1
|
Miyazawa M, Bogdan AR, Tsuji Y. Perturbation of Iron Metabolism by Cisplatin through Inhibition of Iron Regulatory Protein 2. Cell Chem Biol 2018; 26:85-97.e4. [PMID: 30449675 DOI: 10.1016/j.chembiol.2018.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 06/29/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
Cisplatin is classically known to exhibit anticancer activity through DNA damage in the nucleus. Here we found a mechanism by which cisplatin affects iron metabolism, leading to toxicity and cell death. Cisplatin causes intracellular iron deficiency through direct inhibition of the master regulator of iron metabolism, iron regulatory protein 2 (IRP2) with marginal effects on IRP1. Cisplatin, but not carboplatin or transplatin, binds human IRP2 at Cys512 and Cys516 and impairs IRP2 binding to iron-responsive elements of ferritin and transferrin receptor-1 (TfR1) mRNAs. IRP2 inhibition by cisplatin caused ferritin upregulation and TfR1 downregulation leading to sustained intracellular iron deficiency. Cys512/516Ala mutant IRP2 made cells more resistant to cisplatin. Furthermore, combination of cisplatin and the iron chelator desferrioxamine enhanced cytotoxicity through augmented iron depletion in culture and xenograft mouse model. Collectively, cisplatin is an inhibitor of IRP2 that induces intracellular iron deficiency.
Collapse
Affiliation(s)
- Masaki Miyazawa
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA.
| | - Alexander R Bogdan
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Niu L, Ye C, Sun Y, Peng T, Yang S, Wang W, Li H. Mutant huntingtin induces iron overload via up-regulating IRP1 in Huntington's disease. Cell Biosci 2018; 8:41. [PMID: 30002810 PMCID: PMC6033216 DOI: 10.1186/s13578-018-0239-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Background Iron accumulation in basal ganglia accompanies neuronal loss in Huntington’s disease (HD) patients and mouse disease models. Disruption of HD brain iron homeostasis occurs before the onset of clinical signs. Therefore, investigating the mechanism of iron accumulation is essential to understanding its role in disease pathogenesis. Methods N171-82Q HD transgenic mice brain iron was detected by using Diaminobenzidine-enhanced Perls’ stain. Iron homeostatic proteins including iron response protein 1 (IRP1), transferrin (Tf), ferritin and transferrin receptor (TfR) were determined by using western blotting and immunohistochemistry, and their relative expression levels of RNA were measured by RT-PCR in both N171-82Q HD transgenic mice and HEK293 cells expressing N-terminal of huntingtin. Results Iron was increased in striatum and cortex of N171-82Q HD transgenic mice. Analysis of iron homeostatic proteins revealed increased expression of IRP1, Tf, ferritin and TfR in N171-82Q mice striatum and cortex. The same results were obtained in HEK293 cells expressing N-terminal of mutant huntingtin containing 160 CAG repeats. Conclusion We conclude that mutant huntingtin may cause abnormal iron homeostatic pathways by increasing IRP1 expression in Huntington’s disease, suggesting potential therapeutic target.
Collapse
Affiliation(s)
- Li Niu
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Cuifang Ye
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| | - Yun Sun
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Ting Peng
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,3Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| | - Shiming Yang
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Weixi Wang
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - He Li
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,3Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| |
Collapse
|
3
|
Ogura M, Endo R, Ishikawa H, Takeda Y, Uchida T, Iwai K, Kobayashi K, Ishimori K. Redox-dependent axial ligand replacement and its functional significance in heme-bound iron regulatory proteins. J Inorg Biochem 2018; 182:238-248. [PMID: 29449016 DOI: 10.1016/j.jinorgbio.2018.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
Abstract
Iron regulatory proteins (IRPs), regulators of iron metabolism in mammalian cells, control the translation of proteins involved in iron uptake, storage and utilization by binding to specific iron-responsive element (IRE) sequences of mRNAs. Two homologs of IRPs (IRP1 and IRP2) have a typical heme regulatory motif (HRM), a consensus sequence found in "heme-regulated proteins". However, specific heme binding to HRM has been reported only for IRP2, which is essential for oxidative modification and loss of binding to target mRNAs. In this paper, we confirmed that IRP1 also specifically binds two molar equivalents of heme, and found that the absorption and resonance Raman spectra of heme-bound IRP1 were quite similar to those of heme-bound IRP2. This shows that the heme environmental structures in IRP1 are close to those of proteins using heme as a regulatory molecule. Pulse radiolysis experiments, however, clearly revealed an axial ligand exchange from Cys to His immediately after the reduction of the heme iron to form a 5-coordinate His-ligated heme in heme-bound IRP2, whereas the 5-coordinate His-ligated heme was not observed after the reduction of heme-bound IRP1. Considering that the oxidative modification is only observed in heme-bound IRP2, but not IRP1, probably owing to the structural flexibility of IRP2, we propose that the transient 5-coordinate His-ligated heme is a prerequisite for oxidative modification of heme-bound IRP2, which functionally differentiates heme binding of IRP2 from that of IRP1.
Collapse
Affiliation(s)
- Mariko Ogura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryosuke Endo
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Haruto Ishikawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Yukiko Takeda
- Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuhiro Iwai
- Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
4
|
Holmes-Hampton GP, Ghosh MC, Rouault TA. Methods for Studying Iron Regulatory Protein 1: An Important Protein in Human Iron Metabolism. Methods Enzymol 2017; 599:139-155. [PMID: 29746238 DOI: 10.1016/bs.mie.2017.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are two cytosolic proteins that maintain cellular iron homeostasis by regulating the expression of genes involved in iron metabolism. IRPs respond to cellular iron deficiency by binding to iron-responsive elements (IREs) found in the mRNAs of iron metabolism transcripts, enhancing iron import, and reducing iron storage, utilization, and export. IRP1, a bifunctional protein, exists in equilibrium between a [Fe4S4] cluster containing cytosolic aconitase, and an apoprotein that binds to IREs. At high cellular iron levels, this equilibrium is shifted more toward iron-sulfur cluster containing aconitase, whereas IRP2 undergoes proteasomal degradation by an E3 ubiquitin ligase complex that contains an F-box protein, FBXL5. Irp1-/- mice develop polycythemia and pulmonary hypertension, whereas Irp2-/- mice develop microcytic anemia and progressive neurodegeneration, indicating that Irp1 has important functions in the erythropoietic and pulmonary systems, and Irp2 has essential roles in supporting erythropoiesis and nervous system functions. Mice lacking both Irp1 and Irp2 die during embryogenesis, suggesting that functions of Irp1 and Irp2 are redundant. In this review, we will focus on the methods for studying IRP1 activities and function in cells and animals.
Collapse
Affiliation(s)
- Gregory P Holmes-Hampton
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Manik C Ghosh
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States.
| |
Collapse
|
5
|
Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1347-59. [PMID: 25843914 DOI: 10.1016/j.bbadis.2015.03.011] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/05/2015] [Accepted: 03/27/2015] [Indexed: 12/18/2022]
Abstract
Iron is essential for several vital biological processes. Its deficiency or overload drives to the development of several pathologies. To maintain iron homeostasis, the organism controls the dietary iron absorption by enterocytes, its recycling by macrophages and storage in hepatocytes. These processes are mainly controlled by hepcidin, a liver-derived hormone which synthesis is regulated by iron levels, inflammation, infection, anemia and erythropoiesis. Besides the systemic regulation of iron metabolism mediated by hepcidin, cellular regulatory processes also occur. Cells are able to regulate themselves the expression of the iron metabolism-related genes through different post-transcriptional mechanisms, such as the alternative splicing, microRNAs, the IRP/IRE system and the proteolytic cleavage. Whenever those mechanisms are disturbed, due to genetic or environmental factors, iron homeostasis is disrupted and iron related pathologies may arise.
Collapse
Affiliation(s)
- Bruno Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal.
| |
Collapse
|
6
|
Abstract
SIGNIFICANCE Inflammation and immunity can be associated with varying degrees of heme release from hemoproteins, eventually leading to cellular and tissue iron (Fe) overload, oxidative stress, and tissue damage. Presumably, these deleterious effects contribute to the pathogenesis of systemic infections. RECENT ADVANCES Heme release from hemoglobin sensitizes parenchyma cells to undergo programmed cell death in response to proinflammatory cytokines, such as tumor necrosis factor. This cytotoxic effect is driven by a mechanism involving intracellular accumulation of free radicals, which sustain the activation of the c-Jun N-terminal kinase (JNK) signaling transduction pathway. While heme catabolism by heme oxygenase-1 (HO-1) prevents programmed cell death, this cytoprotective effect requires the co-expression of ferritin H (heart/heavy) chain (FTH), which controls the pro-oxidant effect of labile Fe released from the protoporphyrin IX ring of heme. This antioxidant effect of FTH restrains JNK activation, whereas JNK activation inhibits FTH expression, a cross talk that controls metabolic adaptation to cellular Fe overload associated with systemic infections. CRITICAL ISSUES AND FUTURE DIRECTIONS Identification and characterization of the mechanisms via which FTH provides metabolic adaptation to tissue Fe overload should provide valuable information to our current understanding of the pathogenesis of systemic infections as well as other immune-mediated inflammatory diseases.
Collapse
|
7
|
Pang YY, Schwartz J, Bloomberg S, Boyd JM, Horswill AR, Nauseef WM. Methionine sulfoxide reductases protect against oxidative stress in Staphylococcus aureus encountering exogenous oxidants and human neutrophils. J Innate Immun 2013; 6:353-64. [PMID: 24247266 DOI: 10.1159/000355915] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
To establish infection successfully, Staphylococcus aureus must evade clearance by polymorphonuclear neutrophils (PMN). We studied the expression and regulation of the methionine sulfoxide reductases (Msr) that are involved in the repair of oxidized staphylococcal proteins and investigated their influence on the fate of S. aureus exposed to oxidants or PMN. We evaluated a mutant deficient in msrA1 and msrB for susceptibility to hydrogen peroxide, hypochlorous acid and PMN. The expression of msrA1 in wild-type bacteria ingested by human PMN was assessed by real-time PCR. The regulation of msr was studied by screening a library of two-component regulatory system (TCS) mutants for altered msr responses. Relative to the wild-type bacteria, bacteria deficient in Msr were more susceptible to oxidants and PMN. Upregulation of staphylococcal msrA1 occurred within the phagosomes of normal PMN and PMN deficient in NADPH oxidase activity. Furthermore, PMN granule-rich extract stimulated the upregulation of msrA1. Modulation of msrA1 within PMN was shown to be partly dependent on the VraSR TCS. Msr contributes to staphylococcal responses to oxidative attack and PMN. Our study highlights a novel interaction between the oxidative protein repair pathway and the VraSR TCS that is involved in cell wall homeostasis.
Collapse
Affiliation(s)
- Yun Yun Pang
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function. J Mol Med (Berl) 2013; 91:871-81. [PMID: 23455710 PMCID: PMC3695688 DOI: 10.1007/s00109-013-1008-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/08/2013] [Accepted: 02/04/2013] [Indexed: 02/07/2023]
Abstract
Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to cis-regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded valuable insights into iron biology, but the physiological consequences of gain of IRP function in mammalian organisms have remained unexplored. Here, we report the generation of a mouse line allowing conditional expression of a constitutively active IRP1 mutant (IRP1*) using Cre/Lox technology. Systemic activation of the IRP1* transgene from the Rosa26 locus yields viable animals with gain of IRE-binding activity in all the organs analyzed. IRP1* activation alters the expression of IRP target genes and is accompanied by iron loading in the same organs. Furthermore, mice display macrocytic erythropenia with decreased hematocrit and hemoglobin levels as well as impaired erythroid differentiation. Thus, inappropriately high IRP1 activity causes disturbed body iron distribution and erythropoiesis. This new mouse model further highlights the importance of appropriate IRP regulation in central organs of iron metabolism. Moreover, it opens novel avenues to study diseases associated with abnormally high IRP1 activity, such as Parkinson’s disease or Friedreich’s ataxia.
Collapse
|
9
|
Pham DQD, Winzerling JJ. Insect ferritins: Typical or atypical? Biochim Biophys Acta Gen Subj 2010; 1800:824-33. [PMID: 20230873 DOI: 10.1016/j.bbagen.2010.03.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/22/2010] [Accepted: 03/07/2010] [Indexed: 02/07/2023]
Abstract
Insects transmit millions of cases of disease each year, and cost millions of dollars in agricultural losses. The control of insect-borne diseases is vital for numerous developing countries, and the management of agricultural insect pests is a very serious business for developed countries. Control methods should target insect-specific traits in order to avoid non-target effects, especially in mammals. Since insect cells have had a billion years of evolutionary divergence from those of vertebrates, they differ in many ways that might be promising for the insect control field-especially, in iron metabolism because current studies have indicated that significant differences exist between insect and mammalian systems. Insect iron metabolism differs from that of vertebrates in the following respects. Insect ferritins have a heavier mass than mammalian ferritins. Unlike their mammalian counterparts, the insect ferritin subunits are often glycosylated and are synthesized with a signal peptide. The crystal structure of insect ferritin also shows a tetrahedral symmetry consisting of 12 heavy chain and 12 light chain subunits in contrast to that of mammalian ferritin that exhibits an octahedral symmetry made of 24 heavy chain and 24 light chain subunits. Insect ferritins associate primarily with the vacuolar system and serve as iron transporters-quite the opposite of the mammalian ferritins, which are mainly cytoplasmic and serve as iron storage proteins. This review will discuss these differences.
Collapse
Affiliation(s)
- Daphne Q D Pham
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 531412000, USA
| | | |
Collapse
|
10
|
Buis CI, van der Steege G, Visser DS, Nolte IM, Hepkema BG, Nijsten M, Slooff MJH, Porte RJ. Heme oxygenase-1 genotype of the donor is associated with graft survival after liver transplantation. Am J Transplant 2008; 8:377-85. [PMID: 18093274 DOI: 10.1111/j.1600-6143.2007.02048.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heme oxygenase-1 (HO-1) has been suggested as a cytoprotective gene during liver transplantation. Inducibility of HO-1 is modulated by a (GT)(n) polymorphism and a single nucleotide polymorphism (SNP) A(-413)T in the promoter. Both a short (GT)(n) allele and the A-allele have been associated with increased HO-1 promoter activity. In 308 liver transplantations, we assessed donor HO-1 genotype and correlated this with outcome variables. For (GT)(n) genotype, livers were divided into two classes: short alleles (<25 repeats; class S) and long alleles (> or =25 repeats; class L). In a subset, hepatic messenger ribonucleic acid (mRNA) expression was correlated with genotypes. Graft survival at 1 year was significantly better for A-allele genotype compared to TT-genotype (84% vs. 63%, p = 0.004). Graft loss due to primary dysfunction (PDF) occurred more frequently in TT-genotype compared to A-receivers (p = 0.03). Recipients of a liver with TT-genotype had significantly higher serum transaminases after transplantation and hepatic HO-1 mRNA levels were significantly lower compared to the A-allele livers (p = 0.03). No differences were found for any outcome variable between class S and LL-variant of the (GT)(n) polymorphism. Haplotype analysis confirmed dominance of the A(-413)T SNP over the (GT)(n) polymorphism. In conclusion, HO-1 genotype is associated with outcome after liver transplantation. These findings suggest that HO-1 mediates graft survival after liver transplantation.
Collapse
Affiliation(s)
- C I Buis
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are mammalian proteins that register cytosolic iron concentrations and post-transcriptionally regulate expression of iron metabolism genes to optimize cellular iron availability. In iron-deficient cells, IRPs bind to iron-responsive elements (IREs) found in the mRNAs of ferritin, the transferrin receptor and other iron metabolism transcripts, thereby enhancing iron uptake and decreasing iron sequestration. IRP1 registers cytosolic iron status mainly through an iron-sulfur switch mechanism, alternating between an active cytosolic aconitase form with an iron-sulfur cluster ligated to its active site and an apoprotein form that binds IREs. Although IRP2 is homologous to IRP1, IRP2 activity is regulated primarily by iron-dependent degradation through the ubiquitin-proteasomal system in iron-replete cells. Targeted deletions of IRP1 and IRP2 in animals have demonstrated that IRP2 is the chief physiologic iron sensor. The physiological role of the IRP-IRE system is illustrated by (i) hereditary hyperferritinemia cataract syndrome, a human disease in which ferritin L-chain IRE mutations interfere with IRP binding and appropriate translational repression, and (ii) a syndrome of progressive neurodegenerative disease and anemia that develops in adult mice lacking IRP2. The early death of mouse embryos that lack both IRP1 and IRP2 suggests a central role for IRP-mediated regulation in cellular viability.
Collapse
Affiliation(s)
- Tracey A Rouault
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18T, Room 101, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
12
|
Geiser DL, Zhang D, Winzerling JJ. Secreted ferritin: mosquito defense against iron overload? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:177-87. [PMID: 16503479 DOI: 10.1016/j.ibmb.2005.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/28/2005] [Accepted: 12/07/2005] [Indexed: 05/06/2023]
Abstract
The yellow fever mosquito, Aedes aegypti, must blood feed in order to complete her life cycle. The blood meal provides a high level of iron that is required for egg development. We are interested in developing control strategies that interfere with this process. We show that A. aegypti larval cells synthesize and secrete ferritin in response to iron exposure. Cytoplasmic ferritin is maximal at low levels of iron, consists of both the light chain (LCH) and heavy chain (HCH) subunits and reflects cytoplasmic iron levels. Secreted ferritin increases in direct linear relationship to iron dose and consists primarily of HCH subunits. Although the messages for both subunits increase with iron treatment, our data indicate that mosquito HCH synthesis could be partially controlled at the translational level as well. Importantly, we show that exposure of mosquito cells to iron at low concentrations increases cytoplasmic iron, while higher iron levels results in a decline in cytoplasmic iron levels indicating that excess iron is removed from mosquito cells. Our work indicates that HCH synthesis and ferritin secretion are key factors in the response of mosquito cells to iron exposure and could be the primary mechanisms that allow these insects to defend against an intracellular iron overload.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Science, College of Agriculture and Life Sciences and Center for Insect Science, University of Arizona, 1177 East 4th Street, Shantz Building, Room 405, Tucson, AZ 85721-0038, USA.
| | | | | |
Collapse
|
13
|
Schranzhofer M, Schifrer M, Cabrera JA, Kopp S, Chiba P, Beug H, Müllner EW. Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis. Blood 2006; 107:4159-67. [PMID: 16424395 DOI: 10.1182/blood-2005-05-1809] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terminal erythropoiesis is accompanied by extreme demand for iron to ensure proper hemoglobinization. Thus, erythroblasts must modify the "standard" post-transcriptional feedback regulation, balancing expression of ferritin (Fer; iron storage) versus transferrin receptor (TfR1; iron uptake) via specific mRNA binding of iron regulatory proteins (IRPs). Although erythroid differentiation involves high levels of incoming iron, TfR1 mRNA stability must be sustained and Fer mRNA translation must not be activated because iron storage would counteract hemoglobinization. Furthermore, translation of the erythroid-specific form of aminolevulinic acid synthase (ALAS-E) mRNA, catalyzing the first step of heme biosynthesis and regulated similarly as Fer mRNA by IRPs, must be ensured. We addressed these questions using mass cultures of primary murine erythroid progenitors from fetal liver, either undergoing sustained proliferation or highly synchronous differentiation. We indeed observed strong inhibition of Fer mRNA translation and efficient ALAS-E mRNA translation in differentiating erythroblasts. Moreover, in contrast to self-renewing cells, TfR1 stability and IRP mRNA binding were no longer modulated by iron supply. These and additional data stemming from inhibition of heme synthesis with succinylacetone or from iron overload suggest that highly efficient utilization of iron in mitochondrial heme synthesis during normal erythropoiesis alters the regulation of iron metabolism via the IRE/IRP system.
Collapse
Affiliation(s)
- Matthias Schranzhofer
- Department of Medical Biochemistry, Division of Molecular Biology, Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Medical University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
14
|
Clarke SL, Vasanthakumar A, Anderson SA, Pondarré C, Koh CM, Deck KM, Pitula JS, Epstein CJ, Fleming MD, Eisenstein RS. Iron-responsive degradation of iron-regulatory protein 1 does not require the Fe-S cluster. EMBO J 2006; 25:544-53. [PMID: 16424901 PMCID: PMC1383537 DOI: 10.1038/sj.emboj.7600954] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 12/19/2005] [Indexed: 11/08/2022] Open
Abstract
The generally accepted role of iron-regulatory protein 1 (IRP1) in orchestrating the fate of iron-regulated mRNAs depends on the interconversion of its cytosolic aconitase and RNA-binding forms through assembly/disassembly of its Fe-S cluster, without altering protein abundance. Here, we show that IRP1 protein abundance can be iron-regulated. Modulation of IRP1 abundance by iron did not require assembly of the Fe-S cluster, since a mutant with all cluster-ligating cysteines mutated to serine underwent iron-induced protein degradation. Phosphorylation of IRP1 at S138 favored the RNA-binding form and promoted iron-dependent degradation. However, phosphorylation at S138 was not required for degradation. Further, degradation of an S138 phosphomimetic mutant was not blocked by mutation of cluster-ligating cysteines. These findings were confirmed in mouse models with genetic defects in cytosolic Fe-S cluster assembly/disassembly. IRP1 RNA-binding activity was primarily regulated by IRP1 degradation in these animals. Our results reveal a mechanism for regulating IRP1 action relevant to the control of iron homeostasis during cell proliferation, inflammation, and in response to diseases altering cytosolic Fe-S cluster assembly or disassembly.
Collapse
Affiliation(s)
- Stephen L Clarke
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | | | - Sheila A Anderson
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Corinne Pondarré
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Cheryl M Koh
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Kathryn M Deck
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Joseph S Pitula
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Charles J Epstein
- Department of Pediatrics and Center for Human Genetics, University of California, San Francisco, CA, USA
| | - Mark D Fleming
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard S Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA. Tel.: +1 608 262 5830; Fax: +1 608 262 5860; E-mail:
| |
Collapse
|
15
|
Liew YF, Shaw NS. Mitochondrial cysteine desulfurase iron-sulfur cluster S and aconitase are post-transcriptionally regulated by dietary iron in skeletal muscle of rats. J Nutr 2005; 135:2151-8. [PMID: 16140891 DOI: 10.1093/jn/135.9.2151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cysteine desulfurase IscS is required for cellular iron-sulfur protein maturation in eukaryotes and prokaryotes. In this study, we examined the effect of dietary iron intake on the expression in rat skeletal muscle of IscS in relation to 2 iron-sulfur proteins, cytosolic aconitase (c-aconitase) and mitochondrial aconitase (m-aconitase). Three groups of male weanling Wistar rats were used; 1 group was fed an iron-deficient diet (D), and the other 2 groups were pair-fed (P) or freely fed (C) a control (35 mg Fe/kg diet) diet for 1 or 2 wk. At the end of wk 1 and 2, the mitochondrial IscS protein levels in the skeletal muscle of iron-deficient rats had decreased to 45 and 50% of those of the control and pair-fed rats, respectively, whereas the IscS mRNA levels did not differ among the 3 groups, indicating that iron deficiency affected the expression of IscS protein at the post-transcriptional level. Iron deficiency caused a 55-76% reduction in c-aconitase activity and an approximately 50% reduction in the c-aconitase protein level. The m-aconitase activity and protein level in iron-deficient rats also declined to 50 and 58-64% of the control levels, respectively. Our results indicate that dietary iron modulates mitochondrial IscS protein and aconitase at the post-transcriptional level, and mitochondrial IscS may be associated with this regulation of aconitase in skeletal muscle.
Collapse
Affiliation(s)
- Yih-Fong Liew
- Institute of Microbiology and Biochemistry, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
16
|
Geuken E, Buis CI, Visser DS, Blokzijl H, Moshage H, Nemes B, Leuvenink HGD, de Jong KP, Peeters PMJG, Slooff MJH, Porte RJ. Expression of heme oxygenase-1 in human livers before transplantation correlates with graft injury and function after transplantation. Am J Transplant 2005; 5:1875-85. [PMID: 15996234 DOI: 10.1111/j.1600-6143.2005.00960.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Upregulation of heme oxygenase-1 (HO-1) has been proposed as an adaptive mechanism protecting against ischemia/reperfusion (I/R) injury. We investigated HO-1 expression in 38 human liver transplants and correlated this with I/R injury and graft function. Before transplantation, median HO-1 mRNA levels were 3.4-fold higher (range: 0.7-9.3) in donors than in normal controls. Based on the median value, livers were divided into two groups: low and high HO-1 expression. These groups had similar donor characteristics, donor serum transaminases, cold ischemia time, HSP-70 expression and the distribution of HO-1 promoter polymorphism. After reperfusion, HO-1 expression increased significantly further in the initial low HO-1 expression group, but not in the high HO-1 group. Postoperatively, serum transaminases were significantly lower and the bile salt secretion was higher in the initial low HO-1 group, compared to the high expression group. Immunofluorescence staining identified Kupffer cells as the main localization of HO-1. In conclusion, human livers with initial low HO-1 expression (<3.4 times controls) are able to induce HO-1 further during reperfusion and are associated with less injury and better function than initial high HO-1 expression (>3.4 times controls). These data suggest that an increase in HO-1 during transplantation is more protective than high HO-1 expression before transplantation.
Collapse
Affiliation(s)
- Erwin Geuken
- Section Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Malaguarnera L, Madeddu R, Palio E, Arena N, Malaguarnera M. Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J Hepatol 2005; 42:585-91. [PMID: 15763346 DOI: 10.1016/j.jhep.2004.11.040] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/23/2004] [Accepted: 11/25/2004] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Non-alcoholic steatohepatitis (NASH) is a disorder that is histologically characterized by macrovesicular steatosis and lobular hepatitis with necrosis or ballooning degeneration and fibrosis. NASH can range from a benign condition to end-stage liver disease. The mechanisms promoting transition from steatosis to NASH appear to involve multiple cellular adaptations to the oxidative stress occurring when fatty acid metabolism is altered. We evaluated the relationship between lipid peroxidation and other oxidative stress biomarkers with changes in expression of heme oxygenase-1 (HO-1) in human hepatic steatosis ranging from simple steatosis to NASH. METHODS HO-1 expression, lipid peroxidation, ferritin and GSH levels were assayed from liver biopsies obtained from 60 subjects: 35 with NASH, 15 with simple steatosis and 10 controls. RESULTS The HO-1 expression was significantly increased in NASH patients and the increase reflected the severity of the disease. A significant correlation was observed between the increased levels of HO-1 and ferritin, and between the increased levels of HO-1 and lipid peroxidation. Moreover, NASH patients with lower levels of GSH exhibited higher expression of HO-1. CONCLUSIONS The induction of HO-1 is an adaptive response against oxidative damage elicited by lipid peroxidation and it may be critical in the progression of the disease.
Collapse
Affiliation(s)
- Lucia Malaguarnera
- Department of Biomedical Sciences, University of Catania, Via E. De Amicis, 24, 95039 Trecastagni-Catania, Italy.
| | | | | | | | | |
Collapse
|
18
|
Meyron-Holtz EG, Ghosh MC, Rouault TA. Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 2005; 306:2087-90. [PMID: 15604406 DOI: 10.1126/science.1103786] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The iron-regulatory proteins (IRPs) posttranscriptionally regulate expression of transferrin receptor, ferritin, and other iron metabolism proteins. Although both IRPs can regulate expression of the same target genes, IRP2-/- mice significantly misregulate iron metabolism and develop neurodegeneration, whereas IRP1-/- mice are spared. We found that IRP2-/- cells misregulated iron metabolism when cultured in 3 to 6% oxygen, which is comparable to physiological tissue concentrations, but not in 21% oxygen, a concentration that activated IRP1 and allowed it to substitute for IRP2. Thus, IRP2 dominates regulation of mammalian iron homeostasis because it alone registers iron concentrations and modulates its RNA-binding activity at physiological oxygen tensions.
Collapse
Affiliation(s)
- Esther G Meyron-Holtz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
19
|
Gonzalez D, Drapier JC, Bouton C. Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on IRP-1 functions. J Biol Chem 2004; 279:43345-51. [PMID: 15258160 DOI: 10.1074/jbc.m401889200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron regulatory protein-1 (IRP-1) is a bifunctional [4Fe-4S] protein that functions as a cytosolic aconitase or as a trans-regulatory factor controlling iron homeostasis at a post-transcriptional level. Because IRP-1 is a sensitive target protein for nitric oxide (NO), we investigated whether this protein is nitrated in inflammatory macrophages and whether this post-transcriptional modification changes its activities. RAW 264.7 macrophages were first stimulated with interferon-gamma and lipopolysaccharide (IFN-gamma/LPS) and then triggered by phorbol 12-myristate 13-acetate (PMA) in order to promote co-generation of NO* and O*2-.. IRP-1 was isolated by immunoprecipitation and analyzed for protein-bound nitrotyrosine by Western blotting. We show that nitration of endogenous IRP-1 in NO-producing macrophages boosted to produce O*2- was accompanied by aconitase inhibition and impairment of its capacity to bind the iron-responsive element (IRE) of ferritin mRNA. Lost IRE-binding activity was not recovered by exposure of IRP-1 to 2% 2-mercaptoethanol and was not due to protein degradation. Inclusion of cis-aconitate with cell extract to stabilize the [4Fe-4S] cluster of holo-IRP-1 rendered protein insensitive to nitration by peroxynitrite, suggesting that loss of [Fe-S] cluster and subsequent change of conformation are prerequisites for tyrosine nitration. IRP-1 nitration was strongly reduced when IFN-gamma/LPS/PMA-stimulated cells were incubated with myeloperoxidase inhibitors, which points to the contribution of the nitrite/H2O2/peroxidase pathway to IRP-1 nitration in vivo. Interestingly, under these conditions, IRP-1 recovered full IRE binding as assessed by treatment with 2% 2-mercaptoethanol. Peroxidase-mediated nitration of critical tyrosine residues, by holding IRP-1 in an inactive state, may constitute, in activated macrophages, a self-protecting mechanism against iron-induced toxicity.
Collapse
Affiliation(s)
- Deyarina Gonzalez
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
20
|
Abstract
Cellular iron homeostasis is accomplished by the coordinated regulated expression of the transferrin receptor and ferritin, which mediate iron uptake and storage, respectively. The mechanism is posttranscriptional and involves two cytoplasmic iron regulatory proteins, IRP1 and IRP2. Under conditions of iron starvation, IRPs stabilize the transferrin receptor and inhibit the translation of ferritin mRNAs by binding to "iron responsive elements" (IREs) within their untranslated regions. The IRE/IRP system also controls the expression of additional IRE-containing mRNAs, encoding proteins of iron and energy metabolism. The activities of IRP1 and IRP2 are regulated by distinct posttranslational mechanisms in response to cellular iron levels. Thus, in iron-replete cells, IRP1 assembles a cubane iron-sulfur cluster, which prevents IRE binding, while IRP2 undergoes proteasomal degradation. IRP1 and IRP2 also respond, albeit differentially, to iron-independent signals, such as hydrogen peroxide, hypoxia, or nitric oxide. Basic principles of the IRE/IRP system and recent advances in understanding the regulation and the function of IRP1 and IRP2 are discussed.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, Land W, Ollivierre-Wilson H, Grinberg A, Love P, Rouault TA. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 2004; 23:386-95. [PMID: 14726953 PMCID: PMC1271751 DOI: 10.1038/sj.emboj.7600041] [Citation(s) in RCA: 305] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 11/25/2003] [Indexed: 01/04/2023] Open
Abstract
The two iron regulatory proteins IRP1 and IRP2 bind to transcripts of ferritin, transferrin receptor and other target genes to control the expression of iron metabolism proteins at the post-transcriptional level. Here we compare the effects of genetic ablation of IRP1 to IRP2 in mice. IRP1-/- mice misregulate iron metabolism only in the kidney and brown fat, two tissues in which the endogenous expression level of IRP1 greatly exceeds that of IRP2, whereas IRP2-/- mice misregulate the expression of target proteins in all tissues. Surprisingly, the RNA-binding activity of IRP1 does not increase in animals on a low-iron diet that is sufficient to activate IRP2. In animal tissues, most of the bifunctional IRP1 is in the form of cytosolic aconitase rather than an RNA-binding protein. Our findings indicate that the small RNA-binding fraction of IRP1, which is insensitive to cellular iron status, contributes to basal mammalian iron homeostasis, whereas IRP2 is sensitive to iron status and can compensate for the loss of IRP1 by increasing its binding activity. Thus, IRP2 dominates post-transcriptional regulation of iron metabolism in mammals.
Collapse
Affiliation(s)
| | - Manik C Ghosh
- Cell Biology and Metabolism Branch, Bethesda, MD, USA
| | - Kazuhiro Iwai
- Cell Biology and Metabolism Branch, Bethesda, MD, USA
| | | | | | | | - William Land
- Cell Biology and Metabolism Branch, Bethesda, MD, USA
| | | | - Alex Grinberg
- Laboratory of Mammalian Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Paul Love
- Laboratory of Mammalian Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | |
Collapse
|
22
|
Widera A, Norouziyan F, Shen WC. Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 2003; 55:1439-66. [PMID: 14597140 DOI: 10.1016/j.addr.2003.07.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transferrin receptor has been an important protein for many of the advances made in understanding the intricacies of the intramolecular sorting pathways of endocytosed molecules. The unique internalization and recycling functions of transferrin receptor have also made it an attractive choice for drug targeting and delivery of large protein-based therapeutics and toxins. Recent advances in elucidating the role of the intracellular controllers of transferrin recycling and sorting, such as Rab proteins and their effectors, have led to enhancement of transferrin receptor as a drug delivery vehicle. This review focuses on the use of transferrin receptor as an agent for facilitating drug delivery and targeting, and the role that mechanisms of transferrin receptor sorting and transcytosis play in these events.
Collapse
Affiliation(s)
- A Widera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, PSC 404B, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
23
|
Bouton C, Drapier JC. Iron regulatory proteins as NO signal transducers. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:pe17. [PMID: 12746546 DOI: 10.1126/stke.2003.182.pe17] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The iron regulatory proteins (IRPs) are an example of different proteins regulating the same metabolic process, iron uptake and metabolism. IRP1 is an iron-sulfur cluster-containing protein that can be converted from a cytosolic aconitase to an RNA binding posttranscriptional regulator in response to nitric oxide (NO). IRP2 lacks aconitase activity and its expression is decreased by NO signaling. In macrophages, NO is produced in response to such inflammatory ligands as interferon-gamma, which is expressed in response to mitogenic and antigenic stimuli, and lipopolysaccharide, a marker of bacterial invasion. Until recently, research results predict that the cellular response to increased NO production should be a decrease in ferritin synthesis, due to IRP1 binding to ferritin mRNA, and an increase in transferrin receptor biosynthesis, due to IRP1 binding to the transferrin mRNA. Surprisingly, however, macrophages exhibit decreased transferrin receptor concentration in response to inflammatory ligands. Bouton and Drapier discuss the physiological role and the mechanisms that may underlie this contradictory response.
Collapse
Affiliation(s)
- Cécile Bouton
- Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif-sur-Yvette, France.
| | | |
Collapse
|
24
|
Drake SK, Bourdon E, Wehr NB, Levine RL, Backlund PS, Yergey AL, Rouault TA. Numerous proteins in Mammalian cells are prone to iron-dependent oxidation and proteasomal degradation. Dev Neurosci 2003; 24:114-24. [PMID: 12401949 DOI: 10.1159/000065693] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanisms that underlie iron toxicity in cells and organisms are poorly understood. Previous studies of regulation of the cytosolic iron sensor, iron-regulatory protein 2 (IRP2), indicate that iron-dependent oxidation triggers ubiquitination and proteasomal degradation of IRP2. To determine if oxidization by iron is involved in degradation of other proteins, we have used a carbonyl assay to identify oxidized proteins in lysates from RD4 cells treated with either an iron source or iron chelator. Protein lysates from iron-loaded or iron-depleted cells were resolved on two-dimensional gels and these iron manipulations were also repeated in the presence of proteasomal inhibitors. Eleven abundant proteins were identified as prone to iron-dependent oxidation and subsequent proteasomal degradation. These proteins included two putative iron-binding proteins, hNFU1 and calreticulin; two proteins involved in metabolism of hydrogen peroxide, peroxiredoxin 2 and superoxide dismutase 1; and several proteins identified in inclusions in neurodegenerative diseases, including HSP27, UCHL1, actin and tropomyosin. Our results indicate that cells can recognize and selectively eliminate iron-dependently oxidized proteins, but unlike IRP2, levels of these proteins do not significantly decrease in iron-treated cells. As iron overload is a feature of many human neurological diseases, further characterization of the process of degradation of iron-dependently oxidized proteins may yield insights into mechanisms of human disease.
Collapse
Affiliation(s)
- Steven K Drake
- National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ito K, Ozasa H, Yoneya R, Horikawa S. Splenectomy ameliorates hepatic ischemia and reperfusion injury mediated by heme oxygenase-1 induction in the rat. LIVER 2002; 22:467-73. [PMID: 12445171 DOI: 10.1034/j.1600-0676.2002.01685.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND/AIMS Ischemia/reperfusion (I/R) induces severe organic injury. I/R injury seems to be mainly caused by oxidative stress. The aim of this study was to determine the role of the spleen in experimental hepatic I/R injury in the rat. Stress protein heme oxygenase (HO)-1 plays a protective role against the oxidative injury. In normal state, HO-1 is highly expressed in the spleen. METHODS Liver HO-1 expression was assessed by Western blot before and after splenects. Liver injury was assessed by measurement of ALT and AST and by histopathology. RESULTS Although HO-1 was not detected in normal liver, levels of HO-1 protein gradually increased and peaked on 3 days after splenectomy. When splenectomy was performed 3 days prior to the hepatic (45-min) ischemia followed by (2-h) reperfusion, the levels of serum aspartate transaminase (AST) and alanine transaminase (ALT), as markers for hepatic injury, were improved compared to the rats with I/R alone. In addition, prior administration of zinc-protoporphyrin IX, a specific inhibitor of HO, suppressed the protective effect of the splenectomy on the subsequent hepatic I/R injury. Histopathological examination also confirmed these results. CONCLUSIONS Our findings suggest that the elevated HO-1 levels by splenectomy play a protective role against hepatic I/R injury.
Collapse
Affiliation(s)
- Koji Ito
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
26
|
Rouault TA. Post-transcriptional regulation of human iron metabolism by iron regulatory proteins. Blood Cells Mol Dis 2002; 29:309-14. [PMID: 12547221 DOI: 10.1006/bcmd.2002.0571] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammalian iron metabolism, ferritin, transferrin receptor and several other iron metabolism genes are post-transcriptionally regulated. Iron regulatory proteins 1 and 2 are cytosolic proteins that bind to RNA stem-loops known as iron-responsive elements in several transcripts. We have studied the role of these proteins in knockout mice and discovered that misregulation of iron metabolism can be a primary cause of neurodegeneration.
Collapse
Affiliation(s)
- Tracey A Rouault
- Section on Human Iron Metabolism, Cell Biology and Metabolism Branch, NICHD/NIH, Building 18, Room 101, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Bouton C, Chauveau MJ, Lazereg S, Drapier JC. Recycling of RNA binding iron regulatory protein 1 into an aconitase after nitric oxide removal depends on mitochondrial ATP. J Biol Chem 2002; 277:31220-7. [PMID: 12039960 DOI: 10.1074/jbc.m203276200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron regulatory proteins (IRPs) control iron metabolism by specifically interacting with iron-responsive elements (IREs) on mRNAs. Nitric oxide (NO) converts IRP-1 from a [4Fe-4S] aconitase to a trans-regulatory protein through Fe-S cluster disassembly. Here, we have focused on the fate of IRE binding IRP1 from murine macrophages when NO flux stops. We show that virtually all IRP-1 molecules from NO-producing cells dissociated from IRE and recovered aconitase activity after re-assembling a [4Fe-4S] cluster in vitro. The reverse change in IRP-1 activities also occurred in intact cells no longer exposed to NO and did not require de novo protein synthesis. Likewise, inhibition of mitochondrial aconitase via NO-induced Fe-S cluster disassembly was also reversed independently of protein translation after NO removal. Our results provide the first evidence of Fe-S cluster repair of NO-modified aconitases in mammalian cells. Moreover, we show that reverse change in IRP-1 activities and repair of mitochondrial aconitase activity depended on energized mitochondria. Finally, we demonstrate that IRP-1 activation by NO was accompanied by both a drastic decrease in ferritin levels and an increase in transferrin receptor mRNA levels. However, although ferritin expression was recovered upon IRP-1-IRE dissociation, expression of transferrin receptor mRNA continued to rise for several hours after stopping NO flux.
Collapse
Affiliation(s)
- Cécile Bouton
- Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
28
|
Wang J, Pantopoulos K. Conditional derepression of ferritin synthesis in cells expressing a constitutive IRP1 mutant. Mol Cell Biol 2002; 22:4638-51. [PMID: 12052872 PMCID: PMC133884 DOI: 10.1128/mcb.22.13.4638-4651.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron regulatory protein 1 (IRP1), a major posttranscriptional regulator of cellular iron and energy metabolism, is controlled by an iron-sulfur cluster switch. Cysteine-437 is critical for coordinating the cluster, and its replacement yields mutants that do not respond to iron perturbations and constitutively bind to cognate mRNA iron-responsive elements (IREs). The expression of IRP1(C437S) in cells has been associated with aberrations in iron homeostasis and toxicity. We have established clones of human lung (H1299) and breast (MCF7) cancer cells that express high levels of IRP1(C437S) in a tetracycline-inducible manner. As expected, IRP1(C437S) stabilizes transferrin receptor mRNA and inhibits translation of ferritin mRNA in both cell types by binding to their respective IREs. However, H1299 transfectants grown at high densities are able to overcome the IRP1(C437S)-mediated inhibition in ferritin synthesis. The mechanism involves neither alteration in ferritin mRNA levels nor utilization of alternative transcription start sites to eliminate the IRE or relocate it in less inhibitory downstream positions. The derepression of ferritin mRNA translation occurs under conditions where global protein synthesis appears to be impaired, as judged by a significant enrichment in the expression of the underphosphorylated form of the translational regulator 4E-BP1. Collectively, these data document an example where ferritin mRNA translation evades control of the IRE-IRP system. The physiological implications of this response are reflected in protection against iron-mediated toxicity, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Jian Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
29
|
Walker BL, Tiong JW, Jefferies WA. Iron metabolism in mammalian cells. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 211:241-78. [PMID: 11597005 DOI: 10.1016/s0074-7696(01)11020-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Most living things require iron to exist. Iron has many functions within cells but is rarely found unbound because of its propensity to catalyze the formation of toxic free radicals. Thus the regulation of iron requirements by cells and the acquisition and uptake of iron into tissues in multicellular organisms is tightly regulated. In humans, understanding iron transport and utility has recently been advanced by a "great conjunction" of molecular genetics in simple organisms, identifying genes involved in genetic diseases of metal metabolism and by the application of traditional cell physiology approaches. We are now able to approach a rudimentary understanding of the "iron cycle" within mammals. In the future, this information will be applied toward modulating the outcome of therapies designed to overcome diseases involving metals.
Collapse
Affiliation(s)
- B L Walker
- Biomedical Research Centre, and Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
30
|
Abstract
The brain shares with other organs the need for a constant and readily available supply of iron and has a similar array of proteins available to it for iron transport, storage, and regulation. However, unlike other organs, the brain places demands on iron availability that are regional, cellular, and age sensitive. Failure to meet these demands for iron with an adequate supply in a timely manner can result in persistent neurological and cognitive dysfunction. Consequently, the brain has developed mechanisms to maintain a continuous supply of iron. However, in a number of common neurodegenerative disorders, there appears to be an excess accumulation of iron in the brain that suggests a loss of the homeostatic mechanisms responsible for regulating iron in the brain. These systems are reviewed in this article. As a result of a loss in iron homeostasis, the brain becomes vulnerable to iron-induced oxidative stress. Oxidative stress is a confounding variable in understanding the cell death that may result directly from a specific disease and is a contributing factor to the disease process. The underlying pathogenic event in oxidative stress is cellular iron mismanagement.
Collapse
Affiliation(s)
- K J Thompson
- Department of Neuroscience and Anatomy, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | |
Collapse
|
31
|
Abstract
Mammalian iron homeostasis is maintained through the concerted action of sensory and regulatory networks that modulate the expression of proteins of iron metabolism at the transcriptional and/or post-transcriptional levels. Regulation of gene transcription provides critical developmental, cell cycle, and cell-type-specific controls on iron metabolism. Post-transcriptional control through the action of iron regulatory protein 1 (IRP1) and IRP2 coordinate the use of messenger RNA-encoding proteins that are involved in the uptake, storage, and use of iron in all cells of the body. IRPs may also provide a link between iron availability and cellular citrate use. Multiple factors, including iron, nitric oxide, oxidative stress, phosphorylation, and hypoxia/reoxygenation, influence IRP function. Recent evidence indicates that there is diversity in the function of the IRP system with respect to the response of specific IRPs to the same effector, as well as the selectivity with which IRPs modulate the use of specific messenger RNA.
Collapse
Affiliation(s)
- R S Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
32
|
LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R, Grinberg A, Love P, Tresser N, Rouault TA. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 2001; 27:209-14. [PMID: 11175792 DOI: 10.1038/84859] [Citation(s) in RCA: 374] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammalian cells, regulation of the expression of proteins involved in iron metabolism is achieved through interactions of iron-sensing proteins known as iron regulatory proteins (IRPs), with transcripts that contain RNA stem-loop structures referred to as iron responsive elements (IREs). Two distinct but highly homologous proteins, IRP1 and IRP2, bind IREs with high affinity when cells are depleted of iron, inhibiting translation of some transcripts, such as ferritin, or turnover of others, such as the transferrin receptor (TFRC). IRPs sense cytosolic iron levels and modify expression of proteins involved in iron uptake, export and sequestration according to the needs of individual cells. Here we generate mice with a targeted disruption of the gene encoding Irp2 (Ireb2). These mutant mice misregulate iron metabolism in the intestinal mucosa and the central nervous system. In adulthood, Ireb2(-/-) mice develop a movement disorder characterized by ataxia, bradykinesia and tremor. Significant accumulations of iron in white matter tracts and nuclei throughout the brain precede the onset of neurodegeneration and movement disorder symptoms by many months. Ferric iron accumulates in the cytosol of neurons and oligodendrocytes in distinctive regions of the brain. Abnormal accumulations of ferritin colocalize with iron accumulations in populations of neurons that degenerate, and iron-laden oligodendrocytes accumulate ubiquitin-positive inclusions. Thus, misregulation of iron metabolism leads to neurodegenerative disease in Ireb2(-/-) mice and may contribute to the pathogenesis of comparable human neurodegenerative diseases.
Collapse
Affiliation(s)
- T LaVaute
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Iron is vital for almost all living organisms by participating in a wide variety of metabolic processes, including oxygen transport, DNA synthesis, and electron transport. However, iron concentrations in body tissues must be tightly regulated because excessive iron leads to tissue damage, as a result of formation of free radicals. Disorders of iron metabolism are among the most common diseases of humans and encompass a broad spectrum of diseases with diverse clinical manifestations, ranging from anemia to iron overload and, possibly, to neurodegenerative diseases. The molecular understanding of iron regulation in the body is critical in identifying the underlying causes for each disease and in providing proper diagnosis and treatments. Recent advances in genetics, molecular biology and biochemistry of iron metabolism have assisted in elucidating the molecular mechanisms of iron homeostasis. The coordinate control of iron uptake and storage is tightly regulated by the feedback system of iron responsive element-containing gene products and iron regulatory proteins that modulate the expression levels of the genes involved in iron metabolism. Recent identification and characterization of the hemochromatosis protein HFE, the iron importer Nramp2, the iron exporter ferroportin1, and the second transferrin-binding and -transport protein transferrin receptor 2, have demonstrated their important roles in maintaining body's iron homeostasis. Functional studies of these gene products have expanded our knowledge at the molecular level about the pathways of iron metabolism and have provided valuable insight into the defects of iron metabolism disorders. In addition, a variety of animal models have implemented the identification of many genetic defects that lead to abnormal iron homeostasis and have provided crucial clinical information about the pathophysiology of iron disorders. In this review, we discuss the latest progress in studies of iron metabolism and our current understanding of the molecular mechanisms of iron absorption, transport, utilization, and storage. Finally, we will discuss the clinical presentations of iron metabolism disorders, including secondary iron disorders that are either associated with or the result of abnormal iron accumulation.
Collapse
Affiliation(s)
- P T Lieu
- The R.W. Johnson Pharmaceutical Research Institute, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
34
|
Núñez MT, Tapia V, Toyokuni S, Okada S. Iron-induced oxidative damage in colon carcinoma (Caco-2) cells. Free Radic Res 2001; 34:57-68. [PMID: 11234996 DOI: 10.1080/10715760100300061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intestinal epithelial cells have an active apical iron uptake system that is involved in the regulated absorption of iron. By the action of this system, intestinal cells acquire increasing amounts of iron with time. Since intracellular reactive iron is a source of free radicals and a possible cause of colon carcinoma, this study analyzed the oxidative damages generated by iron accumulation in Caco-2 cells. Cells cultured with increasing concentrations of iron increased both total intracellular iron and the reactive iron pool, despite an active IRE/IRP system, which regulates intracellular iron levels. Increasing concentrations of iron resulted in increased protein oxidative damage, as shown by the immunoreactivity for 4-hydroxy-2-nonenal-modified proteins, and markedly induced DNA oxidation determined by 8-hydroxy-2'-deoxyguanidine production. Iron also impaired cell viability, resulting in increased cell death after 6 days of culture. In summary, iron accumulation by intestinal Caco-2 cells correlated with oxidative damage to proteins and DNA. Oxidative damage finally resulted in loss of cell viability. The Fe-induced oxidative damage observed may be relevant in understanding the cascade of events associated with iron-mediated colon carcinogenesis.
Collapse
Affiliation(s)
- M T Núñez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago.
| | | | | | | |
Collapse
|
35
|
Gárate MA, Núñez MT. Overexpression of the ferritin iron-responsive element decreases the labile iron pool and abolishes the regulation of iron absorption by intestinal epithelial (Caco-2) cells. J Biol Chem 2000; 275:1651-5. [PMID: 10636858 DOI: 10.1074/jbc.275.3.1651] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells regulate iron levels tightly through the activity of iron-regulatory proteins (IRPs) that bind to RNA motifs called iron-responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Likewise, intestinal epithelial cells regulate iron absorption by a process that also depends on the intracellular levels of iron. Although intestinal epithelial cells have an active IRE/IRP system, it has not been proven that this system is involved in the regulation of iron absorption in these cells. In this study, we characterized the effect of overexpression of the ferritin IRE on iron absorption by Caco-2 cells, a model of intestinal epithelial cells. Cells overexpressing ferritin IRE had increased levels of ferritin, whereas the levels of the transferrin receptor were decreased. Iron absorption in IRE-transfected cells was deregulated: iron uptake from the apical medium was increased, but the capacity to retain this newly incorporated iron diminished. Cells overexpressing IRE were not able to control iron absorption as a function of intracellular iron, because both iron-deficient cells as well as iron-loaded cells absorbed similarly high levels of iron. The labile iron pool of IRE-transfected cell was extremely low. Likewise, the reduction of the labile iron pool in control cells resulted in cells having increased iron absorption. These results indicate that cells overexpressing IRE do not regulate iron absorption, an effect associated with decreased levels of the regulatory iron pool.
Collapse
Affiliation(s)
- M A Gárate
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, and Millennium Institute for Advances Studies in Cell Biology and Biotechnology, Casilla 653, Santiago, Chile
| | | |
Collapse
|
36
|
Abstract
Iron regulatory protein 2 (IRP2) is one of the central regulators of iron homeostasis. IRP2 regulates expression of molecules involved in iron metabolism by binding to iron responsive elements (IREs) in the transcripts of those molecules in iron depletion. IRP2 is regulated by the accelerated degradation initiated by the iron-catalyzed oxidation. Here we report that aluminum antagonizes the iron-induced decrease in IRE binding activity of IRP2. Aluminum also inhibits iron-induced oxidation of IRP2 in vitro. These results suggest that aluminum stabilizes IRP2 by interfering with the iron-catalyzed oxidation, which results in perturbation of iron metabolism.
Collapse
Affiliation(s)
- K Yamanaka
- Department of Molecular and System Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
37
|
|
38
|
Abstract
Iron is an essential nutrient, yet excess iron can be toxic to cells. The uptake of iron by mammalian cells is post-transcriptionally regulated by the interaction of iron-response proteins (IRP1 and IRP2) with iron-response elements (IREs) found in the mRNAs of genes of iron metabolism, such as ferritin, the transferrin receptor, erythroid aminolevulinic acid synthase, and mitochondrial aconitase. The IRPs are RNA binding proteins that bind to the IRE (found in the mRNAs of the regulated genes) in an iron- dependent manner. Binding of IRPs to the IREs leads to changes in the expression of the regulated genes and subsequent changes in the uptake, utilization, or storage of intracellular iron. Recent work has demonstrated that the binding of the IRPs to the IREs can also be modulated by changes in the redox state or oxidative stress level of the cell. These findings provide an important link between iron metabolism and states of oxidative stress.
Collapse
Affiliation(s)
- D J Haile
- Department of Medicine, University of Texas Health Science Center at San Antonio, 78284-7880, USA
| |
Collapse
|
39
|
Thomson AM, Rogers JT, Leedman PJ. Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation. Int J Biochem Cell Biol 1999; 31:1139-52. [PMID: 10582343 DOI: 10.1016/s1357-2725(99)00080-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Iron plays a central role in the metabolism of all cells. This is evident by its major contribution to many diverse functions, such as DNA replication, bacterial pathogenicity, photosynthesis, oxidative stress control and cell proliferation. In mammalian systems, control of intracellular iron homeostasis is largely due to posttranscriptional regulation of binding by iron-regulatory RNA-binding proteins (IRPs) to iron-responsive elements (IREs) within ferritin and transferrin receptor (TfR) mRNAs. the TfR transports iron into cells and the iron is subsequently stored within ferritin. IRP binding is under tight control so that it responds to changes in intracellular iron requirements in a coordinate manner by differentially regulating ferritin mRNA translational efficiency and TfR mRNA stability. Several different stimuli, as well as intracellular iron levels and oxidative stress, are capable of regulating these RNA-protein interactions. In this mini-review, we shall concentrate on the mechanisms underlying modulation of the interaction of IRPs and the ferritin IRE and its role in regulating ferritin gene expression.
Collapse
Affiliation(s)
- A M Thomson
- Laboratory for Cancer Medicine, Royal Perth Hospital, WA, Australia.
| | | | | |
Collapse
|
40
|
Abstract
The aconitase protein of Bacillus subtilis was able to bind specifically to sequences resembling the iron response elements (IREs) found in eukaryotic mRNAs. The sequences bound include the rabbit ferritin IRE and IRE-like sequences in the B. subtilis operons that encode the major cytochrome oxidase and an iron uptake system. IRE binding activity was affected by the availability of iron both in vivo and in vitro. In eukaryotic cells, aconitase-like proteins regulate translation and stability of iron metabolism mRNAs in response to iron availability. A mutant strain of B. subtilis that produces an enzymatically inactive aconitase that was still able to bind RNA sporulated 40x more efficiently than did an aconitase null mutant, suggesting that a nonenzymatic activity of aconitase is important for sporulation. The results support the idea that bacterial aconitases, like their eukaryotic homologs, are bifunctional proteins, showing aconitase activity in the presence of iron and RNA binding activity when cells are iron-deprived.
Collapse
Affiliation(s)
- C Alén
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
41
|
MINOTTI GIORGIO, CAIRO GAETANO, MONTI ELENA. Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J 1999. [DOI: 10.1096/fasebj.13.2.199] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- GIORGIO MINOTTI
- Department of Pharmacology and PharmacognosyG. D'Annunzio University School of Pharmacy Chieti
| | - GAETANO CAIRO
- Department of General PathologyUniversity of Milan School of Medicine Milan
| | - ELENA MONTI
- Department of Structural and Functional BiologyUniversity of Insubria School of Sciences Varese Italy
| |
Collapse
|
42
|
Kühn LC. Iron and gene expression: molecular mechanisms regulating cellular iron homeostasis. Nutr Rev 1998; 56:s11-9; discussion s54-75. [PMID: 9564172 DOI: 10.1111/j.1753-4887.1998.tb01681.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In recent years, specific post-transcriptional mechanisms in the cytoplasm of vertebrate cells have been elucidated that directly affect the stability and translation of mRNAs coding for central proteins in iron metabolism. This review shall focus primarily on these mechanisms. Other levels of control, either affecting gene transcription and/ or related to the function of iron-capturing substances and transmembrane transport, are also likely to exist and to influence the iron balance and utilization. They are, however, much less clear.
Collapse
Affiliation(s)
- L C Kühn
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| |
Collapse
|
43
|
Menotti E, Henderson BR, Kühn LC. Translational regulation of mRNAs with distinct IRE sequences by iron regulatory proteins 1 and 2. J Biol Chem 1998; 273:1821-4. [PMID: 9430733 DOI: 10.1074/jbc.273.3.1821] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Iron regulatory proteins 1 and 2 (IRP-1, IRP-2) interact with iron-responsive elements (IREs) present in the 5'- or 3'-untranslated regions (UTR) of several mRNAs coding for proteins in iron metabolism. Whereas binding of IRP-1 and -2 to an IRE in the 5'-UTR inhibits mRNA translation in vitro, it has remained unknown whether either endogenous protein is sufficient to control translation in mammalian cells. We analyzed this question by taking advantage of published mutant IREs that are exclusively recognized by either IRP-1 or IRP-2 in vitro. These IREs were inserted into the 5'-UTR of a human growth hormone reporter mRNA, and translational regulation was measured in stably transfected mouse L cells. Cells cultured in iron-rich or -depleted medium were labeled with [35S]methionine, and secreted growth hormone was immunoprecipitated. IREs with loop sequence specific for IRP-1 (UAGUAC), IRP-2 (CCGAGC), or both proteins (GAGUCG and the wild-type CAGUGC sequence) all mediated translational regulation, in contrast to a control sequence (GCUCCG) that binds neither IRP-1 nor IRP-2. Control experiments excluded IRP-1 binding to the IRP-2-specific sequence in vivo. The present data demonstrate that IRP-1 and IRP-2 can independently function as translational repressors in living cells.
Collapse
Affiliation(s)
- E Menotti
- Swiss Institute for Experimental Cancer Research, Epalinges s/Lausanne, Switzerland
| | | | | |
Collapse
|
44
|
Richardson DR, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1331:1-40. [PMID: 9325434 DOI: 10.1016/s0304-4157(96)00014-7] [Citation(s) in RCA: 513] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Iron uptake by mammalian cells is mediated by the binding of serum Tf to the TfR. Transferrin is then internalized within an endocytotic vesicle by receptor-mediated endocytosis and the Fe released from the protein by a decrease in endosomal pH. Apart from this process, several cell types also have other efficient mechanisms of Fe uptake from Tf that includes a process consistent with non-specific adsorptive pinocytosis and a mechanism that is stimulated by small-Mr Fe complexes. This latter mechanism appears to be initiated by hydroxyl radicals generated by the Fe complexes, and may play a role in Fe overload disease where a significant amount of serum non-Tf-bound Fe exists. Apart from Tf-bound Fe uptake, mammalian cells also possess a number of mechanisms that can transport Fe from small-Mr Fe complexes into the cell. In fact, recent studies have demonstrated that the membrane-bound Tf homologue, MTf, can bind and internalize Fe from 59Fe-citrate. However, the significance of this Fe uptake process and its pathophysiological relevance remain uncertain. Iron derived from Tf or small-Mr complexes is probably transported into mammalian cells in the Fe(II) state. Once Fe passes through the membrane, it then becomes part of the poorly characterized intracellular labile Fe pool. Iron in the labile Fe pool that is not used for immediate requirements is stored within the Fe-storage protein, ferritin. Cellular Fe uptake and storage are coordinately regulated through a feedback control mechanism mediated at the post-transcriptional level by cytoplasmic factors known as IRP1 and IRP2. These proteins bind to stem-loop structures known as IREs on the 3 UTR of the TfR mRNA and 5 UTR of ferritin and erythroid delta-aminolevulinic acid synthase mRNAs. Interestingly, recent work has suggested that the short-lived messenger molecule, NO (or its by-product, peroxynitrite), can affect cellular Fe metabolism via its interaction with IRP1. Moreover, NO can decrease Fe uptake from Tf by a mechanism separate to its effects on IRP1, and NO may also be responsible for activated macrophage-mediated Fe release from target cells. On the other hand, the expression of inducible NOS which produces NO, can be stimulated by Fe chelators and decreased by the addition of Fe salts, suggesting that Fe is involved in the control of NOS expression.
Collapse
Affiliation(s)
- D R Richardson
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada.
| | | |
Collapse
|
45
|
White JH. Modified steroid receptors and steroid-inducible promoters as genetic switches for gene therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 40:339-67. [PMID: 9217930 DOI: 10.1016/s1054-3589(08)60144-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J H White
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Henderson BR, Kühn LC. Interaction between iron-regulatory proteins and their RNA target sequences, iron-responsive elements. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:117-39. [PMID: 8994263 DOI: 10.1007/978-3-642-60471-3_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this chapter, we have focused on the biochemistry of IRP-1 and the features which distinguish it from the related RNA-binding protein, IRP-2. IRP-1 is the cytoplasmic isoform of the enzyme aconitase, and, depending on iron status, may switch between enzymatic and RNA-binding activities. IRP-1 and IRP-2 are trans-acting regulators of mRNAs involved in iron uptake, storage and utilisation. The finding of an IRE in the citric acid cycle enzymes, mitochondrial aconitase and succinate dehydrogenase, suggests that the IRPs may also influence cellular energy production. These two proteins appear to bind RNAs with different but overlapping specificity, suggesting that they may regulate the stability or translation of as yet undefined mRNA targets, possibly extending their regulatory function beyond that of iron homeostasis. The interaction between the IRPs and the IRE represents one of the best characterised model systems for posttranscriptional gene control, and given that each IRP can also recognise its own unique set of RNAs, the search for new in vivo mRNA targets is expected to provide yet more surprises and insights into the fate of cytoplasmic mRNAs.
Collapse
|
47
|
Rouault T, Klausner R. Regulation of iron metabolism in eukaryotes. CURRENT TOPICS IN CELLULAR REGULATION 1997; 35:1-19. [PMID: 9192174 DOI: 10.1016/s0070-2137(97)80001-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Iron metabolism is regulated in cells to ensure that iron supplies are adequate and nontoxic. The expression of iron metabolism is regulated primarily by posttranscriptional mechanisms. Ferritin, eALAS, SDHb of Drosophila, and mammalian mitochondrial aconitase are translationally regulated. The TfR is regulated at the level of mRNA stability. Iron regulatory proteins are regulated either by assembly or by disassembly of an iron-sulfur cluster (IRP1) or by rapid degradation in the presence of iron (IRP2). The list of targets for IRP-mediated regulation is growing longer, and a range of possibilities for versatile regulation exists, as each IRP can bind to unique targets that differ from the consensus IRE. The reactivity of iron with oxygen and the creation of toxic by-products may be the evolutionary stimulus that produced this system of tight posttranscriptional gene regulation.
Collapse
Affiliation(s)
- T Rouault
- Cell Biology and Metabolism National Institutes of Child and Human Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
48
|
Abstract
Iron uptake and storage in mammalian cells is at least partly regulated at a post-transcriptional level by the iron regulatory proteins (IRP-1 and IRP-2). These cytoplasmic regulators share 79% similarity in protein sequence and bind tightly to conserved mRNA stem-loops, named iron-responsive elements (IREs). The IRP:IRE interaction underlies the regulation of translation and stability of several mRNAs central to iron metabolism. The question of why the cell requires two such closely related regulatory proteins may be resolved as we learn more about the expression and regulation of these proteins. It is evident so far that, despite similarities, the IRPs differ in several important respects. They are coordinately regulated by cellular iron, but whereas IRP-1 is inactivated by high iron levels, IRP-2 is rapidly degraded. Further differences arise in their expression and RNA-binding specificity. The two proteins each recognise a large repertoire of IRE-like sequences, including a small group of exclusive RNA targets. These findings hint that IRP-1 and IRP-2 may bind preferentially to certain mRNAs in vivo, possibly extending their known functions beyond the regulation of intracellular iron homeostasis.
Collapse
Affiliation(s)
- B R Henderson
- MRC Laboratory of Molecular Biology, Cambridge, England.
| |
Collapse
|
49
|
Hentze MW, Kühn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A 1996; 93:8175-82. [PMID: 8710843 PMCID: PMC38642 DOI: 10.1073/pnas.93.16.8175] [Citation(s) in RCA: 973] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.
Collapse
Affiliation(s)
- M W Hentze
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
50
|
Gray NK, Pantopoulos K, Dandekar T, Ackrell BA, Hentze MW. Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements. Proc Natl Acad Sci U S A 1996; 93:4925-30. [PMID: 8643505 PMCID: PMC39381 DOI: 10.1073/pnas.93.10.4925] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The posttranscriptional control of iron uptake, storage, and utilization by iron-responsive elements (IREs) and iron regulatory proteins (IRPs) provides a molecular framework for the regulation of iron homeostasis in many animals. We have identified and characterized IREs in the mRNAs for two different mitochondrial citric acid cycle enzymes. Drosophila melanogaster IRP binds to an IRE in the 5' untranslated region of the mRNA encoding the iron-sulfur protein (Ip) subunit of succinate dehydrogenase (SDH). This interaction is developmentally regulated during Drosophila embryogenesis. In a cell-free translation system, recombinant IRP-1 imposes highly specific translational repression on a reporter mRNA bearing the SDH IRE, and the translation of SDH-Ip mRNA is iron regulated in D. melanogaster Schneider cells. In mammals, an IRE was identified in the 5' untranslated regions of mitochondrial aconitase mRNAs from two species. Recombinant IRP-1 represses aconitase synthesis with similar efficiency as ferritin IRE-controlled translation. The interaction between mammalian IRPs and the aconitase IRE is regulated by iron, nitric oxide, and oxidative stress (H2O2), indicating that these three signals can control the expression of mitochondrial aconitase mRNA. Our results identify a regulatory link between energy and iron metabolism in vertebrates and invertebrates, and suggest biological functions for the IRE/IRP regulatory system in addition to the maintenance of iron homeostasis.
Collapse
Affiliation(s)
- N K Gray
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|