1
|
Lokareddy RK, Hou CFD, Li F, Yang R, Cingolani G. Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function. Viruses 2022; 14:v14102215. [PMID: 36298770 PMCID: PMC9611059 DOI: 10.3390/v14102215] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
Collapse
|
2
|
Plateau P, Moch C, Blanquet S. Spermidine strongly increases the fidelity of Escherichia coli CRISPR Cas1-Cas2 integrase. J Biol Chem 2019; 294:11311-11322. [PMID: 31171718 DOI: 10.1074/jbc.ra119.007619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Site-selective CRISPR array expansion at the origin of bacterial adaptive immunity relies on recognition of sequence-dependent DNA structures by the conserved Cas1-Cas2 integrase. Off-target integration of a new spacer sequence outside canonical CRISPR arrays has been described in vitro However, this nonspecific integration activity is rare in vivo Here, we designed gel assays to monitor fluorescently labeled protospacer insertion in a supercoiled 3-kb plasmid harboring a minimal CRISPR locus derived from the Escherichia coli type I-E system. This assay enabled us to distinguish and quantify target and off-target insertion events catalyzed by E. coli Cas1-Cas2 integrase. We show that addition of the ubiquitous polyamine spermidine or of another polyamine, spermine, significantly alters the ratio between target and off-target insertions. Notably, addition of 2 mm spermidine quenched the off-target spacer insertion rate by a factor of 20-fold, and, in the presence of integration host factor, spermidine also increased insertion at the CRISPR locus 1.5-fold. The observation made in our in vitro system that spermidine strongly decreases nonspecific activity of Cas1-Cas2 integrase outside the leader-proximal region of a CRISPR array suggests that this polyamine plays a potential role in the fidelity of the spacer integration also in vivo.
Collapse
Affiliation(s)
- Pierre Plateau
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| | - Clara Moch
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| | - Sylvain Blanquet
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| |
Collapse
|
3
|
Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages. Proc Natl Acad Sci U S A 2011; 109:817-22. [PMID: 22207623 DOI: 10.1073/pnas.1110224109] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tailed DNA bacteriophages assemble empty procapsids that are subsequently filled with the viral genome by means of a DNA packaging machine situated at a special fivefold vertex. The packaging machine consists of a "small terminase" and a "large terminase" component. One of the functions of the small terminase is to initiate packaging of the viral genome, whereas the large terminase is responsible for the ATP-powered translocation of DNA. The small terminase subunit has three domains, an N-terminal DNA-binding domain, a central oligomerization domain, and a C-terminal domain for interacting with the large terminase. Here we report structures of the central domain in two different oligomerization states for a small terminase from the T4 family of phages. In addition, we report biochemical studies that establish the function for each of the small terminase domains. On the basis of the structural and biochemical information, we propose a model for DNA packaging initiation.
Collapse
|
4
|
Helicase translocation assay method using avidin and biotinylated nucleotides. Biotechnol Lett 2008; 30:2007-12. [PMID: 18594773 DOI: 10.1007/s10529-008-9781-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/09/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Helicase involves many cellular processes that separate double-stranded nucleic acid into single strands. Although it is believed that helicase translocates nucleic acids, it is difficult to show the direct evidence of translocation on nucleic acids. In this study, an avidin-biotinylated nucleotides-based method for helicase translocation assay has been described, and the biochemical assay results have been demonstrated.
Collapse
|
5
|
Ortega ME, Gaussier H, Catalano CE. The DNA maturation domain of gpA, the DNA packaging motor protein of bacteriophage lambda, contains an ATPase site associated with endonuclease activity. J Mol Biol 2007; 373:851-65. [PMID: 17870092 PMCID: PMC2082050 DOI: 10.1016/j.jmb.2007.07.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 12/17/2022]
Abstract
Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in Escherichia coli. Biochemical characterization of gpA-DeltaN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A "P-loop" sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme, DNA maturation and DNA packaging, are discussed.
Collapse
Affiliation(s)
- Marcos E. Ortega
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO
| | - Helene Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO
| | - Carlos E. Catalano
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO
- * Address correspondence to this author: Department of Medicinal Chemistry, University of Washington School of Pharmacy, H172 Health Science Building, Box 357610, Seattle, WA (206) 685-2468 (phone), (206) 685-3252 (fax), (internet)
| |
Collapse
|
6
|
Maluf NK, Gaussier H, Bogner E, Feiss M, Catalano CE. Assembly of bacteriophage lambda terminase into a viral DNA maturation and packaging machine. Biochemistry 2006; 45:15259-68. [PMID: 17176048 DOI: 10.1021/bi0615036] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Terminase enzymes are common to complex double-stranded DNA viruses and function to package viral DNA into the capsid. We recently demonstrated that the bacteriophage lambda terminase gpA and gpNu1 proteins assemble into a stable heterotrimer with a molar ratio gpA1/gpNu1(2). This terminase protomer possesses DNA maturation and packaging activities that are dependent on the E. coli integration host factor protein (IHF). Here, we show that the protomer further assembles into a homogeneous tetramer of protomers of composition (gpA1/gpNu1(2))4. Electron microscopy shows that the tetramer forms a ring structure large enough to encircle duplex DNA. In contrast to the heterotrimer, the ring tetramer can mature and package viral DNA in the absence of IHF. We propose that IHF induced bending of viral DNA facilitates the assembly of four terminase protomers into a ring tetramer that represents the catalytically competent DNA maturation and packaging complex in vivo. This work provides, for the first time, insight into the functional assembly state of a viral DNA packaging motor.
Collapse
Affiliation(s)
- Nasib Karl Maluf
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue C238, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
7
|
Ortega ME, Catalano CE. Bacteriophage lambda gpNu1 and Escherichia coli IHF proteins cooperatively bind and bend viral DNA: implications for the assembly of a genome-packaging motor. Biochemistry 2006; 45:5180-9. [PMID: 16618107 DOI: 10.1021/bi052284b] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terminase enzymes are common to both prokaryotic and eukaryotic double-stranded DNA viruses and are responsible for packaging viral DNA into the confines of an empty procapsid shell. In all known cases, the holoenzymes are heteroligomers composed of a large subunit that possesses the catalytic activities required for genome packaging and a small subunit that is responsible for specific recognition of viral DNA. In bacteriophage lambda, the DNA recognition protein is gpNu1. The gpNu1 subunit interacts with multiple recognition elements within cos, the packaging initiation site in viral DNA, to site-specifically assemble the packaging machinery. Motor assembly is modulated by the Escherichia coli integration host factor protein (IHF), which binds to a consensus sequence also located within cos. On the basis of a variety of biochemical data and the recently solved NMR structure of the DNA binding domain of gpNu1, we proposed a novel DNA binding mode that predicts significant bending of duplex DNA by gpNu1 (de Beer et al. (2002) Mol. Cell 9, 981-991). We further proposed that gpNu1 and IHF cooperatively bind and bend viral DNA to regulate the assembly of the packaging motor. Here, we characterize cooperative gpNu1 and IHF binding to the cos site in lambda DNA using a quantitative electrophoretic mobility shift (EMS) assay. These studies provide direct experimental support for the long presumed cooperative assembly of gpNu1 and IHF at the cos sequence of lambda DNA. Further, circular permutation experiments demonstrate that the viral and host proteins each introduce a strong bend in cos-containing DNA, but not nonspecific DNA substrates. Thus, specific recognition of viral DNA by the packaging apparatus is mediated by both DNA sequence information and by structural alteration of the duplex. The relevance of these results with respect to the assembly of a viral DNA-packaging motor is discussed.
Collapse
Affiliation(s)
- Marcos E Ortega
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
8
|
Gaussier H, Yang Q, Catalano CE. Building a virus from scratch: assembly of an infectious virus using purified components in a rigorously defined biochemical assay system. J Mol Biol 2006; 357:1154-66. [PMID: 16476446 DOI: 10.1016/j.jmb.2006.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/27/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
The assembly of double-stranded DNA (dsDNA) viruses such as poxvirus, the herpesviruses and many bacteriophages is a complex process that requires the coordinated activities of numerous proteins of both viral and host origin. Here, we report the assembly of an infectious wild-type lambda virus using purified proteins and commercially available DNA, and optimization of the assembly reaction in a rigorously defined biochemical system. Seven proteins, purified procapsids and tails, and mature lambda DNA are necessary and sufficient for efficient virus assembly in vitro. Analysis of the reaction suggests that (i) virus assembly in vitro is optimal under conditions that faithfully mimic the intracellular environment within an Escherichia coli cell, (ii) concatemeric DNA is required for the successful completion of virus assembly, (iii) several of the protein components oligomerize concomitant with their step-wise addition to the nascent virus particle and (iv) tail addition is the rate-limiting step in virus assembly. Importantly, the assembled virus may enter either of the developmental pathways (lytic or lysogenic) expected of a lambda virion. Thus, we demonstrate for the first time that a wild-type, complex DNA virus may be assembled from purified components under defined biochemical conditions. This system provides a powerful tool to characterize, at the molecular level, the step-by-step processes required to assemble an infectious virus particle. Given the remarkable similarities between dsDNA bacteriophage and eukaryotic dsDNA viruses, characterization of the lambda system has broad biological implications in our understanding of virus development at a global level.
Collapse
Affiliation(s)
- Hélène Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue C238, Denver, CO 80262, USA
| | | | | |
Collapse
|
9
|
Gaussier H, Ortega ME, Maluf NK, Catalano CE. Nucleotides regulate the conformational state of the small terminase subunit from bacteriophage lambda: implications for the assembly of a viral genome-packaging motor. Biochemistry 2005; 44:9645-56. [PMID: 16008350 DOI: 10.1021/bi050333e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Terminase enzymes are responsible for "packaging" of viral DNA into a preformed procapsid. Bacteriophage lambda terminase is composed of two subunits, gpA and gpNu1, in a gpA(1).gpNu1(2) holoenzyme complex. The larger gpA subunit is responsible for preparation of viral DNA for packaging, and is central to the packaging motor complex. The smaller gpNu1 subunit is required for site-specific assembly of the packaging motor on viral DNA. Terminase assembly at the packaging initiation site is regulated by ATP binding and hydrolysis at the gpNu1 subunit. Characterization of the catalytic and structural interactions between the DNA and nucleotide binding sites of gpNu1 is thus central to our understanding of the packaging motor at the molecular level. The high-resolution structure of the DNA binding domain of gpNu1 (gpNu1-DBD) was recently determined in our lab [de Beer, T., et al. (2002) Mol. Cell 9, 981-991]. The structure reveals the presence of a winged-helix-turn-helix DNA binding motif, but the location of the ATPase catalytic site in gpNu1 remains unknown. In this work, nucleotide binding to the gpNu1-DBD was probed using acrylamide fluorescence quenching and fluorescence-monitored ligand binding studies. The data indicate that the minimal DBD dimer binds both ATP and ADP at two equivalent but highly cooperative binding sites. The data further suggest that ATP and ADP induce distinct conformations of the dimer but do not affect DNA binding affinity. The implications of these results with respect to the assembly and function of a terminase DNA-packaging motor are discussed.
Collapse
Affiliation(s)
- Hélène Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
10
|
Maluf NK, Yang Q, Catalano CE. Self-association properties of the bacteriophage lambda terminase holoenzyme: implications for the DNA packaging motor. J Mol Biol 2005; 347:523-42. [PMID: 15755448 DOI: 10.1016/j.jmb.2005.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/01/2005] [Accepted: 01/06/2005] [Indexed: 11/23/2022]
Abstract
Terminases are enzymes common to complex double-stranded DNA viruses and are required for packaging of viral DNA into a protective capsid. Bacteriophage lambda terminase holoenzyme is a hetero-oligomer composed of the A and Nu1 lambda gene products; however, the self-association properties of the holoenzyme have not been investigated systematically. Here, we report the results of sedimentation velocity, sedimentation equilibrium, and gel-filtration experiments studying the self-association properties of the holoenzyme. We find that purified, recombinant lambda terminase forms a homogeneous, heterotrimeric structure, consisting of one gpA molecule associated with two gpNu1 molecules (114.2 kDa). We further show that lambda terminase adopts a heterogeneous mixture of higher-order structures, with an average molecular mass of 528(+/-34) kDa. Both the heterotrimer and the higher-order species possess site-specific cos cleavage activity, as well as DNA packaging activity; however, the heterotrimer is dependent upon Escherichia coli integration host factor (IHF) for these activities. Furthermore, the ATPase activity of the higher-order species is approximately 1000-fold greater than that of the heterotrimer. These data suggest that IHF bending of the duplex at the cos site in viral DNA promotes the assembly of the heterotrimer into a biologically active, higher-order packaging motor. We propose that a single, higher-order hetero-oligomer of gpA and gpNu1 functions throughout lambda development.
Collapse
Affiliation(s)
- Nasib K Maluf
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Ave, C238, Denver, CO 80262, USA
| | | | | |
Collapse
|
11
|
Yang Q, Catalano CE. Biochemical characterization of bacteriophage lambda genome packaging in vitro. Virology 2003; 305:276-87. [PMID: 12573573 DOI: 10.1006/viro.2002.1602] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage lambda has been extensively studied, and the abundance of genetic and biochemical information available makes this an ideal model system to study virus DNA packaging at the molecular level. Limited in vitro packaging efficiency has hampered progress toward this end, however. It has been suggested that limited packaging efficiency is related to poor activity of purified procapsids. We describe the construction of a vector that expresses lambda procapsids with a yield that is 40-fold greater than existing systems. Consistent with previous studies, packaging of a mature lambda genome is very inefficient in vitro, with only 4% of the input procapsids utilized. Concatemeric DNA is the preferred packaging substrate in vivo, and procapsids interact with a nucleoprotein complex known as complex I to initiate genome packaging. When complex I is used as a packaging substrate in vitro, capsid utilization is extremely efficient, and 40% of the input DNA is packaged. Finally, we provide evidence for a packaging-stimulated ATPase activity, and kinetically characterize this reaction quantifying the energetic cost of DNA packaging in bacteriophage lambda.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
12
|
Kindt J, Tzlil S, Ben-Shaul A, Gelbart WM. DNA packaging and ejection forces in bacteriophage. Proc Natl Acad Sci U S A 2001; 98:13671-4. [PMID: 11707588 PMCID: PMC61099 DOI: 10.1073/pnas.241486298] [Citation(s) in RCA: 286] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We calculate the forces required to package (or, equivalently, acting to eject) DNA into (from) a bacteriophage capsid, as a function of the loaded (ejected) length, under conditions for which the DNA is either self-repelling or self-attracting. Through computer simulation and analytical theory, we find the loading force to increase more than 10-fold (to tens of piconewtons) during the final third of the loading process; correspondingly, the internal pressure drops 10-fold to a few atmospheres (matching the osmotic pressure in the cell) upon ejection of just a small fraction of the phage genome. We also determine an evolution of the arrangement of packaged DNA from toroidal to spool-like structures.
Collapse
Affiliation(s)
- J Kindt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
13
|
Bain DL, Berton N, Ortega M, Baran J, Yang Q, Catalano CE. Biophysical characterization of the DNA binding domain of gpNu1, a viral DNA packaging protein. J Biol Chem 2001; 276:20175-81. [PMID: 11279084 DOI: 10.1074/jbc.m100517200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Terminase enzymes are common to double-stranded DNA viruses. These enzymes "package" the viral genome into a pre-formed capsid. Terminase from bacteriophage lambda is composed of gpA (72.4 kDa) and gpNu1 (20.4 kDa) subunits. We have described the expression and biochemical characterization of gpNu1DeltaK100, a construct comprising the N-terminal 100 amino acids of gpNu1 (Yang, Q., de Beer, T., Woods, L., Meyer, J., Manning, M., Overduin, M., and Catalano, C. E. (1999) Biochemistry 38, 465-477). Here we present a biophysical characterization of this construct. Thermally induced loss of secondary and tertiary structures is fully reversible. Surprisingly, although loss of tertiary structure is cooperative, loss of secondary structure is non-cooperative. NMR and limited proteolysis data suggest that approximately 30 amino acids of gpNu1DeltaK100 are solvent-exposed and highly flexible. We therefore constructed gpNu1DeltaE68, a protein consisting of the N-terminal 68 residues of gpNu1. gpNu1DeltaE68 is a dimer with no evidence of dissociation or further aggregation. Thermally induced unfolding of gpNu1DeltaE68 is reversible, with concomitant loss of both secondary and tertiary structure. The melting temperature increases with increasing protein concentration, suggesting that dimerization and folding are, at least in part, coupled. The data suggest that gpNu1DeltaE68 represents the minimal DNA binding domain of gpNu1. We further suggest that the C-terminal approximately 30 residues in gpNu1DeltaK100 adopt a pseudo-stable alpha-helix that extends from the folded core of the protein. A model describing the role of this helix in the assembly of the packaging apparatus is discussed.
Collapse
Affiliation(s)
- D L Bain
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yang Q, de Beer T, Woods L, Meyer JD, Manning MC, Overduin M, Catalano CE. Cloning, expression, and characterization of a DNA binding domain of gpNu1, a phage lambda DNA packaging protein. Biochemistry 1999; 38:465-77. [PMID: 9890930 DOI: 10.1021/bi981271d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terminase is an enzyme from bacteriophage lambda that is required for insertion of the viral genome into an empty pro-capsid. This enzyme is composed of the viral proteins gpNu1 (20.4 kDa) and gpA (73.3 kDa) in a holoenzyme complex. Current models for terminase assembly onto DNA suggest that gpNu1 binds to three repeating elements within a region of the lambda genome known as cosB which, in turn, stimulates the assembly of a gpA dimer at the cosN subsite. This prenicking complex is the first of several stable nucleoprotein intermediates required for DNA packaging. We have noted a hydrophobic region within the primary amino acid sequence of the terminase gpNu1 subunit and hypothesized that this region constitutes a protein-protein interaction domain required for cooperative assembly at cosB and that is also responsible for the observed aggregation behavior of the isolated protein. We therefore constructed a mutant of gpNu1 in which this hydrophobic "domain" has been deleted in order to test these hypotheses. The deletion mutant protein, gpNu1DeltaK, is fully soluble and, unlike full-length protein, shows no tendency toward aggregation; However, the protein is a dimer under all experimental conditions examined as determined by gel permeation and sedimentation equilibrium analysis. The truncated protein is folded with evidence of secondary and tertiary structural elements by circular dichroism and NMR spectroscopy. While physical and biological assays demonstrate that gpNu1DeltaK does not interact with the terminase gpA subunit, the deletion mutant binds with specificity to cos-containing DNA. We have thus constructed a deletion mutant of the phage lambda terminase gpNu1 subunit which constitutes a highly soluble DNA binding domain of the protein. We further propose that the hydrophobic amino acids found between Lys100 and Pro141 define a self-association domain that is required for the assembly of stable nucleoprotein packaging complexes and that the C-terminal tail of the protein defines a distinct gpA-binding site that is responsible for terminase holoenzyme formation.
Collapse
Affiliation(s)
- Q Yang
- Department of Pharmaceutical Sciences, Molecular Biology Program, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Babbar BK, Gold M. ATP-reactive sites in the bacteriophage lambda packaging protein terminase lie in the N-termini of its subunits, gpA and gpNu1. Virology 1998; 247:251-64. [PMID: 9705918 DOI: 10.1006/viro.1998.9221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-reactive sites in terminase and its subunits have been successfully identified using three different affinity analogs of ATP (2-and 8-azidoATP and FITC) GpA, the larger subunit of terminase, was shown to have a higher affinity for these analogs than gpNu1, the smaller subunit. The suitability of these reagents as affinity analogs of ATP was demonstrated by ATP protection experiments and in vitro assays done with the modified proteins. These analogs were thus shown to modify the ATP-reactive sites. The results obtained from these experiments also indicate the importance of subunit-subunit interactions in the holoenzyme. Terminase, gpA, and gpNu1 were modified with these analogs and the ATP-reactive sites were identified by isolating the modified peptide by reverse-phase chromatography. The sequence analysis of the modified peptides indicates a region including amino acids 18-35 in the N-terminus of gpNu1 and a region including amino acids 59-85 in the N-terminus of gpA as being the ATP-reactive sites.
Collapse
Affiliation(s)
- B K Babbar
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | |
Collapse
|
16
|
Hwang Y, Feiss M. Mutations affecting lysine-35 of gpNu1, the small subunit of bacteriophage lambda terminase, alter the strength and specificity of holoterminase interactions with DNA. Virology 1997; 231:218-30. [PMID: 9168884 DOI: 10.1006/viro.1997.8542] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The small subunit of lambda terminase, gpNu1, contains a low-affinity ATPase activity that is stimulated by nonspecific dsDNA. The location of the gpNu1 ATPase center is suggested by a sequence match between gpNu1 (29-VLRGGGKG-36) and the phosphate-binding loop, or P-loop (GXXXXGKT/S), of known ATPase. The proposed P-loop of gpNu1 is just downstream of a putative helix-turn-helix DNA-binding motif, located between residues 5 and 24. Published work has shown that changing lysine-35 of the proposed P-loop of gpNu1 alters the response of the ATPase activity to DNA, as follows. The changes gpNu1 k35A and gpNu1 K35D increase the level of DNA required for maximal stimulation of the gpNu1 ATPase by factors of 2- and 10-fold, respectively. The maximally stimulated ATPase activities of the mutant enzymes are indistinguishable from that of the wild-type enzyme. In the present work, the effects of changing lysine-35 on the cos-cleavage and DNA-packaging activities of terminase were examined. In vitro, the gpNu1 K35A enzyme cleaved cos as efficiently as the wild-type enzyme, but required a 2-fold increased level of substrate DNA for saturation, suggesting a slight reduction in DNA affinity. In a crude DNA-packaging system using cleaved lambda DNA as substrate, the gpNu1 K35A enzyme had a 10-fold defect. In vivo, lambda Nu1 K35A showed a 2-fold reduction in cos cleavage, but no packaged DNA was detected. The primary defect of the gpNu1 K35A enzyme was concluded to be in a post-cos-cleavage step of DNA packaging. In in vitro cos-cleavage experiments, the gpNu1 K35D enzyme had a 10-fold increased requirement for saturation by substrate DNA. Furthermore, the cos-cleavage activity of gpNu1 K35D enzyme was strongly inhibited by the presence of nonspecific DNA, indicating that the gpNu1 K35D enzyme is unable to discriminate effectively between cos and nonspecific DNA. No cos cleavage was observed in vivo for lambda Nu1 K35D, a result consistent with the discrimination defect found in vitro for the gpNu1 K35D enzyme. In a crude packaging system the gpNu1 K35D enzyme had a 200-fold defect; in a purified packaging system, the gpNu1 K35D enzyme was found to be unable to discriminate between lambda DNA and nonspecific phage T7 DNA, a result indicating that the gpNu1 K35D enzyme is also defective in discriminating between lambda DNA and nonspecific DNA during DNA packaging.
Collapse
Affiliation(s)
- Y Hwang
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|