser262 and Ser356. Understanding the implementation of each MARK into neurodegenerative disease helps to develop more target and safety therapies to overcome AD and related tauopathies.
Collapse
Affiliation(s)
- Grigorii Sultanakhmetov
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
| | - Iori Kato
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
| | - Akiko Asada
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Taro Saito
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Kanae Ando
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| |
Collapse
|
8
|
Kourti M, Metaxas A. A systematic review and meta-analysis of tau phosphorylation in mouse models of familial Alzheimer's disease. Neurobiol Dis 2024; 192:106427. [PMID: 38307366 DOI: 10.1016/j.nbd.2024.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Transgenic models of familial Alzheimer's disease (AD) serve as valuable tools for probing the molecular mechanisms associated with amyloid-beta (Aβ)-induced pathology. In this meta-analysis, we sought to evaluate levels of phosphorylated tau (p-tau) and explore potential age-related variations in tau hyperphosphorylation, within mouse models of AD. The PubMed and Scopus databases were searched for studies measuring soluble p-tau in 5xFAD, APPswe/PSEN1de9, J20 and APP23 mice. Data were extracted and analyzed using standardized procedures. For the 5xFAD model, the search yielded 36 studies eligible for meta-analysis. Levels of p-tau were higher in 5xFAD mice relative to control, a difference that was evident in both the carboxy-terminal (CT) and proline-rich (PR) domains of tau. Age negatively moderated the relationship between genotype and CT phosphorylated tau in studies using hybrid mice, female mice, and preparations from the neocortex. For the APPswe/PSEN1de9 model, the search yielded 27 studies. Analysis showed tau hyperphosphorylation in transgenic vs. control animals, evident in both the CT and PR regions of tau. Age positively moderated the relationship between genotype and PR domain phosphorylated tau in the neocortex of APPswe/PSEN1de9 mice. A meta-analysis was not performed for the J20 and APP23 models, due to the limited number of studies measuring p-tau levels in these mice (<10 studies). Although tau is hyperphosphorylated in both 5xFAD and APPswe/PSEN1de9 mice, the effects of ageing on p-tau are contingent upon the model being examined. These observations emphasize the importance of tailoring model selection to the appropriate disease stage when considering the relationship between Aβ and tau, and suggest that there are optimal intervention points for the administration of both anti-amyloid and anti-tau therapies.
Collapse
Affiliation(s)
- Malamati Kourti
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus.
| | - Athanasios Metaxas
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Pinzi L, Conze C, Bisi N, Torre GD, Soliman A, Monteiro-Abreu N, Trushina NI, Krusenbaum A, Dolouei MK, Hellwig A, Christodoulou MS, Passarella D, Bakota L, Rastelli G, Brandt R. Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction. Nat Commun 2024; 15:1679. [PMID: 38396035 PMCID: PMC10891143 DOI: 10.1038/s41467-024-45851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Tauopathies such as Alzheimer's disease are characterized by aggregation and increased phosphorylation of the microtubule-associated protein tau. Tau's pathological changes are closely linked to neurodegeneration, making tau a prime candidate for intervention. We developed an approach to monitor pathological changes of aggregation-prone human tau in living neurons. We identified 2-phenyloxazole (PHOX) derivatives as putative polypharmacological small molecules that interact with tau and modulate tau kinases. We found that PHOX15 inhibits tau aggregation, restores tau's physiological microtubule interaction, and reduces tau phosphorylation at disease-relevant sites. Molecular dynamics simulations highlight cryptic channel-like pockets crossing tau protofilaments and suggest that PHOX15 binding reduces the protofilament's ability to adopt a PHF-like conformation by modifying a key glycine triad. Our data demonstrate that live-cell imaging of a tauopathy model enables screening of compounds that modulate tau-microtubule interaction and allows identification of a promising polypharmacological drug candidate that simultaneously inhibits tau aggregation and reduces tau phosphorylation.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Christian Conze
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Nicolo Bisi
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Gabriele Dalla Torre
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ahmed Soliman
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Nanci Monteiro-Abreu
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Nataliya I Trushina
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Andrea Krusenbaum
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Maryam Khodaei Dolouei
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Michael S Christodoulou
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Chemistry, University of Milan, Milan, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Lidia Bakota
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Roland Brandt
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
- Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
10
|
El Hajjar L, Bridot C, Nguyen M, Cantrelle FX, Landrieu I, Smet-Nocca C. Phosphorylation of Tau Protein by CDK2/cyclin A and GSK3β Recombinant Kinases: Analysis of Phosphorylation Patterns by Nuclear Magnetic Resonance Spectroscopy. Methods Mol Biol 2024; 2754:271-306. [PMID: 38512672 DOI: 10.1007/978-1-0716-3629-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Posttranslational modifications (PTMs) of proteins can be investigated by Nuclear Magnetic Resonance (NMR) spectroscopy as a powerful analytical tool to define modification sites, their relative stoichiometry, and crosstalk between modifications. As a Structural Biology method, NMR provides important additional information on changes in protein conformation and dynamics upon modification as well as a mapping of binding sites upon biomolecular interactions. Indeed, PTMs not only mediate functional modulation in protein-protein interactions, but can also induce diverse structural responses with different biological outcomes. Here we present protocols that have been developed for the production and phosphorylation of the neuronal tau protein. Under its aggregated form, tau is a hallmark of Alzheimer's disease and other neurodegenerative diseases named tauopathies involving tau dysfunction and/or mutations. As a common feature shared by various tauopathies, tau aggregates are found into a form displaying an increased, abnormal phosphorylation, also referred to hyperphosphorylation. We have used NMR to investigate the phosphorylation patterns of tau induced by several kinases or cell extracts, how phosphorylation affects the local and overall conformation of tau, its interactions with partners (proteins, DNA, small-molecules, etc.) including tubulin and microtubules, and its capacity to form insoluble fibrillar aggregates. We present here detailed protocols for in vitro phosphorylation of tau by the recombinant kinases CDK2/cyclin A and GSK3β, the production of the recombinant kinases thereof, as well as the analytical characterization of phosphorylated tau by NMR spectroscopy.
Collapse
Affiliation(s)
- Léa El Hajjar
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Clarisse Bridot
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Marine Nguyen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - François-Xavier Cantrelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Isabelle Landrieu
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France
- LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France
| | - Caroline Smet-Nocca
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
- CNRS EMR9002 Integrative Structural Biology, Lille, France.
| |
Collapse
|
11
|
Ndunge OBA, Shikani HJ, Dai M, Freeman BD, Desruisseaux MS. Effects of anti-tau immunotherapy on reactive microgliosis, cerebral endotheliopathy, and cognitive function in an experimental model of cerebral malaria. J Neurochem 2023; 167:441-460. [PMID: 37814468 PMCID: PMC10596299 DOI: 10.1111/jnc.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Cerebral malaria (CM), a potentially fatal encephalopathy caused primarily by infection with Plasmodium falciparum, results in long-term adverse neuro-psychiatric sequelae. Neural cell injury contributes to the neurological deficits observed in CM. Abnormal regulation of tau, an axonal protein pathologically associated with the formation of neurofibrillary lesions in neurodegenerative diseases, has been linked to inflammation and cerebral microvascular compromise and has been reported in human and experimental CM (ECM). Immunotherapy with a monoclonal antibody to pathological tau (PHF-1 mAB) in experimental models of neurodegenerative diseases has been reported to mitigate cognitive decline. We investigated whether immunotherapy with PHF-1 mAB prevented cerebral endotheliopathy, neural cell injury, and neuroinflammation during ECM. Using C57BL/6 mice infected with either Plasmodium berghei ANKA (PbA), which causes ECM, Plasmodium berghei NK65 (PbN), which causes severe malaria, but not ECM, or uninfected mice (Un), we demonstrated that when compared to PbN infection or uninfected mice, PbA infection resulted in significant memory impairment at 6 days post-infection, in association with abnormal tau phosphorylation at Ser202 /Thr205 (pSer202 /Thr205 ) and Ser396-404 (pSer396-404 ) in mouse brains. ECM also resulted in significantly higher expression of inflammatory markers, in microvascular congestion, and glial cell activation. Treatment with PHF-1 mAB prevented PbA-induced cognitive impairment and was associated with significantly less vascular congestion, neuroinflammation, and neural cell activation in mice with ECM. These findings suggest that abnormal regulation of tau protein contributes to cerebral vasculopathy and is critical in the pathogenesis of neural cell injury during CM. Tau-targeted therapies may ameliorate the neural cell damage and subsequent neurocognitive impairment that occur during disease.
Collapse
Affiliation(s)
| | - Henry J. Shikani
- Albert Einstein College of Medicine, Department of Pathology, Bronx, NY, USA
| | - Minxian Dai
- Albert Einstein College of Medicine, Department of Pathology, Bronx, NY, USA
| | - Brandi D. Freeman
- Albert Einstein College of Medicine, Department of Pathology, Bronx, NY, USA
| | - Mahalia S. Desruisseaux
- Correspondence and reprint requests: Mahalia S. Desruisseaux, MD, Associate Professor of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, PO Box 208022, TAC S169B, New Haven, CT 06520-8022,
| |
Collapse
|
12
|
Shim SS, Berglund K, Yu SP. Lithium: An Old Drug for New Therapeutic Strategy for Alzheimer's Disease and Related Dementia. NEURODEGENER DIS 2023; 23:1-12. [PMID: 37666228 DOI: 10.1159/000533797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Although Alzheimer's disease (AD) is the most common form of dementia, the effective treatment of AD is not available currently. Multiple trials of drugs, which were developed based on the amyloid hypothesis of AD, have not been highly successful to improve cognitive and other symptoms in AD patients, suggesting that it is necessary to explore additional and alternative approaches for the disease-modifying treatment of AD. The diverse lines of evidence have revealed that lithium reduces amyloid and tau pathology, attenuates neuronal loss, enhances synaptic plasticity, and improves cognitive function. Clinical studies have shown that lithium reduces the risk of AD and deters the progress of mild cognitive impairment and early AD. SUMMARY Our recent study has revealed that lithium stabilizes disruptive calcium homeostasis, and subsequently, attenuates the downstream neuropathogenic processes of AD. Through these therapeutic actions, lithium produces therapeutic effects on AD with potential to modify the disease process. This review critically analyzed the preclinical and clinical studies for the therapeutic effects of lithium on AD. We suggest that disruptive calcium homeostasis is likely to be the early neuropathological mechanism of AD, and the stabilization of disruptive calcium homeostasis by lithium would be associated with its therapeutic effects on neuropathology and cognitive deficits in AD. KEY MESSAGES Lithium is likely to be efficacious for AD as a disease-modifying drug by acting on multiple neuropathological targets including disruptive calcium homeostasis.
Collapse
Affiliation(s)
- Seong Sool Shim
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Mental Health Service Line, Department of Veteran's Affair, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Ken Berglund
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shan Ping Yu
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Pinzi L, Bisi N, Sorbi C, Franchini S, Tonali N, Rastelli G. Insights into the Structural Conformations of the Tau Protein in Different Aggregation Status. Molecules 2023; 28:4544. [PMID: 37299020 PMCID: PMC10254443 DOI: 10.3390/molecules28114544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Tau is a protein characterized by large structural portions displaying extended conformational changes. Unfortunately, the accumulation of this protein into toxic aggregates in neuronal cells leads to a number of severe pathologies, collectively named tauopathies. In the last decade, significant research advancements were achieved, including a better understanding of Tau structures and their implication in different tauopathies. Interestingly, Tau is characterized by a high structural variability depending on the type of disease, the crystallization conditions, and the formation of pathologic aggregates obtained from in vitro versus ex vivo samples. In this review, we reported an up-to-date and comprehensive overview of Tau structures reported in the Protein Data Bank, with a special focus on discussing the connections between structural features, different tauopathies, different crystallization conditions, and the use of in vitro or ex vivo samples. The information reported in this article highlights very interesting links between all these aspects, which we believe may be of particular relevance for a more informed structure-based design of compounds able to modulate Tau aggregation.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| | - Nicolò Bisi
- Centre National de la Recherche Scientifique (CNRS), Université de Paris-Saclay, BioCIS, Bat. Henri Moissan, 17 Av. des Sciences, 91400 Orsay, France; (N.B.); (N.T.)
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| | - Nicolò Tonali
- Centre National de la Recherche Scientifique (CNRS), Université de Paris-Saclay, BioCIS, Bat. Henri Moissan, 17 Av. des Sciences, 91400 Orsay, France; (N.B.); (N.T.)
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| |
Collapse
|
14
|
Xia Y, Bell BM, Kim JD, Giasson BI. Tau mutation S356T in the three repeat isoform leads to microtubule dysfunction and promotes prion-like seeded aggregation. Front Neurosci 2023; 17:1181804. [PMID: 37304025 PMCID: PMC10248064 DOI: 10.3389/fnins.2023.1181804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Tauopathies are a group of neurodegenerative diseases, which include frontotemporal dementia (FTD) and Alzheimer's disease (AD), broadly defined by the development of tau brain aggregates. Both missense and splicing tau mutations can directly cause early onset FTD. Tau protein is a microtubule-associated protein that stabilizes and regulates microtubules, but this function can be disrupted in disease states. One contributing factor is the balance of different tau isoforms, which can be categorized into either three repeat (3R) or four repeat (4R) isoforms based on the number of microtubule-binding repeats that are expressed. Imbalance of 3R and 4R isoforms in either direction can cause FTD and neurodegeneration. There is also increasing evidence that 3R tauopathies such as Pick's disease form tau aggregates predominantly comprised of 3R isoforms and these can present differently from 4R and mixed 3R/4R tauopathies. In this study, multiple mutations in 3R tau were assessed for MT binding properties and prion-like aggregation propensity. Different missense tau mutations showed varying effects on MT binding depending on molecular location and properties. Of the mutations that were surveyed, S356T tau is uniquely capable of prion-like seeded aggregation and forms extensive Thioflavin positive aggregates. This unique prion-like tau strain will be useful to model 3R tau aggregation and will contribute to the understanding of diverse presentations of different tauopathies.
Collapse
Affiliation(s)
- Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Justin D. Kim
- Department of Internal Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Ainani H, Bouchmaa N, Ben Mrid R, El Fatimy R. Liquid-liquid phase separation of protein tau: An emerging process in Alzheimer's disease pathogenesis. Neurobiol Dis 2023; 178:106011. [PMID: 36702317 DOI: 10.1016/j.nbd.2023.106011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Metabolic reactions within cells occur in various isolated compartments with or without borders, the latter being known as membrane-less organelles (MLOs). The MLOs show liquid-like properties and are formed by a process known as liquid-liquid phase separation (LLPS). MLOs contribute to different molecules interactions such as protein-protein, protein-RNA, and RNA-RNA driven by various factors, such as multivalency of intrinsic disorders. MLOs are involved in several cell signaling pathways such as transcription, immune response, and cellular organization. However, disruption of these processes has been found in different pathologies. Recently, it has been demonstrated that protein aggregates, a characteristic of some neurodegenerative diseases, undergo similar phase separation. Tau protein is known as a major neurofibrillary tangles component in Alzheimer's disease (AD). This protein can undergo phase separation to form a MLO known as tau droplet in vitro and in vivo, and this process can be facilitated by several factors, including crowding agents, RNA, and phosphorylation. Tau droplet has been shown to mature into insoluble aggregates suggesting that this process may precede and induce neurodegeneration in AD. Here we review major factors involved in liquid droplet formation within a cell. Additionally, we highlight recent findings concerning tau aggregation following phase separation in AD, along with the potential therapeutic strategies that could be explored in this process against the progression of this pathology.
Collapse
Affiliation(s)
- Hassan Ainani
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco.
| |
Collapse
|
16
|
Salem S, Cicchetti F. Untangling the Role of Tau in Huntington's Disease Pathology. J Huntingtons Dis 2023; 12:15-29. [PMID: 36806513 DOI: 10.3233/jhd-220557] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
There is increasing evidence for the presence of pathological forms of tau in tissues of both Huntington's disease (HD) patients and animal models of this condition. While cumulative studies of the past decade have led to the proposition that this disorder could also be considered a tauopathy, the implications of tau in cellular toxicity and consequent behavioral impairments are largely unknown. In fact, recent animal work has challenged the contributory role of tau in HD pathogenesis/pathophysiology. This review presents the supporting and opposing arguments for the involvement of tau in HD, highlighting the discrepancies that have emerged. Reflecting on what is known in other tauopathies, the putative mechanisms through which tau could initiate and/or contribute to pathology are discussed, shedding light on the future research directions that could be considered to confirm, or rule out, the clinical relevance of tau in HD.
Collapse
Affiliation(s)
- Shireen Salem
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
17
|
Wiseman AL, Briggs CA, Peritt A, Kapecki N, Peterson DA, Shim SS, Stutzmann GE. Lithium Provides Broad Therapeutic Benefits in an Alzheimer's Disease Mouse Model. J Alzheimers Dis 2023; 91:273-290. [PMID: 36442195 DOI: 10.3233/jad-220758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disorder with a progressive loss of cognitive function. Currently, no effective treatment regimen is available. Lithium, a mood stabilizer for bipolar disorder, exerts broad neuroprotective and neurotrophic actions and improves cognitive function. OBJECTIVE The study investigated if lithium stabilizes Ca2+ signaling abnormalities in hippocampal neurons and subsequently normalize downstream effects on AD neuropathology and synaptic plasticity in young AD mice. METHODS Four-month-old 3xTg-AD mice were treated with a LiCl diet chow for 30 days. At the end of the lithium treatment, a combination of two-photon Ca2+ imaging, electrophysiology, and immunohistochemistry assays were used to assess the effects of the LiCl treatment on inositol trisphosphate receptor (IP3R)-dependent endoplasmic reticulum (ER) Ca2+ and voltage-gated Ca2+ channel (VGCC)-mediated Ca2+ signaling in CA1 neurons, neuronal nitric oxide synthase (nNOS) and hyperphosphorylated tau (p-tau) levels and synaptic plasticity in the hippocampus and overlying cortex from 3xTg-ADmice. RESULTS Thirty-day LiCl treatment reduced aberrant IP3R-dependent ER Ca2+ and VGCC-mediated Ca2+ signaling in CA1 pyramidal neurons from 3xTg-AD mice and restored neuronal nitric oxide synthase (nNOS) and hyperphosphorylated tau (p-tau) levels to control levels in the hippocampal subfields and overlying cortex. The LiCl treatment enhanced post-tetanic potentiation (PTP), a form of short-term plasticity in the hippocampus. CONCLUSION The study found that lithium exerts therapeutic effects across several AD-associated early neuronal signaling abnormalities including aberrant Ca2+ signaling, nNOS, and p-tau formation and enhances short-term synaptic plasticity. Lithium could serve as an effective treatment or co-therapeutic for AD.
Collapse
Affiliation(s)
- Alyssa L Wiseman
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, USA
| | - Clark A Briggs
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - Ariel Peritt
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.,Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Nicolas Kapecki
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - Daniel A Peterson
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, IL, USA.,Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, USA
| | - Seong S Shim
- Discipline of Psychiatry and Behavioral Sciences, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.,Captain James A. Lovell Federal Health Care Center, Mental Health, North Chicago, IL, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, IL, USA.,Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, USA
| |
Collapse
|
18
|
Khezri MR, Yousefi K, Esmaeili A, Ghasemnejad-Berenji M. The Role of ERK1/2 Pathway in the Pathophysiology of Alzheimer's Disease: An Overview and Update on New Developments. Cell Mol Neurobiol 2023; 43:177-191. [PMID: 35038057 PMCID: PMC11415193 DOI: 10.1007/s10571-022-01191-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Several findings suggest that correcting the dysregulated signaling pathways may offer a potential therapeutic approach in this disease. Extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase family, plays a major role in regulation of cell proliferation, autophagy process, and protein synthesis. The available literature suggests dysregulated ERK1/2 in AD patients with potential implications in the multifaceted underlying pathologies of AD, including amyloid-β plaque formation, tau phosphorylation, and neuroinflammation. In this regard, in the current review, we aim to summarize the reports on the potential roles of ERK1/2 in AD pathophysiology.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology, University of Miami-Miller School of Medicine, Miami, FL, USA.
| | - Ayda Esmaeili
- Clinical Pharmacy Department, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box: 5715799313, Urmia, Iran.
| |
Collapse
|
19
|
Zheng J, Wang Y, Liu Y, Han S, Zhang Y, Luo Y, Yan Y, Li J, Zhao L. cPKCγ Deficiency Exacerbates Autophagy Impairment and Hyperphosphorylated Tau Buildup through the AMPK/mTOR Pathway in Mice with Type 1 Diabetes Mellitus. Neurosci Bull 2022; 38:1153-1169. [PMID: 35596894 PMCID: PMC9554100 DOI: 10.1007/s12264-022-00863-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM)-induced cognitive dysfunction is common, but its underlying mechanisms are still poorly understood. In this study, we found that knockout of conventional protein kinase C (cPKC)γ significantly increased the phosphorylation of Tau at Ser214 and neurofibrillary tangles, but did not affect the activities of GSK-3β and PP2A in the hippocampal neurons of T1DM mice. cPKCγ deficiency significantly decreased the level of autophagy in the hippocampal neurons of T1DM mice. Activation of autophagy greatly alleviated the cognitive impairment induced by cPKCγ deficiency in T1DM mice. Moreover, cPKCγ deficiency reduced the AMPK phosphorylation levels and increased the phosphorylation levels of mTOR in vivo and in vitro. The high glucose-induced Tau phosphorylation at Ser214 was further increased by the autophagy inhibitor and was significantly decreased by an mTOR inhibitor. In conclusion, these results indicated that cPKCγ promotes autophagy through the AMPK/mTOR signaling pathway, thus reducing the level of phosphorylated Tau at Ser214 and neurofibrillary tangles.
Collapse
Affiliation(s)
- Jiayin Zheng
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Yue Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ying Zhang
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yanlin Luo
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yi Yan
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Li Zhao
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
20
|
Santos-Durán GN, Barreiro-Iglesias A. Roles of dual specificity tyrosine-phosphorylation-regulated kinase 2 in nervous system development and disease. Front Neurosci 2022; 16:994256. [PMID: 36161154 PMCID: PMC9492948 DOI: 10.3389/fnins.2022.994256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity tyrosine-phosphorylation-regulated kinases (DYRKs) are a group of conserved eukaryotic kinases phosphorylating tyrosine, serine, and threonine residues. The human DYRK family comprises 5 members (DYRK1A, DYRK1B, DYRK2, DYRK3, and DYRK4). The different DYRKs have been implicated in neurological diseases, cancer, and virus infection. Specifically, DYRK2 has been mainly implicated in cancer progression. However, its role in healthy and pathological nervous system function has been overlooked. In this context, we review current available data on DYRK2 in the nervous system, where the available studies indicate that it has key roles in neuronal development and function. DYRK2 regulates neuronal morphogenesis (e.g., axon growth and branching) by phosphorylating cytoskeletal elements (e.g., doublecortin). Comparative data reveals that it is involved in the development of olfactory and visual systems, the spinal cord and possibly the cortex. DYRK2 also participates in processes such as olfaction, vision and, learning. However, DYRK2 could be involved in other brain functions since available expression data shows that it is expressed across the whole brain. High DYRK2 protein levels have been detected in basal ganglia and cerebellum. In adult nervous system, DYRK2 mRNA expression is highest in the cortex, hippocampus, and retina. Regarding nervous system disease, DYRK2 has been implicated in neuroblastoma, glioma, epilepsy, neuroinflammation, Alzheimer's disease, Parkinson's disease, spinal cord injury and virus infection. DYRK2 upregulation usually has a negative impact in cancer-related conditions and a positive impact in non-malignant conditions. Its role in axon growth makes DYRK2 as a promising target for spinal cord or brain injury and regeneration.
Collapse
Affiliation(s)
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
21
|
Zhang S, Zhu Y, Lu J, Liu Z, Lobato AG, Zeng W, Liu J, Qiang J, Zeng S, Zhang Y, Liu C, Liu J, He Z, Zhai RG, Li D. Specific binding of Hsp27 and phosphorylated Tau mitigates abnormal Tau aggregation-induced pathology. eLife 2022; 11:79898. [PMID: 36048712 PMCID: PMC9436411 DOI: 10.7554/elife.79898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloid aggregation of phosphorylated Tau (pTau) into neurofibrillary tangles is closely associated with Alzheimer's disease (AD). Several molecular chaperones have been reported to bind Tau and impede its pathological aggregation. Recent findings of elevated levels of Hsp27 in the brains of patients with AD suggested its important role in pTau pathology. However, the molecular mechanism of Hsp27 in pTau aggregation remains poorly understood. Here, we show that Hsp27 partially co-localizes with pTau tangles in the brains of patients with AD. Notably, phosphorylation of Tau by microtubule affinity regulating kinase 2 (MARK2), dramatically enhances the binding affinity of Hsp27 to Tau. Moreover, Hsp27 efficiently prevents pTau fibrillation in vitro and mitigates neuropathology of pTau aggregation in a Drosophila tauopathy model. Further mechanistic study reveals that Hsp27 employs its N-terminal domain to directly interact with multiple phosphorylation sites of pTau for specific binding. Our work provides the structural basis for the specific recognition of Hsp27 to pathogenic pTau, and highlights the important role of Hsp27 in preventing abnormal aggregation and pathology of pTau in AD.
Collapse
Affiliation(s)
- Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Jinxia Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Amanda G Lobato
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States.,Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, United States
| | - Wen Zeng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Liu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States.,Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shuyi Zeng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Chen Z, Yang Y, Han Y, Wang X. Neuroprotective Effects and Mechanisms of Senegenin, an Effective Compound Originated From the Roots of Polygala Tenuifolia. Front Pharmacol 2022; 13:937333. [PMID: 35924058 PMCID: PMC9341472 DOI: 10.3389/fphar.2022.937333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Senegenin is the main bioactive ingredient isolated from the dried roots of Polygala tenuifolia Willd. In recent years, senegenin has been proved to possess a variety of pharmacological activities, such as anti-oxidation, anti-inflammation, anti-apoptosis, enhancement of cognitive function. Besides, it has a good development prospect for the treatment of neurodegenerative diseases, depression, osteoporosis, cognitive dysfunction, ischemia-reperfusion injury and other diseases. However, there is no systematic literature that fully demonstrates the pharmacological effects of senegenin. In order to meet the needs of new drug research and precise medication, this review summarized the neuroprotective effects, mechanisms and gastrointestinal toxicity of senegenin based on the literatures published from the past 2 decades. In addition, an in-depth analysis of the existing problems in the current research as well as the future research directions have been conducted in order to provide a basis for the clinical application of this important plant extract.
Collapse
|
23
|
Roth A, Sander A, Oswald MS, Gärtner F, Knippschild U, Bischof J. Comprehensive Characterization of CK1δ-Mediated Tau Phosphorylation in Alzheimer’s Disease. Front Mol Biosci 2022; 9:872171. [PMID: 36203870 PMCID: PMC9531328 DOI: 10.3389/fmolb.2022.872171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
A main pathological event in Alzheimer’s disease is the generation of neurofibrillary tangles originating from hyperphosphorylated and subsequently aggregated tau proteins. Previous reports demonstrated the critical involvement of members of the protein kinase family CK1 in the pathogenesis of Alzheimer’s disease by hyperphosphorylation of tau. However, precise mechanisms and effects of CK1-mediated tau phosphorylation are still not fully understood. In this study, we analyzed recombinant tau441 phosphorylated by CK1δ in vitro via mass spectrometry and identified ten potential phosphorylation sites, five of them are associated to Alzheimer’s disease. To confirm these results, in vitro kinase assays and two-dimensional phosphopeptide analyses were performed with tau441 phosphomutants confirming Alzheimer’s disease-associated residues Ser68/Thr71 and Ser289 as CK1δ-specific phosphorylation sites. Treatment of differentiated human neural progenitor cells with PF-670462 and Western blot analysis identified Ser214 as CK1δ-targeted phosphorylation site. The use of an in vitro tau aggregation assay demonstrated a possible role of CK1δ in tau aggregation. Results obtained in this study highlight the potential of CK1δ to be a promising target in the treatment of Alzheimer’s disease.
Collapse
|
24
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
25
|
Azevedo R, Jacquemin C, Villain N, Fenaille F, Lamari F, Becher F. Mass Spectrometry for Neurobiomarker Discovery: The Relevance of Post-Translational Modifications. Cells 2022; 11:1279. [PMID: 35455959 PMCID: PMC9031030 DOI: 10.3390/cells11081279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Neurodegenerative diseases are incurable, heterogeneous, and age-dependent disorders that challenge modern medicine. A deeper understanding of the pathogenesis underlying neurodegenerative diseases is necessary to solve the unmet need for new diagnostic biomarkers and disease-modifying therapy and reduce these diseases' burden. Specifically, post-translational modifications (PTMs) play a significant role in neurodegeneration. Due to its proximity to the brain parenchyma, cerebrospinal fluid (CSF) has long been used as an indirect way to measure changes in the brain. Mass spectrometry (MS) analysis in neurodegenerative diseases focusing on PTMs and in the context of biomarker discovery has improved and opened venues for analyzing more complex matrices such as brain tissue and blood. Notably, phosphorylated tau protein, truncated α-synuclein, APP and TDP-43, and many other modifications were extensively characterized by MS. Great potential is underlying specific pathological PTM-signatures for clinical application. This review focuses on PTM-modified proteins involved in neurodegenerative diseases and highlights the most important and recent breakthroughs in MS-based biomarker discovery.
Collapse
Affiliation(s)
- Rita Azevedo
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Chloé Jacquemin
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Nicolas Villain
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
- Institut du Cerveau (ICM), Pitié-Salpêtrière Hospital, 75013 Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, AP-HP Sorbonne Université, CEDEX 13, 75651 Paris, France
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Foudil Lamari
- Department of Metabolic Biochemistry (AP-HP Sorbonne), Pitié-Salpêtrière Hospital, CEDEX 13, 75651 Paris, France;
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| |
Collapse
|
26
|
Park H, Yamanaka T, Nukina N. Proteomic analysis of heat-stable proteins revealed an increased proportion of proteins with compositionally biased regions. Sci Rep 2022; 12:4347. [PMID: 35289333 PMCID: PMC8921518 DOI: 10.1038/s41598-022-08044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) have been in the spotlight for their unique properties, such as their lack of secondary structures and low sequence complexity. Alpha-synuclein and tau are representative disease-related IDPs with low complexity regions in their sequences, accumulating in the brains of patients with Parkinson disease and Alzheimer disease, respectively. Their heat resistance in particular was what attracted our attention. We assumed that there exist many other unidentified proteins that are resistant to heat-treatment, referred to as heat-stable proteins, which would also have low sequence complexity. In this study, we performed proteomic analysis of heat-stable proteins of mouse brains and found that proteins with compositionally biased regions are abundant in the heat-stable proteins. The proteins related to neurodegeneration are known to undergo different types of post-translational modifications (PTMs) such as phosphorylation and ubiquitination. We then investigated the heat-stability and aggregation properties of phosphorylated synuclein and tau with different phosphorylation sites. We suggest that PTMs can be important factors that determine the heat-stability and aggregation properties of a protein. IDPs identified in the heat-stable proteins of mouse brains would be candidates for the pathogenic proteins for neurodegeneration.
Collapse
Affiliation(s)
- Hongsun Park
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan.
| |
Collapse
|
27
|
Lövestam S, Koh FA, van Knippenberg B, Kotecha A, Murzin AG, Goedert M, Scheres SHW. Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy. eLife 2022; 11:e76494. [PMID: 35244536 PMCID: PMC8983045 DOI: 10.7554/elife.76494] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Abundant filamentous inclusions of tau are characteristic of more than 20 neurodegenerative diseases that are collectively termed tauopathies. Electron cryo-microscopy (cryo-EM) structures of tau amyloid filaments from human brain revealed that distinct tau folds characterise many different diseases. A lack of laboratory-based model systems to generate these structures has hampered efforts to uncover the molecular mechanisms that underlie tauopathies. Here, we report in vitro assembly conditions with recombinant tau that replicate the structures of filaments from both Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE), as determined by cryo-EM. Our results suggest that post-translational modifications of tau modulate filament assembly, and that previously observed additional densities in AD and CTE filaments may arise from the presence of inorganic salts, like phosphates and sodium chloride. In vitro assembly of tau into disease-relevant filaments will facilitate studies to determine their roles in different diseases, as well as the development of compounds that specifically bind to these structures or prevent their formation.
Collapse
Affiliation(s)
- Sofia Lövestam
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | | | | | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Sjors HW Scheres
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
28
|
Metformin in Alzheimer’s disease: An overview of potential mechanisms, preclinical and clinical findings. Biochem Pharmacol 2022; 197:114945. [DOI: 10.1016/j.bcp.2022.114945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
|
29
|
Bridel C, Somers C, Sieben A, Rozemuller A, Niemantsverdriet E, Struyfs H, Vermeiren Y, Van Broeckhoven C, De Deyn PP, Bjerke M, Nagels G, Teunissen CE, Engelborghs S. Associating Alzheimer’s disease pathology with its cerebrospinal fluid biomarkers. Brain 2022; 145:4056-4064. [DOI: 10.1093/brain/awac013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Alzheimer’s disease cerebrospinal fluid (CSF) biomarkers 42 amino acid long amyloid-β peptide (Aβ1-42), total tau protein (T-tau), and tau protein phosphorylated at threonine 181 (P-tau181) are considered surrogate biomarkers of Alzheimer’s disease pathology, and significantly improve diagnostic accuracy. Their ability to reflect neuropathological changes later in the disease course is not well characterized. This study aimed to assess the potential of CSF biomarkers measured in mid- to late-stage Alzheimer’s disease to reflect post mortem neuropathological changes. Individuals were selected from 2 autopsy cohorts of Alzheimer’s disease patients in Antwerp and Amsterdam. Neuropathological diagnosis was performed according to the updated consensus National Institute on Aging-Alzheimer’s Association guidelines by Montine et al, which includes quantification of amyloid beta plaque, neurofibrillary tangle, and neuritic plaque load. CSF samples were analyzed for Aβ1-42, T-tau, and P-tau181 by ELISA. 114 cases of pure definite Alzheimer’s disease were included in the study (mean age 74 years, disease duration 6 years at CSF sampling, 50% females). Median interval between CSF sampling and death was one year. We found no association between Aβ1-42 and Alzheimer’s disease neuropathological change profile. In contrast, an association of P-tau181 and T-tau with Alzheimer’s disease neuropathological change profile was observed. P-tau181 was associated with all three individual Montine scores, and the associations became stronger and more significant as the interval between lumbar puncture and death increased. T-tau was also associated with all three Montine scores, but in individuals with longer intervals from lumbar puncture to death only. Stratification of the cohort according to APOE ε4 carrier status revealed that the associations applied mostly to APOE ε4 non-carriers. Our data suggest that similarly to what has been reported for Aβ1-42, plateau levels of P-tau181 and T-tau are reached during the disease course, albeit at later disease stages, reducing the potential of tau biomarkers to monitor Alzheimer’s disease pathology as the disease progresses. As a consequence, CSF biomarkers, which are performant for clinical diagnosis of early Alzheimer’s disease, may not be well suited for staging or monitoring Alzheimer’s disease pathology as it progresses through later stages.
Collapse
Affiliation(s)
- Claire Bridel
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Charisse Somers
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Anne Sieben
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Annemieke Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
| | - Ellis Niemantsverdriet
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Hanne Struyfs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Yannick Vermeiren
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Chair Group of Nutritional Biology, Division of Human Nutrition and Health, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Peter P. De Deyn
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Laboratory of Neurochemistry, Brussels, Belgium
| | - Guy Nagels
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| |
Collapse
|
30
|
Lashley T, Tossounian MA, Costello Heaven N, Wallworth S, Peak-Chew S, Bradshaw A, Cooper JM, de Silva R, Srai SK, Malanchuk O, Filonenko V, Koopman MB, Rüdiger SGD, Skehel M, Gout I. Extensive Anti-CoA Immunostaining in Alzheimer's Disease and Covalent Modification of Tau by a Key Cellular Metabolite Coenzyme A. Front Cell Neurosci 2021; 15:739425. [PMID: 34720880 PMCID: PMC8554225 DOI: 10.3389/fncel.2021.739425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, accounting for at least two-thirds of dementia cases. A combination of genetic, epigenetic and environmental triggers is widely accepted to be responsible for the onset and development of AD. Accumulating evidence shows that oxidative stress and dysregulation of energy metabolism play an important role in AD pathogenesis, leading to neuronal dysfunction and death. Redox-induced protein modifications have been reported in the brain of AD patients, indicating excessive oxidative damage. Coenzyme A (CoA) is essential for diverse metabolic pathways, regulation of gene expression and biosynthesis of neurotransmitters. Dysregulation of CoA biosynthesis in animal models and inborn mutations in human genes involved in the CoA biosynthetic pathway have been associated with neurodegeneration. Recent studies have uncovered the antioxidant function of CoA, involving covalent protein modification by this cofactor (CoAlation) in cellular response to oxidative or metabolic stress. Protein CoAlation has been shown to both modulate the activity of modified proteins and protect cysteine residues from irreversible overoxidation. In this study, immunohistochemistry analysis with highly specific anti-CoA monoclonal antibody was used to reveal protein CoAlation across numerous neurodegenerative diseases, which appeared particularly frequent in AD. Furthermore, protein CoAlation consistently co-localized with tau-positive neurofibrillary tangles, underpinning one of the key pathological hallmarks of AD. Double immunihistochemical staining with tau and CoA antibodies in AD brain tissue revealed co-localization of the two immunoreactive signals. Further, recombinant 2N3R and 2N4R tau isoforms were found to be CoAlated in vitro and the site of CoAlation mapped by mass spectrometry to conserved cysteine 322, located in the microtubule binding region. We also report the reversible H2O2-induced dimerization of recombinant 2N3R, which is inhibited by CoAlation. Moreover, CoAlation of transiently expressed 2N4R tau was observed in diamide-treated HEK293/Pank1β cells. Taken together, this study demonstrates for the first time extensive anti-CoA immunoreactivity in AD brain samples, which occurs in structures resembling neurofibrillary tangles and neuropil threads. Covalent modification of recombinant tau at cysteine 322 suggests that CoAlation may play an important role in protecting redox-sensitive tau cysteine from irreversible overoxidation and may modulate its acetyltransferase activity and functional interactions.
Collapse
Affiliation(s)
- Tammaryn Lashley
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Neve Costello Heaven
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Samantha Wallworth
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aaron Bradshaw
- Department of Molecular Neuroscience, Faculty of Brain Sciences, Royal Free Campus, London, United Kingdom
| | - J. Mark Cooper
- Department of Molecular Neuroscience, Faculty of Brain Sciences, Royal Free Campus, London, United Kingdom
| | - Rohan de Silva
- Reta Lila Weston Institute of Neurological Studies, University College London, London, United Kingdom
| | - Surjit Kaila Srai
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Oksana Malanchuk
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| | - Margreet B. Koopman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| |
Collapse
|
31
|
Calfio C, Gonzalez A, Singh SK, Rojo LE, Maccioni RB. The Emerging Role of Nutraceuticals and Phytochemicals in the Prevention and Treatment of Alzheimer's Disease. J Alzheimers Dis 2021; 77:33-51. [PMID: 32651325 DOI: 10.3233/jad-200443] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the major challenges of medical sciences has been finding a reliable compound for the pharmacological treatment of Alzheimer's disease (AD). As most of the drugs directed to a variety of targets have failed in finding a medical solution, natural products from Ayurvedic medicine or nutraceutical compounds emerge as a viable preventive therapeutics' pathway. Considering that AD is a multifactorial disease, nutraceutical compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs used for AD treatment. We review in-depth important medicinal plants that have been already investigated for therapeutic uses against AD, focusing on a diversity of pharmacological actions. These targets include inhibition of acetylcholinesterase, β-amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc., and pharmacological actions so diverse as anti-inflammatory, memory enhancement, nootropic effects, glutamate excitotoxicity, anti-depressants, and antioxidants. In addition, we also discuss the activity of nutraceutical compounds and phytopharmaceuticals formulae, mainly directed to tau protein aggregates mechanisms of action. These include compounds such as curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and meganatural-az and other phytochemicals such as huperzine A, limonoids, azaphilones, and aged garlic extract. Finally, we revise the nutraceutical formulae BrainUp-10 composed of Andean shilajit and B-complex vitamins, with memory enhancement activity and the control of neuropsychiatric distress in AD patients. This integrated view on nutraceutical opens a new pathway for future investigations and clinical trials that are likely to render some results based on medical evidence.
Collapse
Affiliation(s)
- Camila Calfio
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Andrea Gonzalez
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, India.,Centre of Biomedical Research (CBMR), Lucknow, India
| | - Leonel E Rojo
- Department of Biology, University of Santiago, Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile.,Department of Neurology, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
32
|
Niu J, Iqbal K, Liu F, Hu W. Rats Display Sexual Dimorphism in Phosphorylation of Brain Tau with Age. J Alzheimers Dis 2021; 82:855-869. [PMID: 34092647 DOI: 10.3233/jad-210341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Women have a two-fold higher risk than men to Alzheimer's disease (AD) at midlife. Larger brain tau burden was consistently shown in older women than age-matched men. The biological basis for this gender disparity remains elusive. OBJECTIVE We sought to know whether tau expression and phosphorylation physiologically differ between males and females. METHODS We used western blots and immunohistochemistry to compare the levels of total tau and phosphorylated tau in the hippocampus and entorhinal cortex (EC) between sexes in Wistar rats at 40 days, and 8 and 20 months of age. RESULTS We detected no statistically significant difference in total tau, 3R-tau, and 4R-tau between sexes. However, female rats exhibited lower levels of tau unphosphorylated at the Tau-1 site at 40 days of age. At 8 months of age, females showed higher levels of tau phosphorylated at Ser190, Ser387, and Ser395 (Ser199, Ser396, and Ser404 of human tau, respectively) than males in EC. At 20 months of age, both brain regions of female rats consistently showed higher levels than males of tau phosphorylated at Ser253, Ser387, PHF-1 (Ser387/395), and Ser413 sites, which correspond to Ser262, Ser396, Ser396/404, and Ser422 of human tau, respectively. CONCLUSION Rats of both sexes have comparable levels of total tau, 3R-tau, and 4R-tau, whereas females exhibit higher levels of tau phosphorylated at multiple sites that are implicated in AD tau pathology, indicating a sexual dimorphism of tau phosphorylation that may potentially underlie the disparity in brain tau burden and risk for AD between sexes.
Collapse
Affiliation(s)
- Jiahui Niu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wen Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
33
|
Cantrelle FX, Loyens A, Trivelli X, Reimann O, Despres C, Gandhi NS, Hackenberger CPR, Landrieu I, Smet-Nocca C. Phosphorylation and O-GlcNAcylation of the PHF-1 Epitope of Tau Protein Induce Local Conformational Changes of the C-Terminus and Modulate Tau Self-Assembly Into Fibrillar Aggregates. Front Mol Neurosci 2021; 14:661368. [PMID: 34220449 PMCID: PMC8249575 DOI: 10.3389/fnmol.2021.661368] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation of the neuronal microtubule-associated Tau protein plays a critical role in the aggregation process leading to the formation of insoluble intraneuronal fibrils within Alzheimer's disease (AD) brains. In recent years, other posttranslational modifications (PTMs) have been highlighted in the regulation of Tau (dys)functions. Among these PTMs, the O-β-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates Tau phosphorylation and aggregation. We here focus on the role of the PHF-1 phospho-epitope of Tau C-terminal domain that is hyperphosphorylated in AD (at pS396/pS404) and encompasses S400 as the major O-GlcNAc site of Tau while two additional O-GlcNAc sites were found in the extreme C-terminus at S412 and S413. Using high resolution NMR spectroscopy, we showed that the O-GlcNAc glycosylation reduces phosphorylation of PHF-1 epitope by GSK3β alone or after priming by CDK2/cyclin A. Furthermore, investigations of the impact of PTMs on local conformation performed in small peptides highlight the role of S404 phosphorylation in inducing helical propensity in the region downstream pS404 that is exacerbated by other phosphorylations of PHF-1 epitope at S396 and S400, or O-GlcNAcylation of S400. Finally, the role of phosphorylation and O-GlcNAcylation of PHF-1 epitope was probed in in-vitro fibrillization assays in which O-GlcNAcylation slows down the rate of fibrillar assembly while GSK3β phosphorylation stimulates aggregation counteracting the effect of glycosylation.
Collapse
Affiliation(s)
- François-Xavier Cantrelle
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| | - Anne Loyens
- Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, U1172, CHU Lille, INSERM, University of Lille, Lille, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, Lille, France
| | - Oliver Reimann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clément Despres
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France
| | - Neha S Gandhi
- Centre for Genomics and Personalised Health, Cancer and Ageing Research Program, School of Chemistry and Physics, Faculty of Science and Engineering, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Isabelle Landrieu
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| |
Collapse
|
34
|
Xia Y, Prokop S, Giasson BI. "Don't Phos Over Tau": recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer's disease and other tauopathies. Mol Neurodegener 2021; 16:37. [PMID: 34090488 PMCID: PMC8180161 DOI: 10.1186/s13024-021-00460-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation is one of the most prevalent post-translational modifications found in aggregated tau isolated from Alzheimer’s disease (AD) patient brains. In tauopathies like AD, increased phosphorylation or hyperphosphorylation can contribute to microtubule dysfunction and is associated with tau aggregation. In this review, we provide an overview of the structure and functions of tau protein as well as the physiologic roles of tau phosphorylation. We also extensively survey tau phosphorylation sites identified in brain tissue and cerebrospinal fluid from AD patients compared to age-matched healthy controls, which may serve as disease-specific biomarkers. Recently, new assays have been developed to measure minute amounts of specific forms of phosphorylated tau in both cerebrospinal fluid and plasma, which could potentially be useful for aiding clinical diagnosis and monitoring disease progression. Additionally, multiple therapies targeting phosphorylated tau are in various stages of clinical trials including kinase inhibitors, phosphatase activators, and tau immunotherapy. With promising early results, therapies that target phosphorylated tau could be useful at slowing tau hyperphosphorylation and aggregation in AD and other tauopathies.
Collapse
Affiliation(s)
- Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.,Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA. .,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.
| |
Collapse
|
35
|
Zhang H, Wei W, Zhao M, Ma L, Jiang X, Pei H, Cao Y, Li H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer's Disease. Int J Biol Sci 2021; 17:2181-2192. [PMID: 34239348 PMCID: PMC8241728 DOI: 10.7150/ijbs.57078] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular neuritic plaques composed of amyloid‑β (Aβ) protein and intracellular neurofibrillary tangles containing phosphorylated tau protein are the two hallmark proteins of Alzheimer's disease (AD), and the separate neurotoxicity of these proteins in AD has been extensively studied. However, interventions that target Aβ or tau individually have not yielded substantial breakthroughs. The interest in the interactions between Aβ and tau in AD is increasing, but related drug investigations are in their infancy. This review discusses how Aβ accelerates tau phosphorylation and the possible mechanisms and pathways by which tau mediates Aβ toxicity. This review also describes the possible synergistic effects between Aβ and tau on microglial cells and astrocytes. Studies suggest that the coexistence of Aβ plaques and phosphorylated tau is related to the mechanism by which Aβ facilitates the propagation of tau aggregation in neuritic plaques. The interactions between Aβ and tau mediate cognitive dysfunction in patients with AD. In summary, this review summarizes recent data on the interplay between Aβ and tau to promote a better understanding of the roles of these proteins in the pathological process of AD and provide new insights into interventions against AD.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Wei Wei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ming Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
36
|
The Potential of Induced Pluripotent Stem Cells to Treat and Model Alzheimer's Disease. Stem Cells Int 2021; 2021:5511630. [PMID: 34122554 PMCID: PMC8172295 DOI: 10.1155/2021/5511630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
An estimated 6.2 million Americans aged 65 or older are currently living with Alzheimer's disease (AD), a neurodegenerative disease that disrupts an individual's ability to function independently through the degeneration of key regions in the brain, including but not limited to the hippocampus, the prefrontal cortex, and the motor cortex. The cause of this degeneration is not known, but research has found two proteins that undergo posttranslational modifications: tau, a protein concentrated in the axons of neurons, and amyloid precursor protein (APP), a protein concentrated near the synapse. Through mechanisms that have yet to be elucidated, the accumulation of these two proteins in their abnormal aggregate forms leads to the neurodegeneration that is characteristic of AD. Until the invention of induced pluripotent stem cells (iPSCs) in 2006, the bulk of research was carried out using transgenic animal models that offered little promise in their ability to translate well from benchtop to bedside, creating a bottleneck in the development of therapeutics. However, with iPSC, patient-specific cell cultures can be utilized to create models based on human cells. These human cells have the potential to avoid issues in translatability that have plagued animal models by providing researchers with a model that closely resembles and mimics the neurons found in humans. By using human iPSC technology, researchers can create more accurate models of AD ex vivo while also focusing on regenerative medicine using iPSC in vivo. The following review focuses on the current uses of iPSC and how they have the potential to regenerate damaged neuronal tissue, in the hopes that these technologies can assist in getting through the bottleneck of AD therapeutic research.
Collapse
|
37
|
Rani L, Mallajosyula SS. Phosphorylation-Induced Structural Reorganization in Tau-Paired Helical Filaments. ACS Chem Neurosci 2021; 12:1621-1631. [PMID: 33877805 DOI: 10.1021/acschemneuro.1c00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Taupathies involve the deposition of abnormal tau protein into neurofibrillary tangles (NFTs) in the human brain. The abnormally hyperphosphorylated tau dissociates from microtubules and forms insoluble aggregates known as paired helical filaments (PHFs), highlighting the importance of post-translational modifications in taupathies. The present study examines the factors responsible for the structural stability of PHFs in native as well as in phosphorylated and O-GlcNAcylated tau. We carried out molecular dynamics simulations on the R3-R4 repeat domains of the human tau protein to gain atomic insights into the key noncovalent interactions responsible for their unique dimeric C-shaped structure. The structural effects upon post-translational modification were found to be prominent for phosphorylation when compared with O-GlcNAcylation. O-GlcNAcylated tau was found to retain the "C conformation" observed in the native tau PHF, whereas upon phosphorylation, we observed a conformational transition to a more opened "H conformation". We found that this conformational transition is brought about by the loss of a key salt bridge between Lys353 and Asp358 due to the phosphorylation at Ser356 that results in the reorganization of the dimeric interface.
Collapse
Affiliation(s)
- Lata Rani
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, Gujarat, India
| | - Sairam S. Mallajosyula
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
38
|
Neuronal Network Excitability in Alzheimer's Disease: The Puzzle of Similar versus Divergent Roles of Amyloid β and Tau. eNeuro 2021; 8:ENEURO.0418-20.2020. [PMID: 33741601 PMCID: PMC8174042 DOI: 10.1523/eneuro.0418-20.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent neurodegenerative disorder that commonly causes dementia in the elderly. Recent evidence indicates that network abnormalities, including hypersynchrony, altered oscillatory rhythmic activity, interneuron dysfunction, and synaptic depression, may be key mediators of cognitive decline in AD. In this review, we discuss characteristics of neuronal network excitability in AD, and the role of Aβ and tau in the induction of network hyperexcitability. Many patients harboring genetic mutations that lead to increased Aβ production suffer from seizures and epilepsy before the development of plaques. Similarly, pathologic accumulation of hyperphosphorylated tau has been associated with hyperexcitability in the hippocampus. We present common and divergent roles of tau and Aβ on neuronal hyperexcitability in AD, and hypotheses that could serve as a template for future experiments.
Collapse
|
39
|
Liu H, Li Q, Xiong C, Zhong H, Zhang Q, Liu H, Yao X. Uncovering the Effect of pS202/pT205/pS208 Triple Phosphorylations on the Conformational Features of the Key Fragment G192-T212 of Tau Protein. ACS Chem Neurosci 2021; 12:1039-1048. [PMID: 33663205 DOI: 10.1021/acschemneuro.1c00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microtubule-associated protein tau is abnormally phosphorylated and forms the aggregates of paired helical filaments in Alzheimer's disease (AD) and other tauopathies. So far, the relationship and mechanism between the abnormal phosphorylation of tau and fibril formation is still unclear. Therefore, studying the effect of phosphorylation on the structure of tau protein is helpful to elucidate the pathogenic mechanism of tauopathies. It has been shown that pS202/pT205/pS208 triple phosphorylations located in the proline-rich region can promote tau aggregation. In this work, the effect of triple phosphorylations on tau structure was investigated by molecular dynamics simulations combined with multiple analytical methods of trajectories. The results showed that the conformational diversity of G192-T212 fragments decreased after phosphorylation compared with that of the wild-type. Moreover, the dynamic network and hydrogen bond analyses showed that the addition of pS208 phosphorylation can destroy the key hydrogen bonds and the network structure formed centered on pT205 at the C-terminal of the pS202/pT205 double phosphorylated peptide and then destroy the turn structure formed in the region of G207-R211. The destruction of this turn structure is considered to be the main reason for the aggregation of pS202/pT205/pS208 triple phosphorylations. For the pS202/pT205/pS208 triple phosphorylated system, the G207-R211 region is a coil structure, which is more extended and prone to aggregation. In a word, our results reveal the mechanism that pS202/pT205/pS208 triple phosphorylations promote tau aggregation at the atomic level, which can provide useful theoretical guidance for the rational design of effective therapeutic drugs against AD and other tauopathies.
Collapse
Affiliation(s)
- Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qin Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunmei Xiong
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Haiyang Zhong
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| |
Collapse
|
40
|
Minkiewicz P, Darewicz M, Iwaniak A, Turło M. Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes. Molecules 2021; 26:molecules26030712. [PMID: 33573096 PMCID: PMC7866520 DOI: 10.3390/molecules26030712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
Phosphorylation represents one of the most important modifications of amino acids, peptides, and proteins. By modifying the latter, it is useful in improving the functional properties of foods. Although all these substances are broadly annotated in internet databases, there is no unified code for their annotation. The present publication aims to describe a simple code for the annotation of phosphopeptide sequences. The proposed code describes the location of phosphate residues in amino acid side chains (including new rules of atom numbering in amino acids) and the diversity of phosphate residues (e.g., di- and triphosphate residues and phosphate amidation). This article also includes translating the proposed biological code into SMILES, being the most commonly used chemical code. Finally, it discusses possible errors associated with applying the proposed code and in the resulting SMILES representations of phosphopeptides. The proposed code can be extended to describe other modifications in the future.
Collapse
|
41
|
Alquezar C, Arya S, Kao AW. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front Neurol 2021; 11:595532. [PMID: 33488497 PMCID: PMC7817643 DOI: 10.3389/fneur.2020.595532] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) on tau have long been recognized as affecting protein function and contributing to neurodegeneration. The explosion of information on potential and observed PTMs on tau provides an opportunity to better understand these modifications in the context of tau homeostasis, which becomes perturbed with aging and disease. Prevailing views regard tau as a protein that undergoes abnormal phosphorylation prior to its accumulation into the toxic aggregates implicated in Alzheimer's disease (AD) and other tauopathies. However, the phosphorylation of tau may, in fact, represent part of the normal but interrupted function and catabolism of the protein. In addition to phosphorylation, tau undergoes another forms of post-translational modification including (but not limited to), acetylation, ubiquitination, glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration. A holistic appreciation of how these PTMs regulate tau during health and are potentially hijacked in disease remains elusive. Recent studies have reinforced the idea that PTMs play a critical role in tau localization, protein-protein interactions, maintenance of levels, and modifying aggregate structure. These studies also provide tantalizing clues into the possibility that neurons actively choose how tau is post-translationally modified, in potentially competitive and combinatorial ways, to achieve broad, cellular programs commensurate with the distinctive environmental conditions found during development, aging, stress, and disease. Here, we review tau PTMs and describe what is currently known about their functional impacts. In addition, we classify these PTMs from the perspectives of protein localization, electrostatics, and stability, which all contribute to normal tau function and homeostasis. Finally, we assess the potential impact of tau PTMs on tau solubility and aggregation. Tau occupies an undoubtedly important position in the biology of neurodegenerative diseases. This review aims to provide an integrated perspective of how post-translational modifications actively, purposefully, and dynamically remodel tau function, clearance, and aggregation. In doing so, we hope to enable a more comprehensive understanding of tau PTMs that will positively impact future studies.
Collapse
Affiliation(s)
| | | | - Aimee W. Kao
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
42
|
Oba T, Saito T, Asada A, Shimizu S, Iijima KM, Ando K. Microtubule affinity-regulating kinase 4 with an Alzheimer's disease-related mutation promotes tau accumulation and exacerbates neurodegeneration. J Biol Chem 2020; 295:17138-17147. [PMID: 33020179 PMCID: PMC7863894 DOI: 10.1074/jbc.ra120.014420] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/19/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulation of the microtubule-associated protein tau is associated with Alzheimer's disease (AD). In AD brain, tau is abnormally phosphorylated at many sites, and phosphorylation at Ser-262 and Ser-356 plays critical roles in tau accumulation and toxicity. Microtubule affinity-regulating kinase 4 (MARK4) phosphorylates tau at those sites, and a double de novo mutation in the linker region of MARK4, ΔG316E317D, is associated with an elevated risk of AD. However, it remains unclear how this mutation affects phosphorylation, aggregation, and accumulation of tau and tau-induced neurodegeneration. Here, we report that MARK4ΔG316E317D increases the abundance of highly phosphorylated, insoluble tau species and exacerbates neurodegeneration via Ser-262/356-dependent and -independent mechanisms. Using transgenic Drosophila expressing human MARK4 (MARK4wt) or a mutant version of MARK4 (MARK4ΔG316E317D), we found that coexpression of MARK4wt and MARK4ΔG316E317D increased total tau levels and enhanced tau-induced neurodegeneration and that MARK4ΔG316E317D had more potent effects than MARK4wt Interestingly, the in vitro kinase activities of MARK4wt and MARK4ΔG316E317D were similar. When tau phosphorylation at Ser-262 and Ser-356 was blocked by alanine substitutions, MARK4wt did not promote tau accumulation or exacerbate neurodegeneration, whereas coexpression of MARK4ΔG316E317D did. Both MARK4wt and MARK4ΔG316E317D increased the levels of oligomeric forms of tau; however, only MARK4ΔG316E317D further increased the detergent insolubility of tau in vivo Together, these findings suggest that MARK4ΔG316E317D increases tau levels and exacerbates tau toxicity via a novel gain-of-function mechanism and that modification in this region of MARK4 may affect disease pathogenesis.
Collapse
Affiliation(s)
- Toshiya Oba
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Taro Saito
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akiko Asada
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Sawako Shimizu
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kanae Ando
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
43
|
Kang DE, Woo JA. Cofilin, a Master Node Regulating Cytoskeletal Pathogenesis in Alzheimer's Disease. J Alzheimers Dis 2020; 72:S131-S144. [PMID: 31594228 PMCID: PMC6971827 DOI: 10.3233/jad-190585] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The defining pathological hallmarks of Alzheimer’s disease (AD) are proteinopathies marked by the amyloid-β (Aβ) peptide and hyperphosphorylated tau. In addition, Hirano bodies and cofilin-actin rods are extensively found in AD brains, both of which are associated with the actin cytoskeleton. The actin-binding protein cofilin known for its actin filament severing, depolymerizing, nucleating, and bundling activities has emerged as a significant player in AD pathogenesis. In this review, we discuss the regulation of cofilin by multiple signaling events impinging on LIM kinase-1 (LIMK1) and/or Slingshot homolog-1 (SSH1) downstream of Aβ. Such pathophysiological signaling pathways impact actin dynamics to regulate synaptic integrity, mitochondrial translocation of cofilin to promote neurotoxicity, and formation of cofilin-actin pathology. Other intracellular signaling proteins, such as β-arrestin, RanBP9, Chronophin, PLD1, and 14-3-3 also impinge on the regulation of cofilin downstream of Aβ. Finally, we discuss the role of activated cofilin as a bridge between actin and microtubule dynamics by displacing tau from microtubules, thereby destabilizing tau-induced microtubule assembly, missorting tau, and promoting tauopathy.
Collapse
Affiliation(s)
- David E Kang
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, USA.,Division of Research, James A. Haley VA Hospital, Tampa, FL, USA
| | - Jung A Woo
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
44
|
Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer's Disease. Cell 2020; 183:1699-1713.e13. [PMID: 33188775 DOI: 10.1016/j.cell.2020.10.029] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 01/06/2023]
Abstract
To elucidate the role of Tau isoforms and post-translational modification (PTM) stoichiometry in Alzheimer's disease (AD), we generated a high-resolution quantitative proteomics map of 95 PTMs on multiple isoforms of Tau isolated from postmortem human tissue from 49 AD and 42 control subjects. Although Tau PTM maps reveal heterogeneity across subjects, a subset of PTMs display high occupancy and frequency for AD, suggesting importance in disease. Unsupervised analyses indicate that PTMs occur in an ordered manner, leading to Tau aggregation. The processive addition and minimal set of PTMs associated with seeding activity was further defined by analysis of size-fractionated Tau. To summarize, features in the Tau protein critical for disease intervention at different stages of disease are identified, including enrichment of 0N and 4R isoforms, underrepresentation of the C terminus, an increase in negative charge in the proline-rich region (PRR), and a decrease in positive charge in the microtubule binding domain (MBD).
Collapse
|
45
|
Brandt R, Trushina NI, Bakota L. Much More Than a Cytoskeletal Protein: Physiological and Pathological Functions of the Non-microtubule Binding Region of Tau. Front Neurol 2020; 11:590059. [PMID: 33193056 PMCID: PMC7604284 DOI: 10.3389/fneur.2020.590059] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Tau protein (MAPT) is classified as a microtubule-associated protein (MAP) and is believed to regulate the axonal microtubule arrangement. It belongs to the tau/MAP2/MAP4 family of MAPs that have a similar microtubule binding region at their carboxy-terminal half. In tauopathies, such as Alzheimer's disease, tau is distributed more in the somatodendritic compartment, where it aggregates into filamentous structures, the formation of which correlates with cognitive impairments in patients. While microtubules are the dominant interaction partners of tau under physiological conditions, tau has many additional interaction partners that can contribute to its physiological and pathological role. In particular, the amino-terminal non-microtubule binding domain (N-terminal projection region, NTR) of tau interacts with many partners that are involved in membrane organization. The NTR contains intrinsically disordered regions (IDRs) that show a strong evolutionary increase in the disorder and may have been the basis for the development of new, tau-specific interactions. In this review we discuss the functional organization of the tau protein and the special features of the tau non-microtubule binding region also in the connection with the results of Tau KO models. We consider possible physiological and pathological functions of tau's non-microtubule interactions, which could indicate that interactions mediated by tau's NTR and regulated by far-reaching functional interactions of the PRR and the extreme C-terminus of tau contribute to the pathological processes.
Collapse
Affiliation(s)
- Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | | | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
46
|
Wu B, Cai H, Tang S, Xu Y, Shi Q, Wei L, Meng L, Zhang N, Wang X, Xiao D, Zou Y, Yang X, Li X, Lu C. Methionine-Mediated Protein Phosphatase 2A Catalytic Subunit (PP2Ac) Methylation Ameliorates the Tauopathy Induced by Manganese in Cell and Animal Models. Neurotherapeutics 2020; 17:1878-1896. [PMID: 32959271 PMCID: PMC7851222 DOI: 10.1007/s13311-020-00930-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 01/10/2023] Open
Abstract
The molecular mechanism of Alzheimer-like cognitive impairment induced by manganese (Mn) exposure has not yet been fully clarified, and there are currently no effective interventions to treat neurodegenerative lesions related to manganism. Protein phosphatase 2 A (PP2A) is a major tau phosphatase and was recently identified as a potential therapeutic target molecule for neurodegenerative diseases; its activity is directed by the methylation status of the catalytic C subunit. Methionine is an essential amino acid, and its downstream metabolite S-adenosylmethionine (SAM) participates in transmethylation pathways as a methyl donor. In this study, the neurotoxic mechanism of Mn and the protective effect of methionine were evaluated in Mn-exposed cell and rat models. We show that Mn-induced neurotoxicity is characterized by PP2Ac demethylation accompanied by abnormally decreased LCMT-1 and increased PME-1, which are associated with tau hyperphosphorylation and spatial learning and memory deficits, and that the poor availability of SAM in the hippocampus is likely to determine the loss of PP2Ac methylation. Importantly, maintenance of local SAM levels through continuous supplementation with exogenous methionine, or through specific inhibition of PP2Ac demethylation by ABL127 administration in vitro, can effectively prevent tau hyperphosphorylation to reduce cellular oxidative stress, apoptosis, damage to cell viability, and rat memory deficits in cell or animal Mn exposure models. In conclusion, our data suggest that SAM and PP2Ac methylation may be novel targets for the treatment of Mn poisoning and neurotoxic mechanism-related tauopathies.
Collapse
Affiliation(s)
- Bin Wu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Haiqing Cai
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yilu Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lancheng Wei
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Ling Meng
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Ning Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xinhang Wang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Deqiang Xiao
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
47
|
Chidambaram H, Chinnathambi S. G-Protein Coupled Receptors and Tau-different Roles in Alzheimer’s Disease. Neuroscience 2020; 438:198-214. [DOI: 10.1016/j.neuroscience.2020.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/14/2023]
|
48
|
Xia Y, Prokop S, Gorion KMM, Kim JD, Sorrentino ZA, Bell BM, Manaois AN, Chakrabarty P, Davies P, Giasson BI. Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimer's disease and other tauopathies. Acta Neuropathol Commun 2020; 8:88. [PMID: 32571418 PMCID: PMC7310041 DOI: 10.1186/s40478-020-00967-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Tau protein abnormally aggregates in tauopathies, a diverse group of neurologic diseases that includes Alzheimer’s disease (AD). In early stages of disease, tau becomes hyperphosphorylated and mislocalized, which can contribute to its aggregation and toxicity. We demonstrate that tau phosphorylation at Ser208 (pSer208) promotes microtubule dysfunction and tau aggregation in cultured cells. Comparative assessment of the epitopes recognized by antibodies AT8, CP13, and 7F2 demonstrates that CP13 and 7F2 are specific for tau phosphorylation at Ser202 and Thr205, respectively, independently of the phosphorylation state of adjacent phosphorylation sites. Supporting the involvement of pSer208 in tau pathology, a novel monoclonal antibody 3G12 specific for tau phosphorylation at Ser208 revealed strong reactivity of tau inclusions in the brains of PS19 and rTg4510 transgenic mouse models of tauopathy. 3G12 also labelled neurofibrillary tangles in brains of patients with AD but revealed differential staining compared to CP13 and 7F2 for other types of tau pathologies such as in neuropil threads and neuritic plaques in AD, tufted astrocytes in progressive supranuclear palsy and astrocytic plaques in corticobasal degeneration. These results support the hypothesis that tau phosphorylation at Ser208 strongly contributes to unique types of tau aggregation and may be a reliable marker for the presence of mature neurofibrillary tangles.
Collapse
|
49
|
Yang C, Bao X, Zhang L, Li Y, Li L, Zhang L. Cornel iridoid glycoside ameliorates cognitive deficits in APP/PS1/tau triple transgenic mice by attenuating amyloid-beta, tau hyperphosphorylation and neurotrophic dysfunction. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:328. [PMID: 32355772 PMCID: PMC7186687 DOI: 10.21037/atm.2020.02.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Targeted proteinopathy is involved in creating pharmacological agents that protect against Alzheimer disease (AD). Cornel iridoid glycoside (CIG) is an effective component derived from Cornus officinalis. The present study aimed to determine the effects of CIG on β-amyloid (Aβ) and tau pathology and the underlying mechanisms in APP/PS1/tau triple transgenic (3×Tg) model mice. Methods We intragastrically administered 16-month-old 3×Tg mice with CIG (100 and 200 mg/kg) daily for two months. Learning and memory abilities were determined using the Morris water maze (MWM) and object recognition tests (ORT). Amyloid plaques and Aβ40/42 and the expression of related proteins in the cerebral cortex and hippocampus of mice was determined by western blotting Results CIG improved learning and memory impairment in 3×Tg model mice, decreased amyloid plaque deposition, Aβ40/42 and the expression of full-length amyloid precursor protein, and increased levels of ADAM-10 (α-secretase), neprilysin (NEP), and insulin degrading enzyme (IDE) in the brains of the model mice. CIG also reduced tau hyperphosphorylation, and elevated phosphorylation level of GSK-3β at Ser9 and methylation of PP2A catalytic subunit C in the model mice. Moreover, CIG increased the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-responsive element binding protein (p-CREB) in the brain of 3×Tg mice. Conclusions CIG ameliorated learning and memory deficit via reducing Aβ content and, tau hyperphosphorylation and increasing neurotrophic factors in the brain of 3×Tg mice. These results suggest that CIG may be beneficial for AD therapy.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xunjie Bao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| |
Collapse
|
50
|
Crowe A, Henderson MJ, Anderson J, Titus SA, Zakharov A, Simeonov A, Buist A, Delay C, Moechars D, Trojanowski JQ, Lee VMY, Brunden KR. Compound screening in cell-based models of tau inclusion formation: Comparison of primary neuron and HEK293 cell assays. J Biol Chem 2020; 295:4001-4013. [PMID: 32034092 DOI: 10.1074/jbc.ra119.010532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) brains are senile plaques, comprising β-amyloid (Aβ) peptides, and neuronal inclusions formed from tau protein. These plaques form 10-20 years before AD symptom onset, whereas robust tau pathology is more closely associated with symptoms and correlates with cognitive status. This temporal sequence of AD pathology development, coupled with repeated clinical failures of Aβ-directed drugs, suggests that molecules that reduce tau inclusions have therapeutic potential. Few tau-directed drugs are presently in clinical testing, in part because of the difficulty in identifying molecules that reduce tau inclusions. We describe here two cell-based assays of tau inclusion formation that we employed to screen for compounds that inhibit tau pathology: a HEK293 cell-based tau overexpression assay, and a primary rat cortical neuron assay with physiological tau expression. Screening a collection of ∼3500 pharmaceutical compounds with the HEK293 cell tau aggregation assay, we obtained only a low number of hit compounds. Moreover, these compounds generally failed to inhibit tau inclusion formation in the cortical neuron assay. We then screened the Prestwick library of mostly approved drugs in the cortical neuron assay, leading to the identification of a greater number of tau inclusion inhibitors. These included four dopamine D2 receptor antagonists, with D2 receptors having previously been suggested to regulate tau inclusions in a Caenorhabditis elegans model. These results suggest that neurons, the cells most affected by tau pathology in AD, are very suitable for screening for tau inclusion inhibitors.
Collapse
Affiliation(s)
- Alex Crowe
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Johnathon Anderson
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Steven A Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Arjan Buist
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Charlotte Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Diederik Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|