1
|
Kaur S, Coulombe Y, Ramdzan ZM, Leduy L, Masson JY, Nepveu A. Special AT-rich Sequence-binding Protein 1 (SATB1) Functions as an Accessory Factor in Base Excision Repair. J Biol Chem 2016; 291:22769-22780. [PMID: 27590341 DOI: 10.1074/jbc.m116.735696] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/01/2016] [Indexed: 01/19/2023] Open
Abstract
Base excision repair is initiated by DNA glycosylases that recognize specific altered bases. DNA glycosylases for oxidized bases carry both a glycosylase activity that removes the faulty base and an apyrimidinic/apurinic lyase activity that introduces a single-strand DNA incision. In particular, the CUT domains within the CUX1 and CUX2 proteins were recently shown to interact with the 8-oxoguanine (8-oxoG) DNA glycosylase and stimulate its enzymatic activities. SATB1, which contains two CUT domains, was originally characterized as a T cell-specific genome organizer whose aberrant overexpression in breast cancer can promote tumor progression. Here we investigated the involvement of SATB1 in DNA repair. SATB1 knockdown caused a delay in DNA repair following exposure to H2O2, an increase in OGG1-sensitive oxidized bases within genomic DNA, and a decrease in 8-oxoG cleavage activity in cell extracts. In parallel, we observed an increase in phospho-CHK1 and γ-H2AX levels and a decrease in DNA synthesis. Conversely, ectopic expression of SATB1 accelerated DNA repair and reduced the levels of oxidized bases in genomic DNA. Moreover, an enhanced GFP-SATB1 fusion protein was rapidly recruited to laser microirradiation-induced DNA damage. Using purified proteins, we showed that SATB1 interacts directly with OGG1, increases its binding to 8-oxoG-containing DNA, promotes Schiff base formation, and stimulates its glycosylase and apyrimidinic/apurinic lyase enzymatic activities. Structure/function analysis demonstrated that CUT domains, but not the homeodomain, are responsible for the stimulation of OGG1. Together, these results identify another CUT domain protein that functions both as a transcription factor and an accessory factor in base excision repair.
Collapse
Affiliation(s)
- Simran Kaur
- From the Goodman Cancer Research Centre and.,Departments of Biochemistry
| | - Yan Coulombe
- the Genome Stability Laboratory, CHU de Québec Research Center, Québec City, Québec G1R 2J6, Canada, and.,the Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, Québec G1V 0A6, Canada
| | | | - Lam Leduy
- From the Goodman Cancer Research Centre and
| | - Jean-Yves Masson
- the Genome Stability Laboratory, CHU de Québec Research Center, Québec City, Québec G1R 2J6, Canada, and.,the Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, Québec G1V 0A6, Canada
| | - Alain Nepveu
- From the Goodman Cancer Research Centre and .,Departments of Biochemistry.,Oncology, and.,Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
2
|
Overexpression of Special AT-Rich Sequence-Binding Protein 1 in Endometrial Cancer: A Clinicopathologic Study. Int J Gynecol Cancer 2015; 25:4-11. [DOI: 10.1097/igc.0000000000000314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ObjectiveSpecial AT-rich sequence-binding protein 1 (SATB1), as a genome organizer, serves important functions in tumor progression and metastasis. The SATB1 is overexpressed in various malignant tumors. However, the expression and prognostic value of SATB1 in endometrial cancer remain unknown. The aim of this study was to explore the prognostic values of SATB1 expression in endometrial cancer.Methods/MaterialsWe investigated the expression of SATB1 in 172 untreated endometrial cancer tissues and 25 normal endometrial tissues through immunohistochemical staining. We also analyzed the association of SATB1 level with clinicopathologic parameters and determined its prognostic significance.ResultSpecial AT-rich sequence-binding protein 1 was expressed in 78 (45.3%) of the 172 endometrial cancer samples, but not in the normal endometrial samples. The positive expression of SATB1 was associated with clinicopathologic factors, such as International Federation of Gynecology and Obstetrics stage, histological grade, myometrial invasion depth, lymph node metastasis, vascular/lymphatic invasion, and recurrence. The patients with positive SATB1 expression had worse overall survival and disease-free survival rates than the patients with negative SATB1 expression (P< 0.001 for both). Multivariate Cox analysis indicated that SATB1 was an independent parameter for overall survival (hazards ratio, 2.928; 95% confidence interval, 1.072–7.994;P= 0.036) and disease-free survival (hazards ratio, 2.825; 95% confidence interval, 1.111–7.181;P= 0.029).ConclusionsResults showed that SATB1 may be involved in tumor development and progression in endometrial cancer, may serve as a promising biomarker for predicting the prognosis of endometrial cancer patients, and thus may act as a novel target for treating endometrial carcinoma.
Collapse
|
3
|
Zhang L, Cheng F, He R, Chen H, Liu Y, Sun J. Inhibition of SATB1 by shRNA suppresses the proliferation of cutaneous malignant melanoma. Cancer Biother Radiopharm 2014; 29:77-82. [PMID: 24392879 PMCID: PMC3929234 DOI: 10.1089/cbr.2013.1502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Overexpression of special AT-rich sequence binding protein 1 (SATB1), a global genome organizer, as a predictor of poor prognosis in cutaneous malignant melanoma (CMM) attracted great interest in previous research. In this article, upregulated SATB1 was observed in three melanoma cell lines and in eight CMM tissues. After downregulating SATB1 by RNAi, proliferation of A375 was suppressed in vitro and in vivo. In summary, the proliferation of CMM could be related closely to the SATB1 gene. Interference of this gene may be a promising method for CMM therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Dermatology Hospital of Jiangxi Province, Nanchang, China
| | - Fang Cheng
- Department of Dermatology, Xingtai People's Hospital, Hebei Province, China
| | - Runzhi He
- Department of Neurosurgery, Xingtai People's Hospital, Hebei Province, China
| | - Hao Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Jianfang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| |
Collapse
|
4
|
Huang Y, Zhang L, Song NN, Hu ZL, Chen JY, Ding YQ. Distribution of Satb1 in the central nervous system of adult mice. Neurosci Res 2011; 71:12-21. [PMID: 21658419 DOI: 10.1016/j.neures.2011.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/04/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022]
Abstract
This study consists of a thorough immunohistochemical examination of the expression profile of the transcription factor Satb1 (special AT-rich sequence binding protein 1) in the adult mouse central nervous system (CNS). Satb1-positive neurons were abundant in the deep layers of the neocortex, subiculum, anterior olfactory nucleus, nucleus of diagonal band, anterior part of the basolateral amygdaloid nucleus, compact part of substantia nigra, ventral tegmental area, ventral and dorsal tegmental nuclei, laterodorsal tegmental nucleus, and medullary and spinal dorsal horns. Relatively smaller populations of Satb1-positive neurons were observed in the piriform cortex, hippocampus, other subnuclei of the amygdala, centrolateral thalamic nucleus, parafascicular thalamic nucleus, posterior hypothalamic area, ventral part of the premammillary nucleus, supramammillary nucleus, deep layers of the superior colliculus, dorsal raphe nucleus, nucleus of trapezoid body, superior periolivary nucleus and nucleus of lateral lemniscus, and parabrachial region. Double immunostaining showed that Satb1 was expressed in midbrain dopaminergic neurons, but not in cholinergic or serotonergic neurons. Satb1 expression was never observed in glial cells. This study presents a comprehensive overview of Satb1 expression in the CNS, and provides insights for investigating the role of Satb1 in the mature CNS.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
5
|
OSHIGE M, KATSUMATA M, IWASAKI D, YAMAZAKI K, KATSURA S. Development of Nanoparticle Array Method by Using DNA Sequence Recognition Peptide. KOBUNSHI RONBUNSHU 2008. [DOI: 10.1295/koron.65.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Lijnen HR, Frederix L, Scroyen I. Deficiency of plasminogen activator inhibitor-2 impairs nutritionally induced murine adipose tissue development. J Thromb Haemost 2007; 5:2259-65. [PMID: 17958744 DOI: 10.1111/j.1538-7836.2007.02735.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND A functional role for several components of the fibrinolytic (plasminogen/plasmin) system in development of adipose tissue has been demonstrated. No information is available, however, on a potential role of plasminogen activator inhibitor-2 (PAI-2) in obesity. METHODS In vitro, 3T3-F442A murine pre-adipocytes were differentiated into mature adipocytes. In vivo, 5-week-old male PAI-2-deficient (PAI-2(-/-)) mice and wild-type (WT) controls of the same genetic background (C57Bl/6) were kept on a high fat diet (HFD, caloric value of 20.1 kJ g(-1)) for 15 weeks. RESULTS Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed expression of PAI-2 mRNA during in vitro differentiation of pre-adipocytes and in vivo in s.c. and gonadal (GON) adipose tissues of WT mice, where it was localized both in the stromal/vascular cell fraction and in adipocytes. During HFD feeding, food intake and body weight gain were comparable for WT and PAI-2(-/-) mice. Subcutaneous plus GON fat mass was, however, significantly lower in PAI-2(-/-) mice (3.15 +/- 0.21 vs. 3.91 +/- 0.18 g; P < 0.05). Immunohistochemical analysis of adipose tissues revealed significant adipocyte hypotrophy in s.c. fat of PAI-2(-/-) mice (about 25% reduction in size; P < 0.01). Blood vessel density, normalized to adipocyte number, was comparable in s.c. fat, but was lower (P < 0.05) in GON fat of PAI-2(-/-) mice. Adipose tissue-associated fibrinolytic activity was not affected by PAI-2 deficiency. CONCLUSION PAI-2 promotes adipose tissue development in mice via a mechanism independent of its antifibrinolytic effect.
Collapse
Affiliation(s)
- H R Lijnen
- Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
7
|
Abstract
BACKGROUND S/MARs are regions of the DNA that are attached to the nuclear matrix. These regions are known to affect substantially the expression of genes. The computer prediction of S/MARs is a highly significant task which could contribute to our understanding of chromatin organisation in eukaryotic cells, the number and distribution of boundary elements, and the understanding of gene regulation in eukaryotic cells. However, while a number of S/MAR predictors have been proposed, their accuracy has so far not come under scrutiny. RESULTS We have selected S/MARs with sufficient experimental evidence and used these to evaluate existing methods of S/MAR prediction. Our main results are: 1.) all existing methods have little predictive power, 2.) a simple rule based on AT-percentage is generally competitive with other methods, 3.) in practice, the different methods will usually identify different sub-sequences as S/MARs, 4.) more research on the H-Rule would be valuable. CONCLUSION A new insight is needed to design a method which will predict S/MARs well. Our data, including the control data, has been deposited as additional material and this may help later researchers test new predictors.
Collapse
|
8
|
Makarevitch I, Somers DA. Association of Arabidopsis topoisomerase IIA cleavage sites with functional genomic elements and T-DNA loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:697-709. [PMID: 17092318 DOI: 10.1111/j.1365-313x.2006.02915.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Topoisomerase IIA (Topo IIA) is an essential ubiquitous enzyme involved in controlling DNA topology during multiple processes of genome function, and has been implicated in the generation of double-stranded breaks (DSB) in genomic DNA prior to DNA integration in plant genomes. Despite extensive characterization of type II topoisomerases from bacteria, viruses and animals, no studies on the specificity of plant Topo IIA-mediated DNA cleavage have been reported. We mapped and characterized Arabidopsis thaliana Topo IIA (AtTopoIIA) cleavage sites and demonstrated that they were cleaved in vivo. The consensus for the AtTopoIIA cleavage sites (ANNNRN downward arrowGTACNTNNNY) was significantly different from recognition sequences reported for Topo IIA from other organisms. The mapped cleavage sites were abundant in the Arabidopsis genome, exhibited a weak consensus, and were cleaved with relatively low efficiency. Use of the systematic evolution of ligands by exponential enrichment (SELEX) protocol identified a single, efficiently cleaved sequence TATATATATGTATATATATA that was over-represented in the genome. The mapped AtTopoIIA cleavage sites and the SELEX sites differed in their genomic distribution and associations with gene regulatory elements, matrix attachment regions, stress-induced DNA duplex destabilization sequences and T-DNA loci, suggesting different genome functions. Mapped AtTopoIIA sites but not SELEX sites were strongly associated with T-DNA integration sites, providing evidence for the involvement of AtTopoIIA-mediated DSB formation in T-DNA integration.
Collapse
Affiliation(s)
- Irina Makarevitch
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Buford Circle, St Paul, MN 55108, USA
| | | |
Collapse
|
9
|
Maddur AA, Liu X, Zhu YC, Fellers JP, Oppert B, Park Y, Bai J, Wilde GE, Chen MS. Cloning and characterization of protease inhibitor-like cDNAs from the Hessian fly mayetiola destructor (SAY). INSECT MOLECULAR BIOLOGY 2006; 15:485-96. [PMID: 16907835 DOI: 10.1111/j.1365-2583.2006.00660.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Analysis of transcriptomes from the salivary glands and midgut of Hessian fly larvae Mayetiola destructor (say) identified a set of diverse cDNAs that encode proteins with a relatively high percentage (over 10%) of cysteinyl residues. Structural comparison of these putative proteins with known sequences in GenBank revealed that the positions of the cysteinyl residues in the identified proteins were highly conserved within a family of proteinase inhibitors despite very little overall sequence similarity. Phylogenetic analysis sorted this set of cDNAs into five different groups. To determine if these cDNAs indeed encode proteinase inhibitors, recombinant proteins were generated with two cDNAs from two different groups. Biochemical analysis of the recombinant proteins against commercial and insect gut proteinases demonstrated that the recombinant proteins are strong proteinase inhibitors with different specificities. Northern blot and real-time PCR analysis revealed that the different genes were expressed at different developmental stages and in different tissues. The overall results indicated that M. destructor contains a complex of genes that code for proteinase inhibitors which may regulate proteinase activities in different regulatory pathways. The GenBank accession numbers for the cDNAs in this paper were DQ232690 to DQ232718.
Collapse
Affiliation(s)
- A A Maddur
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tagashira H, Shimotori T, Sakamoto N, Katahira M, Miyanoiri Y, Yamamoto T, Mitsunaga-Nakatsubo K, Shimada H, Kusunoki S, Akasaka K. Unichrom, a Novel Nuclear Matrix Protein, Binds to theArsInsulator and Canonical MARs. Zoolog Sci 2006; 23:9-21. [PMID: 16547401 DOI: 10.2108/zsj.23.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eukaryotic genomic DNA is organized into loop structures by attachments to the nuclear matrix. These attachments to the nuclear matrix have been supposed to form the boundaries of chromosomal DNA. Insulators or boundary elements are defined by two characteristics: they interrupt promoter-enhancer communications when inserted between them, and they suppress the silencing of transgenes stably integrated into inactive chromosomal domains. We recently identified an insulator element in the upstream region of the sea urchin arylsulfatase (HpArs) gene that shows both enhancer blocking and suppression of position effects. Here, we report that Unichrom, originally identified by its G-stretch DNA binding capability, is a nuclear matrix protein that binds to the Ars insulator and canonical nuclear matrix attachment regions (MARs). We also show that Unichrom recognizes the minor groove of the AT-rich region within the Ars insulator, which may have a base-unpairing property, as well as the G-stretch DNA. Furthermore, Unichrom selectively interacts with poly(dG).poly(dC), poly(dA).poly(dT) and poly(dAT).poly(dAT), but not with poly(dGC).poly(dGC). Unichrom also shows high affinity for single-stranded G- and C-stretches. We discuss the DNA binding motif of Unichrom and the function of Unichrom in the nuclear matrix.
Collapse
Affiliation(s)
- Hideki Tagashira
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ehrhardt A, Peng PD, Xu H, Meuse L, Kay MA. Optimization of cis-acting elements for gene expression from nonviral vectors in vivo. Hum Gene Ther 2003; 14:215-25. [PMID: 12639302 DOI: 10.1089/10430340360535779] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While naked DNA gene transfer in vivo usually results in transient gene expression, in some cases long-term transgene expression can be achieved. Here we demonstrate that cis-acting DNA elements flanking the transgene expression cassette and components in the plasmid backbone can significantly influence expression levels from nonviral vectors. To demonstrate this, we administered our most robust human coagulation factor IX (hFIX) expression cassette placed in two different plasmid backbones, into the livers of mice, by hydrodynamic transfection. We found that placing the expression cassette within a minimal plasmid vector pHM5, a modified version of pUC19, resulted in 10 times higher serum hFIX expression levels (up to 20000 ng/ml, 400% of normal hFIX serum levels), compared to a pBluescript backbone. To optimally increase expression levels from a nonviral vector, we added matrix attachment regions (MARs) as cis-acting DNA elements flanking the hFIX expression cassette. We detected five fold higher hFIX expression levels in vivo for up to 1-year posttransfection from a vector that contained the chicken MAR from the lysozyme locus. Together, the present work demonstrates that in addition to the transgene expression cassette, cis-acting DNA elements within and outside of the plasmid backbone need to be evaluated to achieve optimal expression levels in a nonviral gene therapy approach.
Collapse
Affiliation(s)
- Anja Ehrhardt
- Departments of Pediatrics and Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
12
|
Durrin LK, Krontiris TG. The thymocyte-specific MAR binding protein, SATB1, interacts in vitro with a novel variant of DNA-directed RNA polymerase II, subunit 11. Genomics 2002; 79:809-17. [PMID: 12036295 DOI: 10.1006/geno.2002.6772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A yeast two-hybrid screen of a Jurkat (T cell) derived cDNA library, using SATB1 (a matrix attachment region binding protein) as the bait, yielded four independent isolates of a novel variant of the DNA directed RNA polymerase II, subunit 11 (RPB11). Absence of lysine-17 from the amino terminus of this variant cannot be explained by alternative mRNA splicing. Instead, allele-specific PCR, combined with GenBank database searches, suggests that a recent gene duplication event has resulted in distinct loci encoding three variant forms of RPB11. Differential splicing of mRNA transcripts accounts for unique carboxy termini among the RPB11 proteins. The exclusive association of SATB1 with one form of RPB11 is influenced primarily by the N-terminal amino acid disparity, as deletion of the entire C terminus does not alter interaction affinity. Association of RPB11 with SATB1 maps between amino acids 58 and 222 of SATB1, a region that includes a PDZ-like dimerization motif.
Collapse
Affiliation(s)
- Linda K Durrin
- Division of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | |
Collapse
|
13
|
Montuori N, Rossi G, Ragno P. Post-transcriptional regulation of gene expression in the plasminogen activation system. Biol Chem 2002; 383:47-53. [PMID: 11928821 DOI: 10.1515/bc.2002.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The urokinase-mediated plasminogen activation (PA) system has been shown to play a key role in cell migration and tissue invasion by regulating both cell-associated proteolysis and cell-cell and cell-matrix interactions. The expression and activity of the components of this complex system are strictly regulated. The control of the expression occurs both at transcriptional and post-transcriptional levels. This review is focused on the post-transcriptional regulation of gene expression of all components of the PA system.
Collapse
Affiliation(s)
- Nunzia Montuori
- Centro di Endocrinologia ed Oncologia Sperimentale (CEOS), Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | | |
Collapse
|
14
|
Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T. SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol Cell Biol 2001; 21:5591-604. [PMID: 11463840 PMCID: PMC87280 DOI: 10.1128/mcb.21.16.5591-5604.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SATB1 is expressed primarily in thymocytes and orchestrates temporal and spatial expression of a large number of genes in the T-cell lineage. SATB1 binds to the bases of chromatin loop domains in vivo, recognizing a special DNA context with strong base-unpairing propensity. The majority of thymocytes are eliminated by apoptosis due to selection processes in the thymus. We investigated the fate of SATB1 during thymocyte and T-cell apoptosis. Here we show that SATB1 is specifically cleaved by a caspase 6-like protease at amino acid position 254 to produce a 65-kDa major fragment containing both a base-unpairing region (BUR)-binding domain and a homeodomain. We found that this cleavage separates the DNA-binding domains from amino acids 90 to 204, a region which we show to be a dimerization domain. The resulting SATB1 monomer loses its BUR-binding activity, despite containing both its DNA-binding domains, and rapidly dissociates from chromatin in vivo. We found this dimerization region to have sequence similarity to PDZ domains, which have been previously shown to be involved in signaling by conferring protein-protein interactions. SATB1 cleavage during Jurkat T-cell apoptosis induced by an anti-Fas antibody occurs concomitantly with the high-molecular-weight fragmentation of chromatin of ~50-kb fragments. Our results suggest that mechanisms of nuclear degradation early in apoptotic T cells involve efficient removal of SATB1 by disrupting its dimerization and cleavage of genomic DNA into loop domains to ensure rapid and efficient disassembly of higher-order chromatin structure.
Collapse
Affiliation(s)
- S Galande
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | |
Collapse
|
15
|
Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 2000. [PMID: 10716941 DOI: 10.1101/gad.14.5.521] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SATB1 is expressed primarily in thymocytes and can act as a transcriptional repressor. SATB1 binds in vivo to the matrix attachment regions (MARs) of DNA, which are implicated in the loop domain organization of chromatin. The role of MAR-binding proteins in specific cell lineages is unknown. We generated SATB1-null mice to determine how SATB1 functions in the T-cell lineage. SATB1-null mice are small in size, have disproportionately small thymi and spleens, and die at 3 weeks of age. At the cellular level, multiple defects in T-cell development were observed. Immature CD3(-)CD4(-)CD8(-) triple negative (TN) thymocytes were greatly reduced in number, and thymocyte development was blocked mainly at the DP stage. The few peripheral CD4(+) single positive (SP) cells underwent apoptosis and failed to proliferate in response to activating stimuli. At the molecular level, among 589 genes examined, at least 2% of genes including a proto-oncogene, cytokine receptor genes, and apoptosis-related genes were derepressed at inappropriate stages of T-cell development in SATB1-null mice. For example, IL-2Ralpha and IL-7Ralpha genes were ectopically transcribed in CD4(+)CD8(+) double positive (DP) thymocytes. SATB1 appears to orchestrate the temporal and spatial expression of genes during T-cell development, thereby ensuring the proper development of this lineage. Our data provide the first evidence that MAR-binding proteins can act as global regulators of cell function in specific cell lineages.
Collapse
Affiliation(s)
- J D Alvarez
- Nippon Roche Research Center, Kamakura 247, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Wang B, Zou JX, Ek-Rylander B, Ruoslahti E. R-Ras contains a proline-rich site that binds to SH3 domains and is required for integrin activation by R-Ras. J Biol Chem 2000; 275:5222-7. [PMID: 10671570 DOI: 10.1074/jbc.275.7.5222] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
R-Ras contains a proline-rich motif that resembles SH3 domain-binding sites but that has escaped notice previously. We show here that this site in R-Ras is capable of binding SH3 domains and that the SH3 domain binding may be important for R-Ras function. A fusion protein containing the SH3 domains of the adaptor protein Nck interacted strongly with the R-Ras proline-rich sequence and with the intact protein. The binding was independent of whether R-Ras was in its GDP or GTP form. The Nck binding, which was mediated by the second of the three SH3 domains of Nck, was obliterated by mutations in the proline-rich sequence of R-Ras. The interaction of Nck with R-Ras could also be shown in yeast two-hybrid assays and by co-immunoprecipitation in human cells transfected with Nck and R-Ras. Previous results have shown that the expression of a constitutively active R-Ras mutant, R-Ras(38V), converts mouse 32D monocytic cells into highly adherent cells. Introducing the proline mutations into R-Ras(38V) suppressed the effect of R-Ras on 32D cell adhesion while not affecting GTP binding. These results reveal an unexpected regulatory pathway that controls R-Ras through an SH3 domain interaction. This pathway appears to be important for the ability of R-Ras to control cell adhesion.
Collapse
Affiliation(s)
- B Wang
- Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
17
|
Niimi T, Yokoyama H, Goto A, Beck K, Kitagawa Y. A Drosophila gene encoding multiple splice variants of Kazal-type serine protease inhibitor-like proteins with potential destinations of mitochondria, cytosol and the secretory pathway. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:282-92. [PMID: 10542076 DOI: 10.1046/j.1432-1327.1999.00873.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Drosophila gene (KAZ1), mapped to cytological position 61A1-2 on chromosome 3, has been cloned and found to encode multiple splice variants of Kazal-type serine protease inhibitor-like proteins. KAZ1 consists of five exons and four alternatively retained introns to produce six transcripts of type AB, C1, C2, C3, D and E. The AB transcript contains two ORFs, of which the upstream one produces a polypeptide alpha, which has a mitochondrial sorting signal. Localization to mitochondria was confirmed by expression in COS1 cells. The downstream ORF is shared partially with type C1, C2, C3, D and E transcripts and produces polypeptides beta, gamma, delta and epsilon when expressed in Drosophila cells. Type C1, C2 and C3 transcripts differ only in the 5'-noncoding sequence and thus all produce type gamma. Polypeptides gamma and epsilon have a signal sequence at their N-termini and are secreted into the medium while beta and delta lack this sequence and remain in the cytoplasm. Isoforms beta and epsilon share a common C-terminal sequence distinct from that shared by polypeptides gamma and delta. The N-terminal sequences of isoforms beta to epsilon contain a PEST region which could induce rapid intracellular degradation of isoforms beta and delta. Sequence analysis of the Kazal-type domain suggests a similar folding pattern as observed for rhodniin and SPARC/BM-40. Northern analysis and in situ hybridization showed that the type C3 transcript is predominant and the expression is highest in midgut at larval stage.
Collapse
Affiliation(s)
- T Niimi
- Nagoya University Bioscience Center, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | |
Collapse
|
18
|
Ma H, Siegel AJ, Berezney R. Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J Cell Biol 1999; 146:531-42. [PMID: 10444063 PMCID: PMC2150557 DOI: 10.1083/jcb.146.3.531] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1998] [Accepted: 07/02/1999] [Indexed: 11/27/2022] Open
Abstract
To study the possible role of the nuclear matrix in chromosome territory organization, normal human fibroblast cells are treated in situ via classic isolation procedures for nuclear matrix in the absence of nuclease (e.g., DNase I) digestion, followed by chromosome painting. We report for the first time that chromosome territories are maintained intact on the nuclear matrix. In contrast, complete extraction of the internal nuclear matrix components with RNase treatment followed by 2 M NaCl results in the disruption of higher order chromosome territory architecture. Correlative with territorial disruption is the formation of a faint DNA halo surrounding the nuclear lamina and a dispersive effect on the characteristically discrete DNA replication sites in the nuclear interior. Identical results were obtained using eight different human chromosome paints. Based on these findings, we developed a fractionation strategy to release the bulk of nuclear matrix proteins under conditions where the chromosome territories are maintained intact. A second treatment results in disruption of the chromosome territories in conjunction with the release of a small subset of acidic proteins. These proteins are distinct from the major nuclear matrix proteins and may be involved in mediating chromosome territory organization.
Collapse
Affiliation(s)
- Hong Ma
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Alan J. Siegel
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
19
|
Mahony D, Kalionis B, Antalis TM. Plasminogen activator inhibitor type-2 (PAI-2) gene transcription requires a novel NF-kappaB-like transcriptional regulatory motif. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:765-72. [PMID: 10469140 DOI: 10.1046/j.1432-1327.1999.00552.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Induction of human plasminogen activator inhibitor type-2 (PAI-2) gene transcription is the response of macrophages to inflammatory stimuli, such as the pleiotropic cytokine, tumour necrosis factor-alpha (TNFalpha). Here we have examined whether PAI-2 gene transcription in response to TNFalpha may be mediated through a regulatory pathway involving the transcription factor, NF-kappaB. We have tested the function of two potential NF-kappaB-like sites present in the PAI-2 proximal promoter for responsiveness to TNFalpha using chloramphenicol acetyl transferase reporter gene deletion and mutation analyses. While no evidence was found for TNFalpha regulation of the PAI-2 gene through either of these two sites, one of the NF-kappaB-like motifs, transcriptional regulatory motif (TRM), present at position -400 was found to be essential for constitutive PAI-2 transcription, as mutation of this motif abolished basal PAI-2 promoter activity in both monocyte-like U937 cells and HT1080 fibrosarcoma cells. Competition electrophoretic mobility shift assays identified four TRM-binding proteins present in U937, HT1080 and HeLa cell extracts, which bound to this motif but were not components of the NF-kappaB regulatory complex. Expression screening of a HeLa cell cDNA library using the -400 TRM as a probe identified two cDNAs encoding partial peptides which specifically bound the TRM motif. DNA sequence analysis revealed that one cDNA was novel, and the second cDNA encoded exon 5 of the nephroblastoma overexpressed (novH) proto-oncogene, suggesting a new role for this peptide in gene regulation. Taken together, these findings identify a new regulatory element required for constitutive PAI-2 transcription, and identify potential DNA-binding proteins associated with this element that may play a role in PAI-2 gene regulation.
Collapse
Affiliation(s)
- D Mahony
- Cellular Oncology Laboratory, Queensland Institute of Medical Research,University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
20
|
Abstract
Proteolysis is a key feature of programmed cell death. Extracellular proteinases can activate cell surface receptors which trigger apoptosis, and the effector machinery requires the activation and activity of numerous intracellular proteinases (primarily caspases). Effective control of proteolysis is essential for homeostasis and can occur at two levels: regulation of proteinase activation, and regulation of the activated proteinase. Serpins control activated proteinases and several have been implicated in the regulation of cell death. Serpins that inhibit intracellular processes include the viral proteins CrmA and SPI-1, as well as the granzyme B inhibitor, PI-9. Another endogenous serpin, PN-I, prevents the delivery of an apoptotic signal by inhibiting an extracellular proteinase from cleaving a cell surface receptor. There is evidence to suggest that PAI-2 may target an extracellular as well as an intracellular proteinase. Much of our knowledge of proteolysis within apoptotic cells has come from studies using the poxvirus serpin CrmA/SPI-2. CrmA prevents cytokine processing by inhibiting caspase-1, and protects against Fas-, TNF- and TRAIL-mediated apoptosis by inhibiting an unidentified proteinase specific to these pathways. Work with CrmA has also clearly demonstrated that there are separable effector mechanisms within cells, and that those triggered by growth factor withdrawal, matrix dissociation or cytotoxic ligands are different in several respects to those triggered by radiation, chemicals or steroid hormones. It is likely that analysis of other poxvirus serpins with different inhibitory profiles (especially SPI-1) will yield further insights into these processes. Prospecting for intracellular serpin genes in other virus species may also be fruitful. Finally, all of the serpins known to regulate intracellular proteolysis are members of the ovalbumin subgroup. It remains to be seen whether the more recently described "orphan" ovalbumin serpins (Riewald and Schleef 1995; Sprecher et al. 1995; Sun et al. 1997) also have roles in the regulation of cell death.
Collapse
Affiliation(s)
- P I Bird
- Department of Medicine, Monash Medical School, Box Hill Hospital, Australia
| |
Collapse
|
21
|
Martelli AM, Bortul R, Fackelmayer FO, Tazzari PL, Bareggi R, Narducci P, Zweyer M. Biochemical and morphological characterization of the nuclear matrix from apoptotic HL-60 cells. J Cell Biochem 1999; 72:35-46. [PMID: 10025665 DOI: 10.1002/(sici)1097-4644(19990101)72:1<35::aid-jcb5>3.0.co;2-s] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have characterized the nuclear matrix-intermediate filament fraction from control and apoptotic HL-60 cells. Apoptosis was induced by exposure to the topoisomerase I inhibitor, camptothecin. By means of two-dimensional polyacrylamide gel electrophoresis, striking qualitative and quantitative differences were seen in the protein composition of the nuclear matrix-intermediate filament fraction obtained from apoptotic cells in comparison with controls. Western blotting analysis of apoptotic nuclear matrix proteins revealed degradation of some (topoisomerase IIalpha, SAF-A) but not other (SATB1 and nucleolin) components. Moreover, immunofluorescent staining for typical matrix antigens (NuMA protein, lamin B, SC-35) showed that in 35-40% of the structures prepared from apoptotic samples, marked changes in the subnuclear distribution of these proteins were present. Striking morphological differences between control and apoptotic samples were also detected at the ultrastructural level. These results demonstrate that both biochemical and morphological changes can be detected in the nuclear matrix prepared from apoptotic HL-60 cells.
Collapse
Affiliation(s)
- A M Martelli
- Dipartimento di Morfologia Umana Normale, Università di Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Will K, Warnecke G, Wiesmüller L, Deppert W. Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing. Proc Natl Acad Sci U S A 1998; 95:13681-6. [PMID: 9811860 PMCID: PMC24879 DOI: 10.1073/pnas.95.23.13681] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutant, but not wild-type p53 binds with high affinity to a variety of MAR-DNA elements (MARs), suggesting that MAR-binding of mutant p53 relates to the dominant-oncogenic activities proposed for mutant p53. MARs recognized by mutant p53 share AT richness and contain variations of an AATATATTT "DNA-unwinding motif," which enhances the structural dynamics of chromatin and promotes regional DNA base-unpairing. Mutant p53 specifically interacted with MAR-derived oligonucleotides carrying such unwinding motifs, catalyzing DNA strand separation when this motif was located within a structurally labile sequence environment. Addition of GC-clamps to the respective MAR-oligonucleotides or introducing mutations into the unwinding motif strongly reduced DNA strand separation, but supported the formation of tight complexes between mutant p53 and such oligonucleotides. We conclude that the specific interaction of mutant p53 with regions of MAR-DNA with a high potential for base-unpairing provides the basis for the high-affinity binding of mutant p53 to MAR-DNA.
Collapse
Affiliation(s)
- K Will
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | |
Collapse
|
23
|
de Belle I, Cai S, Kohwi-Shigematsu T. The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J Cell Biol 1998; 141:335-48. [PMID: 9548713 PMCID: PMC2148460 DOI: 10.1083/jcb.141.2.335] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1997] [Revised: 01/20/1998] [Indexed: 02/07/2023] Open
Abstract
Special AT-rich sequence-binding protein 1 (SATB1), a DNA-binding protein expressed predominantly in thymocytes, recognizes an ATC sequence context that consists of a cluster of sequence stretches with well-mixed A's, T's, and C's without G's on one strand. Such regions confer a high propensity for stable base unpairing. Using an in vivo cross-linking strategy, specialized genomic sequences (0.1-1. 1 kbp) that bind to SATB1 in human lymphoblastic cell line Jurkat cells were individually isolated and characterized. All in vivo SATB1-binding sequences examined contained typical ATC sequence contexts, with some exhibiting homology to autonomously replicating sequences from the yeast Saccharomyces cerevisiae that function as replication origins in yeast cells. In addition, LINE 1 elements, satellite 2 sequences, and CpG island-containing DNA were identified. To examine the higher-order packaging of these in vivo SATB1-binding sequences, high-resolution in situ fluorescence hybridization was performed with both nuclear "halos" with distended loops and the nuclear matrix after the majority of DNA had been removed by nuclease digestion. In vivo SATB1-binding sequences hybridized to genomic DNA as single spots within the residual nucleus circumscribed by the halo of DNA and remained as single spots in the nuclear matrix, indicating that these sequences are localized at the base of chromatin loops. In human breast cancer SK-BR-3 cells that do not express SATB1, at least one such sequence was found not anchored onto the nuclear matrix. These findings provide the first evidence that a cell type-specific factor such as SATB1 binds to the base of chromatin loops in vivo and suggests that a specific chromatin loop domain structure is involved in T cell-specific gene regulation.
Collapse
Affiliation(s)
- I de Belle
- Ernest Orlando Lawrence Berkeley National Laboratory, Life Science Division, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
24
|
Avramova Z, Tikhonov A, Chen M, Bennetzen JL. Matrix attachment regions and structural colinearity in the genomes of two grass species. Nucleic Acids Res 1998; 26:761-7. [PMID: 9443968 PMCID: PMC147314 DOI: 10.1093/nar/26.3.761] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In order to gain insights into the relationship between spatial organization of the genome and genome function we have initiated studies of the co-linear Sh2/A1- homologous regions of rice (30 kb) and sorghum (50 kb). We have identified the locations of matrix attachment regions (MARs) in these homologous chromosome segments, which could serve as anchors for individual structural units or loops. Despite the fact that the nucleotide sequences serving as MARs were not detectably conserved, the general organizational patterns of MARs relative to the neighboring genes were preserved. All identified genes were placed in individual loops that were of comparable size for homologous genes. Hence, gene composition, gene orientation, gene order and the placement of genes into structural units has been evolutionarily conserved in this region. Our analysis demonstrated that the occurrence of various 'MAR motifs' is not indicative of MAR location. However, most of the MARs discovered in the two genomic regions were found to co-localize with miniature inverted repeat transposable elements (MITEs), suggesting that MITEs preferentially insert near MARs and/or that they can serve as MARs.
Collapse
Affiliation(s)
- Z Avramova
- Department of Biological Sciences and Purdue Genetics Program, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
25
|
Bechtel MJ, Wysocki NS, Heidtmann A, Stark HJ, Fusenig N, Kramer MD, Schaefer BM. Plasminogen activator inhibitor type 2 is expressed in keratinocytes during re-epithelialization of epidermal defects. Br J Dermatol 1998; 138:22-8. [PMID: 9536219 DOI: 10.1046/j.1365-2133.1998.02021.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plasminogen activation is observed in the human epidermis during re-epithelialization of epidermal defects. The activation reaction depends on plasminogen activators (PAs) associated with re-epithelializing keratinocytes. PA inhibitor type 2 (PAI-2) is thought to be a major epidermal PA inhibitor in keratinocytes. However, no data are available on the expression of PAI-2 in keratinocytes during epidermal regeneration. We have therefore analysed PAI-2 at the mRNA and protein level in keratinocyte cultures as well as in epidermal lesions in which re-epithelializing keratinocytes were apparent. We found that PAI-2 expression at the mRNA and protein level was negatively correlated with the cell density in regular keratinocyte cultures. In organotypic cocultures, in which the transition from a re-epithelializing to a sedentary phenotype can be studied, PAI-2 was most strongly expressed in early cultures prior to formation of a differentiated epidermis-like structure. We found a strong expression of PAI-2 in keratinocytes that re-epithelialized dermal burn wounds or lesions caused by the autoimmune blistering disease pemphigus vulgaris. Our results suggest that not only PAs, but also a major PA inhibitor, PAI-2, are expressed in keratinocytes that are actively involved in re-epithelialization.
Collapse
Affiliation(s)
- M J Bechtel
- University Institute for Immunology, Laboratory for Immunopathology, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Kohwi-Shigematsu T, deBelle I, Dickinson LA, Galande S, Kohwi Y. Identification of base-unpairing region-binding proteins and characterization of their in vivo binding sequences. Methods Cell Biol 1997; 53:323-54. [PMID: 9348515 DOI: 10.1016/s0091-679x(08)60885-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Cheng X, Boyer JL, Juliano RL. Selection of peptides that functionally replace a zinc finger in the Sp1 transcription factor by using a yeast combinatorial library. Proc Natl Acad Sci U S A 1997; 94:14120-5. [PMID: 9391163 PMCID: PMC28443 DOI: 10.1073/pnas.94.25.14120] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1997] [Indexed: 02/05/2023] Open
Abstract
We have developed a strategy for the identification of peptides able to functionally replace a zinc finger domain in a transcription factor. This strategy could have important ramifications for basic research on gene regulation and for the development of therapeutic agents. In this study in yeast, we expressed chimeric proteins that included a random peptide combinatorial library in association with two zinc finger domains and a transactivating domain. The library was screened for chimeric proteins capable of activating transcription from a target sequence in the upstream regulatory regions of selectable or reporter genes. In a screen of approximately 1.5 x 10(7) transformants we identified 30 chimeric proteins that exhibited transcriptional activation, some of which were able to discriminate between wild-type and mutant DNA targets. Chimeric library proteins expressed as glutathione S-transferase fusions bound to double-stranded oligonucleotides containing the target sequence, suggesting that the chimeras bind directly to DNA. Surprisingly, none of the peptides identified resembled a zinc finger or other well-known transcription factor DNA binding domain.
Collapse
Affiliation(s)
- X Cheng
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
28
|
Dickinson LA, Dickinson CD, Kohwi-Shigematsu T. An atypical homeodomain in SATB1 promotes specific recognition of the key structural element in a matrix attachment region. J Biol Chem 1997; 272:11463-70. [PMID: 9111059 DOI: 10.1074/jbc.272.17.11463] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
SATB1 is a cell type-specific nuclear matrix attachment region (MAR) DNA-binding protein, predominantly expressed in thymocytes. We identified an atypical homeodomain and two Cut-like repeats in SATB1, in addition to the known MAR-binding domain. The isolated MAR-binding domain recognizes a certain DNA sequence context within MARs that is highly potentiated for base unpairing. Unlike the MAR-binding domain, the homeodomain when isolated binds poorly and with low specificity to DNA. However, the combined action of the MAR-binding domain and the homeodomain allows SATB1 to specifically recognize the core unwinding element within the base-unpairing region. The core unwinding element is critical for MAR structure, since point mutations within this core abolish the unwinding propensity of the MAR. The contribution of the homeodomain is abolished by alanine substitutions of arginine 3 and arginine 5 in the N-terminal arm of the homeodomain. Site-directed mutagenesis of the core unwinding element in the 3' MAR of the immunoglobulin heavy chain gene enhancer revealed the sequence 5'-(C/A)TAATA-3' to be essential for the increase in affinity mediated by the homeodomain. SATB1 may regulate T-cell development and function at the level of higher order chromatin structure through the critical DNA structural elements within MARs.
Collapse
Affiliation(s)
- L A Dickinson
- Burnham Institute, La Jolla Cancer Research Center, La Jolla, California 92037, USA
| | | | | |
Collapse
|
29
|
|
30
|
Abstract
The interleukin-1 beta-converting enzyme (ICE)-like family proteases have recently been identified as key enzymes in apoptotic cell death. Among these proteases one can identify specific activities which may be involved in cytokine production or in resident protein cleavage. Several factors influence the constitutive apoptotic mechanism and may provide insight into the role of protease(s) in apoptosis. Although it appears that ICE family members play a most important role in promoting apoptotic cell death, evidence has been advanced that other proteases are also involved in sequential or parallel steps of apoptosis. Activation of a particular protease can lead to processing molecules either of the same or different proteases, leading to an activation of a protease cascade. Here we attempt to summarize the current thinking concerning these proteases and their involvement in apoptosis.
Collapse
Affiliation(s)
- B Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
31
|
Dear AE, Shen Y, Rüegg M, Medcalf RL. Molecular mechanisms governing tumor-necrosis-factor-mediated regulation of plasminogen-activator inhibitor type-2 gene expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:93-100. [PMID: 8898893 DOI: 10.1111/j.1432-1033.1996.0093t.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plasminogen-activator inhibitor type 2 (PAI-2), a serine protease inhibitor involved in the regulation of urokinase-dependent proteolysis, is also implicated in the inhibition of tumor-necrosis-factor-(TNF)-mediated apoptosis. The PAI-2 gene is one of the most TNF-responsive genes known and is also highly induced by the phorbol ester phorbol 12-myristate 13-acetate (PMA) and the phosphatase inhibitor, okadaic acid, in both HT-1080 fibrosarcoma and U-937 histiocytic cells. We sought to identify and characterize regulatory cis-acting DNA elements and trans-acting factors which mediate basal and inducible PAI-2 gene transcription. A series of promoter deletion mutants (nucleotides -1859 to -91) fused to the chloramphenicol acetyl transferase (CAT) reporter gene were transfected into HT-1080 cells. Two repressor regions were identified; one distally between positions -1859 and -1100, and one proximally between positions -259 and -219. Cells transfected with constructs harboring more than 259 bp promoter sequence produced a 10-15-fold increase in CAT activity when treated with PMA or okadaic acid, but produced only a minimal (2.5-fold) increase in response to TNF. Removal of the proximal repressor by deletion to position -219, or by internal deletion from the -1100 PAI-2 CAT construct, resulted in a selective increase in TNF responsiveness, suggesting that induction of PAI-2 gene transcription by TNF is associated with derepression. Detailed analysis of the proximal repressor utilizing the electrophoretic mobility shift assay (EMSA), identified two novel and distinct protein-binding sites (A and B). Site A is located within the 40-bp proximal repressor while site B is situated immediately adjacent to the 3' boundary. Treatment of cells with PMA or okadaic acid produced no change in the binding activity of proteins recognising sites A or B. However, treatment of cells with TNF results in a profound selective reduction in site-B-binding activity, suggesting that this site plays a significant role in TNF-mediated regulation of PAI-2 gene expression. Our findings suggest that TNF-mediated induction of PAI-2 gene expression involves derepression and is associated with cis-acting and trans-acting factors located within and adjacent to the proximal repressor region.
Collapse
Affiliation(s)
- A E Dear
- Monash University Department of Medicine, Boxhill Hospital, Victoria, Australia
| | | | | | | |
Collapse
|