1
|
Wohlfert AJ, Phares J, Granholm AC. The mTOR Pathway: A Common Link Between Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:6183. [PMID: 39458132 PMCID: PMC11508835 DOI: 10.3390/jcm13206183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Down syndrome (DS) is a chromosomal condition that causes many systemic dysregulations, leading to several possible age-related diseases including Alzheimer's disease (AD). This may be due to the triplication of the Amyloid precursor protein (APP) gene or other alterations in mechanistic pathways, such as the mTOR pathway. Impairments to upstream regulators of mTOR, such as insulin, PI3K/AKT, AMPK, and amino acid signaling, have been linked to amyloid beta plaques (Aβ) and neurofibrillary tangles (NFT), the most common AD pathologies. However, the mechanisms involved in the progression of pathology in human DS-related AD (DS-AD) are not fully investigated to date. Recent advancements in omics platforms are uncovering new insights into neurodegeneration. Genomics, spatial transcriptomics, proteomics, and metabolomics are novel methodologies that provide more data in greater detail than ever before; however, these methods have not been used to analyze the mTOR pathways in connection to DS-AD. Using these new techniques can unveil unexpected insights into pathological cellular mechanisms through an unbiased approach.
Collapse
Affiliation(s)
- Abigail J. Wohlfert
- Department of Modern Human Anatomy and Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| |
Collapse
|
2
|
Development of inhibitors targeting glycogen synthase kinase-3β for human diseases: Strategies to improve selectivity. Eur J Med Chem 2022; 236:114301. [PMID: 35390715 DOI: 10.1016/j.ejmech.2022.114301] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a conserved serine/threonine kinase that participates in the transmission of multiple signaling pathways and plays an important role in the occurrence and development of human diseases, such as metabolic diseases, neurological diseases and cancer, making it to be a potential and promising drug target. To date, copious GSK-3β inhibitors have been synthesized, but only few have entered clinical trials. Most of them exerts poor selectivity, concomitant off-target effects and side effects. This review summarizes the structural characteristics, biological functions and relationship with diseases of GSK-3β, as well as the selectivity profile and therapeutic potential of different categories of GSK-3β inhibitors. Strategies for increasing selectivity and reducing adverse effects are proposed for the future design of GSK-3β inhibitors.
Collapse
|
3
|
Starchenko A, Graves-Deal R, Brubaker D, Li C, Yang Y, Singh B, Coffey RJ, Lauffenburger DA. Cell surface integrin α5ß1 clustering negatively regulates receptor tyrosine kinase signaling in colorectal cancer cells via glycogen synthase kinase 3. Integr Biol (Camb) 2021; 13:153-166. [PMID: 34037774 PMCID: PMC8204629 DOI: 10.1093/intbio/zyab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
As a key process within the tissue microenvironment, integrin signaling can influence cell functional responses to growth factor stimuli. We show here that clustering of integrin α5ß1 at the plasma membrane of colorectal cancer-derived epithelial cells modulates their ability to respond to stimulation by receptor tyrosine kinase (RTK)-activating growth factors EGF, NRG and HGF, through GSK3-mediated suppression of Akt pathway. We observed that integrin α5ß1 is lost from the membrane of poorly organized human colorectal tumors and that treatment with the integrin-clustering antibody P4G11 is sufficient to induce polarity in a mouse tumor xenograft model. While adding RTK growth factors (EGF, NRG and HGF) to polarized colorectal cancer cells induced invasion and loss of monolayer formation in 2D and 3D, this pathological behavior could be blocked by P4G11. Phosphorylation of ErbB family members as well as MET following EGF, NRG and HGF treatment was diminished in cells pretreated with P4G11. Focusing on EGFR, we found that blockade of integrin α5ß1 increased EGFR phosphorylation. Since activity of multiple downstream kinase pathways were altered by these various treatments, we employed computational machine learning techniques to ascertain the most important effects. Partial least-squares discriminant analysis identified GSK3 as a major regulator of EGFR pathway activities influenced by integrin α5ß1. Moreover, we used partial correlation analysis to examine signaling pathway crosstalk downstream of EGF stimulation and found that integrin α5ß1 acts as a negative regulator of the AKT signaling cascade downstream of EGFR, with GSK3 acting as a key mediator. We experimentally validated these computational inferences by confirming that blockade of GSK3 activity is sufficient to induce loss of polarity and increase of oncogenic signaling in the colonic epithelial cells.
Collapse
Affiliation(s)
- Alina Starchenko
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Ramona Graves-Deal
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Douglas Brubaker
- Purdue University, Department of Biomedical Engineering, West Lafayette, IN, USA
| | - Cunxi Li
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Yuping Yang
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Bhuminder Singh
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Robert J Coffey
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Douglas A Lauffenburger
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| |
Collapse
|
4
|
Chen C, Li S, Xue J, Qi M, Liu X, Huang Y, Hu J, Dong H, Ling K. PD-L1 tumor-intrinsic signaling and its therapeutic implication in triple-negative breast cancer. JCI Insight 2021; 6:131458. [PMID: 33884962 PMCID: PMC8119208 DOI: 10.1172/jci.insight.131458] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Although the immune checkpoint role of programmed death ligand 1 (PD-L1) has been established and targeted in cancer immunotherapy, the tumor-intrinsic role of PD-L1 is less appreciated in tumor biology and therapeutics development, partly because of the incomplete mechanistic understanding. Here we demonstrate a potentially novel mechanism by which PD-L1 promotes the epithelial-mesenchymal transition (EMT) in triple-negative breast cancer (TNBC) cells by suppressing the destruction of the EMT transcription factor Snail. PD-L1 directly binds to and inhibits the tyrosine phosphatase PTP1B, thus preserving p38-MAPK activity that phosphorylates and inhibits glycogen synthase kinase 3β (GSK3β). Via this mechanism, PD-L1 prevents the GSK3β-mediated phosphorylation, ubiquitination, and degradation of Snail and consequently promotes the EMT and metastatic potential of TNBC. Significantly, PD-L1 antibodies that confine the tumor-intrinsic PD-L1/Snail pathway restricted TNBC progression in immunodeficient mice. More importantly, targeting both tumor-intrinsic and tumor-extrinsic functions of PD-L1 showed strong synergistic tumor suppression effect in an immunocompetent TNBC mouse model. Our findings support that PD-L1 intrinsically facilitates TNBC progression by promoting the EMT, and this potentially novel PD-L1 signaling pathway could be targeted for better clinical management of PD-L1–overexpressing TNBCs.
Collapse
Affiliation(s)
- Chunhua Chen
- Department of Biochemistry and Molecular Biology
| | - Shiheng Li
- Department of Biochemistry and Molecular Biology
| | - Junli Xue
- Department of Biochemistry and Molecular Biology
| | - Manlong Qi
- Department of Biochemistry and Molecular Biology
| | - Xin Liu
- Departments of Urology and Immunology, and
| | - Yan Huang
- Department of Biochemistry and Molecular Biology.,Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology.,Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kun Ling
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
5
|
He R, Du S, Lei T, Xie X, Wang Y. Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncol Rep 2020; 44:2373-2385. [PMID: 33125126 PMCID: PMC7610307 DOI: 10.3892/or.2020.7817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glycogen synthase kinase 3β (GSK 3β), a multifunctional serine and threonine kinase, plays a critical role in a variety of cellular activities, including signaling transduction, protein and glycogen metabolism, cell proliferation, cell differentiation, and apoptosis. Therefore, aberrant regulation of GSK 3β results in a broad range of human diseases, such as tumors, diabetes, inflammation and neurodegenerative diseases. Accumulating evidence has suggested that GSK 3β is correlated with tumorigenesis and progression. However, GSK 3β is controversial due to its bifacial roles of tumor suppression and activation. In addition, overexpression of GSK 3β is involved in tumor growth, whereas it contributes to the cell sensitivity to chemotherapy. However, the underlying regulatory mechanisms of GSK 3β in tumorigenesis remain obscure and require further in‑depth investigation. In this review, we comprehensively summarize the roles of GSK 3β in tumorigenesis and oncotherapy, and focus on its potentials as an available target in oncotherapy.
Collapse
Affiliation(s)
- Rui He
- Department of Union, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Tiantian Lei
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing 400013, P.R. China
| | - Xiaofang Xie
- Department of Medicine, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Yi Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Duda P, Hajka D, Wójcicka O, Rakus D, Gizak A. GSK3β: A Master Player in Depressive Disorder Pathogenesis and Treatment Responsiveness. Cells 2020; 9:cells9030727. [PMID: 32188010 PMCID: PMC7140610 DOI: 10.3390/cells9030727] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β), originally described as a negative regulator of glycogen synthesis, is a molecular hub linking numerous signaling pathways in a cell. Specific GSK3β inhibitors have anti-depressant effects and reduce depressive-like behavior in animal models of depression. Therefore, GSK3β is suggested to be engaged in the pathogenesis of major depressive disorder, and to be a target and/or modifier of anti-depressants’ action. In this review, we discuss abnormalities in the activity of GSK3β and its upstream regulators in different brain regions during depressive episodes. Additionally, putative role(s) of GSK3β in the pathogenesis of depression and the influence of anti-depressants on GSK3β activity are discussed.
Collapse
|
7
|
Bernard-Gauthier V, Mossine AV, Knight A, Patnaik D, Zhao WN, Cheng C, Krishnan HS, Xuan LL, Chindavong PS, Reis SA, Chen JM, Shao X, Stauff J, Arteaga J, Sherman P, Salem N, Bonsall D, Amaral B, Varlow C, Wells L, Martarello L, Patel S, Liang SH, Kurumbail RG, Haggarty SJ, Scott PJH, Vasdev N. Structural Basis for Achieving GSK-3β Inhibition with High Potency, Selectivity, and Brain Exposure for Positron Emission Tomography Imaging and Drug Discovery. J Med Chem 2019; 62:9600-9617. [PMID: 31535859 PMCID: PMC6883410 DOI: 10.1021/acs.jmedchem.9b01030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using structure-guided design, several cell based assays, and microdosed positron emission tomography (PET) imaging, we identified a series of highly potent, selective, and brain-penetrant oxazole-4-carboxamide-based inhibitors of glycogen synthase kinase-3 (GSK-3). An isotopologue of our first-generation lead, [3H]PF-367, demonstrates selective and specific target engagement in vitro, irrespective of the activation state. We discovered substantial ubiquitous GSK-3-specific radioligand binding in Tg2576 Alzheimer's disease (AD), suggesting application for these compounds in AD diagnosis and identified [11C]OCM-44 as our lead GSK-3 radiotracer, with optimized brain uptake by PET imaging in nonhuman primates. GSK-3β-isozyme selectivity was assessed to reveal OCM-51, the most potent (IC50 = 0.030 nM) and selective (>10-fold GSK-3β/GSK-3α) GSK-3β inhibitor known to date. Inhibition of CRMP2T514 and tau phosphorylation, as well as favorable therapeutic window against WNT/β-catenin signaling activation, was observed in cells.
Collapse
Affiliation(s)
- Vadim Bernard-Gauthier
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry/Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 1R8, Canada
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Andrew V. Mossine
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ashley Knight
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry/Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 1R8, Canada
- Eisai AiM Institute, Boston, Massachusetts 01810, United States
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Chialin Cheng
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hema S. Krishnan
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Lucius L. Xuan
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Peter S. Chindavong
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Surya A. Reis
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jinshan Michael Chen
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Xia Shao
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jenelle Stauff
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Janna Arteaga
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Phillip Sherman
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Nicolas Salem
- Biogen, Research and Early Development Imaging, Cambridge, Massachusetts 02142, United States
| | | | - Brenda Amaral
- Biogen, Research and Early Development Imaging, Cambridge, Massachusetts 02142, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | | | - Laurent Martarello
- Biogen, Research and Early Development Imaging, Cambridge, Massachusetts 02142, United States
| | - Shil Patel
- Eisai AiM Institute, Boston, Massachusetts 01810, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ravi G. Kurumbail
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Peter J. H. Scott
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- The Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry/Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 1R8, Canada
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
8
|
An expanding GSK3 network: implications for aging research. GeroScience 2019; 41:369-382. [PMID: 31313216 DOI: 10.1007/s11357-019-00085-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022] Open
Abstract
The last few decades of longevity research have been very exciting. We now know that longevity and healthspan can be manipulated across species, from unicellular eukaryotes to nonhuman primates, and that while aging itself is inevitable, how we age is malleable. Numerous dietary, genetic, and pharmacological studies now point to links between metabolism and growth regulation as a central aspect in determining longevity and, perhaps more importantly, health with advancing age. Here, we focus on a relatively new player in aging studies GSK3, glycogen synthase kinase, a key factor in growth and metabolism whose name fails to convey the extensive breadth of its role in cellular adaptation. First, we provide a brief overview of GSK3, touching on those aspects that are likely relevant to aging. Then, we outline the role of GSK3 in cellular functions including growth signaling, cell fate, and metabolism. Next, we describe evidence demonstrating a direct role for GSK3 in a range of age-related diseases, despite the fact that they differ considerably in their etiology and pathology. Finally, we discuss the role that GSK3 may play in normative aging and how GSK3 might be a suitable target to oppose age-related disease vulnerability.
Collapse
|
9
|
Duthie A, van Aalten L, MacDonald C, McNeilly A, Gallagher J, Geddes J, Lovestone S, Sutherland C. Recruitment, Retainment, and Biomarkers of Response; A Pilot Trial of Lithium in Humans With Mild Cognitive Impairment. Front Mol Neurosci 2019; 12:163. [PMID: 31316348 PMCID: PMC6610581 DOI: 10.3389/fnmol.2019.00163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 06/12/2019] [Indexed: 11/30/2022] Open
Abstract
Lithium has been used for decades to treat Bipolar Disorder. Some of its therapeutic benefits may be through inhibition of Glycogen Synthase Kinase (GSK)-3. Enhanced GSK3 activity associates with development of Alzheimer’s disease (AD), therefore lithium is a currently used therapeutic with potential to be repurposed for prevention of Dementia. An important step toward a clinical trial for AD prevention using lithium is to establish the dose of lithium that blocks GSK3 in Mild Cognitive Impairment (MCI), a high-risk condition for progression to AD. We investigated volunteer recruitment, retention, and tolerance in this population, and assessed biomarkers of GSK3 in MCI compared to control and after lithium treatment. Recruitment was close to target, with higher than anticipated interest. Drop out was not related to lithium blood concentration. Indeed, 33% of the withdrawals were in the first week of very low dose lithium. Most made it through to the highest dose of lithium with no adverse events. We analyzed 18 potential biomarkers of GSK3 biology in rat PBMCs, but only four of these gave a robust reproducible baseline signal. The only biomarker that was modified by acute lithium injection in the rat was the inhibitory phosphorylation of Ser9 of GSK3beta (enhanced in PBMCs) and this associated with reduced activity of GSK3beta. In contrast to the rat PBMC preparations the protein quality of the human PBMC preparations was extremely variable. There was no difference between GSK3 biomarkers in MCI and control PBMC preparations and no significant effect of chronic lithium on the robust GSK3 biomarkers, indicating that the dose reached may not be sufficient to modify these markers. In summary, the high interest from the MCI population, and the lack of any adverse events, suggest that it would be relatively straightforward and safe to recruit to a larger clinical trial within this dosing regimen. However, it is clear that we will need an improved PBMC isolation process along with more robust, sensitive, and validated biomarkers of GSK3 function, in order to use GSK3 pathway regulation in human PBMC preparations as a biomarker of GSK3 inhibitor efficacy, within a clinical trial setting.
Collapse
Affiliation(s)
- Ashleigh Duthie
- Ninewells Hospital and Medical School, NHS Tayside, Dundee, United Kingdom
| | - Lidy van Aalten
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - Cara MacDonald
- Ninewells Hospital and Medical School, NHS Tayside, Dundee, United Kingdom
| | - Alison McNeilly
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - Jennifer Gallagher
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - John Geddes
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Calum Sutherland
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
10
|
Nagini S, Sophia J, Mishra R. Glycogen synthase kinases: Moonlighting proteins with theranostic potential in cancer. Semin Cancer Biol 2019; 56:25-36. [DOI: 10.1016/j.semcancer.2017.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
|
11
|
GSK-3 β at the Intersection of Neuronal Plasticity and Neurodegeneration. Neural Plast 2019; 2019:4209475. [PMID: 31191636 PMCID: PMC6525914 DOI: 10.1155/2019/4209475] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
In neurons, Glycogen Synthase Kinase-3β (GSK-3β) has been shown to regulate various critical processes underlying structural and functional synaptic plasticity. Mouse models with neuron-selective expression or deletion of GSK-3β present behavioral and cognitive abnormalities, positioning this protein kinase as a key signaling molecule in normal brain functioning. Furthermore, mouse models with defective GSK-3β activity display distinct structural and behavioral abnormalities, which model some aspects of different neurological and neuropsychiatric disorders. Equalizing GSK-3β activity in these mouse models by genetic or pharmacological interventions is able to rescue some of these abnormalities. Thus, GSK-3β is a relevant therapeutic target for the treatment of many brain disorders. Here, we provide an overview of how GSK-3β is regulated in physiological synaptic plasticity and how aberrant GSK-3β activity contributes to the development of dysfunctional synaptic plasticity in neuropsychiatric and neurodegenerative disorders.
Collapse
|
12
|
Gartz M, Darlington A, Afzal MZ, Strande JL. Exosomes exert cardioprotection in dystrophin-deficient cardiomyocytes via ERK1/2-p38/MAPK signaling. Sci Rep 2018; 8:16519. [PMID: 30410044 PMCID: PMC6224575 DOI: 10.1038/s41598-018-34879-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023] Open
Abstract
As mediators of intercellular communication, exosomes containing molecular cargo are secreted by cells and taken up by recipient cells to influence cellular phenotype and function. Here we have investigated the effects of exosomes in dystrophin-deficient (Dys) induced pluripotent stem cell derived cardiomyocytes (iCMs). Our data demonstrate that exosomes secreted from either wild type (WT) or Dys-iCMs protect the Dys-iCM from stress-induced injury by decreasing reactive oxygen species and delaying mitochondrial permeability transition pore opening to maintain the mitochondrial membrane potential and decrease cell death. The protective effects of exosomes were dependent on the presence of exosomal surface proteins and activation of ERK1/2 and p38 MAPK signaling. Based on our findings, the acute effects of exosomes on recipient cells can be initiated from exosome membrane proteins and not necessarily their internal cargo.
Collapse
Affiliation(s)
- Melanie Gartz
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley Darlington
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Muhammed Zeeshan Afzal
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA. .,Department of Medicine, Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA. .,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, USA.
| |
Collapse
|
13
|
Breit A, Miek L, Schredelseker J, Geibel M, Merrow M, Gudermann T. Insulin-like growth factor-1 acts as a zeitgeber on hypothalamic circadian clock gene expression via glycogen synthase kinase-3β signaling. J Biol Chem 2018; 293:17278-17290. [PMID: 30217816 DOI: 10.1074/jbc.ra118.004429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Brain and muscle ARNT-like protein-1 (BMAL-1) is an important component of the cellular circadian clock. Proteins such as epidermal (EGF) or nerve growth factor (NGF) affect the cellular clock via extracellular signal-regulated kinases-1/2 (ERK-1/2) in NIH3T3 or neuronal stem cells, but no such data are available for the insulin-like growth factor-1 (IGF-1). The hypothalamus expresses receptors for all three growth factors, acts as a central circadian pacemaker, and releases hormones in a circadian fashion. However, little is known about growth factor-induced modulation of clock gene activity in hypothalamic cells. Here, we investigated effects of IGF-1, EGF, or NGF on the Bmal-1 promoter in two hypothalamic cell lines. We found that only IGF-1 but not EGF or NGF enhanced activity of the Bmal-1 promoter. Inhibition of ERK-1/2 activity did not affect IGF-1-induced Bmal-1 promoter activation and all three growth factors similarly phosphorylated ERK-1/2, questioning a role for ERK-1/2 in controlling BMAL-1 promoter activity. Of note, only IGF-1 induced sustained phosphorylation of glycogen synthase kinase-3β (GSK-3β). Moreover, the GSK-3β inhibitor lithium or siRNA-mediated GSK-3β knockdown diminished the effects of IGF-1 on the Bmal-1 promoter. When IGF-1 was used in the context of temperature cycles entraining hypothalamic clock gene expression to a 24-h rhythm, it shifted the phase of Bmal-1 promoter activity, indicating that IGF-1 functions as a zeitgeber for cellular hypothalamic circadian clocks. Our results reveal that IGF-1 regulates clock gene expression and that GSK-3β but not ERK-1/2 is required for the IGF-1-mediated regulation of the Bmal-1 promoter in hypothalamic cells.
Collapse
Affiliation(s)
- Andreas Breit
- From the Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336 Munich and
| | - Laura Miek
- From the Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336 Munich and
| | - Johann Schredelseker
- From the Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336 Munich and
| | - Mirjam Geibel
- the Institute of Medical Psychology, Medical Faculty, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Martha Merrow
- the Institute of Medical Psychology, Medical Faculty, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Thomas Gudermann
- From the Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336 Munich and
| |
Collapse
|
14
|
Chen J, Lee J, Bao C, Kim JT, Lee HJ. 6,7,4′-Trihydroxyisoflavone suppressed the estrogen receptor negative breast cancer growth via regulating glycogen synthase kinase-3β/β-catenin signaling. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Tong Y, Park S, Wu D, Harris TE, Moskaluk CA, Brautigan DL, Fu Z. Modulation of GSK3β autoinhibition by Thr-7 and Thr-8. FEBS Lett 2018; 592:537-546. [PMID: 29377106 DOI: 10.1002/1873-3468.12990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 11/08/2022]
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a pivotal signaling node that regulates a myriad of cellular functions and is deregulated in many pathological conditions, making it an attractive therapeutic target. Inhibitory Ser-9 phosphorylation of GSK3β by AKT is an important mechanism for negative regulation of GSK3β activity upon insulin stimulation. Here, we report that Thr-7 and Thr-8 residues located in the AKT/PKB substrate consensus sequence on GSK3β are essential for insulin-stimulated Ser-9 phosphorylation in vivo and for GSK3β inactivation. Intestinal cell kinase (ICK) phosphorylates GSK3β Thr-7 in vitro and in vivo. Thr-8 phosphorylation partially inhibits GSK3β, but Thr-7 phosphorylation promotes GSK3β activity and blocks phospho-Ser-9-dependent GSK3β autoinhibition. Our findings uncover novel mechanistic and signaling inputs involved in the autoinhibition of GSK3β.
Collapse
Affiliation(s)
- Yixin Tong
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Gastrointestinal Surgery Center, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Sohyun Park
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Di Wu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - David L Brautigan
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
Shin S, Im HJ, Kwon YJ, Ye DJ, Baek HS, Kim D, Choi HK, Chun YJ. Human steroid sulfatase induces Wnt/β-catenin signaling and epithelial-mesenchymal transition by upregulating Twist1 and HIF-1α in human prostate and cervical cancer cells. Oncotarget 2017; 8:61604-61617. [PMID: 28977889 PMCID: PMC5617449 DOI: 10.18632/oncotarget.18645] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022] Open
Abstract
Steroid sulfatase (STS) catalyzes the hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate (DHEAS) to their unconjugated biologically active forms. Although STS is considered a therapeutic target for estrogen-dependent diseases, the cellular functions of STS remain unclear. We found that STS induces Wnt/β-catenin s Delete ignaling in PC-3 and HeLa cells. STS increases levels of β-catenin, phospho-β-catenin, and phospho-GSK3β. Enhanced translocation of β-catenin to the nucleus by STS might activate transcription of target genes such as cyclin D1, c-myc, and MMP-7. STS knockdown by siRNA resulted in downregulation of Wnt/β-catenin signaling. β-Catenin/TCF-mediated transcription was also enhanced by STS. STS induced an epithelial-mesenchymal transition (EMT) as it reduced the levels of E-cadherin, whereas levels of mesenchymal markers such as N-cadherin and vimentin were enhanced. We found that STS induced Twist1 expression through HIFα activation as HIF-1α knockdown significantly blocks the ability of STS to induce Twist1 transcription. Furthermore, DHEA, but not DHEAS is capable of inducing Twist1. Treatment with a STS inhibitor prevented STS-mediated Wnt/β-catenin signaling and Twist1 expression. Interestingly, cancer cell migration, invasion, and MMPs expression induced by STS were also inhibited by a STS inhibitor. Taken together, these results suggest that STS induces Wnt/β-catenin signaling and EMT by upregulating Twist1 and HIF-1α. The ability of STS to induce the Wnt/β-catenin signaling and EMT has profound implications on estrogen-mediated carcinogenesis in human cancer cells.
Collapse
Affiliation(s)
- Sangyun Shin
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hee-Jung Im
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Jin Ye
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
17
|
Jeon KI, Phipps RP, Sime PJ, Huxlin KR. Antifibrotic Actions of Peroxisome Proliferator-Activated Receptor γ Ligands in Corneal Fibroblasts Are Mediated by β-Catenin-Regulated Pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1660-1669. [PMID: 28606794 DOI: 10.1016/j.ajpath.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Wound healing after corneal injury typically involves fibrosis, with transforming growth factor β1 (TGF-β1) as one of its strongest mediators. A class of small molecules-peroxisome proliferator-activated receptor γ (PPARγ) ligands-exert potent antifibrotic effects in the cornea by blocking phosphorylation of p38 mitogen-activated protein kinase (MAPK). However, why this blocks fibrosis remains unknown. Herein, we show that PPARγ ligands (rosiglitazone, troglitazone, and 15-deoxy-Δ12,14-prostaglandin J2) decrease levels of β-catenin. We also show that β-catenin siRNA and the Wingless/integrated (Wnt) inhibitor pyrvinium block the ability of corneal fibroblasts to up-regulate synthesis of α-smooth muscle actin (α-SMA), collagen 1 (COL1), and fibronectin (FN) in response to TGF-β1. Activation of TGF-β receptors and p38 MAPK increased glycogen synthase kinase 3β (GSK3β) phosphorylation, whereas a chemical inhibitor of p38 MAPK (SB203580) reduced the phosphorylation of GSK3β, decreasing active β-catenin levels in both cytoplasmic and nuclear fractions. Finally, lithium chloride, a GSK3 inhibitor, also attenuated the TGF-β1-induced increase in α-SMA, COL1, and FN expression. All in all, our results suggest that TGF-β1 stimulation increases active β-catenin concentration in cultured corneal fibroblasts through p38 MAPK regulation of canonical Wnt/β-catenin signaling, increasing α-SMA, COL1, and FN synthesis. Thus, PPARγ ligands, by blocking TGF-β1-induced p38 MAPK phosphorylation, prevent increases in both total and active β-catenin through p38 MAPK-GSK3β signaling.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Flaum Eye Institute, University of Rochester, Rochester, New York
| | - Richard P Phipps
- Flaum Eye Institute, University of Rochester, Rochester, New York; Department of Medicine, University of Rochester, Rochester, New York; Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, New York; Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Krystel R Huxlin
- Flaum Eye Institute, University of Rochester, Rochester, New York; Center for Visual Science, University of Rochester, Rochester, New York.
| |
Collapse
|
18
|
Poloz Y, Dowling RJO, Stambolic V. Fundamental Pathways in Breast Cancer 1: Signaling from the Membrane. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Abstract
Glycogen synthase kinase-3 (GSK-3) is an unusual protein-serine kinase in that it is primarily regulated by inhibition and lies downstream of multiple cell signaling pathways. This raises a variety of questions in terms of its physiological role(s), how signaling specificity is maintained and why so many eggs have been placed into one basket. There are actually two baskets, as there are two isoforms, GSK-3α and β, that are highly related and largely redundant. Their many substrates range from regulators of cellular metabolism to molecules that control growth and differentiation. In this chapter, we review the characteristics of GSK-3, update progress in understanding the kinase, and try to answer some of the questions raised by its unusual properties. Indeed, the kinase may trigger transformation in our thinking of how cellular signals are organized and controlled.
Collapse
|
20
|
Wagner FF, Bishop JA, Gale JP, Shi X, Walk M, Ketterman J, Patnaik D, Barker D, Walpita D, Campbell AJ, Nguyen S, Lewis M, Ross L, Weïwer M, An WF, Germain AR, Nag PP, Metkar S, Kaya T, Dandapani S, Olson DE, Barbe AL, Lazzaro F, Sacher JR, Cheah JH, Fei D, Perez J, Munoz B, Palmer M, Stegmaier K, Schreiber SL, Scolnick E, Zhang YL, Haggarty SJ, Holson EB, Pan JQ. Inhibitors of Glycogen Synthase Kinase 3 with Exquisite Kinome-Wide Selectivity and Their Functional Effects. ACS Chem Biol 2016; 11:1952-63. [PMID: 27128528 DOI: 10.1021/acschembio.6b00306] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mood stabilizer lithium, the first-line treatment for bipolar disorder, is hypothesized to exert its effects through direct inhibition of glycogen synthase kinase 3 (GSK3) and indirectly by increasing GSK3's inhibitory serine phosphorylation. GSK3 comprises two highly similar paralogs, GSK3α and GSK3β, which are key regulatory kinases in the canonical Wnt pathway. GSK3 stands as a nodal target within this pathway and is an attractive therapeutic target for multiple indications. Despite being an active field of research for the past 20 years, many GSK3 inhibitors demonstrate either poor to moderate selectivity versus the broader human kinome or physicochemical properties unsuitable for use in in vitro systems or in vivo models. A nonconventional analysis of data from a GSK3β inhibitor high-throughput screening campaign, which excluded known GSK3 inhibitor chemotypes, led to the discovery of a novel pyrazolo-tetrahydroquinolinone scaffold with unparalleled kinome-wide selectivity for the GSK3 kinases. Taking advantage of an uncommon tridentate interaction with the hinge region of GSK3, we developed highly selective and potent GSK3 inhibitors, BRD1652 and BRD0209, which demonstrated in vivo efficacy in a dopaminergic signaling paradigm modeling mood-related disorders. These new chemical probes open the way for exclusive analyses of the function of GSK3 kinases in multiple signaling pathways involved in many prevalent disorders.
Collapse
Affiliation(s)
| | - Joshua A. Bishop
- Chemical Neurobiology Laboratory, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | | | | | | | | | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | | | | | | | | | | | - Linda Ross
- Department
of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Boston, Massachusetts 02215, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimberly Stegmaier
- Department
of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Boston, Massachusetts 02215, United States
| | | | | | | | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | | | | |
Collapse
|
21
|
hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci Rep 2016; 6:22999. [PMID: 26972480 PMCID: PMC4789638 DOI: 10.1038/srep22999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/26/2016] [Indexed: 11/08/2022] Open
Abstract
c-FLIP (cellular FLICE-inhibitory protein) is the pivotal regulator of TRAIL resistance in cancer cells, It is a short-lived protein degraded through the ubiquitin/proteasome pathway. The discovery of factors and mechanisms regulating its protein stability is important for the comprehension of TRAIL resistance by tumor cells. In this study, we show that, when H1299 lung adenocarcinoma cells are treated with TRAIL, hnRNPK is translocated from nucleus to cytoplasm where it interacts and co-localizes with GSK3β. We find that hnRNPK is able to inhibit the Ser9 phosphorylation of GSK3β by PKC. This has the effect of activating GSK3β and thereby stabilizing c-FLIP protein which contributes to the resistance to TRAIL in H1299 cells. Our immunohistochemical analysis using tissue microarray provides the clinical evidence of this finding by establishing a negative correlation between the level of hnRNPK expression and the Ser9 phosphorylation of GSK3β in both lung adenocarcinoma tissues and normal tissues. Moreover, in all cancer tissues examined, hnRNPK was found in the cytoplasm whereas it is exclusively nuclear in the normal tissues. Our study sheds new insights on the molecular mechanisms governing the resistance to TRAIL in tumor cells, and provides new clues for the combinatorial chemotherapeutic interventions with TRAIL.
Collapse
|
22
|
Carnagarin R, Dharmarajan AM, Dass CR. Molecular aspects of glucose homeostasis in skeletal muscle--A focus on the molecular mechanisms of insulin resistance. Mol Cell Endocrinol 2015; 417:52-62. [PMID: 26362689 DOI: 10.1016/j.mce.2015.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/02/2015] [Indexed: 01/14/2023]
Abstract
Among all the varied actions of insulin, regulation of glucose homeostasis is the most critical and intensively studied. With the availability of glucose from nutrient metabolism, insulin action in muscle results in increased glucose disposal via uptake from the circulation and storage of excess, thereby maintaining euglycemia. This major action of insulin is executed by redistribution of the glucose transporter protein, GLUT4 from intracellular storage sites to the plasma membrane and storage of glucose in the form of glycogen which also involves modulation of actin dynamics that govern trafficking of all the signal proteins of insulin signal transduction. The cellular mechanisms responsible for these trafficking events and the defects associated with insulin resistance are largely enigmatic, and this review provides a consolidated overview of the various molecular mechanisms involved in insulin-dependent glucose homeostasis in skeletal muscle, as insulin resistance at this major peripheral site impacts whole body glucose homeostasis.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Pharmacy, Curtin University, Bentley 6102, Australia
| | - Arun M Dharmarajan
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Biomedical Science, Curtin University, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Pharmacy, Curtin University, Bentley 6102, Australia.
| |
Collapse
|
23
|
Li B, Thrasher JB, Terranova P. Glycogen synthase kinase-3: a potential preventive target for prostate cancer management. Urol Oncol 2015; 33:456-63. [PMID: 26051358 DOI: 10.1016/j.urolonc.2015.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Prostate cancers are the frequently diagnosed cancers in men, and patients with metastatic disease only have 28% chance for 5-year survival. Patients with low-risk tumors are subjected to active surveillance, whereas high-risk cases are actively treated. Unfortunately, there is no cure for patients with late-stage disease. Glycogen synthase kinase-3 (GSK-3, α and β) is a protein serine/threonine kinase and has diverse cellular functions and numerous substrates. We sought to summarize all the studies done with GSK-3 in prostate cancers and to provide a prospective direction for future work. METHODS AND MATERIALS A comprehensive search of the literature on the electronic databases PubMed was conducted for the subject terms of GSK-3 and prostate cancer. Gene mutation and expression information was extracted from Oncomine and COSMIC databases. Case reports were not included. RESULTS Accumulating evidence indicates that GSK-3α is mainly expressed in low-risk prostate cancers and is related to hormone-dependent androgen receptor (AR)-mediated gene expression, whereas GSK-3β is mainly expressed in high-risk prostate cancers and is related to hormone-independent AR-mediated gene expression. GSK-3 has been demonstrated as a positive regulator in AR transactivation and prostate cancer growth independent of the Wnt/β-catenin pathway. Different types of GSK-3inhibitors including lithium show promising results in suppressing tumor growth in different animal models of prostate cancer. Importantly, clinical use of lithium is associated with reduced cancer incidence in psychiatric patients. CONCLUSIONS Taken together, GSK-3 inhibition might be implicated in prostate cancer management as a preventive treatment.
Collapse
Affiliation(s)
- Benyi Li
- Department of Urology, University of Kansas Medical Center, Kansas City, KS.
| | | | - Paul Terranova
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS; Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
24
|
Youn JH, Kim TW. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. MOLECULAR PLANT 2015; 8:552-65. [PMID: 25655825 DOI: 10.1016/j.molp.2014.12.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/15/2014] [Accepted: 12/02/2014] [Indexed: 05/03/2023]
Abstract
The physiological importance of GSK3-like kinases in plants emerged when the functional role of plant GSK3-like kinases represented by BIN2 was first elucidated in the brassinosteroid (BR)-regulated signal transduction pathway. While early studies focused more on understanding how GSK3-like kinases regulate BR signaling, recent studies have implicated many novel substrates of GSK3-like kinases that are involved in a variety of cellular processes as well as BR signaling. Plant GSK3-like kinases play diverse roles in physiological and developmental processes such as cell growth, root and stomatal cell development, flower development, xylem differentiation, light response, and stress responses. Here, we review the progress made in recent years in understanding the versatile functions of plant GSK3-like kinases. Based on the relationship between GSK3-like kinases and their newly identified substrates, we discuss the physiological and biochemical relevance of various cellular signaling mediated by GSK3-like kinases in plants.
Collapse
Affiliation(s)
- Ji-Hyun Youn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea; Natural Science Institute, Hanyang University, Seoul 133-791, Korea.
| |
Collapse
|
25
|
Al-Katib AM, Aboukameel A, Ebrahim A, Beck FWJ, Tekyi-Mensah SE, Raufi A, Ahmed Y, Mandziara M, Kafri Z. Modulation of deoxycytidine kinase (dCK) and glycogen synthase kinase (GSK-3β) by anti-CD20 (rituximab) and 2-chlorodeoxyadenosine (2-CdA) in human lymphoid malignancies. Exp Hematol Oncol 2014; 3:31. [PMID: 25937997 PMCID: PMC4417330 DOI: 10.1186/2162-3619-3-31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The combination of rituximab and 2-CdA is an effective therapy for B-cell tumors. However, the molecular mechanisms and enzymatic pathways involved in the interaction between the two agents are not fully understood. In this study, we provide molecular evidence for positive interaction between these two agents with resultant therapeutic benefit. METHODS Efficacy of the R-2CdA regimen was evaluated in thirteen patients with B-cell tumors (9 CLL; 3 WM and 1 FL), in vitro against 3 lymphoma cell lines and in a xenograft mouse model. Treatment-induced changes involving phenotype, kinase activity and protein expression were assessed in vitro and in the mouse xenograft tumors. The interaction between RTX and 2-CdA was analyzed using the multiple comparison method, Tukey's honestly significant difference (HSD). For the clinical and animal data, survival functions were estimated using the Kaplan-Meier method and compared by the log-rank test. P-values <0.05 were considered statistically significant. All statistical analyses were evaluated using GraphPad Prism 4 (San Diego, CA). RESULTS 9 of 12 (75%) evaluable patients responded to the R-2-CdA regimen with median duration of response of 34 months. Median survival of patients from diagnosis and from completion of R-2-CdA treatment was 13.3 and 7.9 years, respectively. In vitro, the combination was effective in all 3 cell lines of lymphomas but with higher sensitivity in the follicular lymphoma cell line. The combination was also effective in the WSU-WM-SCID xenograft model with dose-dependent response and synergistic benefit. All animals were tumor-free for up to 120 days post 2 cycles of this regimen. Rituximab induced activation of deoxycytidine kinase (dCK), p38 mitogen activated protein kinase (p38MAPK) and glycogen synthase kinase-3β (GSK-3β) in the xenograft WSU-WM tumors. Chemical inhibition of p38MAPK led to inhibition of the GSK-3β phosphorylation suggesting that GSK-3β is regulated by p38MAPK in this model. CONCLUSION Collectively, our studies show concordance between the activity of R-2-CdA in vitro, in human and in WSU-WM xenograft model attesting to the validity of this model in predicting clinical response. Modulation of dCK and GSK-3β by rituximab may contribute to the positive therapeutic interaction between rituximab and 2-CdA.
Collapse
Affiliation(s)
- Ayad M Al-Katib
- />Lymphoma Research Laboratory, Wayne State University School of Medicine, 540 East Canfield, room #8229, Detroit, MI 48202 USA
- />Van Elslander Cancer Center, Grosse Pointe Woods, MI USA
| | - Amro Aboukameel
- />Lymphoma Research Laboratory, Wayne State University School of Medicine, 540 East Canfield, room #8229, Detroit, MI 48202 USA
| | - AbdulShukkur Ebrahim
- />Lymphoma Research Laboratory, Wayne State University School of Medicine, 540 East Canfield, room #8229, Detroit, MI 48202 USA
| | - Frances WJ Beck
- />Lymphoma Research Laboratory, Wayne State University School of Medicine, 540 East Canfield, room #8229, Detroit, MI 48202 USA
| | - Samuel E Tekyi-Mensah
- />Lymphoma Research Laboratory, Wayne State University School of Medicine, 540 East Canfield, room #8229, Detroit, MI 48202 USA
| | - Ali Raufi
- />Lymphoma Research Laboratory, Wayne State University School of Medicine, 540 East Canfield, room #8229, Detroit, MI 48202 USA
| | - Yasin Ahmed
- />Department of Pathology, St John Hospital and Medical Center, Detroit, USA
- />Quest Diagnostics, 4225 E Fowler Avenue, Tampa, FL 3367-2026 USA
| | - Mary Mandziara
- />Van Elslander Cancer Center, Grosse Pointe Woods, MI USA
| | - Zyad Kafri
- />Van Elslander Cancer Center, Grosse Pointe Woods, MI USA
| |
Collapse
|
26
|
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2014; 4:2834. [PMID: 24280772 PMCID: PMC3876736 DOI: 10.1038/ncomms3834] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022] Open
Abstract
Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (Mechanistic Target of Rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mouse model in which myeloid lineage specific deletion of Tsc1 (Tsc1Δ/Δ) leads to constitutive mTOR Complex 1 (mTORC1) activation, we find that Tsc1Δ/Δ macrophages are refractory to IL-4 induced M2 polarization, but produce increased inflammatory responses to proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signaling critically contributes to defective polarization. These findings highlight a key role for the mTOR pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic status could be “hard-wired” to control of macrophage function, with broad implications for regulation of Type 2 immunity, inflammation, and allergy.
Collapse
Affiliation(s)
- Vanessa Byles
- 1] Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA [2]
| | | | | | | | | | | | | |
Collapse
|
27
|
Weathington NM, Snavely CA, Chen BB, Zhao J, Zhao Y, Mallampalli RK. Glycogen synthase kinase-3β stabilizes the interleukin (IL)-22 receptor from proteasomal degradation in murine lung epithelia. J Biol Chem 2014; 289:17610-9. [PMID: 24742671 DOI: 10.1074/jbc.m114.551747] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Signaling through the interleukin (IL)-22 cytokine axis provides essential immune protection in the setting of extracellular infection as part of type 17 immunity. Molecular regulation of IL-22 receptor (IL-22R) protein levels is unknown. In murine lung epithelia, IL-22R is a relatively short-lived protein (t½ ∼1.5 h) degraded by the ubiquitin proteasome under normal unstimulated conditions, but its degradation is accelerated by IL-22 treatment. Lys(449) within the intracellular C-terminal domain of the IL-22R serves as a ubiquitin acceptor site as disruption of this site by deletion or site-directed mutagenesis creates an IL-22R variant that, when expressed in cells, is degradation-resistant and not ubiquitinated. Glycogen synthase kinase (GSK)-3β phosphorylates the IL-22R within a consensus phosphorylation signature at Ser(410) and Ser(414), and IL-22 treatment of cells triggers GSK-3β inactivation. GSK-3β overexpression results in accumulation of IL-22R protein, whereas GSK-3β depletion in cells reduces levels of the receptor. Mutagenesis of IL-22R at Ser(410) and Ser(414) results in receptor variants that display reduced phosphorylation levels and are more labile as compared with wild-type IL-22R when expressed in cells. Further, the cytoskeletal protein cortactin, which is important for epithelial spreading and barrier formation, is phosphorylated and activated at the epithelial cell leading edge after treatment with IL-22, but this effect is reduced after GSK-3β knockdown. These findings reveal the ability of GSK-3β to modulate IL-22R protein stability that might have significant implications for cytoprotective functions and therapeutic targeting of the IL-22 signaling axis.
Collapse
Affiliation(s)
| | - Courtney A Snavely
- From the Department of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Bill B Chen
- From the Department of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Jing Zhao
- From the Department of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Yutong Zhao
- From the Department of Medicine, the Acute Lung Injury Center of Excellence, and the Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 and
| | - Rama K Mallampalli
- From the Department of Medicine, the Acute Lung Injury Center of Excellence, and the Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 and the Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| |
Collapse
|
28
|
Jiang J, Shi S, Zhou Q, Ma X, Nie X, Yang L, Han J, Xu G, Wan C. Downregulation of the Wnt/β-catenin signaling pathway is involved in manganese-induced neurotoxicity in rat striatum and PC12 cells. J Neurosci Res 2014; 92:783-94. [PMID: 24464479 DOI: 10.1002/jnr.23352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/08/2013] [Accepted: 12/01/2013] [Indexed: 01/10/2023]
Abstract
Manganese (Mn) is an essential trace element. However, exposure to excessive Mn may cause neurodegenerative disorders called manganism. Accumulating evidence indicated that dysregulation of Wnt/β-catenin signaling was tightly associated with the onset of neurodegenerative disorders. However, whether aberrant Wnt/β-catenin signaling contributes to Mn-induced neurotoxicity remains unknown. The present study investigates the involvement of Wnt/β-catenin signaling in Mn-induced neurotoxicity. Western blot and immunohistochemistry analyses showed a remarkable downregulation of p-Ser9-glycogen synthase kinase-3β (GSK-3β) and β-catenin in rat striatum after Mn exposure. TUNEL assay revealed significant neuronal apoptosis following treatment with 25 mg/kg Mn. Immunofluorescent staining showed that β-catenin was expressed predominantly in neurons, and colocalization of β-catenin and active caspase-3 was observed after Mn exposure. Furthermore, Mn exposure resulted in PC12 cells apoptosis, which was accompanied by reduced levels of cellular β-catenin and p-GSK-3β. Accordingly, the mRNA level of the prosurvival factor survivin, a downstream target gene of β-catenin, was synchronously decreased. More importantly, blockage of GSK-3β activity with the GSK-3β inhibitor lithium chloride could attenuate Mn-induced downregulation of β-catenin and survivin as well as neuronal apoptosis. Overall, the present study demonstrates that downregulation of Wnt/β-catenin signaling pathway may be of vital importance in the neuropathological process of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zou Q, Hou Y, Shen F, Wang Y. Polarized regulation of glycogen synthase kinase-3β is important for glioma cell invasion. PLoS One 2013; 8:e81814. [PMID: 24312592 PMCID: PMC3849364 DOI: 10.1371/journal.pone.0081814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/16/2013] [Indexed: 11/24/2022] Open
Abstract
Glioma malignancy greatly depends on its aggressive invasion. The establishment of cell polarity is an important initial step for cell migration, which is essential for cell-directional translocation. However, our understanding of the molecular mechanisms underlying cell polarity formation in glioma cell invasion remains limited. Glycogen synthase kinase-3 (GSK-3) has a critical role in the formation of cell polarity. We therefore investigated whether localized GSK-3β, a subtype of GSK-3, is important for glioma cell invasion. We reported here that the localized phosphorylation of GSK-3β at the Ser9 (pSer9-GSK-3β) was critical for glioma cell invasion. Scratching glioma cell monolayer up-regulated pSer9-GSK-3β specifically at the wound edge. Inhibition of GSK-3 impaired the cell polarity and reduced the directional persistence of cell migration. Consistently, down-regulation of GSK-3α and 3β by specific small interfering RNAs inhibited glioma cell invasion. Over-expressing wild-type or constitutively active forms of GSK-3β also inhibited the cell invasion. These results indicated the polarized localization of GSK-3 regulation in cell migration might be also important for glioma cell migration. Further, EGF regulated both GSK-3α and 3β, but only pSer9-GSK-3β was enriched at the leading edge of scratched glioma cells. Up- or down-regulation of GSK-3β inhibited EGF-stimulated cell invasion. Moreover, EGF specifically regulated GSK-3β, but not GSK-3α, through atypical PKC pathways. Our results indicated that GSK-3 was important for glioma cell invasion and localized inhibition of GSK-3β was critical for cell polarity formation.
Collapse
Affiliation(s)
- Qifei Zou
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ying Hou
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (FS); (YZW)
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (FS); (YZW)
| |
Collapse
|
30
|
Expression and regulation of glycogen synthase kinase 3 in human neutrophils. Int J Biochem Cell Biol 2013; 45:2660-5. [PMID: 24035907 DOI: 10.1016/j.biocel.2013.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase involved in the regulation of cellular processes ranging from glycogen metabolism to cell cycle regulation. Its two known isoforms, α and β, are differentially expressed in tissues throughout the body and exert distinct but often overlapping functions. GSK-3 is typically active in resting cells, inhibition by phosphorylation of Ser21 (GSK-3α) or Ser9 (GSK-3β) being the most common regulatory mechanism. GSK-3 activity has been linked recently with immune system function, yet little is known about the role of this enzyme in neutrophils, the most abundant leukocyte type. In the present study, we examined GSK-3 expression and regulation in human neutrophils. GSK-3α was found to be the predominant isoform, it was constitutively expressed and cell stimulation with different agonists did not alter its expression. Stimulation by fMLP, LPS, GM-CSF, Fcγ receptor engagement, or adenosine A2A receptor engagement all resulted in phosphorylation of Ser21. The use of metabolic inhibitors revealed that combinations of Src kinase, PKC, PI3K/AKT, ERK/RSK and PKA signaling pathways could mediate phosphorylation, depending on the agonist. Neither PLC nor p38 were involved. We conclude that GSK-3α is the main isoform expressed in neutrophils and that many different pathways can converge to inhibit GSK-3α activity via Ser21-phosphorylation. GSK-3α thus might be a hub of cellular regulation.
Collapse
|
31
|
Mohan ML, Jha BK, Gupta MK, Vasudevan NT, Martelli EE, Mosinski JD, Naga Prasad SV. Phosphoinositide 3-kinase γ inhibits cardiac GSK-3 independently of Akt. Sci Signal 2013; 6:ra4. [PMID: 23354687 DOI: 10.1126/scisignal.2003308] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of cardiac phosphoinositide 3-kinase α (PI3Kα) by growth factors, such as insulin, or activation of PI3Kγ downstream of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors stimulates the activity of the kinase Akt, which phosphorylates and inhibits glycogen synthase kinase-3 (GSK-3). We found that PI3Kγ inhibited GSK-3 independently of the insulin-PI3Kα-Akt axis. Although insulin treatment activated Akt in PI3Kγ knockout mice, phosphorylation of GSK-3 was decreased compared to control mice. GSK-3 is activated when dephosphorylated by the protein phosphatase 2A (PP2A), which is activated when methylated by the PP2A methyltransferase PPMT-1. PI3Kγ knockout mice showed increased activity of PPMT-1 and PP2A and enhanced nuclear export of the GSK-3 substrate NFATc3. GSK-3 inhibits cardiac hypertrophy, and the hearts of PI3Kγ knockout mice were smaller compared to those of wild-type mice. Cardiac overexpression of a catalytically inactive PI3Kγ (PI3Kγ(inact)) transgene in PI3Kγ knockout mice reduced the activities of PPMT-1 and PP2A and increased phosphorylation of GSK-3. Furthermore, PI3Kγ knockout mice expressing the PI3Kγ(inact) transgene had larger hearts than wild-type or PI3Kγ knockout mice. Our studies show that a kinase-independent function of PI3Kγ could directly inhibit GSK-3 function by preventing the PP2A-PPMT-1 interaction and that this inhibition of GSK-3 was independent of Akt.
Collapse
Affiliation(s)
- Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem 2012; 288:1295-306. [PMID: 23155049 DOI: 10.1074/jbc.m112.409250] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accumulation of β-amyloid (Aβ) deposits is a primary pathological feature of Alzheimer disease that is correlated with neurotoxicity and cognitive decline. The role of glycogen synthase kinase-3 (GSK-3) in Alzheimer disease pathogenesis has been debated. To study the role of GSK-3 in Aβ pathology, we used 5XFAD mice co-expressing mutated amyloid precursor protein and presenilin-1 that develop massive cerebral Aβ loads. Both GSK-3 isozymes (α/β) were hyperactive in this model. Nasal treatment of 5XFAD mice with a novel substrate competitive GSK-3 inhibitor, L803-mts, reduced Aβ deposits and ameliorated cognitive deficits. Analyses of 5XFAD hemi-brain samples indicated that L803-mts restored the activity of mammalian target of rapamycin (mTOR) and inhibited autophagy. Lysosomal acidification was impaired in the 5XFAD brains as indicated by reduced cathepsin D activity and decreased N-glycoyslation of the vacuolar ATPase subunit V0a1, a modification required for lysosomal acidification. Treatment with L803-mts restored lysosomal acidification in 5XFAD brains. Studies in SH-SY5Y cells confirmed that GSK-3α and GSK-3β impair lysosomal acidification and that treatment with L803-mts enhanced the acidic lysosomal pool as demonstrated in LysoTracker Red-stained cells. Furthermore, L803-mts restored impaired lysosomal acidification caused by dysfunctional presenilin-1. We provide evidence that mTOR is a target activated by GSK-3 but inhibited by impaired lysosomal acidification and elevation in amyloid precursor protein/Aβ loads. Taken together, our data indicate that GSK-3 is a player in Aβ pathology. Inhibition of GSK-3 restores lysosomal acidification that in turn enables clearance of Aβ burdens and reactivation of mTOR. These changes facilitate amelioration in cognitive function.
Collapse
Affiliation(s)
- Limor Avrahami
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
33
|
GSK-3β: A Bifunctional Role in Cell Death Pathways. Int J Cell Biol 2012; 2012:930710. [PMID: 22675363 PMCID: PMC3364548 DOI: 10.1155/2012/930710] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 02/06/2023] Open
Abstract
Although glycogen synthase kinase-3 beta (GSK-3β) was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer's disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development.
Collapse
|
34
|
Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Liu Q, Ruan K, Wang Z, Zhang CS, Chien KY, Wu J, Li Q, Han J, Lin SC. GSK3-TIP60-ULK1 Signaling Pathway Links Growth Factor Deprivation to Autophagy. Science 2012; 336:477-81. [DOI: 10.1126/science.1217032] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Regulation of SHP2 by PTEN/AKT/GSK-3β signaling facilitates IFN-γ resistance in hyperproliferating gastric cancer. Immunobiology 2012; 217:926-34. [PMID: 22325465 DOI: 10.1016/j.imbio.2012.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/28/2011] [Accepted: 01/01/2012] [Indexed: 12/16/2022]
Abstract
Oncogenic activation accompanied by escape from immune surveillance, such as IFN-γ resistance, is critical for cancer cell growth and survival. In this study, we investigated the crosstalk signaling between IFN-γ resistance and signaling of hyperproliferation in gastric cancer cells. IFN-γ inhibited the cell growth of MKN45 cells but not hyperproliferating AGS cells. AGS cells did not respond to IFN-γ because of a decrease in STAT1 but not due to dysfunctional IFN-γ receptors. Signaling of PI3K/AKT, as well as MEK/ERK, was required for the hyperproliferation; notably, PI3K/AKT alone mediated the IFN-γ resistance. Aberrant Src homology-2 domain-containing phosphatase (SHP) 2 determined IFN-γ resistance but unexpectedly had no effects on hyperproliferation or ERK activation. In the IFN-γ resistant cells, inactivation of glycogen synthase kinase (GSK)-3β by PI3K/AKT was important for SHP2 activation but not for hyperproliferation. An imbalance of AKT/GSK-3β/SHP2 caused by a reduction of PTEN was important for the crosstalk between IFN-γ resistance and hyperproliferation. PI3K is constitutively expressed in AGS cells and immunohistochemical staining showed a correlation between hyperproliferation and expression of SHP2 and STAT1 in gastric tumors. These results demonstrate the effects of PTEN/AKT/GSK-3β/SHP2 signaling on IFN-γ resistance in hyperproliferating gastric cancer cells.
Collapse
|
36
|
Kaidanovich-Beilin O, Woodgett JR. GSK-3: Functional Insights from Cell Biology and Animal Models. Front Mol Neurosci 2011; 4:40. [PMID: 22110425 PMCID: PMC3217193 DOI: 10.3389/fnmol.2011.00040] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/23/2011] [Indexed: 12/13/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3′ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity, and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knockout mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior, and neuronal fate determination and provide insights into possible therapeutic interventions.
Collapse
|
37
|
Jiang J, Griffin JD. Wnt/β-catenin Pathway Modulates the Sensitivity of the Mutant FLT3 Receptor Kinase Inhibitors in a GSK-3β Dependent Manner. Genes Cancer 2011; 1:164-76. [PMID: 21779446 DOI: 10.1177/1947601910362446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The FLT3 tyrosine kinase receptor is involved in both hematopoiesis and hematological malignancies. The Wnt/β-catenin pathway has been shown to participate in the self-renewal of hematopoietic stem cells and to cooperate with the mutant FLT3 receptors in leukemic transformation. However, the detailed biological impact of such a constitutively activated Wnt pathway remains to be further explored. Here, the authors report that activating mutations of FLT3 constitutively activate β-catenin by inhibition of GSK-3β in a PI3 kinase pathway-dependent manner. Ectopic expression of a dominant negative form of GSK-3β in FLT3-ITD-expressing cells activated β-catenin and blocked the downregulation of the TCF/β-catenin transcriptional activity induced by inhibition of FLT3 kinase. Furthermore, inhibition of cell proliferation and colony formation induced by such suppression of FLT3 kinase activity could be partially reversed by knockdown of GSK-3β and restored by knockdown of either TCF4 or β-catenin. Moreover, exogenous activation of the Wnt pathway also attenuated such inhibitory effect. These findings indicate that the potencies of the inhibitors of FLT3 kinase activity could be modulated by the activity of the Wnt/β-catenin pathway in the cells harboring FLT3-ITD mutations, and FLT3-ITDs signal through GSK-3β to activate β-catenin that this is likely to directly contribute to the leukemic phenotype.
Collapse
Affiliation(s)
- Jingrui Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
38
|
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.
Collapse
Affiliation(s)
- Bing Su
- Department of Immunobiology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
39
|
McCarthy MJ, Leckband SG, Kelsoe JR. Pharmacogenetics of lithium response in bipolar disorder. Pharmacogenomics 2011; 11:1439-65. [PMID: 21047205 DOI: 10.2217/pgs.10.127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bipolar disorder (BD) is a serious mental illness with well-established, but poorly characterized genetic risk. Lithium is among the best proven mood stabilizer therapies for BD, but treatment responses vary considerably. Based upon these and other findings, it has been suggested that lithium-responsive BD may be a genetically distinct phenotype within the mood disorder spectrum. This assertion has practical implications both for the treatment of BD and for understanding the neurobiological basis of the illness: genetic variation within lithium-sensitive signaling pathways may confer preferential treatment response, and the involved genes may underlie BD in some individuals. Presently, the mechanism of lithium is reviewed with an emphasis on gene-expression changes in response to lithium. Within this context, findings from genetic-association studies designed to identify lithium response genes in BD patients are evaluated. Finally, a framework is proposed by which future pharmacogenetic studies can incorporate advances in genetics, molecular biology and bioinformatics in a pathway-based approach to predicting lithium treatment response.
Collapse
Affiliation(s)
- Michael J McCarthy
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
40
|
Combination of enzastaurin and pemetrexed inhibits cell growth and induces apoptosis of chemoresistant ovarian cancer cells regulating extracellular signal-regulated kinase 1/2 phosphorylation. Transl Oncol 2011; 2:164-73. [PMID: 19701501 DOI: 10.1593/tlo.09121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/01/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022] Open
Abstract
New strategies in the therapy for malignant diseases depend on a targeted influence on signal transduction pathways that regulate proliferation, cell growth, differentiation, and apoptosis by the activation of serine/threonine kinases. Enzastaurin (LY317615.HCl), a selective inhibitor of protein kinase Cbeta (PKCbeta), is one of these new drugs and causes inhibition of proliferation and induction of apoptosis. Pemetrexed, a multitarget inhibitor of folate pathways, is broadly active in a wide variety of solid tumors. Therefore, the effect of enzastaurin and the combination treatment with pemetrexed was analyzed when applied to the drug-sensitive ovarian cancer cell line HEY and various subclones with drug resistance against cisplatin, etoposide, docetaxel, and paclitaxel, as well as pemetrexed, and gemcitabine. In these novel chemoresistant subclones, the expression of the enzastaurin targets PKCbetaII and glycogen synthase kinase 3beta (GSK3beta) was analyzed. Exposition to enzastaurin showed various inhibitory effects on phosphorylated forms of GSK3beta and the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2. Cell proliferation experiments identified the cell line-specific half-maximal inhibitory concentration values of enzastaurin and a synergistic inhibitory effect by cotreatment with the antifolate pemetrexed. Induction of apoptosis by enzastaurin treatment was investigated by Cell Death Detection ELISA and immunoblot analyses. Simultaneous treatment with pemetrexed resulted in an enhanced inhibition of proliferation and induction of apoptosis even in partial enzastaurin-resistant cells. Therefore, the combinational effect of enzastaurin and pemetrexed can have promise in clinical application to overcome the fast-growing development of resistance to chemotherapy in ovarian cancer.
Collapse
|
41
|
Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, Gorgun C, Kwiatkowski DJ, Hotamisligil GS, Lee CH, Manning BD. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 2011; 14:21-32. [PMID: 21723501 PMCID: PMC3652544 DOI: 10.1016/j.cmet.2011.06.002] [Citation(s) in RCA: 460] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/29/2011] [Accepted: 06/09/2011] [Indexed: 12/12/2022]
Abstract
Through unknown mechanisms, insulin activates the sterol regulatory element-binding protein (SREBP1c) transcription factor to promote hepatic lipogenesis. We find that this induction is dependent on the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). To further define the role of mTORC1 in the regulation of SREBP1c in the liver, we generated mice with liver-specific deletion of TSC1 (LTsc1KO), which results in insulin-independent activation of mTORC1. Surprisingly, the LTsc1KO mice are protected from age- and diet-induced hepatic steatosis and display hepatocyte-intrinsic defects in SREBP1c activation and de novo lipogenesis. These phenotypes result from attenuation of Akt signaling driven by mTORC1-dependent insulin resistance. Therefore, mTORC1 activation is not sufficient to stimulate hepatic SREBP1c in the absence of Akt signaling, revealing the existence of an additional downstream pathway also required for this induction. We provide evidence that this mTORC1-independent pathway involves Akt-mediated suppression of Insig2a, a liver-specific transcript encoding the SREBP1c inhibitor INSIG2.
Collapse
Affiliation(s)
- Jessica L Yecies
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang L, Li J, Ran L, Pan F, Zhao X, Ding Z, Chen Y, Peng Q, Liang H. Phosphorylated insulin-like growth factor 1 receptor is implicated in resistance to the cytostatic effect of gefitinib in colorectal cancer cells. J Gastrointest Surg 2011; 15:942-57. [PMID: 21479670 DOI: 10.1007/s11605-011-1504-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 03/23/2011] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The ability of certain cancer cells to maintain signaling via the phosphoinositide-3-kinase/Akt and/or Ras/mitogen-activated protein kinase (MAPK) pathways has been repeatedly involved in resistance to epidermal growth factor receptor (EGFR) inhibition. DISCUSSION We investigated the potential mechanisms of the uncoupling of EGFR from its downstream signals in colorectal cancer (CRC) cells. Alternative growth factor receptors and regulation of downstream pathways in different gefitinib-responsive cell lines were determined. Basal insulin-like growth factor receptor-1β (IGFR-1β) phosphorylation was undetectable or present at very low levels in highly gefitinib-responsive cell lines and was present at strikingly high levels in less responsive cell lines. Further analysis of cell lines representing the most sensitive (Lovo), moderately sensitive (HT29), and most resistant (HCT116) strains was treated with an IGFR-1 inhibitor (AG1024), gefitinib, or both, revealing that elevated IGFR-1β phosphorylation can compensate for the loss of EGFR signaling function. Increased insulin-like growth factor II expression induced by gefitinib or heterodimerization of EGFR and IGFR-1β may trigger IGFR-1β signal transduction via activation of Akt and MAPK. In addition, high levels of EGFR and IGFR-1β phosphorylation were detected in CRC tumor tissue. We also showed that gefitinib- and/or AG1024-induced cytostatic effects could be mediated by glycogen synthase kinase-3β (GSK-3β) activation. Our data suggest that the crosstalk between EGFR and IGFR-1β signaling are likely to contribute to resistance of CRC cells to gefitinib and that measurement of GSK-3β activation may present a potential biomarker for evaluating the antitumor efficacy of receptor tyrosine kinase inhibition.
Collapse
Affiliation(s)
- Li Yang
- Department of Oncology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sutherland C. What Are the bona fide GSK3 Substrates? Int J Alzheimers Dis 2011; 2011:505607. [PMID: 21629754 PMCID: PMC3100594 DOI: 10.4061/2011/505607] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 03/09/2011] [Indexed: 01/07/2023] Open
Abstract
Nearly 100 proteins are proposed to be substrates for GSK3, suggesting that this enzyme is a fundamental regulator of almost every process in the cell, in every tissue in the body. However, it is not certain how many of these proposed substrates are regulated by GSK3 in vivo. Clearly, the identification of the physiological functions of GSK3 will be greatly aided by the identification of its bona fide substrates, and the development of GSK3 as a therapeutic target will be highly influenced by this range of actions, hence the need to accurately establish true GSK3 substrates in cells. In this paper the evidence that proposed GSK3 substrates are likely to be physiological targets is assessed, highlighting the key cellular processes that could be modulated by GSK3 activity and inhibition.
Collapse
Affiliation(s)
- Calum Sutherland
- Biomedical Research Institute, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
44
|
Epidermal growth factor: the driving force in initiation of RPE cell proliferation. Graefes Arch Clin Exp Ophthalmol 2011; 249:1195-200. [PMID: 21494877 DOI: 10.1007/s00417-011-1673-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 01/26/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND To analyze whether epidermal growth factor (EGF) exerts regulatory effects on proliferation and differentiation in ARPE19 cells after different incubation periods (24 vs. 48 h) for obtaining ideal conditions for feasible rejuvenation and autologous transplantation of retinal pigment epithelial cells (RPE cells). METHODS To evaluate gene expression patterns of RPE-specific differentiation and proliferation markers as well as transcriptional and translational changes of beta-catenin (ß-catenin)-signaling markers by fluorescence activated cell sorting (FACS) and reverse transcription - polymerase chain reaction (RT-PCR) after 24 h of EGF treatment. RESULTS After 24 h of EGF treatment, a significant decrease of retinal pigment epithelium-specific protein 65 (RPE 65), cellular retinaldehyde-binding protein (CRALBP) and cytokeratin 18 in ARPE-19 cells was scaled. In addition, an increase of cyclin D1 expression and a significant decrease of glycogen synthase kinase-3beta (GSK-3ß) and beta-catenin (ß-catenin) were equally observed after 24 and 48 h of EGF treatment. Cell-cycle studies revealed an increase of ARPE cells in S-G2/M phase after 24 h of EGF treatment. CONCLUSIONS Our data demonstrate the induction of proliferation and upregulation of the ß-catenin signaling pathway by EGF even after 24 h of incubation. As ideal cell culture conditions are essential for maintaining RPE-specific phenotypes, short incubation times enhance RPE cell quality for feasible rejuvenation and subsequent autologous transplantation of RPE cells.
Collapse
|
45
|
Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661:3-38. [PMID: 20811974 DOI: 10.1007/978-1-60761-795-2_1] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sequential activation of kinases within the mitogen-activated protein (MAP) kinase (MAPK) cascades is a common, and evolutionary-conserved mechanism of signal transduction. Four MAPK cascades have been identified in the last 20 years and those are usually named according to the MAPK components that are the central building blocks of each of the cascades. These are the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-Terminal kinase (JNK), p38, and ERK5 cascades. Each of these cascades consists of a core module of three tiers of protein kinases termed MAPK, MAPKK, and MAP3K, and often two additional tiers, the upstream MAP4K and the downstream MAPKAPK, which can complete five tiers of each cascade in certain cell lines or stimulations. The transmission of the signal via each cascade is mediated by sequential phosphorylation and activation of the components in the sequential tiers. These cascades cooperate in transmitting various extracellular signals and thus control a large number of distinct and even opposing cellular processes such as proliferation, differentiation, survival, development, stress response, and apoptosis. One way by which the specificity of each cascade is regulated is through the existence of several distinct components in each tier of the different cascades. About 70 genes, which are each translated to several alternatively spliced isoforms, encode the entire MAPK system, and allow the wide array of cascade's functions. These components, their regulation, as well as their involvement together with other mechanisms in the determination of signaling specificity by the MAPK cascade is described in this review. Mis-regulation of the MAPKs signals usually leads to diseases such as cancer and diabetes; therefore, studying the mechanisms of specificity-determination may lead to better understanding of these signaling-related diseases.
Collapse
Affiliation(s)
- Yonat Keshet
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
46
|
Song B, Lai B, Zheng Z, Zhang Y, Luo J, Wang C, Chen Y, Woodgett JR, Li M. Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival. J Biol Chem 2010; 285:41122-34. [PMID: 20841359 DOI: 10.1074/jbc.m110.130351] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) plays a critical role in neuronal apoptosis. The two mammalian isoforms of the kinase, GSK-3α and GSK-3β, are inhibited by phosphorylation at Ser-21 and Ser-9, respectively. Depolarization, which is vital for neuronal survival, causes both an increase in Ser-21/9 phosphorylation and an inhibition of GSK-3α/β. However, the role of GSK-3 phosphorylation in depolarization-dependent neuron survival and the signaling pathway contributing to GSK-3 phosphorylation during depolarization remain largely unknown. Using several approaches, we showed that both isoforms of GSK-3 are important for mediating neuronal apoptosis. Nonphosphorylatable GSK-3α/β mutants (S21A/S9A) promoted apoptosis, whereas a peptide encompassing Ser-9 of GSK-3β protected neurons in a phosphorylation-dependent manner; these results indicate a critical role for Ser-21/9 phosphorylation on depolarization-dependent neuron survival. We found that Ser-21/9 phosphorylation of GSK-3 was mediated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) but not by Akt/PKB, PKA, or p90(RSK). CaMKII associated with and phosphorylated GSK-3α/β. Furthermore, the pro-survival effect of CaMKII was mediated by GSK-3 phosphorylation and inactivation. These findings identify a novel Ca(2+)/calmodulin/CaMKII/GSK-3 pathway that couples depolarization to neuronal survival.
Collapse
Affiliation(s)
- Bin Song
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Gruson D, Ginion A, Decroly N, Lause P, Vanoverschelde JL, Ketelslegers JM, Bertrand L, Thissen JP. Urotensin II induction of adult cardiomyocytes hypertrophy involves the Akt/GSK-3beta signaling pathway. Peptides 2010; 31:1326-33. [PMID: 20416349 DOI: 10.1016/j.peptides.2010.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 11/22/2022]
Abstract
Urotensin II (UII) a potent vasoactive peptide is upregulated in the failing heart and promotes cardiomyocytes hypertrophy, in particular through mitogen-activated protein kinases. However, the regulation by UII of GSK-3beta, a recognized pivotal signaling element of cardiac hypertrophy has not yet been documented. We therefore investigated in adult cardiomyocytes, if UII phosphorylates GSK-3beta and Akt, one of its upstream regulators and stabilizes beta-catenin, a GSK-3beta dependent nuclear transcriptional co-activator. Primary cultures of adult rat cardiomyocytes were stimulated for 48h with UII. Cell size and protein/DNA contents were determined. Phosphorylated and total forms of Akt, GSK-3beta and the total amount of beta-catenin were quantified by western blot. The responses of cardiomyocytes to UII were also evaluated after pretreatment with the chemical phosphatidyl-inositol-3-kinase inhibitor, LY294002, and urantide, a competitive UII receptor antagonist. UII increased cell size and the protein/DNA ratio, consistent with a hypertrophic response. UII also increased phosphorylation of Akt and its downstream target GSK-3beta. beta-Catenin protein levels were increased. All of these effects of UII were prevented by LY294002, and urantide. The UII-induced adult cardiomyocytes hypertrophy involves the Akt/GSK-3beta signaling pathways and is accompanied by the stabilization of the beta-catenin. All these effects are abolished by competitive inhibition of the UII receptor, consistent with new therapeutic perspectives for heart failure treatment.
Collapse
Affiliation(s)
- D Gruson
- Université catholique de Louvain, Unit of Diabetes and Nutrition, B-1200 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim Y, Lee YI, Seo M, Kim SY, Lee JE, Youn HD, Kim YS, Juhnn YS. Calcineurin dephosphorylates glycogen synthase kinase-3 beta at serine-9 in neuroblast-derived cells. J Neurochem 2009; 111:344-54. [DOI: 10.1111/j.1471-4159.2009.06318.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Baek MK, Park JS, Park JH, Kim MH, Kim HD, Bae WK, Chung IJ, Shin BA, Jung YD. Lithocholic acid upregulates uPAR and cell invasiveness via MAPK and AP-1 signaling in colon cancer cells. Cancer Lett 2009; 290:123-8. [PMID: 19782465 DOI: 10.1016/j.canlet.2009.08.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/26/2009] [Accepted: 08/31/2009] [Indexed: 12/11/2022]
Abstract
The secondary bile acid lithocholic acid (LCA) induced expression of urokinase-type plasminogen activator receptor (uPAR) and enhanced cell invasiveness in colon cancer cells. A dominant negative mutant or a specific inhibitor of MEK-1 suppressed LCA-induced uPAR expression. Deletions and site-directed mutagenesis revealed that the AP-1 site was required for LCA-induced uPAR transcription. LCA-mediated enhanced cell invasiveness was partially abrogated by uPAR neutralizing antibody and inhibitors of both Erk-1/2 and AP-1. These results suggest that LCA induces uPAR expression via Erk-1/2 and AP-1 pathway and, in turn, stimulate invasiveness of human colon cancer cells.
Collapse
Affiliation(s)
- Min Kyung Baek
- Center for Biomedical Human Resources at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|