1
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
2
|
García-Recio EM, Pinto-Díez C, Pérez-Morgado MI, García-Hernández M, Fernández G, Martín ME, González VM. Characterization of MNK1b DNA Aptamers That Inhibit Proliferation in MDA-MB231 Breast Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e275. [PMID: 26730812 PMCID: PMC5012548 DOI: 10.1038/mtna.2015.50] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/19/2015] [Indexed: 02/08/2023]
Abstract
Elevated expression levels of eukaryotic initiation factor 4E (eIF4E) promote cancer development and progression. MAP kinase interacting kinases (MNKs) modulate the function of eIF4E through the phosphorylation that is necessary for oncogenic transformation. Therefore, pharmacologic MNK inhibitors may provide a nontoxic and effective anticancer strategy. MNK1b is a truncated isoform of MNK1a that is active in the absence of stimuli. Using in vitro selection, high-affinity DNA aptamers to MNK1b were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Four groups of aptamers were identified, and the affinities of one representative for rMNK1b were determined using ELONA and quantitative polymerase chain reaction. Two aptamers, named apMNK2F and apMNK3R, had a lower Kd in the nmol/l range. The secondary structure of the selected aptamers was predicted using mFold, and the QGRS Mapper indicated the presence of potential G-quadruplex structures in both aptamers. The selected aptamers were highly specific against MNK1, showing higher affinity to MNK1b than to MNK1a. Interestingly, both aptamers were able to produce significant translation inhibition and prevent tumor cell proliferation and migration and colony formation in breast cancer cells. These results indicate that MNK1 aptamers have an attractive therapeutic potential.
Collapse
Affiliation(s)
- Eva M García-Recio
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Celia Pinto-Díez
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - M Isabel Pérez-Morgado
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Marta García-Hernández
- Aptus Biotech SL, c/ Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Gerónimo Fernández
- Aptus Biotech SL, c/ Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - M Elena Martín
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Víctor M González
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain. E-mail:
| |
Collapse
|
3
|
Chen LZ, Li XY, Huang H, Xing W, Guo W, He J, Sun ZY, Luo AX, Liang HP, Hu J, Xu X, Xu YS, Wang ZG. SUMO-2 promotes mRNA translation by enhancing interaction between eIF4E and eIF4G. PLoS One 2014; 9:e100457. [PMID: 24971752 PMCID: PMC4074059 DOI: 10.1371/journal.pone.0100457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/25/2014] [Indexed: 01/02/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) proteins regulate many important eukaryotic cellular processes through reversible covalent conjugation to target proteins. In addition to its many well-known biological consequences, like subcellular translocation of protein, subnuclear structure formation, and modulation of transcriptional activity, we show here that SUMO-2 also plays a role in mRNA translation. SUMO-2 promoted formation of the active eukaryotic initiation factor 4F (eIF4F) complex by enhancing interaction between Eukaryotic Initiation Factor 4E (eIF4E) and Eukaryotic Initiation Factor 4G (eIF4G), and induced translation of a subset of proteins, such as cyclinD1 and c-myc, which essential for cell proliferation and apoptosis. As expected, overexpression of SUMO-2 can partially cancel out the disrupting effect of 4EGI-1, a small molecule inhibitor of eIF4E/eIF4G interaction, on formation of the eIF4F complex, translation of the cap-dependent protein, cell proliferation and apoptosis. On the other hand, SUMO-2 knockdown via shRNA partially impaired cap-dependent translation and cell proliferation and promoted apoptosis. These results collectively suggest that SUMO-2 conjugation plays a crucial regulatory role in protein synthesis. Thus, this report might contribute to the basic understanding of mammalian protein translation and sheds some new light on the role of SUMO in this process.
Collapse
Affiliation(s)
- Li-zhao Chen
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- Department of Neurosurgery, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiang-yun Li
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hong Huang
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xing
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Guo
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing He
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-ya Sun
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - An-xiong Luo
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hua-ping Liang
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Xiang Xu
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (XX); (YSX); (ZGW)
| | - Yun-sheng Xu
- Department of Dermatology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou Zhejiang, China
- * E-mail: (XX); (YSX); (ZGW)
| | - Zheng-guo Wang
- Fourth department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (XX); (YSX); (ZGW)
| |
Collapse
|
4
|
Abstract
Regulation of protein synthesis by viruses occurs at all levels of translation. Even prior to protein synthesis itself, the accessibility of the various open reading frames contained in the viral genome is precisely controlled. Eukaryotic viruses resort to a vast array of strategies to divert the translation machinery in their favor, in particular, at initiation of translation. These strategies are not only designed to circumvent strategies common to cell protein synthesis in eukaryotes, but as revealed more recently, they also aim at modifying or damaging cell factors, the virus having the capacity to multiply in the absence of these factors. In addition to unraveling mechanisms that may constitute new targets in view of controlling virus diseases, viruses constitute incomparably useful tools to gain in-depth knowledge on a multitude of cell pathways.
Collapse
|
5
|
Ellederová Z, Cais O, Susor A, Uhlírová K, Kovárová H, Jelínková L, Tomek W, Kubelka M. ERK1/2 map kinase metabolic pathway is responsible for phosphorylation of translation initiation factor eIF4E during in vitro maturation of pig oocytes. Mol Reprod Dev 2008; 75:309-17. [PMID: 17290414 DOI: 10.1002/mrd.20690] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Eukaryotic initiation factor 4E (eIF4E) plays an important role in mRNA translation by binding the 5'-cap structure of the mRNA and facilitating the recruitment to the mRNA of other translation factors and the 40S ribosomal subunit. eIF4E undergoes regulated phosphorylation on Ser-209 and this phosphorylation is believed to be important for its binding to mRNA and to other initiation factors. The findings showing that the translation initiation factor eIF4E becomes gradually phosphorylated during in vitro maturation (IVM) of pig oocytes with a maximum in metaphase II (M II) stage oocytes have been documented by us recently (Ellederova et al., 2006). The aim of this work was to study in details the metabolic pathways involved in this process. Using inhibitors of cyclin-dependent kinases, Butyrolactone I (BL I) and protein phosphatases, okadaic acid (OA) we show that ERK1/2 MAP kinase pathway is involved in this phosphorylation. We also demonstrate that activation and phosphorylation of ERK1/2 MAP kinase and eIF4E is associated with the activating phosphorylation of Mnk1 kinase, one of the two main kinases phosphorylating eIF4E in somatic cells.
Collapse
Affiliation(s)
- Zdenka Ellederová
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Control of protein translation by phosphorylation of the mRNA 5′-cap-binding complex. Biochem Soc Trans 2007; 35:1634-7. [DOI: 10.1042/bst0351634] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Initiation of mRNA translation is a key regulatory step in the control of gene expression. Microarray analysis indicates that total mRNA levels do not always reflect protein levels, since mRNA association with polyribosomes is necessary for protein synthesis. Phosphorylation of translation initiation factors offers a cost-effective and rapid way to adapt to physiological and environmental changes, and there is increasing evidence that many of these factors are subject to multiple regulatory phosphorylation events. The present article focuses on the nature of reversible phosphorylation and the function of the 5′-cap-binding complex in plants.
Collapse
|
7
|
O'Loghlen A, González VM, Jurado T, Salinas M, Martín ME. Characterization of the activity of human MAP kinase-interacting kinase Mnk1b. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1416-27. [PMID: 17590453 DOI: 10.1016/j.bbamcr.2007.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 05/18/2007] [Accepted: 05/21/2007] [Indexed: 02/08/2023]
Abstract
Human mitogen-activated protein (MAP) kinase interacting kinase 1b (Mnk1b) is a splice variant of human Mnk1a, which has been identified in our laboratory [A. O'Loghlen, V.M. Gonzalez, D. Pineiro, M.I. Perez-Morgado, M. Salinas, M.E. Martin, Identification and molecular characterization of Mnk1b, a splice variant of human MAP kinase-interacting kinase Mnk1, Exp. Cell Res. 299 (2004) 343-355]. Mnk1b has much higher basal eIF4E kinase activity than Mnk1a. Because Mnk1b presents different features in its C-terminus with respect to Mnk1a, we have studied in this paper the potential role of these structural differences in determining the higher basal eIF4E kinase activity as well as the subcellular localization of Mnk1b. In this paper, we demonstrate that phosphorylation of the Thr209 and Thr214 in the activation loop of Mnk1b is necessary for its activation. However, the different kinase activity between Mnk1a and Mnk1b is independent of the phosphorylation status of the activation loop residues. By deletion of the C-terminal tail in Mnk1a, we confirmed that the absence of this sequence is not responsible for the higher eIF4E kinase activity present in Mnk1b. Moreover, our findings support a crucial role of the 12 amino acids, particularly the Ala344, in the C-terminal specific region of Mnk1b (Mnk1bSR), on the kinase activity of the protein.
Collapse
Affiliation(s)
- Ana O'Loghlen
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, Ctra. Colmenar km. 9,100. E-28034 Madrid, Spain
| | | | | | | | | |
Collapse
|
8
|
O'Loghlen A, Pérez-Morgado MI, Salinas M, Martín ME. N-acetyl-cysteine abolishes hydrogen peroxide-induced modification of eukaryotic initiation factor 4F activity via distinct signalling pathways. Cell Signal 2006; 18:21-31. [PMID: 15907373 DOI: 10.1016/j.cellsig.2005.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 03/10/2005] [Accepted: 03/10/2005] [Indexed: 12/16/2022]
Abstract
During the oxidative stress generated by hydrogen peroxide (H2O2) in nerve growth factor (NGF)-differentiated PC12 cells, eIF4E binding protein (4E-BP1) and initiation factor 4E (eIF4E) phosphorylated levels decrease significantly, and an enhancement of the association of 4E-BP1 to eIF4E, which in turn decreases eIF4F formation is observed. The treatment with N-acetyl-cysteine (NAC) completely abolishes the H2O2-induced decrease in eIF4E phosphorylated levels, whereas the decrease in 4E-BP1 phosphorylated levels and eIF4F activity inhibition are significantly but not fully reversed. Rapamycin, the mammalian target of rapamycin (FRAP/mTOR) inhibitor, prevents the effect of NAC on H2O2-induced eIF4F complex formation inhibition. Besides the inhibitor induces a similar decrease in 4E-BP1 phosphorylated levels to that promote by H2O2. However, rapamycin has no effect on the NAC-induced recovery in phosphorylated eIF4E levels. Neither the MAP kinase inhibitors, PD98056 and SB203580, or the protein phosphatase 2A inhibitor, okadaic acid, mimic NAC effect on the H2O2-induced eIF4E dephosphorylation. Altogether our findings suggest that the effects caused by oxidative stress on eIF4s factors depends on two MAP kinase-independent signal transduction pathways, being at least one of them rapamycin-dependent.
Collapse
Affiliation(s)
- A O'Loghlen
- Servicio de Bioquímica, Departamento de Investigación, Hospital Ramón y Cajal, Ctra. Colmenar Km. 9, 28034 Madrid, Spain
| | | | | | | |
Collapse
|
9
|
Piccioni F, Zappavigna V, Verrotti AC. Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship. C R Biol 2005; 328:863-81. [PMID: 16286077 DOI: 10.1016/j.crvi.2005.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 11/30/2022]
Abstract
Metazoans rely on the regulated translation of select maternal mRNAs to control oocyte maturation and the initial stages of embryogenesis. These transcripts usually remain silent until their translation is temporally and spatially required during early development. Different translational regulatory mechanisms, varying from cytoplasmic polyadenylation to localization of maternal mRNAs, have evolved to assure coordinated initiation of development. A common feature of these mechanisms is that they share a few key trans-acting factors. Increasing evidence suggest that ubiquitous conserved mRNA-binding factors, including the eukaryotic translation initiation factor 4E (eIF4E) and the cytoplasmic polyadenylation element binding protein (CPEB), interact with cell-specific molecules to accomplish the correct level of translational activity necessary for normal development. Here we review how capping and polyadenylation of mRNAs modulate interaction with multiple regulatory factors, thus controlling translation during oogenesis and early development.
Collapse
Affiliation(s)
- Federica Piccioni
- CEINGE-Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples, Italy
| | | | | |
Collapse
|
10
|
O'Loghlen A, González VM, Salinas M, Martín ME. Suppression of human Mnk1 by small interfering RNA increases the eukaryotic initiation factor 4F activity in HEK293T cells. FEBS Lett 2004; 578:31-5. [PMID: 15581611 DOI: 10.1016/j.febslet.2004.10.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 10/21/2004] [Accepted: 10/21/2004] [Indexed: 02/08/2023]
Abstract
Short-interfering RNAs (siRNAs) have proved to be a useful tool in studying gene function in plants, invertebrates and mammalian systems. Herein, we report the use of siRNAs for targeting the human MAP kinase-interacting kinase Mnk1 gene. This study demonstrates the efficacy of the designed siRNA in silencing Mnk1 in the human cell line HEK293T and shows that Mnk1 suppression decreases eukaryotic initiation factor 4E phosphorylation without causing any change in global protein synthesis rate and cell proliferation. Interestingly, suppression of Mnk1 results in a significant increase in eukaryotic initiation factor 4F complex formation after 72 h of transfection.
Collapse
Affiliation(s)
- Ana O'Loghlen
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, Ctra. Colmenar km 9, 100. 28034 Madrid, Spain
| | | | | | | |
Collapse
|
11
|
O'Loghlen A, González VM, Piñeiro D, Pérez-Morgado MI, Salinas M, Martín ME. Identification and molecular characterization of Mnk1b, a splice variant of human MAP kinase-interacting kinase Mnk1. Exp Cell Res 2004; 299:343-55. [PMID: 15350534 DOI: 10.1016/j.yexcr.2004.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/28/2004] [Indexed: 02/05/2023]
Abstract
In this paper, we report the identification and molecular characterization of a splice variant of human Mnk1 which has been named as Mnk1b. Human Mnk1b mRNA is homologous to human Mnk1 mRNA but lacking a region corresponding to exon 19, which causes a change in the reading frame generating a stop codon. The resulting protein lacks the last 89 amino acids at the C-terminal region that are replaced by 12 amino acids with an entirely new sequence. The C-terminal end in Mnk1 corresponds to the extracellular signal-regulated kinase (ERK1/2) binding site. Although Mnk1b lacks this domain and, consequently, is not phosphorylated by ERK1/2, it is able, however, to phosphorylate eIF4E in vitro and in vivo in a mitogen-activated protein kinases-independent manner. This result suggests that Mnk1b may play a key role in regulating protein translation in the absence of stimuli. Interestingly, a significant population of cells shows Mnk1b within the nucleus whereas Mnk1 is always detected in the cytoplasm. This fact may be explained because Mnk1b maintains the nuclear localization signal (NLS) but lacks the nuclear export sequence (NES).
Collapse
Affiliation(s)
- Ana O'Loghlen
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, Ctra. Colmenar km 9,100. 28034 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Robalino J, Joshi B, Fahrenkrug SC, Jagus R. Two Zebrafish eIF4E Family Members Are Differentially Expressed and Functionally Divergent. J Biol Chem 2004; 279:10532-41. [PMID: 14701818 DOI: 10.1074/jbc.m313688200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is an essential component of the translational machinery that binds m(7)GTP and mediates the recruitment of capped mRNAs by the small ribosomal subunit. Recently, a number of proteins with homology to eIF4E have been reported in plants, invertebrates, and mammals. Together with the prototypical translation factor, these constitute a new family of structurally related proteins. To distinguish the prototypical translation factor eIF4E from other family members, it has been termed eIF4E-1 (Keiper, B. D., Lamphear, B. J., Deshpande, A. M., Jankowska-Anyszka, M., Aamodt, E. J., Blumenthal, T., and Rhoads, R. E. (2000) J. Biol. Chem. 275, 10590-10596). We describe the characterization of two eIF4E family members in the zebrafish Danio rerio. Based on their relative identities with human eIF4E-1, these zebrafish proteins are termed eIF4E-1A (82%) and eIF4E-1B (66%). eIF4E-1B, originally termed eIF4E(L), has been reported previously as the zebrafish eIF4E-1 counterpart (Fahrenkrug, S. C., Dahlquist, M. O., Clark, K., and Hackett, P. B. (1999) Differentiation 65, 191-201; Fahrenkrug, S. C., Joshi, B., Hackett, P. B., and Jagus, R. (2000) Differentiation 66, 15-22). Sequence comparisons suggest that the two genes probably evolved from a duplication event that occurred during vertebrate evolution. eIF4E-1A is expressed ubiquitously in zebrafish, whereas expression of eIF4E-1B is restricted to early embryonic development and to gonads and muscle of the tissues investigated. The ability of these two zebrafish proteins to bind m(7)GTP, eIF4G, and 4E-BP, as well as to complement yeast conditionally deficient in functional eIF4E, show that eIF4E-1A is a functional equivalent of human eIF4E-1. Surprisingly, although eIF4E-1B possesses all known residues thought to be required for interaction with the cap structure, eIF4G, and 4E-BPs, it fails to interact with any of these components, suggesting that this protein serves a role other than that assigned to eIF4E.
Collapse
Affiliation(s)
- Javier Robalino
- Center of Marine Biotechnology, Baltimore, Maryland 21202, USA
| | | | | | | |
Collapse
|
13
|
Rocic P, Seshiah P, Griendling KK. Reactive oxygen species sensitivity of angiotensin II-dependent translation initiation in vascular smooth muscle cells. J Biol Chem 2003; 278:36973-9. [PMID: 12860993 DOI: 10.1074/jbc.m302099200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation initiation, the rate-limiting step in protein synthesis, is a key event in vascular smooth muscle cell growth, a major component of vascular disease. Translation initiation is regulated by interaction between PHAS-I and the eukaryotic initiation factor 4E (eIF4E). Although angiotensin II (Ang II)-induced vascular smooth muscle cell hypertrophy requires the generation of reactive oxygen species (ROS), the ROS sensitivity of these events and their upstream activators remain unclear. Here, we investigated the role of ROS in the regulation of PHAS-I phosphorylation on Thr-70 and Ser-65, an event required for the release of eIF4E from PHAS-I. Ang II-induced Ser-65 phosphorylation was ROS-dependent as assessed by pretreatment with ebselen (3.6 +/- 0.2 versus 1.1 +/- 0.2), diphenylene iodonium (3.6 +/- 0.2 versus 1.0 +/- 0.1), and N-acetyl cysteine (3.6 +/- 0.2 versus 1.2 +/- 0.1), but Ang II-stimulated phosphorylation of Thr-70 was ROS-insensitive. Although phosphatidylinositol 3-kinase pathway inhibition by LY294004 blocked both Ser-65 and Thr-70 phosphorylation (3.8 +/- 0.1 versus 0.8 +/- 0.1 and 3.2 +/- 0.2 versus 1.0 +/- 0.01, respectively), protein phosphatase 2A inhibition by okadaic acid selectively increased (3.3 +/- 0.1 versus 5.2 +/- 0.1) and p38 mitogen-activated protein kinase inhibition by SB203580 selectively decreased (3.8 +/- 0.1 versus 1.4 +/- 0.3) Ser-65 phosphorylation. Dominant negative Akt adenovirus also inhibited only Ser-65 phosphorylation (3.7 +/- 0.1 versus 1.0 +/- 0.03). These results demonstrate a unique differential ROS sensitivity of two separate residues on PHAS-I, which seems to be explained by the selective involvement of distinct signaling pathways in the regulation of these phosphorylation events.
Collapse
Affiliation(s)
- Petra Rocic
- Division of Cardiology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
14
|
|
15
|
Lawrence JC, Fadden P, Haystead TA, Lin TA. PHAS proteins as mediators of the actions of insulin, growth factors and cAMP on protein synthesis and cell proliferation. ADVANCES IN ENZYME REGULATION 2001; 37:239-67. [PMID: 9381973 DOI: 10.1016/s0065-2571(96)00016-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PHAS-I and PHAS-II are members of a newly discovered family of proteins that regulate translation initiation. PHAS-I is expressed in a wide variety of cell types, but it is highest in adipocytes, where protein synthesis is markedly increased by insulin. PHAS-II is highest in liver and kidney, where very little PHAS-I is found. PHAS proteins bind to eIF-4E, the mRNA cap-binding protein, and inhibit translation of capped mRNA in vitro and in cells. In rat adipocytes PHAS-I is phosphorylated in at least five sites, all of which conform to the consensus, (Ser/Thr)-Pro. Both PHAS proteins are phosphorylated in response to insulin or growth factors, such as EGF, PDGF and IGF-1. Phosphorylation in the appropriate site(s) promotes dissociation of PHAS/eIF-4E complexes. This allows eIF-4E to bind to eIF-4G (p220), thereby increasing the amount of the eIF-4F complex and the rate of translation initiation. Increasing cAMP promotes PHAS-I dephosphorylation and increases binding to eIF-4E. Unlike PHAS-I, PHAS-II is readily phosphorylated by PKA in vitro, suggesting that regulation of the two proteins differs. However, increasing cAMP in cells also promotes dephosphorylation of PHAS-II. Thus, PHAS proteins appear to be key mediators not only of the stimulatory effects of insulin and growth factors on protein synthesis, but also of the inhibitory effects of cAMP. Moreover, by controlling eIF-4E PHAS proteins may be involved in the control of cell proliferation, as increasing eIF-4E is mitogenic and can even cause malignant transformation of cells. MAP kinase readily phosphorylates both PHAS-I and PHAS-II in vitro, but inhibiting activation of MAP kinase does not attenuate the effects of insulin on increasing phosphorylation of the PHAS proteins in adipocytes or skeletal muscle. MAP kinase phosphorylates neither PHAS-I nor PHAS-II at a significant rate when the proteins are bound to eIF-4E. Therefore, the role of MAP kinase in promoting the dissociation of PHAS/eIF-4E complexes is not clear. Of several protein kinases tested, only casein kinase-II phosphorylated PHAS-I when it was bound eIF-4E. Indeed, the bound form of PHAS-I was phosphorylated more rapidly than the free form. However, it is unlikely that casein kinase II regulates either PHAS protein, as the major site (Ser111) in PHAS-I phosphorylated by casein kinase II in vitro is not phosphorylated in adipocytes, and PHAS-II is not a substrate for casein kinase-II. Pharmacological and genetic evidence indicates that the mTOR/p70S6K pathway is involved in the control of PHAS-I and -II. Thus, PHAS proteins may be mediators of the effects of this pathway on protein synthesis and cell proliferation.
Collapse
Affiliation(s)
- J C Lawrence
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
16
|
Lee SJ, Stapleton G, Greene JH, Hille MB. Protein kinase C-related kinase 2 phosphorylates the protein synthesis initiation factor eIF4E in starfish oocytes. Dev Biol 2000; 228:166-80. [PMID: 11112322 DOI: 10.1006/dbio.2000.9943] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of eIF4E is required for protein synthesis during starfish oocyte maturation. The activity of protein kinase C-related kinase 2 (PRK2) increases prior to the phosphorylation of eIF4E (G. Stapleton et al., 1998, Dev. Biol. 193, 34-46). We investigate here whether eIF4E is activated by PRK2. A 3.5-kb eIF4E clone isolated from starfish cDNA is 57% identical to human eIF4E and contains the putative phosphorylation site serine-209. The serine-209 environment (SKTGS(209)MAKSRF) is similar to the consensus sequence of the phosphorylation site of protein kinase C and related kinases. A starfish eIF4E fusion protein (GST-4E) was phosphorylated in vitro by PRK2 in the presence of 1,2-diolyl-sn-glycerol 3-phosphate. In contrast, replacing the GST-4E serine-209 with an alanine significantly reduced this phosphorylation. Analysis by two-dimensional phosphopeptide mapping reveals a major phosphopeptide in trypsin-digested GST-4E, but not in its serine-209 mutant. Importantly, this major phosphopeptide in GST-4E corresponds to a major phosphopeptide of eIF4E isolated from (32)P-labeled oocytes. Thus, PRK2 may regulate translation initiation during oocyte maturation by phosphorylating the serine-209 residue of eIF4E in starfish. We also demonstrate that high levels of cAMP inhibit the activation of PRK2, eIF4E, and the eIF4E binding protein during starfish oocyte maturation, while PI3 kinase activates these proteins.
Collapse
Affiliation(s)
- S J Lee
- Department of Zoology and Center for Developmental Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
17
|
Pyronnet S. Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem Pharmacol 2000; 60:1237-43. [PMID: 11007962 DOI: 10.1016/s0006-2952(00)00429-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this review is to summarize recent experimental data describing the regulation of the phosphorylation of eIF4E, the cap-binding protein, by the MAPK-activated protein kinase Mnk1. Mnk1 does not interact directly with eIF4E, but uses a docking site in eIF4G, a partner of eIF4E. Consequently, control of eIF4E phosphorylation may not strictly depend on changes in Mnk1 activity. The possibility that integrity of the eIF4E/eIF4G/Mnk1 complex also impinges upon eIF4E phosphorylation is discussed.
Collapse
Affiliation(s)
- S Pyronnet
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Aragón T, de la Luna S, Novoa I, Carrasco L, Ortín J, Nieto A. Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus. Mol Cell Biol 2000; 20:6259-68. [PMID: 10938102 PMCID: PMC86100 DOI: 10.1128/mcb.20.17.6259-6268.2000] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus NS1 protein is an RNA-binding protein whose expression alters several posttranscriptional regulatory processes, like polyadenylation, splicing, and nucleocytoplasmic transport of cellular mRNAs. In addition, NS1 protein enhances the translational rate of viral, but not cellular, mRNAs. To characterize this effect, we looked for targets of NS1 influenza virus protein among cellular translation factors. We found that NS1 coimmunoprecipitates with eukaryotic initiation factor 4GI (eIF4GI), the large subunit of the cap-binding complex eIF4F, either in influenza virus-infected cells or in cells transfected with NS1 cDNA. Affinity chromatography studies using a purified His-NS1 protein-containing matrix showed that the fusion protein pulls down endogenous eIF4GI from COS-1 cells and labeled eIF4GI translated in vitro, but not the eIF4E subunit of the eIF4F factor. Similar in vitro binding experiments with eIF4GI deletion mutants indicated that the NS1-binding domain of eIF4GI is located between residues 157 and 550, in a region where no other component of the translational machinery is known to interact. Moreover, using overlay assays and pull-down experiments, we showed that NS1 and eIF4GI proteins interact directly, in an RNA-independent manner. Mapping of the eIF4GI-binding domain in the NS1 protein indicated that the first 113 N-terminal amino acids of the protein, but not the first 81, are sufficient to bind eIF4GI. The first of these mutants has been previously shown to act as a translational enhancer, while the second is defective in this activity. Collectively, these and previously published data suggest a model where NS1 recruits eIF4GI specifically to the 5' untranslated region (5' UTR) of the viral mRNA, allowing for the preferential translation of the influenza virus messengers.
Collapse
Affiliation(s)
- T Aragón
- Centro Nacional de Biotecnología (CSIC), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell.
Collapse
Affiliation(s)
- M Gale
- University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
20
|
Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J 1999; 18:270-9. [PMID: 9878069 PMCID: PMC1171121 DOI: 10.1093/emboj/18.1.270] [Citation(s) in RCA: 514] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA cap structure and interacts with eIF4G, which serves as a scaffold protein for the assembly of eIF4E and eIF4A to form the eIF4F complex. eIF4E is an important modulator of cell growth and proliferation. It is the least abundant component of the translation initiation machinery and its activity is modulated by phosphorylation and interaction with eIF4E-binding proteins (4E-BPs). One strong candidate for the eIF4E kinase is the recently cloned MAPK-activated protein kinase, Mnk1, which phosphorylates eIF4E on its physiological site Ser209 in vitro. Here we report that Mnk1 is associated with the eIF4F complex via its interaction with the C-terminal region of eIF4G. Moreover, the phosphorylation of an eIF4E mutant lacking eIF4G-binding capability is severely impaired in cells. We propose a model whereby, in addition to its role in eIF4F assembly, eIF4G provides a docking site for Mnk1 to phosphorylate eIF4E. We also show that Mnk1 interacts with the C-terminal region of the translational inhibitor p97, an eIF4G-related protein that does not bind eIF4E, raising the possibility that p97 can block phosphorylation of eIF4E by sequestering Mnk1.
Collapse
Affiliation(s)
- S Pyronnet
- Department of Biochemistry and McGill Cancer Cancer Center, McGill University, 3655 Drummond Street, Montréal, Québec, H3G 1Y6 Canada
| | | | | | | | | | | |
Collapse
|
21
|
Morley SJ. Signalling through either the p38 or ERK mitogen-activated protein (MAP) kinase pathway is obligatory for phorbol ester and T cell receptor complex (TCR-CD3)-stimulated phosphorylation of initiation factor (eIF) 4E in Jurkat T cells. FEBS Lett 1997; 418:327-32. [PMID: 9428738 DOI: 10.1016/s0014-5793(97)01405-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Initiation factor (elF) 4E plays a key role in the regulation of translation. Its activity is modulated both by phosphorylation and by its association with an inhibitory protein, 4E-BP1, which precludes its interaction with eIF4G. Although increased eIF4E phosphorylation has been correlated with the activation of protein synthesis in T cells, the kinase(s) and/or phosphatase(s) involved have not been characterised. There is evidence for phosphorylation of eIF4E mediated by both protein kinase C-dependent and -independent signalling pathways. In these studies, I show that activation of protein kinase C with phorbol ester, stimulation via the T cell receptor complex with the monoclonal antibody OKT3 and cellular stresses increase the phosphorylation of eIF4E in Jurkat T cells. In contrast to published data, inhibition of either the ERK MAP kinase or p38 MAP kinase signalling pathways does not affect the PMA- or OKT3-stimulated increase in eIF4E phosphorylation. However, simultaneous inhibition of both of these pathways with selective inhibitors is required to completely abrogate the enhanced phosphorylation of eIF4E. These data show that in Jurkat cells, protein kinase C modulates the phosphorylation status of eIF4E indirectly via the ERK and/or p38 MAP kinase signalling pathways.
Collapse
Affiliation(s)
- S J Morley
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
22
|
Morley SJ, McKendrick L. Involvement of stress-activated protein kinase and p38/RK mitogen-activated protein kinase signaling pathways in the enhanced phosphorylation of initiation factor 4E in NIH 3T3 cells. J Biol Chem 1997; 272:17887-93. [PMID: 9211946 DOI: 10.1074/jbc.272.28.17887] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The initiation factor (eIF) 4E is regulated by modulating both the phosphorylation and the availability of the protein to participate in the initiation process. Here we show that either serum treatment or activation of the stress-activated protein kinase (JNK/SAPK) led to enhanced phosphorylation of eIF4E in quiescent NIH 3T3 cells. Although the immunosuppressant, rapamycin, was found to stabilize the association of eIF4E with its negative regulator, 4E-BP1, this drug did not prevent the early effects of serum stimulation on the overall rate of translation, polysome formation, the phosphorylation status of eIF4E, or the recruitment of eIF4E into the eIF4F complex. However, the rapid enhancement of eIF4E phosphorylation in response to serum was largely prevented by the inhibitor of mitogen-activated protein (MAP) kinase activation, PD98059. Activation of the JNK/SAPK signaling pathway with anisomycin resulted in enhanced phosphorylation of eIF4E, which was prevented by either rapamycin or the highly specific p38 MAP kinase inhibitor, SB203580. These data illustrate that multiple signaling pathways, including those of distinct members of the MAP kinase family, mediate the phosphorylation of eIF4E and that the association of eIF4E with 4E-BP1 does not necessarily prevent phosphorylation of eIF4E in vivo.
Collapse
Affiliation(s)
- S J Morley
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | |
Collapse
|
23
|
Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 1997; 16:1909-20. [PMID: 9155017 PMCID: PMC1169794 DOI: 10.1093/emboj/16.8.1909] [Citation(s) in RCA: 760] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases bind tightly to many of their physiologically relevant substrates. We have identified a new subfamily of murine serine/threonine kinases, whose members, MAP kinase-interacting kinase 1 (Mnk1) and Mnk2, bind tightly to the growth factor-regulated MAP kinases, Erk1 and Erk2. MNK1, but not Mnk2, also binds strongly to the stress-activated kinase, p38. MNK1 complexes more strongly with inactive than active Erk, implying that Mnk and Erk may dissociate after mitogen stimulation. Erk and p38 phosphorylate MNK1 and Mnk2, which stimulates their in vitro kinase activity toward a substrate, eukaryotic initiation factor-4E (eIF-4E). Initiation factor eIF-4E is a regulatory phosphoprotein whose phosphorylation is increased by insulin in an Erk-dependent manner. In vitro, MNK1 rapidly phosphorylates eIF-4E at the physiologically relevant site, Ser209. In cells, Mnk1 is post-translationally modified and enzymatically activated in response to treatment with either peptide growth factors, phorbol esters, anisomycin or UV. Mitogen- and stress-mediated MNK1 activation is blocked by inhibitors of MAP kinase kinase 1 (Mkk1) and p38, demonstrating that Mnk1 is downstream of multiple MAP kinases. MNK1 may define a convergence point between the growth factor-activated and one of the stress-activated protein kinase cascades and is a candidate to phosphorylate eIF-4E in cells.
Collapse
Affiliation(s)
- A J Waskiewicz
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
24
|
Ohlmann T, Pain VM, Wood W, Rau M, Morley SJ. The proteolytic cleavage of eukaryotic initiation factor (eIF) 4G is prevented by eIF4E binding protein (PHAS-I; 4E-BP1) in the reticulocyte lysate. EMBO J 1997; 16:844-55. [PMID: 9049313 PMCID: PMC1169685 DOI: 10.1093/emboj/16.4.844] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A common feature of viral infection is the subversion of the host cell machinery towards the preferential translation of viral products. In some instances, this is partly mediated by the expression of virally encoded proteases which lead to the cleavage of initiation factor eIF4G. The foot-and-mouth disease virus encodes two forms of a cysteine proteinase (L protease) which bisects the eIF4G polypeptide into an N-terminal fragment containing the eIF4E binding site, and a C-terminal fragment which contains binding sites for eIF4A and eIF3 and which associates with the 40S ribosomal subunit. Previously, we have demonstrated that the cleavage of eIF4G by L protease stimulates the translation of uncapped transcripts encoding cellular proteins and supports internal initiation driven by picornavirus internal ribosome entry segment (IRES) elements. Use of reticulocyte lysates manipulated to deplete them of eIF4E and the N-terminal fragment suggests that the C-terminal fragment of eIF4G is responsible for these effects, and we have now confirmed this by purifying the C-terminal fragment and analysing its effects directly in the absence of L protease. Interestingly, we find that pre-incubation of reticulocyte lysates or ribosomal salt wash fractions with the specific eIF4E binding protein, PHAS-I (eIF4E-BP1), blocks the proteolytic cleavage of eIF4G by L protease. This effect can be reversed by addition of recombinant eIF4E. These data are consistent with a model whereby the L protease cleavage site in eIF4G is inaccessible until a change in conformation is induced by the binding of eIF4E. This may have implications for a role for eIF4E binding in triggering changes that expose other domains in the eIF4G molecule during initiation of translation.
Collapse
Affiliation(s)
- T Ohlmann
- Department of Biochemistry, School of Biological Sciences, University of Sussex, Brighton, UK
| | | | | | | | | |
Collapse
|
25
|
Polunovsky VA, Rosenwald IB, Tan AT, White J, Chiang L, Sonenberg N, Bitterman PB. Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol Cell Biol 1996; 16:6573-81. [PMID: 8887686 PMCID: PMC231659 DOI: 10.1128/mcb.16.11.6573] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There is increasing evidence that cell cycle transit is potentially lethal, with survival depending on the activation of metabolic pathways which block apoptosis. However, the identities of those pathways coupling cell cycle transit to survival remain undefined. Here we show that the eukaryotic translation initiation factor 4E (eIF4E) can mediate both proliferative and survival signaling. Overexpression of eIF4E completely substituted for serum or individual growth factors in preserving the viability of established NIH 3T3 fibroblasts. An eIF4E mutant (Ser-53 changed to Ala) defective in mediating its growth-factor-regulated functions was also defective in its survival signaling. Survival signaling by enforced expression of eIF4E did not result from autocrine release of survival factors, nor did it lead to increased expression of the apoptosis antagonists Bcl-2 and Bcl-XL. In addition, the execution apparatus of the apoptotic response in eIF4E-overexpressing cells was found to be intact. Increased expression of eIF4E was sufficient to inhibit apoptosis in serum-restricted primary fibroblasts with enforced expression of Myc. In contrast, activation of Ha-Ras, which is required for eIF4E proliferative signaling, did not suppress Myc-induced apoptosis. These data suggest that the eIF4E-activated pathways leading to survival and cell cycle progression are distinct. This dual signaling of proliferation and survival might be the basis for the potency of eIF4E as an inducer of neoplastic transformation.
Collapse
Affiliation(s)
- V A Polunovsky
- Pulmonary and Critical Care Division, Department of Medicine, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Protein synthesis in both eukaryotic and prokaryotic cells is a complex process requiring a large number of macromolecules: initiation factors, elongation factors, termination factors, ribosomes, mRNA, amino-acylsynthetases and tRNAs. This review focuses on our current knowledge of protein synthesis in higher plants.
Collapse
Affiliation(s)
- K S Browning
- Department of Chemistry and Biochemistry, University of Texas at Austin 78712, USA
| |
Collapse
|
27
|
Morino S, Hazama H, Ozaki M, Teraoka Y, Shibata S, Doi M, Ueda H, Ishida T, Uesugi S. Analysis of the mRNA cap-binding ability of human eukaryotic initiation factor-4E by use of recombinant wild-type and mutant forms. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:597-601. [PMID: 8774702 DOI: 10.1111/j.1432-1033.1996.0597u.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to identify the amino acid residues necessary for the selective recognition of the mRNA cap structure by human eukaryotic initiation factor-4E (eIF-4E), which plays a central role in the first step of mRNA translation, we prepared recombinant wild-type and fourteen mutant forms and compared their cap-binding abilities by affinity chromatography. By the direct expression of a synthetic gene encoding human eIF-4E as the soluble form in Escherichia coli and the application on a 7-methylguanosine-5'-triphosphate-Sepharose 4B cap affinity column, pure recombinant eIF-4E was prepared; the optimum pH for the binding of the mRNA cap was 7.5. Among the amino acid residues conserved among various eIF-4E species, each of 14 functional residues was replaced with a nonpolar amino acid (alanine or leucine). All mutant eIF-4E genes, which were constructed by site-directed mutagenesis, were expressed in the same way as the wild type, and their cap-binding abilities were compared with that of the wild type. Consequently, all eight tryptophan residues. Glu103, and two histidine residues at positions 37 and 200 in human recombinant eIF-4E were suggested to be important for the recognition of the mRNA cap structure through direct interaction and/or indirect contributions. Indirect contributions included the construction of the overall protein structure, especially the cap-binding pocket.
Collapse
Affiliation(s)
- S Morino
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Flynn A, Proud G. Insulin-stimulated phosphorylation of initiation factor 4E is mediated by the MAP kinase pathway. FEBS Lett 1996; 389:162-6. [PMID: 8766822 DOI: 10.1016/0014-5793(96)00564-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cap-binding initiation factor 4E (eIF4E) is regulated by phosphorylation and by the inhibitory binding protein 4E-BP1. Here we show that insulin-induced phosphorylation of eIF4E is not significantly affected by rapamycin, but is sensitive to wortmannin, which inhibits phosphatidylinositol 3'-kinase and blocks the activation of MAP kinase. Since PD098059, an inhibitor of MAP kinase activation, also blocks insulin-induced phosphorylation of eIF4E, the MAP kinase pathway seems to mediate this effect. Phosphorylated eIF4E can still bind to 4E-BP1. These data illustrate that (i) distinct signalling pathways mediate the phosphorylation of eIF4E and 4E-BP1 and (ii) phosphorylation of eIF4E, unlike that of 4E-BP1, does not lead directly to the release of 4E-BP1.
Collapse
Affiliation(s)
- A Flynn
- Department of Biosciences, University of Kent at Canterbury, UK
| | | |
Collapse
|
29
|
Li M, Makkinje A, Damuni Z. Molecular identification of I1PP2A, a novel potent heat-stable inhibitor protein of protein phosphatase 2A. Biochemistry 1996; 35:6998-7002. [PMID: 8679524 DOI: 10.1021/bi960581y] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The amino acid sequences of two tryptic peptides derived from purified preparations of I1PP2A indicated that this potent heat-stable protein inhibitor of protein phosphatase 2A (PP2A) may be equivalent to putative histocompatibility leukocyte antigens class II-associated protein I (PHAP-I). Experiments using purified preparations of recombinant human PHAP-I confirmed that this protein inhibited PP2A. Half-maximal inhibition of the phosphatase occurred at about 4 nM PHAP-I, similar to the half-maximal inhibition obtained with purified preparations of bovine kidney I1PP2A. In addition, PHAP-I did not affect the activities of protein phosphatase 1, 2B, and 2C in a manner analogous to that of I1PP2A. Together, the results establish the identity of I1PP2A on a firm basis.
Collapse
Affiliation(s)
- M Li
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, 17033, USA
| | | | | |
Collapse
|
30
|
Whalen SG, Gingras AC, Amankwa L, Mader S, Branton PE, Aebersold R, Sonenberg N. Phosphorylation of eIF-4E on serine 209 by protein kinase C is inhibited by the translational repressors, 4E-binding proteins. J Biol Chem 1996; 271:11831-7. [PMID: 8662663 DOI: 10.1074/jbc.271.20.11831] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Translation initiation in eukaryotes is facilitated by the mRNA 5' cap structure (m7GpppX, where X is any nucleotide) that binds the multisubunit initiation factor eIF4F through one of its subunits, eIF4E. eIF4E is a phosphoprotein whose phosphorylation state positively correlates with cell growth. Protein kinase C phosphorylates eIF4E in vitro, and possibly in vivo. Using recombinant eIF4E incubated in vitro with purified protein kinase C and analyzed by solid-phase phosphopeptide sequencing in combination with high performance liquid chromatography coupled to mass spectrometry, we demonstrated that the third amino acid of the peptide SGSTTK (Ser209) is the major site of phosphorylation. This finding is consistent with the newly assigned in vivo phosphorylation site of eIF4E (Joshi, B., Cai, A. L., Keiper, B. D., Minich, W. B., Mendez, R., Beach, C. M., Stepinski, J., Stolarski, R., Darzynkiewicz, E., and Rhoads, R. E. (1995) J. Biol. Chem. 270, 14597-14603). A S209A mutation resulted in dramatically reduced phosphorylation, both in vitro and in vivo. Furthermore, the mutant protein was phosphorylated on threonine (most probably threonine 210) in vivo. Here we show that in the presence of the recently characterized translational repressors 4E-BP1 or 4E-BP2, phosphorylation of eIF4E by protein kinase C is strongly reduced. This suggests a two-step model for the phosphorylation (and activation) of eIF4E by growth factors and hormones: first, dissociation of eIF4E from 4E-BPs, followed by eIF4E phosphorylation.
Collapse
Affiliation(s)
- S G Whalen
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Li M, Makkinje A, Damuni Z. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 1996; 271:11059-62. [PMID: 8626647 DOI: 10.1074/jbc.271.19.11059] [Citation(s) in RCA: 369] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two potent heat-stable protein phosphatase 2A (PP2A) inhibitor proteins designated I1PP2A and I2PP2A have been purified to apparent homogeneity from extracts of bovine kidney (Li, M., Guo, H., and Damuni, Z. (1995) Biochemistry 34, 1988-1996). N-terminal and internal amino acid sequencing indicated that I2PP2A was a truncated form of SET, a largely nuclear protein that is fused to nucleoporin Nup214 in acute non-lymphocytic myeloid leukemia. Experiments using purified preparations of recombinant human SET confirmed that this protein inhibited PP2A. Half-maximal inhibition of the phosphatase occurred at about 2 nM SET. By contrast, SET (up to 20 nM) did not affect the activities of purified preparations of protein phosphatases 1, 2B, and 2C. The results indicate that SET is a potent and specific inhibitor of PP2A and suggest that impaired regulation of PP2A may contribute to acute myeloid leukemogenesis.
Collapse
Affiliation(s)
- M Li
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033, USA
| | | | | |
Collapse
|
32
|
Wada H, Ivester CT, Carabello BA, Cooper G, McDermott PJ. Translational initiation factor eIF-4E. A link between cardiac load and protein synthesis. J Biol Chem 1996; 271:8359-64. [PMID: 8626533 DOI: 10.1074/jbc.271.14.8359] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To define the coupling mechanism between cardiac load and the rate of protein synthesis, changes in the extent of eIF-4E phosphorylation were measured after imposition of a load. Electrically stimulated contraction of adult feline cardiocytes increased eIF-4E phosphorylation to 34% after 4 h, as compared with 8% phosphorylation in quiescent controls. However, eIF-4E phosphorylation did not increase upon electrical stimulation in the presence of 7.5 mM 2,3-butanedione monoxime, an inhibitor of actin-myosin cross-bridge cycling and active tension development. Treatment of adult cardiocytes with either 0.1 microM insulin or 0.1 microM phorbol 12-myristate 13-acetate increased eIF-4E phosphorylation to 23 and 64%, respectively, but these increases were not blocked by 2,3-butanedione monoxime. In canine models of acute hemodynamic overload in vivo, eIF-4E phosphorylation increased to 23% in response to left ventricular pressure overload as compared with 7% phosphorylation in controls. Acute volume overload had no effect on eIF-4E phosphorylation. These changes in eIF-4E phosphorylation account for differences in anabolic responses to acute pressure versus acute volume overload. These data suggest that eIF-4E phosphorylation is a mechanism by which increased cardiac load is coupled to accelerated rates of protein synthesis.
Collapse
Affiliation(s)
- H Wada
- Department of Medicine, Gazes Cardiac Research Institute and Veterans Administration Medical Center, Charleston, South Carolina 29401-5799, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
It is becoming increasingly apparent that translational control plays an important role in the regulation of gene expression in eukaryotic cells. Most of the known physiological effects on translation are exerted at the level of polypeptide chain initiation. Research on initiation of translation over the past five years has yielded much new information, which can be divided into three main areas: (a) structure and function of initiation factors (including identification by sequencing studies of consensus domains and motifs) and investigation of protein-protein and protein-RNA interactions during initiation; (b) physiological regulation of initiation factor activities and (c) identification of features in the 5' and 3' untranslated regions of messenger RNA molecules that regulate the selection of these mRNAs for translation. This review aims to assess recent progress in these three areas and to explore their interrelationships.
Collapse
Affiliation(s)
- V M Pain
- School of Biological Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
34
|
Flynn A, Proud CG. Insulin and phorbol ester stimulate initiation factor eIF-4E phosphorylation by distinct pathways in Chinese hamster ovary cells overexpressing the insulin receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:40-7. [PMID: 8617284 DOI: 10.1111/j.1432-1033.1996.00040.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have developed a one-dimensional isoelectric focusing technique to measure changes in the steady-state phosphorylation of the cap-binding initiation factor, eIF-4E. We have used a Chinese hamster ovary cell line transfected with the human insulin receptor (CHO.T cells) to study the regulation of eIF-4E phosphorylation by insulin and other stimuli. Exposure of CHO.T cells to insulin, phorbol ester or serum resulted in a rapid increase (up to twofold) in eIF-4E phosphorylation. As a control, we have also performed experiments with the parental cell line, CHO.K1 cells, in which both serum and phorbol ester, but not nanomolar concentrations of insulin, produce similar changes in eIF-4E phosphorylation. We have used two complementary approaches to study the role of protein kinase C (PKC) in these responses: a highly specific inhibitor of PKC and down-regulation of PKC by prior treatment of the cells with phorbol ester. In CHO.T cells, both approaches indicate that PKC is required for the response to phorbol ester but that insulin and serum each increase eIF-4E phosphorylation by a mechanism(s) independent of this protein kinase. Similarly, PKC is necessary for the effects of phorbol ester, but not of serum, on eIF-4E phosphorylation in CHO.K1 cells. These data indicate that multiple signal transduction mechanisms are involved in the modulation of eIF-4E phosphorylation and the implications of these findings are discussed.
Collapse
Affiliation(s)
- A Flynn
- Department of Biosciences, University of Kent at Canterbury, United Kingdom
| | | |
Collapse
|
35
|
Kimball SR, Jefferson LS, Fadden P, Haystead TA, Lawrence JC. Insulin and diabetes cause reciprocal changes in the association of eIF-4E and PHAS-I in rat skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C705-9. [PMID: 8779938 DOI: 10.1152/ajpcell.1996.270.2.c705] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the roles of eukaryotic initiation factor 4E (eIF-4E), the cap-binding protein, and the translational regulator, PHAS-I, in the effects of insulin and alloxan-induced diabetes on protein synthesis in rat skeletal muscle. Diabetes increased the amount of eIF-4E found in the inactive PHAS-I.eIF-4E complex by threefold, explaining in part the inhibitory effect of insulin deficiency on translation initiation. Insulin treatment of diabetic rats caused dissociation of the complex, consistent with the action of the hormone on reversing the inhibitory effect of diabetes on translation initiation. The effects of both insulin and diabetes on PHAS-I binding to eIF-4E appeared to be due to changes in PHAS-I phosphorylation. Neither insulin nor diabetes changed the phosphorylation state of eIF-4E. The results indicate that the effects of both insulin and diabetes on protein synthesis in skeletal muscle involve modulation of the interaction of PHAS-I and eIF-4E.
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey 17033, USA
| | | | | | | | | |
Collapse
|