1
|
Duplan E, Bernardin A, Goiran T, Leroudier N, Casimiro M, Pestell R, Tanaka S, Malleval C, Honnorat J, Idbaih A, Martin L, Castel H, Checler F, Alves da Costa C. α-synuclein expression in glioblastoma restores tumor suppressor function and rescues temozolomide drug resistance. Cell Death Dis 2025; 16:188. [PMID: 40108111 PMCID: PMC11923286 DOI: 10.1038/s41419-025-07509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Several studies have shown that Parkinson's disease causative gene products, including α-synuclein (α-syn), display tight links with the tumor suppressor p53. The purpose of this study is to determine the implication of α-syn in glioblastoma development and elucidate how it elicits a tumor suppressor function. We show that the expression of α-syn, a TP53 transcriptional target and a key molecular player in Parkinson's disease, is detected in 1p/19q-codeleted and isocitrate dehydrogenase (IDH)-mutant oligodendroglioma and in IDH-wild-type glioblastoma, while reduced in glioblastoma biopsies, corroborating the link of α-syn expression with a better prognosis among all glioma patients. Accordingly, protein expression is drastically reduced in oligodendrogliomas and glioblastoma biopsies. This could be accounted for by a reduction of p53 transcriptional activity in these samples. Interestingly, genetic manipulation of p53 in glioblastoma cells and in mouse brain shows that p53 up-regulates α-synuclein, a phenotype fully abolished by the prominent p53 hot spot mutation R175H. Downstream to its p53-linked control, α-syn lowers cyclin D1 protein and mRNA levels and reduces glioblastoma cells proliferation in a cyclin D1-dependent-manner. Further, in temozolomide (TMZ)-resistant U87 cells, α-syn reduces O6-methylguanine-DNA methyltransferase (MGMT) expression and rescues drug sensitivity by a mechanism implying its transcriptional activation by X-box binding protein 1 (XBP1), an effector of the UPR response. Furthermore, α-syn lowers MGMT and cyclin D1 (CCDN1) expressions and reduces tumor development in allografted mice. Overall, our data reveals a new role of α-syn as an oligodendroglioma biomarker and as a glioblastoma tumor suppressor capable of either potentiate TMZ effect or avoid TMZ-associated resistance.
Collapse
Affiliation(s)
- Eric Duplan
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France.
| | - Aurore Bernardin
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France
| | - Thomas Goiran
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France
| | - Nathalie Leroudier
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France
| | - Mathew Casimiro
- Department of Science and Mathematics, Abraham Baldwin Agricultural College, Tifton, GA, 31794, USA
| | - Richard Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
- The Wistar Institute, Philadelphia, PA, 19107, USA
- Garvan Institute of Medical Research, and, St Vincent's Clinical School, UNSW Sydney, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Celine Malleval
- Department of Neuro-Oncology, Hospices Civils de Lyon, Hôpital Neurologique, Institute MeLiS-UCBL-CNRS UMR 5284. INSERM U1314, University Claude Bernard Lyon 1, Lyon, 69008, France
| | - Jerome Honnorat
- Department of Neuro-Oncology, Hospices Civils de Lyon, Hôpital Neurologique, Institute MeLiS-UCBL-CNRS UMR 5284. INSERM U1314, University Claude Bernard Lyon 1, Lyon, 69008, France
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, F-75013, Paris, France
| | - Lucie Martin
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, F-76000, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Hélène Castel
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, F-76000, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Cancer and Cognition Platform, Normandie Univ, 14000, Caen, France
| | - Frédéric Checler
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France
| | - Cristine Alves da Costa
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France.
| |
Collapse
|
2
|
Kumarasamy V, Wang J, Roti M, Wan Y, Dommer AP, Rosenheck H, Putta S, Trub A, Bisi J, Strum J, Roberts P, Rubin SM, Frangou C, McLean K, Witkiewicz AK, Knudsen ES. Discrete vulnerability to pharmacological CDK2 inhibition is governed by heterogeneity of the cancer cell cycle. Nat Commun 2025; 16:1476. [PMID: 39924553 PMCID: PMC11808123 DOI: 10.1038/s41467-025-56674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Cyclin dependent kinase 2 (CDK2) regulates cell cycle and is an emerging target for cancer therapy. There are relatively small numbers of tumor models that exhibit strong dependence on CDK2 and undergo G1 cell cycle arrest following CDK2 inhibition. The expression of P16INK4A and cyclin E1 determines this sensitivity to CDK2 inhibition. The co-expression of these genes occurs in breast cancer patients highlighting their clinical significance as predictive biomarkers for CDK2-targeted therapies. In cancer models that are genetically independent of CDK2, pharmacological inhibitors suppress cell proliferation by inducing 4N cell cycle arrest and increasing the expressions of phospho-CDK1 (Y15) and cyclin B1. CRISPR screens identify CDK2 loss as a mediator of resistance to a CDK2 inhibitor, INX-315. Furthermore, CDK2 deletion reverses the G2/M block induced by CDK2 inhibitors and restores cell proliferation. Complementary drug screens define multiple means to cooperate with CDK2 inhibition beyond G1/S. These include the depletion of mitotic regulators as well as CDK4/6 inhibitors cooperate with CDK2 inhibition in multiple phases of the cell cycle. Overall, this study underscores two fundamentally distinct features of response to CDK2 inhibitors that are conditioned by tumor context and could serve as the basis for differential therapeutic strategies in a wide range of cancers.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianxin Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michelle Roti
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yin Wan
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Adam P Dommer
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hanna Rosenheck
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sivasankar Putta
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | | | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Costakis Frangou
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Karen McLean
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
3
|
Kumar J, Singh A, Tyagi P, Sharma D, Sarin SK, Kumar V. New thiourea derivatives that target the episomal silencing SMC5 protein to inhibit HBx-dependent viral DNA replication and gene transcription. Virusdisease 2024; 35:577-588. [PMID: 39677840 PMCID: PMC11635082 DOI: 10.1007/s13337-024-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/17/2024] [Indexed: 12/17/2024] Open
Abstract
Antivirals such as nucleotide analogs (NAs) are potent inhibitors of hepatitis B virus (HBV) replication. However, NAs fail to diminish the signaling and mitogenic activities of the transactivator HBx protein. Earlier we have shown that thiourea derivative IR-415 (DSA-00) targeted HBx to down-regulate its target viral and host genes. However, the molecular mechanism of its antiviral action is poorly understood. Here we investigated the anti-HBV properties of DSA-00 and its new derivatives in cell culture models. DSA-00 and its derivatives DSA-02 and DSA-09 not only suppressed HBV DNA levels similar to well-known antiviral Entecavir but also diminished the expression of pgRNA and secretion of HBsAg and HBeAg. Apparently, the three DSA derivatives inhibited the viral pregenomic RNA expression by stabilizing the episomal DNA silencing protein SMC5, suppressed transcription from viral and host gene promoters, and normalized intracellular CDK2 activity. As none the compounds are reportedly cytotoxic, thiourea derivatives could be good candidates for developing future antivirals for a functional cure of hepatitis B infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00895-6.
Collapse
Affiliation(s)
- Jitendra Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
| | - Ankita Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
| | - Purnima Tyagi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
| | - Deepti Sharma
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
- Present address: Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, New Delhi, 110054 India
| |
Collapse
|
4
|
Advani D, Kumar P. Uncovering Cell Cycle Dysregulations and Associated Mechanisms in Cancer and Neurodegenerative Disorders: A Glimpse of Hope for Repurposed Drugs. Mol Neurobiol 2024; 61:8600-8630. [PMID: 38532240 DOI: 10.1007/s12035-024-04130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The cell cycle is the sequence of events orchestrated by a complex network of cell cycle proteins. Unlike normal cells, mature neurons subsist in a quiescent state of the cell cycle, and aberrant cell cycle activation triggers neuronal death accompanied by neurodegeneration. The periodicity of cell cycle events is choreographed by various mechanisms, including DNA damage repair, oxidative stress, neurotrophin activity, and ubiquitin-mediated degradation. Given the relevance of cell cycle processes in cancer and neurodegeneration, this review delineates the overlapping cell cycle events, signaling pathways, and mechanisms associated with cell cycle aberrations in cancer and the major neurodegenerative disorders. We suggest that dysregulation of some common fundamental signaling processes triggers anomalous cell cycle activation in cancer cells and neurons. We discussed the possible use of cell cycle inhibitors for neurodegenerative disorders and described the associated challenges. We propose that a greater understanding of the common mechanisms driving cell cycle aberrations in cancer and neurodegenerative disorders will open a new avenue for the development of repurposed drugs.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
5
|
Tyagi P, Singh A, Kumar J, Ahmad B, Bahuguna A, Vivekanandan P, Sarin SK, Kumar V. Furanocoumarins promote proteasomal degradation of viral HBx protein and down-regulate cccDNA transcription and replication of hepatitis B virus. Virology 2024; 595:110065. [PMID: 38569227 DOI: 10.1016/j.virol.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Nucleot(s)ide analogues, the current antiviral treatments against chronic hepatitis B (CHB) infection, are non-curative due to their inability to eliminate covalently closed circular DNA (cccDNA) from the infected hepatocytes. Preclinical studies have shown that coumarin derivatives can effectively reduce the HBV DNA replication. We evaluated the antiviral efficacy of thirty new coumarin derivatives in cell culture models for studying HBV. Furanocoumarins Fc-20 and Fc-31 suppressed the levels of pre-genomic RNA as well as cccDNA, and reduced the secretion of virions, HBsAg and HBeAg. The antiviral efficacies of Fc-20 and Fc31 improved further when used in combination with the hepatitis B antiviral drug Entecavir. There was a marked reduction in the intracellular HBx level in the presence of these furanocoumarins due to proteasomal degradation resulting in the down-regulation of HBx-dependent viral genes. Importantly, both Fc-20 and Fc-31 were non-cytotoxic to cells even at high concentrations. Further, our molecular docking studies confirmed a moderate to high affinity interaction between furanocoumarins and viral HBx via residues Ala3, Arg26 and Lys140. These data suggest that furanocoumarins could be developed as a new therapeutic for CHB infection.
Collapse
Affiliation(s)
- Purnima Tyagi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ankita Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jitendra Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Belal Ahmad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Aparna Bahuguna
- Elsevier/ RELX India Pvt Ltd., DLF Cyber City, Gurgaon, 122002, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
6
|
Zhang H, Read A, Cataisson C, Yang HH, Lee WC, Turk BE, Yuspa SH, Luo J. Protein phosphatase 6 activates NF-κB to confer sensitivity to MAPK pathway inhibitors in KRAS- and BRAF-mutant cancer cells. Sci Signal 2024; 17:eadd5073. [PMID: 38743809 PMCID: PMC11238902 DOI: 10.1126/scisignal.add5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.
Collapse
Affiliation(s)
- Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Current affiliation: Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei-Chun Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Tang H, Xie J, Du YX, Tan ZJ, Liang ZT. Osteosarcoma neutrophil extracellular trap network-associated gene recurrence and metastasis model. J Cancer Res Clin Oncol 2024; 150:48. [PMID: 38285218 PMCID: PMC10824883 DOI: 10.1007/s00432-023-05577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Osteosarcoma (OS) is the most common malignancy in children and adolescents and has a high probability of recurrence and metastasis. A growing number of studies have shown that neutrophil extracellular traps (NETs) are strongly associated with cancer metastasis, but in osteosarcoma, genes associated with NETs that promote osteosarcoma recurrence and metastasis remain to be explored. We systematically investigated the gene expression patterns of NETs in OS samples from the GEO database. NETs molecular typing was evaluated based on NETs expression profiles, and the association between NETs molecular subtypes and immune microenvironment and metastatic features were explored. Ultimately, we constructed a signature model and column line graph associated with metastasis prediction and screened possible potential drugs for metastatic osteosarcoma. We established two different molecular subtypes of NETs, which showed significant differences in metastatic status, metastasis time, tumor immune microenvironment, and biological effects. We also constructed a NETs-related gene metastasis signature(NRGMS) to assess the expression pattern of NETs in patients to predict metastatic recurrence in osteosarcoma patients. We screened for TOMM40 and FH associated with metastatic recurrence in osteosarcoma patients. Overall, this study constructs a predictive model for osteosarcoma metastasis of NETs-related genes, which is expected to provide new insights into the metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Hao Tang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jiang Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yu-Xuan Du
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Ze-Jiu Tan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zhuo-Tao Liang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
8
|
Ram A, Murphy D, DeCuzzi N, Patankar M, Hu J, Pargett M, Albeck JG. A guide to ERK dynamics, part 2: downstream decoding. Biochem J 2023; 480:1909-1928. [PMID: 38038975 PMCID: PMC10754290 DOI: 10.1042/bcj20230277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Signaling by the extracellular signal-regulated kinase (ERK) pathway controls many cellular processes, including cell division, death, and differentiation. In this second installment of a two-part review, we address the question of how the ERK pathway exerts distinct and context-specific effects on multiple processes. We discuss how the dynamics of ERK activity induce selective changes in gene expression programs, with insights from both experiments and computational models. With a focus on single-cell biosensor-based studies, we summarize four major functional modes for ERK signaling in tissues: adjusting the size of cell populations, gradient-based patterning, wave propagation of morphological changes, and diversification of cellular gene expression states. These modes of operation are disrupted in cancer and other related diseases and represent potential targets for therapeutic intervention. By understanding the dynamic mechanisms involved in ERK signaling, there is potential for pharmacological strategies that not only simply inhibit ERK, but also restore functional activity patterns and improve disease outcomes.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Madhura Patankar
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| |
Collapse
|
9
|
Wang J, Su W, Zhang T, Zhang S, Lei H, Ma F, Shi M, Shi W, Xie X, Di C. Aberrant Cyclin D1 splicing in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2023; 14:244. [PMID: 37024471 PMCID: PMC10079974 DOI: 10.1038/s41419-023-05763-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Cyclin D1 (CCND1), a crucial mediator of cell cycle progression, possesses many mutation types with different mutation frequencies in human cancers. The G870A mutation is the most common mutation in CCND1, which produces two isoforms: full-length CCND1a and divergent C-terminal CCND1b. The dysregulation of the CCND1 isoforms is associated with multiple human cancers. Exploring the molecular mechanism of CCND1 isoforms has offer new insight for cancer treatment. On this basis, the alterations of CCND1 gene are described, including amplification, overexpression, and mutation, especially the G870A mutation. Subsequently, we review the characteristics of CCND1 isoforms caused by G870A mutation. Additionally, we summarize cis-regulatory elements, trans-acting factors, and the splice mutation involved in splicing regulation of CCND1. Furthermore, we highlight the function of CCND1 isoforms in cell cycle, invasion, and metastasis in cancers. Importantly, the clinical role of CCND1 isoforms is also discussed, particularly concerning prognosis, chemotherapy, and radiotherapy. Last, emphasis is given to the corrective strategies that modulate the cancerous CCND1 isoforms. Thus, it is highlighting significance of aberrant isoforms of CCND1 as targets for cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
10
|
Nagare S, Lokhande KB, Swamy KV. Docking and simulation studies on cyclin D/CDK4 complex for targeting cell cycle arrest in cancer using flavanone and its congener. J Mol Model 2023; 29:90. [PMID: 36881272 DOI: 10.1007/s00894-023-05496-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Flavanone compounds are naturally occurring phytochemicals present in most of citrus fruits reported to be a potential anticancer moiety as it majorly participates in the inhibition of the cell cycle, apoptosis, and angiogenesis. Because of poor bioavailability, natural flavanones were not used as therapeutic targets so flavanone congeners were prepared by modifying at B-functional group using compound libraries such as PubChem Database. Cyclin-dependent kinase is primarily activating the cell cycle and potentiating the M phase, in order to control the cell cycle in cancer cyclin-dependent pathway was targeted and potential cyclin D/CDK4 receptor protein was retrieved from Protein Data Bank (PDBID:2W9Z). The binding site was determined using FlexX docking. Flavanone and its congeners were docked against the 2W9Z receptor protein with the docking software FlexX. For validation of docking results, molecular dynamics simulations of the best-fitting molecule were carried out using Desmond Package. Noncovalent interactions like hydrogen bonds, electrostatic interaction, and Van der walls potentials for stable conformations were calculated. Thus, upon docking and molecular dynamics studies, we discovered the potential flavanone derivatives such as Flavanone 20, Flavanone 25, and Flavanone 29, will become a potential drug target in controlling cell cycle arrest and may become a futuristic candidate in targeting cancer.
Collapse
Affiliation(s)
- Sagar Nagare
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, India, 400614.,Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade Campus, Tathawade, Pune, Maharashtra, India, 411033
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade Campus, Tathawade, Pune, Maharashtra, India, 411033.,Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, 201314, India
| | - K Venkateswara Swamy
- Bioinformatics and Drug Discovery Group, MIT School of Bioengineering Science and Research, MIT Art, Design and Technology University, Pune, Maharashtra, India, 412201.
| |
Collapse
|
11
|
Yahia EM, de Jesús Ornelas-Paz J, Brecht JK, García-Solís P, Elena Maldonado Celis M. The contribution of mango fruit (Mangifera indica L.) to human nutrition and health. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
12
|
East P, Kelly GP, Biswas D, Marani M, Hancock DC, Creasy T, Sachsenmeier K, Swanton C, Downward J, de Carné Trécesson S. RAS oncogenic activity predicts response to chemotherapy and outcome in lung adenocarcinoma. Nat Commun 2022; 13:5632. [PMID: 36163168 PMCID: PMC9512813 DOI: 10.1038/s41467-022-33290-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/12/2022] [Indexed: 11/11/2022] Open
Abstract
Activating mutations in KRAS occur in 32% of lung adenocarcinomas (LUAD). Despite leading to aggressive disease and resistance to therapy in preclinical studies, the KRAS mutation does not predict patient outcome or response to treatment, presumably due to additional events modulating RAS pathways. To obtain a broader measure of RAS pathway activation, we developed RAS84, a transcriptional signature optimised to capture RAS oncogenic activity in LUAD. We report evidence of RAS pathway oncogenic activation in 84% of LUAD, including 65% KRAS wild-type tumours, falling into four groups characterised by coincident alteration of STK11/LKB1, TP53 or CDKN2A, suggesting that the classifications developed when considering only KRAS mutant tumours have significance in a broader cohort of patients. Critically, high RAS activity patient groups show adverse clinical outcome and reduced response to chemotherapy. Patient stratification using oncogenic RAS transcriptional activity instead of genetic alterations could ultimately assist in clinical decision-making.
Collapse
Affiliation(s)
- Philip East
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gavin P Kelly
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dhruva Biswas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Michela Marani
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David C Hancock
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Todd Creasy
- Oncology Data Science, Oncology Research and Development, AstraZeneca, 200 Orchard Ridge Drive, Gaithersburg, MD, 20878, USA
| | - Kris Sachsenmeier
- Oncology Research and Development, AstraZeneca, 35 Gatehouse Drive, Waltham, MA, 02451, USA
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Lung Cancer Group, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | | |
Collapse
|
13
|
Thorenoor N, Floros J. The Lung Alveolar Cell (LAC) miRNome and Gene Expression Profile of the SP-A-KO Mice After Infection With and Without Rescue With Human Surfactant Protein-A2 (1A0). Front Immunol 2022; 13:854434. [PMID: 35844510 PMCID: PMC9283764 DOI: 10.3389/fimmu.2022.854434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Human surfactant protein (SP)-A1 and SP-A2 exhibit differential qualitative and quantitative effects on the alveolar macrophage (AM), including a differential impact on the AM miRNome. Moreover, SP-A rescue (treatment) of SP-A-knockout (KO) infected mice impoves survival. Here, we studied for the first time the role of exogenous SP-A protein treatment on the regulation of lung alveolar cell (LAC) miRNome, the miRNA-RNA targets, and gene expression of SP-A-KO infected mice of both sexes. Toward this, SP-A-KO mice of both sexes were infected with Klebsiella pneumoniae, and half of them were also treated with SP-A2 (1A0). After 6 h of infection/SP-A treatment, the expression levels and pathways of LAC miRNAs, genes, and target miRNA-mRNAs were studied in both groups. We found 1) significant differences in the LAC miRNome, genes, and miRNA-mRNA targets in terms of sex, infection, and infection plus SP-A2 (1A0) protein rescue; 2) an increase in the majority of miRNA-mRNA targets in both study groups in KO male vs. female mice and involvement of the miRNA-mRNA targets in pathways of inflammation, antiapoptosis, and cell cycle; 3) genes with significant changes to be involved in TP-53, tumor necrosis factor (TNF), and cell cycle signaling nodes; 4) when significant changes in the expression of molecules from all analyses (miRNAs, miRNA-mRNA targets, and genes) were considered, two signaling pathways, the TNF and cell cycle, referred to as “integrated pathways” were shown to be significant; 5) the cell cycle pathway to be present in all comparisons made. Because SP-A could be used therapeutically in pulmonary diseases, it is important to understand the molecules and pathways involved in response to an SP-A acute treatment. The information obtained contributes to this end and may help to gain insight especially in the case of infection.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Obstetrics and Gynecology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
14
|
Brown MA, Ried T. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers (Basel) 2022; 14:784. [PMID: 35159051 PMCID: PMC8834070 DOI: 10.3390/cancers14030784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
Colon cancer tumorigenesis occurs incrementally. The process involves the acquisition of mutations which typically follow an established pattern: activation of WNT signaling, activation of RAS signaling, and inhibition of TGF-β signaling. This arrangement recapitulates, to some degree, the stem cell niche of the intestinal epithelium, which maintains WNT and EGF activity while suppressing TGF-β. The resemblance between the intestinal stem cell environment and colon cancer suggests that the concerted activity of these pathways generates and maintains a potent growth-inducing stimulus. However, each pathway has a myriad of downstream targets, making it difficult to identify which aspects of these pathways are drivers. To address this, we utilize the cell cycle, the ultimate regulator of cell proliferation, as a foundation for cross-pathway integration. We attempt to generate an overview of colon cancer signaling patterns by integrating the major colon cancer signaling pathways in the context of cell replication, specifically, the entrance from G1 into S-phase.
Collapse
Affiliation(s)
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
15
|
Aman S, Li Y, Cheng Y, Yang Y, Lv L, Li B, Xia K, Li S, Wu H. DACH1 inhibits breast cancer cell invasion and metastasis by down-regulating the transcription of matrix metalloproteinase 9. Cell Death Discov 2021; 7:351. [PMID: 34772908 PMCID: PMC8590022 DOI: 10.1038/s41420-021-00733-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Human Dachshund homolog 1 (DACH1) is usually defined as a tumor suppressor, which plays an influential role in tumor growth and metastasis in a variety of cancer cells. However, the underlying mechanisms in these process are not yet fully clarified. In this study, DACH1 inhibited the invasion and metastasis of breast cancer cells by decreasing MMP9 expression. Mechanistically, DACH1 represses the transcriptional level of MMP9 by interacting with p65 and c-Jun at the NF-κB and AP-1 binding sites in MMP9 promoter respectively, and the association of DACH1 and p65 promote the recruitment of HDAC1 to the NF-κB binding site in MMP9 promoter, resulting in the reduction of the acetylation level and the transcriptional activity of p65. Accordingly, the level of MMP9 was decreased. In conclusion, we found a new mechanism that DACH1 could inhibit the metastasis of breast cancer cells by inhibiting the expression of MMP9.
Collapse
Affiliation(s)
- Sattout Aman
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
- 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Yanan Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
- 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Yunmeng Cheng
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
- 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
- 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
- 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Bowen Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
- 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Kangkai Xia
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
- 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
- 2 Ling Gong Road, Dalian, 116024, Liaoning, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
- 2 Ling Gong Road, Dalian, 116024, Liaoning, China.
| |
Collapse
|
16
|
Stress Relief Techniques: p38 MAPK Determines the Balance of Cell Cycle and Apoptosis Pathways. Biomolecules 2021; 11:biom11101444. [PMID: 34680077 PMCID: PMC8533283 DOI: 10.3390/biom11101444] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Protein signaling networks are formed from diverse and inter-connected cell signaling pathways converging into webs of function and regulation. These signaling pathways both receive and conduct molecular messages, often by a series of post-translation modifications such as phosphorylation or through protein-protein interactions via intrinsic motifs. The mitogen activated protein kinases (MAPKs) are components of kinase cascades that transmit signals through phosphorylation. There are several MAPK subfamilies, and one subfamily is the stress-activated protein kinases, which in mammals is the p38 family. The p38 enzymes mediate a variety of cellular outcomes including DNA repair, cell survival/cell fate decisions, and cell cycle arrest. The cell cycle is itself a signaling system that precisely controls DNA replication, chromosome segregation, and cellular division. Another indispensable cell function influenced by the p38 stress response is programmed cell death (apoptosis). As the regulators of cell survival, the BCL2 family of proteins and their dynamics are exquisitely sensitive to cell stress. The BCL2 family forms a protein-protein interaction network divided into anti-apoptotic and pro-apoptotic members, and the balance of binding between these two sides determines cell survival. Here, we discuss the intersections among the p38 MAPK, cell cycle, and apoptosis signaling pathways.
Collapse
|
17
|
Cioffi F, Adam RHI, Bansal R, Broersen K. A Review of Oxidative Stress Products and Related Genes in Early Alzheimer's Disease. J Alzheimers Dis 2021; 83:977-1001. [PMID: 34420962 PMCID: PMC8543250 DOI: 10.3233/jad-210497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress is associated with the progression of Alzheimer’s disease (AD). Reactive oxygen species can modify lipids, DNA, RNA, and proteins in the brain. The products of their peroxidation and oxidation are readily detectable at incipient stages of disease. Based on these oxidation products, various biomarker-based strategies have been developed to identify oxidative stress levels in AD. Known oxidative stress-related biomarkers include lipid peroxidation products F2-isoprostanes, as well as malondialdehyde and 4-hydroxynonenal which both conjugate to specific amino acids to modify proteins, and DNA or RNA oxidation products 8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG), respectively. The inducible enzyme heme oxygenase type 1 (HO-1) is found to be upregulated in response to oxidative stress-related events in the AD brain. While these global biomarkers for oxidative stress are associated with early-stage AD, they generally poorly differentiate from other neurodegenerative disorders that also coincide with oxidative stress. Redox proteomics approaches provided specificity of oxidative stress-associated biomarkers to AD pathology by the identification of oxidatively damaged pathology-specific proteins. In this review, we discuss the potential combined diagnostic value of these reported biomarkers in the context of AD and discuss eight oxidative stress-related mRNA biomarkers in AD that we newly identified using a transcriptomics approach. We review these genes in the context of their reported involvement in oxidative stress regulation and specificity for AD. Further research is warranted to establish the protein levels and their functionalities as well as the molecular mechanisms by which these potential biomarkers are involved in regulation of oxidative stress levels and their potential for determination of oxidative stress and disease status of AD patients.
Collapse
Affiliation(s)
- Federica Cioffi
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
18
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
19
|
Ras Isoforms from Lab Benches to Lives-What Are We Missing and How Far Are We? Int J Mol Sci 2021; 22:ijms22126508. [PMID: 34204435 PMCID: PMC8233758 DOI: 10.3390/ijms22126508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.
Collapse
|
20
|
Kim JY, Kim G, Lim SC, Choi HS. IL-33-Induced Transcriptional Activation of LPIN1 Accelerates Breast Tumorigenesis. Cancers (Basel) 2021; 13:cancers13092174. [PMID: 33946554 PMCID: PMC8124251 DOI: 10.3390/cancers13092174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipids are crucial materials that are not only required for cell membrane construction but also play significant roles as signaling molecules. LPIN1 is an enzyme that displays phosphatidate phosphatase activity in the triglyceride and phospholipid synthesis pathway. Recent studies have shown that overexpression of LPIN1 is involved in breast tumorigenesis, but the underlying mechanism regulating LPIN1 expression has not been elucidated yet. In the present study, we showed that the IL-33-induced COT-JNK1/2 signaling pathway regulates LPIN1 mRNA and protein expression by recruiting c-Jun to the LPIN1 promoter in breast cancer cells. IL-33 dose-dependently and time-dependently increased LPIN1 mRNA and protein expression. Moreover, IL-33 promoted colony formation and mammary tumorigenesis via induction of LPIN1 expression, while inhibition of LPIN1 disturbed IL-33-induced cell proliferation and mammary tumorigenesis. IL-33-driven LPIN1 expression was mediated by the COT-JNK1/2 signaling pathway, and inhibition of COT or JNK1/2 reduced LPIN1 expression. COT-JNK1/2-mediated IL-33 signaling activated c-Jun and promoted its binding to the promoter region of LPIN1 to induce LPIN1 expression. These findings demonstrated the regulatory mechanism of LPIN1 transcription by the IL-33-induced COT/JNK1/2 pathway for the first time, providing a potential mechanism underlying the upregulation of LPIN1 in cancer.
Collapse
Affiliation(s)
- Jin-Young Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (J.-Y.K.); (G.K.)
| | - Garam Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (J.-Y.K.); (G.K.)
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju 61452, Korea;
| | - Hong-Seok Choi
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (J.-Y.K.); (G.K.)
- Correspondence: ; Fax: +82-62-222-5414
| |
Collapse
|
21
|
Bilal F, Arenas EJ, Pedersen K, Martínez-Sabadell A, Nabet B, Guruceaga E, Vicent S, Tabernero J, Macarulla T, Arribas J. The Transcription Factor SLUG Uncouples Pancreatic Cancer Progression from the RAF-MEK1/2-ERK1/2 Pathway. Cancer Res 2021; 81:3849-3861. [PMID: 33903121 DOI: 10.1158/0008-5472.can-20-4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022]
Abstract
Activating mutations in some isoforms of RAS or RAF are drivers of a substantial proportion of cancers. The main Raf effector, MEK1/2, can be targeted with several highly specific inhibitors. The clinical activity of these inhibitors seems to be mixed, showing efficacy against mutant BRAF-driven tumors but not KRAS-driven tumors, such as pancreatic adenocarcinomas. To improve our understanding of this context-dependent efficacy, we generated pancreatic cancer cells resistant to MEK1/2 inhibition, which were also resistant to KRAS and ERK1/2 inhibitors. Compared with parental cells, inhibitor-resistant cells showed several phenotypic changes including increased metastatic ability in vivo. The transcription factor SLUG, which is known to induce epithelial-to-mesenchymal transition, was identified as the key factor responsible for both resistance to MEK1/2 inhibition and increased metastasis. Slug, but not similar transcription factors, predicted poor prognosis of pancreatic cancer patients and induced the transition to a cellular phenotype in which cell-cycle progression becomes independent of the KRAS-RAF-MEK1/2-ERK1/2 pathway. SLUG was targeted using two independent strategies: (i) inhibition of the MEK5-ERK5 pathway, which is responsible for upregulation of SLUG upon MEK1/2 inhibition, and (ii) direct PROTAC-mediated degradation. Both strategies were efficacious in preclinical pancreatic cancer models, paving the path for the development of more effective therapies against pancreatic cancer. SIGNIFICANCE: This study demonstrates that SLUG confers resistance to MEK1/2 inhibitors in pancreatic cancer by uncoupling tumor progression from KRAS-RAF-MEK1/2-ERK1/2 signaling, providing new therapeutic opportunities. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3849/F1.large.jpg.
Collapse
Affiliation(s)
- Faiz Bilal
- Preclinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,CIBERONC, Barcelona, Spain
| | - Enrique J Arenas
- Preclinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,CIBERONC, Barcelona, Spain
| | - Kim Pedersen
- Preclinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alex Martínez-Sabadell
- Preclinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Guruceaga
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Silvestre Vicent
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Josep Tabernero
- CIBERONC, Barcelona, Spain.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Teresa Macarulla
- Clinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Joaquín Arribas
- Preclinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. .,CIBERONC, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Bellaterra, Spain.,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
22
|
"Metalloestrogenic" effects of cadmium downstream of G protein-coupled estrogen receptor and mitogen-activated protein kinase pathways in human uterine fibroid cells. Arch Toxicol 2021; 95:1995-2006. [PMID: 33818655 PMCID: PMC8166678 DOI: 10.1007/s00204-021-03033-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/18/2021] [Indexed: 10/25/2022]
Abstract
Cadmium (Cd) is a toxic metal reported to act as an estrogen "mimic" in the rat uterus and in vitro. We have reported that Cd stimulates proliferation of estrogen-responsive human uterine leiomyoma (ht-UtLM; fibroid) cells through nongenomic signaling involving the G protein-coupled estrogen receptor (GPER), with activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (pMAPK44/42). In this study, we explored Cd-induced mechanisms downstream of MAPK and whether Cd could stimulate phosphorylation of Histone H3 at serine 10 (H3Ser10ph) through activated Aurora B kinase (pAurora B), a kinase important in activation of histone H3 at serine 10 during mitosis, and if this occurs via Fork head box M1 (FOXM1) and cyclin D1 immediately downstream of MAPK. We found that Cd increased proliferating cell nuclear antigen (PCNA) and H3Ser10ph expression by immunofluorescence, and that H3ser10ph and pAurora B were coexpressed along the metaphase plate in ht-UtLM cells. In addition, Cd-exposed cells showed higher expression of pMAPK44/42, FOXM1, pAurora B, H3ser10ph, and Cyclin D1 by western blotting. Immunoprecipitation and proximity ligation assays further indicated an association between FOXM1 and Cyclin D1 in Cd-exposed cells. These effects were attenuated by MAPK kinase (MEK1/2) inhibitor. In summary, Cd-induced proliferation of ht-UtLM cells occurred through activation of Histone H3 and Aurora B via FOXM1/Cyclin D1 interactions downstream of MAPK. This provides a molecular mechanism of how Cd acts as an "estrogen mimic" resulting in mitosis in hormonally responsive cells.
Collapse
|
23
|
Acetylation of ELF5 suppresses breast cancer progression by promoting its degradation and targeting CCND1. NPJ Precis Oncol 2021; 5:20. [PMID: 33742100 PMCID: PMC7979705 DOI: 10.1038/s41698-021-00158-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
E74-like ETS transcription factor 5 (ELF5) is involved in a wide spectrum of biological processes, e.g., mammogenesis and tumor progression. We have identified a list of p300-interacting proteins in human breast cancer cells. Among these, ELF5 was found to interact with p300 via acetylation, and the potential acetylation sites were identified as K130, K134, K143, K197, K228, and K245. Furthermore, an ELF5-specific deacetylase, SIRT6, was also identified. Acetylation of ELF5 promoted its ubiquitination and degradation, but was also essential for its antiproliferative effect against breast cancer, as overexpression of wild-type ELF5 and sustained acetylation-mimicking ELF5 mutant could inhibit the expression of its target gene CCND1. Taken together, the results demonstrated a novel regulation of ELF5 as well as shedding light on its important role in modulation of breast cancer progression.
Collapse
|
24
|
Kumarasamy V, Vail P, Nambiar R, Witkiewicz AK, Knudsen ES. Functional Determinants of Cell Cycle Plasticity and Sensitivity to CDK4/6 Inhibition. Cancer Res 2021; 81:1347-1360. [PMID: 33323381 PMCID: PMC8026500 DOI: 10.1158/0008-5472.can-20-2275] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Abstract
Intrinsic or acquired resistance to clinically approved CDK4/6 inhibitors has emerged as a major obstacle that hinders their utility beyond ER+ breast cancer. In this study, CDK4/6-dependent and -resistant models were employed to identify functional determinants of response to pharmacologic CDK4/6 inhibitors. In all models tested, the activation of RB and inhibition of CDK2 activity emerged as determinants of sensitivity. While depleting CDK4 and 6 was sufficient to limit proliferation in specific resistance settings, RB loss rendered cells completely independent of these kinases. The main downstream target in this context was the activation status of CDK2, which was suppressed with CDK4/6 inhibition in an RB-dependent fashion. Protein levels of p27 were associated with plasticity/rigidity of the cell cycle and correlated with sensitivity to CDK4/6 inhibition. Exogenous overexpression and pharmacologic induction of p27 via inhibition of SKP2 and targeting the MEK/ERK pathway enhanced the cytostatic effect of CDK4/6 inhibitors. Mice bearing ER+ xenografts displayed a durable antitumor response to palbociclib; however, over the course of treatment, few cells retained RB phosphorylation, which was associated with limited p27 protein levels as determined by multispectral imaging. Similarly, combination treatment of palbociclib with a MEK inhibitor in pancreatic cancer PDX models upregulated p27 and further enhanced the in vivo tumor response to palbociclib. Collectively, these results suggest that the cell cycle plasticity, which enables tumor models to evade palbociclib-mediated activation of RB, could be targeted using a clinically applicable CDK2 inhibitor. SIGNIFICANCE: This work provides a mechanistic insight toward understanding the functional roles of multiple cell cycle regulators that drive plasticity and sensitivity to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Paris Vail
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Ram Nambiar
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York.
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York.
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
25
|
Sencan S, Tanriover M, Ulasli M, Karakas D, Ozpolat B. UV radiation resistance-associated gene (UVRAG) promotes cell proliferation, migration, invasion by regulating cyclin-dependent kinases (CDK) and integrin-β/Src signaling in breast cancer cells. Mol Cell Biochem 2021; 476:2075-2084. [PMID: 33515382 DOI: 10.1007/s11010-021-04063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023]
Abstract
Breast cancer is a highly heterogeneous group of human cancer with distinct genetic, biological and clinicopathological features. Triple-negative breast cancer (TNBC) is the most aggressive and metastatic type of breast cancer and associated with poor patient survival. However, the role of UV Radiation Resistance-Associated Gene (UVRAG) in TNBC remains unknown. Here, we report that UVRAG is highly upregulated in all TNBC cells and its knockdown leads to the inhibition of cell proliferation, colony formation and progression of cell cycle, which is associated with and reduced expression of cell cycle related protein expression, including Cyclin A2, B1, D1, cdc2 and cdk6 in TNBC cells. Inhibition of UVRAG also suppressed cell motility, migration and invasion of TNBC cells by inhibition of Integrin β1 and β3 and Src activity. Our findings suggest for the first time that UVRAG expression contributes to proliferation, cell cycle progression, motility/migration and invasion of TNBC cells. Thus, targeting UVRAG could be a potential strategy in breast cancer especially against TNBC.
Collapse
Affiliation(s)
- Sevide Sencan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA.,Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mine Tanriover
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Mustafa Ulasli
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Didem Karakas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA. .,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Srijakotre N, Liu HJ, Nobis M, Man J, Yip HYK, Papa A, Abud HE, Anderson KI, Welch HCE, Tiganis T, Timpson P, McLean CA, Ooms LM, Mitchell CA. PtdIns(3,4,5)P 3-dependent Rac exchanger 1 (P-Rex1) promotes mammary tumor initiation and metastasis. Proc Natl Acad Sci U S A 2020; 117:28056-28067. [PMID: 33097662 PMCID: PMC7668035 DOI: 10.1073/pnas.2006445117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Rac-GEF, P-Rex1, activates Rac1 signaling downstream of G protein-coupled receptors and PI3K. Increased P-Rex1 expression promotes melanoma progression; however, its role in breast cancer is complex, with differing reports of the effect of its expression on disease outcome. To address this we analyzed human databases, undertook gene array expression analysis, and generated unique murine models of P-Rex1 gain or loss of function. Analysis of PREX1 mRNA expression in breast cancer cDNA arrays and a METABRIC cohort revealed that higher PREX1 mRNA in ER+ve/luminal tumors was associated with poor outcome in luminal B cancers. Prex1 deletion in MMTV-neu or MMTV-PyMT mice reduced Rac1 activation in vivo and improved survival. High level MMTV-driven transgenic PREX1 expression resulted in apicobasal polarity defects and increased mammary epithelial cell proliferation associated with hyperplasia and development of de novo mammary tumors. MMTV-PREX1 expression in MMTV-neu mice increased tumor initiation and enhanced metastasis in vivo, but had no effect on primary tumor growth. Pharmacological inhibition of Rac1 or MEK1/2 reduced P-Rex1-driven tumoroid formation and cell invasion. Therefore, P-Rex1 can act as an oncogene and cooperate with HER2/neu to enhance breast cancer initiation and metastasis, despite having no effect on primary tumor growth.
Collapse
Affiliation(s)
- Nuthasuda Srijakotre
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Heng-Jia Liu
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Max Nobis
- Garvan Institute of Medical Research, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Darlinghurst, NSW 2010, Australia
| | - Joey Man
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Hon Yan Kelvin Yip
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Helen E Abud
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kurt I Anderson
- Tumour Cell Migration, Cancer Research UK Beatson Institute, G611BD Glasgow, United Kingdom
- Crick Advanced Light Microscopy, Francis Crick Institute, NW11AT London, United Kingdom
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, CB22 3AT Cambridge, United Kingdom
| | - Tony Tiganis
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Darlinghurst, NSW 2010, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3181, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
27
|
Roberts PJ, Kumarasamy V, Witkiewicz AK, Knudsen ES. Chemotherapy and CDK4/6 Inhibitors: Unexpected Bedfellows. Mol Cancer Ther 2020; 19:1575-1588. [PMID: 32546660 PMCID: PMC7473501 DOI: 10.1158/1535-7163.mct-18-1161] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) have emerged as important therapeutic targets. Pharmacologic inhibitors of these kinases function to inhibit cell-cycle progression and exert other important effects on the tumor and host environment. Because of their impact on the cell cycle, CDK4/6 inhibitors (CDK4/6i) have been hypothesized to antagonize the antitumor effects of cytotoxic chemotherapy in tumors that are CDK4/6 dependent. However, there are multiple preclinical studies that illustrate potent cooperation between CDK4/6i and chemotherapy. Furthermore, the combination of CDK4/6i and chemotherapy is being tested in clinical trials to both enhance antitumor efficacy and limit toxicity. Exploitation of the noncanonical effects of CDK4/6i could also provide an impetus for future studies in combination with chemotherapy. Thus, while seemingly mutually exclusive mechanisms are at play, the combination of CDK4/6 inhibition and chemotherapy could exemplify rational medicine.
Collapse
Affiliation(s)
| | - Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York.
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
28
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 612] [Impact Index Per Article: 122.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
29
|
Pennycook BR, Barr AR. Restriction point regulation at the crossroads between quiescence and cell proliferation. FEBS Lett 2020; 594:2046-2060. [PMID: 32564372 DOI: 10.1002/1873-3468.13867] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/11/2024]
Abstract
The coordination of cell proliferation with reversible cell cycle exit into quiescence is crucial for the development of multicellular organisms and for tissue homeostasis in the adult. The decision between quiescence and proliferation occurs at the restriction point, which is widely thought to be located in the G1 phase of the cell cycle, when cells integrate accumulated extracellular and intracellular signals to drive this binary cellular decision. On the molecular level, decision-making is exerted through the activation of cyclin-dependent kinases (CDKs). CDKs phosphorylate the retinoblastoma (Rb) transcriptional repressor to regulate the expression of cell cycle genes. Recently, the classical view of restriction point regulation has been challenged. Here, we review the latest findings on the activation of CDKs, Rb phosphorylation and the nature and position of the restriction point within the cell cycle.
Collapse
Affiliation(s)
- Betheney R Pennycook
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexis R Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
30
|
Min M, Rong Y, Tian C, Spencer SL. Temporal integration of mitogen history in mother cells controls proliferation of daughter cells. Science 2020; 368:1261-1265. [PMID: 32241885 PMCID: PMC8363187 DOI: 10.1126/science.aay8241] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 01/17/2023]
Abstract
Multicellular organisms use mitogens to regulate cell proliferation, but how fluctuating mitogenic signals are converted into proliferation-quiescence decisions is poorly understood. In this work, we combined live-cell imaging with temporally controlled perturbations to determine the time scale and mechanisms underlying this system in human cells. Contrary to the textbook model that cells sense mitogen availability only in the G1 cell cycle phase, we find that mitogenic signaling is temporally integrated throughout the entire mother cell cycle and that even a 1-hour lapse in mitogen signaling can influence cell proliferation more than 12 hours later. Protein translation rates serve as the integrator that proportionally converts mitogen history into corresponding levels of cyclin D in the G2 phase of the mother cell, which controls the proliferation-quiescence decision in daughter cells and thereby couples protein production with cell proliferation.
Collapse
Affiliation(s)
- Mingwei Min
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| | - Yao Rong
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Chengzhe Tian
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Sabrina L Spencer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
31
|
Yang Y, Liang YH, Zheng Y, Tang LJ, Zhou ST, Zhu JN. SHARPIN regulates cell proliferation of cutaneous basal cell carcinoma via inactivation of the transcriptional factors GLI2 and c‑JUN. Mol Med Rep 2020; 21:1799-1808. [PMID: 32319607 PMCID: PMC7057814 DOI: 10.3892/mmr.2020.10981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
SHANK‑associated RH domain‑interacting protein (SHARPIN) is a component of the linear ubiquitin chain assembly complex that can enhance the NF‑κB and JNK signaling pathways, acting as a tumor‑associated protein in a variety of cancer types. The present study investigated the role of SHARPIN in cutaneous basal cell carcinoma (BCC). Human BCC (n=26) and normal skin (n=5) tissues, and BCC (TE354.T) and normal skin (HaCaT) cell lines were used to evaluate SHARPIN expression level using immunohistochemistry and western blotting, respectively. A lentivirus carrying SHARPIN‑targeting or negative control short hairpin RNA was infected into TE354.T cells, and the infected stable cells were assayed to analyze tumor cell proliferation, cell cycle, apoptosis, migration and invasion by Cell Counting Kit‑8 and 5‑ethynyl‑2'‑deoxyuridine incorporation assays, flow cytometry and Transwell assays. Western blotting was performed to assess the protein expression levels of gene signaling in SHARPIN‑silenced BCC cells. SHARPIN protein expression levels were downregulated or absent in BCC cancer nests and precancerous lesions compared with normal skin samples. In addition, SHARPIN expression levels were lower in TE354.T cells compared with HaCaT cells. SHARPIN shRNA enhanced tumor cell proliferation and the S phase of the cell cycle, whereas BCC cell apoptotic rates, and migratory and invasive abilities were not significantly altered. The expression levels of cyclin D1, cyclin‑dependent kinase 4, phosphorylated‑c‑JUN and GLI family zinc finger 2 proteins were increased, whereas Patched 1 (PTCH1) and PTCH2 were decreased in the SHARPIN‑shRNA‑infected BCC cells. Therefore, the present results suggested that SHARPIN may act as a tumor suppressor during BCC development.
Collapse
Affiliation(s)
- Yao Yang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan-Hua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan Zheng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Ling-Jie Tang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Si-Tong Zhou
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Jing-Na Zhu
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| |
Collapse
|
32
|
Abstract
The cyclin-dependent kinase 5 (CDK5), originally described as a neuronal-specific kinase, is also frequently activated in human cancers. Using conditional CDK5 knockout mice and a mouse model of highly metastatic melanoma, we found that CDK5 is dispensable for the growth of primary tumors. However, we observed that ablation of CDK5 completely abrogated the metastasis, revealing that CDK5 is essential for the metastatic spread. In mouse and human melanoma cells CDK5 promotes cell invasiveness by directly phosphorylating an intermediate filament protein, vimentin, thereby inhibiting assembly of vimentin filaments. Chemical inhibition of CDK5 blocks the metastatic spread of patient-derived melanomas in patient-derived xenograft (PDX) mouse models. Hence, inhibition of CDK5 might represent a very potent therapeutic strategy to impede the metastatic dissemination of malignant cells.
Collapse
|
33
|
Ma D, Lian F, Wang X. PLCG2 promotes hepatocyte proliferation in vitro via NF-κB and ERK pathway by targeting bcl2, myc and ccnd1. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3786-3792. [PMID: 31549850 DOI: 10.1080/21691401.2019.1669616] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phospholipase Cγ2 (PLCG2) has been implicated in the regulation of cell proliferation, transformation, and tumor growth. In this study, we investigate the mechanism of PLCG2 action using a short interference RNA (siRNA) method. The effects of PLCG2 on rat liver BRL-3A cells treated siRNA were studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT assay), bromodeoxyuridine (BrdU) labelling assay, flow cytometry method (FCM), quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The results showed when PLCG2 was reduced, cell vitality and proliferation rate were significantly decreased (p < .05 vs. control). FCM analysis showed that the number of cell division phase (G2 + M) was declined (p < .05 vs. control). RT-PCR and western blot revealed that the expression of signalling related genes NF-κB, FOS, JUN and ELK, target genes BCL2, CCNB1 and CCND1 were remarkably down-regulated in cells treated with PLCG2 siRNAs. Based on these results, we conclude PLCG2 plays an important role in rat liver cell proliferation via ERK and NF-κB pathway by regulating the expression of BCl2, MYC and CCND1.
Collapse
Affiliation(s)
- Donghui Ma
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong , China
| | - Fang Lian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University , Haikou , Hainan , China
| | - Xiaobai Wang
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong , China
| |
Collapse
|
34
|
Kumarasamy V, Ruiz A, Nambiar R, Witkiewicz AK, Knudsen ES. Chemotherapy impacts on the cellular response to CDK4/6 inhibition: distinct mechanisms of interaction and efficacy in models of pancreatic cancer. Oncogene 2019; 39:1831-1845. [PMID: 31745297 PMCID: PMC7047578 DOI: 10.1038/s41388-019-1102-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease characterized by the aberrations in multiple genes that drive pathogenesis and limit therapeutic response. While CDK4/6 represents a downstream target of both KRAS mutation and loss of the CDKN2A tumor suppressor in PDAC, clinical and preclinical studies indicate that pharmacological CDK4/6 inhibitors are only modestly effective. Since chemotherapy represents the established backbone of PDAC treatment we evaluated the interaction of CDK4/6 inhibitors with gemcitabine and taxanes that are employed in the treatment of PDAC. Herein, we demonstrate that the difference in mechanisms of actions of chemotherapeutic agents elicit distinct effects on the cellular response to CDK4/6 inhibition. Gemcitabine largely ablates the function of CDK4/6 inhibition in S-phase arrested cells when administered contemporaneously; although, when cells recover from S-phase block they exhibit sensitivity to CDK4/6 inhibition. In contrast, pharmacological inhibition of CDK4/6 yields a cooperative cytostatic effect in combination with docetaxel and prevents adaptation and cell cycle re-entry, which is a common basis for resistance to such agents. Importantly, using organoid and PDX models we could confirm the cooperative effects between chemotherapy and CDK4/6 inhibition. These data indicate that the combination of cytotoxic and cytostatic agents could represent an important modality in those tumor types that are relatively resistant to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amanda Ruiz
- Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Ram Nambiar
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
35
|
Xie Y, Ostriker AC, Jin Y, Hu H, Sizer AJ, Peng G, Morris AH, Ryu C, Herzog EL, Kyriakides T, Zhao H, Dardik A, Yu J, Hwa J, Martin KA. LMO7 Is a Negative Feedback Regulator of Transforming Growth Factor β Signaling and Fibrosis. Circulation 2019; 139:679-693. [PMID: 30586711 PMCID: PMC6371979 DOI: 10.1161/circulationaha.118.034615] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Vascular smooth muscle cells (SMCs) synthesize extracellular matrix (ECM) that contributes to tissue remodeling after revascularization interventions. The cytokine transforming growth factor β (TGF-β) is induced on tissue injury and regulates tissue remodeling and wound healing, but dysregulated signaling results in excess ECM deposition and fibrosis. The LIM (Lin11, Isl-1 & Mec-3) domain protein LIM domain only 7 (LMO7) is a TGF-β1 target gene in hepatoma cells, but its role in vascular physiology and fibrosis is unknown. METHODS We use carotid ligation and femoral artery denudation models in mice with global or inducible smooth muscle-specific deletion of LMO7, and knockout, knockdown, overexpression, and mutagenesis approaches in mouse and human SMC, and human arteriovenous fistula and cardiac allograft vasculopathy samples to assess the role of LMO7 in neointima and fibrosis. RESULTS We demonstrate that LMO7 is induced postinjury and by TGF-β in SMC in vitro. Global or SMC-specific LMO7 deletion enhanced neointimal formation, TGF-β signaling, ECM deposition, and proliferation in vascular injury models. LMO7 loss of function in human and mouse SMC enhanced ECM protein expression at baseline and after TGF-β treatment. TGF-β neutralization or receptor antagonism prevented the exacerbated neointimal formation and ECM synthesis conferred by loss of LMO7. Notably, loss of LMO7 coordinately amplified TGF-β signaling by inducing expression of Tgfb1 mRNA, TGF-β protein, αv and β3 integrins that promote activation of latent TGF-β, and downstream effectors SMAD3 phosphorylation and connective tissue growth factor. Mechanistically, the LMO7 LIM domain interacts with activator protein 1 transcription factor subunits c-FOS and c-JUN and promotes their ubiquitination and degradation, disrupting activator protein 1-dependent TGF-β autoinduction. Importantly, preliminary studies suggest that LMO7 is upregulated in human intimal hyperplastic arteriovenous fistula and cardiac allograft vasculopathy samples, and inversely correlates with SMAD3 phosphorylation in cardiac allograft vasculopathy. CONCLUSIONS LMO7 is induced by TGF-β and serves to limit vascular fibrotic responses through negative feedback regulation of the TGF-β pathway. This mechanism has important implications for intimal hyperplasia, wound healing, and fibrotic diseases.
Collapse
Affiliation(s)
- Yi Xie
- Departments of Medicine (Cardiovascular Medicine) (Y.X., A.C.O., Y.J., K.A.M., J.H.), Yale University, New Haven, CT.,Pharmacology (Y.X., A.C.O., Y.J., K.A.M.), Yale University, New Haven, CT
| | - Allison C Ostriker
- Departments of Medicine (Cardiovascular Medicine) (Y.X., A.C.O., Y.J., K.A.M., J.H.), Yale University, New Haven, CT.,Pharmacology (Y.X., A.C.O., Y.J., K.A.M.), Yale University, New Haven, CT
| | - Yu Jin
- Departments of Medicine (Cardiovascular Medicine) (Y.X., A.C.O., Y.J., K.A.M., J.H.), Yale University, New Haven, CT.,Pharmacology (Y.X., A.C.O., Y.J., K.A.M.), Yale University, New Haven, CT
| | - Haidi Hu
- Surgery (Vascular) (H.H., A.D.), Yale University, New Haven, CT
| | | | - Gang Peng
- Biostatistics (G.P., H.Z.), Yale University, New Haven, CT
| | - Aaron H Morris
- Pathology (A.H.M., T.K.), Yale University, New Haven, CT.,Department of Biomedical Engineering (A.H.M., T.K.), Yale University, New Haven, CT
| | - Changwan Ryu
- Medicine (Pulmonary) (C.R., E.L.H.), Yale University School of Medicine, Yale University, New Haven, CT
| | - Erica L Herzog
- Medicine (Pulmonary) (C.R., E.L.H.), Yale University School of Medicine, Yale University, New Haven, CT
| | - Themis Kyriakides
- Pathology (A.H.M., T.K.), Yale University, New Haven, CT.,Department of Biomedical Engineering (A.H.M., T.K.), Yale University, New Haven, CT
| | - Hongyu Zhao
- Biostatistics (G.P., H.Z.), Yale University, New Haven, CT
| | - Alan Dardik
- Surgery (Vascular) (H.H., A.D.), Yale University, New Haven, CT
| | - Jun Yu
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - John Hwa
- Departments of Medicine (Cardiovascular Medicine) (Y.X., A.C.O., Y.J., K.A.M., J.H.), Yale University, New Haven, CT
| | - Kathleen A Martin
- Departments of Medicine (Cardiovascular Medicine) (Y.X., A.C.O., Y.J., K.A.M., J.H.), Yale University, New Haven, CT.,Pharmacology (Y.X., A.C.O., Y.J., K.A.M.), Yale University, New Haven, CT
| |
Collapse
|
36
|
Utility of Cyclin D1 in the Diagnostic Workup of Hematopoietic Neoplasms: What Can Cyclin D1 Do for Us? Adv Anat Pathol 2019; 26:281-291. [PMID: 31261248 DOI: 10.1097/pap.0000000000000241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclin D1, encoded by CCND1, promotes cell cycle progression from G1 to S phase. Its expression is induced by MAPK/ERK pathway as well as translocations/rearrangements involving CCND1 gene. The evaluation of cyclin D1 expression by immunohistochemistry plays an important role in the diagnostic workup of various hematopoietic diseases. In this review, we aimed to discuss the value of cyclin D1 immunostain in the diagnosis and different diagnosis of hematopoietic neoplasms.
Collapse
|
37
|
Yan HC, Li L, Liu JC, Wang YF, Liu XL, Ge W, Dyce PW, Li L, Sun XF, Shen W, Cheng SF. RA promotes proliferation of primordial germ cell-like cells differentiated from porcine skin-derived stem cells. J Cell Physiol 2019; 234:18214-18229. [PMID: 30859584 DOI: 10.1002/jcp.28454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that primordial germ cell-like cells (PGCLCs) can be obtained from human, porcine and mouse skin-derived stem cells (SDSCs). In this paper, we found retinoic acid (RA), the active derivative of vitamin A, accelerated the growth of porcine primordial germ cells (pPGCs) and porcine PGCLCs (pPGCLCs) which were derived from porcine SDSCs (pSDSCs). Moreover, flow cytometry results revealed that the proliferation promoting effect of RA was attenuated by U0126, a specific inhibitor of extracellular signal-regulated kinase (ERK). Western blot analysis showed the protein level of ERK, phosphorylated ERK, cyclin D1 (CCND1), and cyclin-dependent kinase 2 (CDK2) increased after stimulation with RA, and this effect could also be abolished by U0126. Our data revealed that ablation of ERK expression by U0126 should significantly decrease proliferation of pPGCLCS. This reduction was because CCND1 and CDK2 proteins level decrease and subsequently the pPGCLCs were arrested in the G0/G1 phase. In addition, we also confirmed RA indeed promoted the proliferation of pPGCs isolated from porcine fetal genital ridges in vitro. Furthermore, our data indicated that DNA methylation pattern were changed in pPGCLCs and this pattern were more similar to pPGCs.
Collapse
Affiliation(s)
- Hong-Chen Yan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jing-Cai Liu
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Yu-Feng Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xue-Lian Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Feng Sun
- Reproductive Center, Anqiu Women and Children's Hospital, Weifang, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
38
|
Di Sante G, Pagé J, Jiao X, Nawab O, Cristofanilli M, Skordalakes E, Pestell RG. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Rev Anticancer Ther 2019; 19:569-587. [PMID: 31219365 PMCID: PMC6834352 DOI: 10.1080/14737140.2019.1615889] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Collaborative interactions between several diverse biological processes govern the onset and progression of breast cancer. These processes include alterations in cellular metabolism, anti-tumor immune responses, DNA damage repair, proliferation, anti-apoptotic signals, autophagy, epithelial-mesenchymal transition, components of the non-coding genome or onco-mIRs, cancer stem cells and cellular invasiveness. The last two decades have revealed that each of these processes are also directly regulated by a component of the cell cycle apparatus, cyclin D1. Area covered: The current review is provided to update recent developments in the clinical application of cyclin/CDK inhibitors to breast cancer with a focus on the anti-tumor immune response. Expert opinion: The cyclin D1 gene encodes the regulatory subunit of a proline-directed serine-threonine kinase that phosphorylates several substrates. CDKs possess phosphorylation site selectivity, with the phosphate-acceptor residue preceding a proline. Several important proteins are substrates including all three retinoblastoma proteins, NRF1, GCN5, and FOXM1. Over 280 cyclin D3/CDK6 substrates have b\een identified. Given the diversity of substrates for cyclin/CDKs, and the altered thresholds for substrate phosphorylation that occurs during the cell cycle, it is exciting that small molecular inhibitors targeting cyclin D/CDK activity have encouraging results in specific tumors.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Jessica Pagé
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Omar Nawab
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
39
|
MacArthur IC, Bei Y, Garcia HD, Ortiz MV, Toedling J, Klironomos F, Rolff J, Eggert A, Schulte JH, Kentsis A, Henssen AG. Prohibitin promotes de-differentiation and is a potential therapeutic target in neuroblastoma. JCI Insight 2019; 5:127130. [PMID: 30998507 DOI: 10.1172/jci.insight.127130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gain of the long arm of chromosome 17 (17q) is a cytogenetic hallmark of high-risk neuroblastoma, yet its contribution to neuroblastoma pathogenesis remains incompletely understood. Combining whole-genome and RNA sequencing of neuroblastomas, we identified the prohibitin (PHB) gene as highly expressed in tumors with 17q gain. High PHB expression correlated with poor prognosis and was associated with loss of gene expression programs promoting neuronal development and differentiation. PHB depletion induced differentiation and apoptosis and slowed cell cycle progression of neuroblastoma cells, at least in part through impaired ERK1/2 activation. Conversely, ectopic expression of PHB was sufficient to increase proliferation of neuroblastoma cells and was associated with suppression of markers associated with neuronal differentiation and favorable neuroblastoma outcome. Thus, PHB is a 17q oncogene in neuroblastoma that promotes tumor cell proliferation, and de-differentiation.
Collapse
Affiliation(s)
- Ian C MacArthur
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Medical Scientist Training Program, Albert Einstein College of Medicine, New York, New York, USA
| | - Yi Bei
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael V Ortiz
- Department of Pediatrics and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Filippos Klironomos
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Rolff
- Experimental Pharmacology and Oncology, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Alex Kentsis
- Department of Pediatrics and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Departments of Pharmacology, Pediatrics, and Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, USA
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center of the Max Delbrück Center and Charité Berlin, Berlin, Germany
| |
Collapse
|
40
|
Marcon BH, Shigunov P, Spangenberg L, Pereira IT, de Aguiar AM, Amorín R, Rebelatto CK, Correa A, Dallagiovanna B. Cell cycle genes are downregulated after adipogenic triggering in human adipose tissue-derived stem cells by regulation of mRNA abundance. Sci Rep 2019; 9:5611. [PMID: 30948750 PMCID: PMC6449374 DOI: 10.1038/s41598-019-42005-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/20/2019] [Indexed: 12/18/2022] Open
Abstract
The adipogenic process is characterized by the expression of adipocyte differentiation markers that lead to changes in cell metabolism and to the accumulation of lipid droplets. Moreover, during early adipogenesis, cells undergo a strong downregulation of translational activity with a decrease in cell size, proliferation and migration. In the present study, we identified that after 24 hours of adipogenic induction, human adipose tissue-derived stem cells (hASCs) undergo a G1-cell cycle arrest consistent with reduced proliferation, and this effect was correlated with a shift in polysome profile with an enrichment of the monosomal fraction and a reduction of the polysomal fraction. Polysome profiling analysis also revealed that this change in the monosomal/polysomal ratio was related to a strong downregulation of cell cycle and proliferation genes, such as cyclins and cyclin-dependent kinases (CDKs). Comparing total and polysome-associated mRNA sequencing, we also observed that this downregulation was mostly due to a reduction of cell cycle and proliferation transcripts via control of total mRNA abundance, rather than by translational control.
Collapse
Affiliation(s)
- Bruna H Marcon
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Patrícia Shigunov
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Lucia Spangenberg
- Unidad de Bioinformática, Institut Pasteur Montevideo. Mataojo 2020, Montevideo, 11400, Uruguay
| | - Isabela Tiemy Pereira
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Alessandra Melo de Aguiar
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Rocío Amorín
- Unidad de Bioinformática, Institut Pasteur Montevideo. Mataojo 2020, Montevideo, 11400, Uruguay
| | - Carmen K Rebelatto
- Núcleo de Tecnologia Celular, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | - Alejandro Correa
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil.
| | - Bruno Dallagiovanna
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil.
| |
Collapse
|
41
|
Xue Y, Meehan B, Fu Z, Wang XQD, Fiset PO, Rieker R, Levins C, Kong T, Zhu X, Morin G, Skerritt L, Herpel E, Venneti S, Martinez D, Judkins AR, Jung S, Camilleri-Broet S, Gonzalez AV, Guiot MC, Lockwood WW, Spicer JD, Agaimy A, Pastor WA, Dostie J, Rak J, Foulkes WD, Huang S. SMARCA4 loss is synthetic lethal with CDK4/6 inhibition in non-small cell lung cancer. Nat Commun 2019; 10:557. [PMID: 30718506 PMCID: PMC6362083 DOI: 10.1038/s41467-019-08380-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Tumor suppressor SMARCA4 (BRG1), a key SWI/SNF chromatin remodeling gene, is frequently inactivated in cancers and is not directly druggable. We recently uncovered that SMARCA4 loss in an ovarian cancer subtype causes cyclin D1 deficiency leading to susceptibility to CDK4/6 inhibition. Here, we show that this vulnerability is conserved in non-small cell lung cancer (NSCLC), where SMARCA4 loss also results in reduced cyclin D1 expression and selective sensitivity to CDK4/6 inhibitors. In addition, SMARCA2, another SWI/SNF subunit lost in a subset of NSCLCs, also regulates cyclin D1 and drug response when SMARCA4 is absent. Mechanistically, SMARCA4/2 loss reduces cyclin D1 expression by a combination of restricting CCND1 chromatin accessibility and suppressing c-Jun, a transcription activator of CCND1. Furthermore, SMARCA4 loss is synthetic lethal with CDK4/6 inhibition both in vitro and in vivo, suggesting that FDA-approved CDK4/6 inhibitors could be effective to treat this significant subgroup of NSCLCs.
Collapse
Affiliation(s)
- Yibo Xue
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Brian Meehan
- Department of Pediatrics, McGill University, and Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Zheng Fu
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Xue Qing D Wang
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Pierre Olivier Fiset
- Department of Pathology, Glen Site, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Ralf Rieker
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, 91054, Erlangen, Germany
| | - Cameron Levins
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Tim Kong
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Xianbing Zhu
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Geneviève Morin
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Lashanda Skerritt
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Esther Herpel
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, and Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Sriram Venneti
- Pathology and Neuropathology, University of Michigan Medical School, Ann Arbor, MI, 48109-0605, USA
| | - Daniel Martinez
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90027, USA
| | - Sungmi Jung
- Department of Pathology, Glen Site, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Sophie Camilleri-Broet
- Department of Pathology, Glen Site, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Anne V Gonzalez
- Division of Respiratory Medicine, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Hospital/Institute, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Jonathan D Spicer
- Department of Surgery, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, 91054, Erlangen, Germany
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Janusz Rak
- Department of Pediatrics, McGill University, and Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Department of Medical Genetics, and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
- Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
42
|
Vasjari L, Bresan S, Biskup C, Pai G, Rubio I. Ras signals principally via Erk in G1 but cooperates with PI3K/Akt for Cyclin D induction and S-phase entry. Cell Cycle 2019; 18:204-225. [PMID: 30560710 DOI: 10.1080/15384101.2018.1560205] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous studies exploring oncogenic Ras or manipulating physiological Ras signalling have established an irrefutable role for Ras as driver of cell cycle progression. Despite this wealth of information the precise signalling timeline and effectors engaged by Ras, particularly during G1, remain obscure as approaches for Ras inhibition are slow-acting and ill-suited for charting discrete Ras signalling episodes along the cell cycle. We have developed an approach based on the inducible recruitment of a Ras-GAP that enforces endogenous Ras inhibition within minutes. Applying this strategy to inhibit Ras stepwise in synchronous cell populations revealed that Ras signaling was required well into G1 for Cyclin D induction, pocket protein phosphorylation and S-phase entry, irrespective of whether cells emerged from quiescence or G2/M. Unexpectedly, Erk, and not PI3K/Akt or Ral was activated by Ras at mid-G1, albeit PI3K/Akt signalling was a necessary companion of Ras/Erk for sustaining cyclin-D levels and G1/S transition. Our findings chart mitogenic signaling by endogenous Ras during G1 and identify limited effector engagement restricted to Raf/MEK/Erk as a cogent distinction from oncogenic Ras signalling.
Collapse
Affiliation(s)
- Ledia Vasjari
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| | - Stephanie Bresan
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| | - Christoph Biskup
- b Biomolecular Photonics Group , Jena University Hospital , Jena , Germany
| | - Govind Pai
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| | - Ignacio Rubio
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| |
Collapse
|
43
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
44
|
Davis EA, Dailey MJ. A direct effect of the autonomic nervous system on somatic stem cell proliferation? Am J Physiol Regul Integr Comp Physiol 2018; 316:R1-R5. [PMID: 30303708 DOI: 10.1152/ajpregu.00266.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulation of somatic stem cell proliferation is critical for the maintenance of tissue and organ function throughout the body. Modulators of this process include nutrients and peptides, but the role of an autonomic neural influence on stem cell proliferation has been neglected. This article describes the literature in support of autonomic nervous system (ANS) influence on somatic stem cells, with emphasis on intestinal epithelial stem cells (IESCs) as a representative somatic stem cell. Based on the current available data, models for the direct influence of both branches of the ANS (the sympathetic and parasympathetic nervous systems) on IESCs are outlined. Finally, the prospect of treatments derived from ANS influence on somatic stem cells is explored.
Collapse
Affiliation(s)
- Elizabeth A Davis
- Neuroscience Program, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Megan J Dailey
- Neuroscience Program, University of Illinois at Urbana-Champaign , Urbana, Illinois.,Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, Illinois
| |
Collapse
|
45
|
Targeting proteasome-associated deubiquitinases as a novel strategy for the treatment of estrogen receptor-positive breast cancer. Oncogenesis 2018; 7:75. [PMID: 30250021 PMCID: PMC6155249 DOI: 10.1038/s41389-018-0086-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/05/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022] Open
Abstract
Estrogen receptor α (ERα) is expressed in ~67% of breast cancers and is critical to their proliferation and progression. The expression of ERα is regarded as a major prognostic marker, making it a meaningful target to treat breast cancer (BCa). However, hormone receptor-positive BCa was sometimes irresponsive or even resistant to classic anti-hormonal therapies (e.g., fulvestrant and tamoxifen). Hence, novel anti-endocrine therapies are urgent for ERα+ BCa. A phase II study suggested that bortezomib, an inhibitor blocking the activity of 20 S proteasomes, intervenes in cancer progression for anti-endocrine therapy in BCa. Here we report that proteasome-associated deubiquitinases (USP14 and UCHL5) inhibitors b-AP15 and platinum pyrithione (PtPT) induce growth inhibition in ERα+ BCa cells. Further studies show that these inhibitors induce cell cycle arrest and apoptosis associated with caspase activation, endoplasmic reticulum (ER) stress and the downregulation of ERα. Moreover, we suggest that b-AP15 and PtPT block ERα signaling via enhancing the ubiquitin-mediated degradation of ERα and inhibiting the transcription of ERα. Collectively, these findings demonstrate that proteasome-associated deubiquitinases inhibitors b-AP15 and PtPT may have the potential to treat BCa resistant to anti-hormonal therapy.
Collapse
|
46
|
Yunger S, Kafri P, Rosenfeld L, Greenberg E, Kinor N, Garini Y, Shav-Tal Y. S-phase transcriptional buffering quantified on two different promoters. Life Sci Alliance 2018; 1:e201800086. [PMID: 30456379 PMCID: PMC6238621 DOI: 10.26508/lsa.201800086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023] Open
Abstract
Transcriptional buffering enforced during DNA replication shows that histone acetylation governs the homeostasis process and can also restrict promoters from reaching maximum transcriptional potential Imaging of transcription by quantitative fluorescence-based techniques allows the examination of gene expression kinetics in single cells. Using a cell system for the in vivo visualization of mammalian mRNA transcriptional kinetics at single-gene resolution during the cell cycle, we previously demonstrated a reduction in transcription levels after replication. This phenomenon has been described as a homeostasis mechanism that buffers mRNA transcription levels with respect to the cell cycle stage and the number of transcribing alleles. Here, we examined how transcriptional buffering enforced during S phase affects two different promoters, the cytomegalovirus promoter versus the cyclin D1 promoter, that drive the same gene body. We found that global modulation of histone modifications could completely revert the transcription down-regulation imposed during replication. Furthermore, measuring these levels of transcriptional activity in fixed and living cells showed that the transcriptional potential of the genes was significantly higher than actual transcription levels, suggesting that promoters might normally be limited from reaching their full transcriptional potential.
Collapse
Affiliation(s)
- Sharon Yunger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel
| | - Pinhas Kafri
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel
| | - Liat Rosenfeld
- Department of Physics, Bar Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel
| | - Eliraz Greenberg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel
| | - Yuval Garini
- Department of Physics, Bar Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
47
|
Fry EA, Inoue K. Aberrant expression of ETS1 and ETS2 proteins in cancer. CANCER REPORTS AND REVIEWS 2018; 2:10.15761/CRR.1000151. [PMID: 29974077 PMCID: PMC6027756 DOI: 10.15761/crr.1000151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating gene transcription. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. They are both involved in oncogenesis and tumor suppression depending on the biological situations used. The essential roles of ETS proteins in human telomere maintenance have been suggested, which have been linked to creation of new Ets binding sites. Recently, preferential binding of ETS2 to gain-of-function mutant p53 and ETS1 to wild type p53 (WTp53) has been suggested, raising the tumor promoting role for the former and tumor suppressive role for the latter. The oncogenic and tumor suppressive functions of ETS1 and 2 proteins have been discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
48
|
Singh M, Yadav S, Kumar M, Saxena S, Saraswat D, Bansal A, Singh SB. The MAPK-activator protein-1 signaling regulates changes in lung tissue of rat exposed to hypobaric hypoxia. J Cell Physiol 2018; 233:6851-6865. [PMID: 29665093 DOI: 10.1002/jcp.26556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/20/2018] [Indexed: 01/06/2023]
Abstract
This study reports the role of MAPKs (JNK, ERK, and p38), and activator protein-1 (AP-1) transcription factor in the hypobaric hypoxia induced change in lung tissue. Healthy male Sprague-Dawley rats were exposed to hypobaric hypoxia for 6, 12, 24, 48, 72, and 120 hr. Hypoxia resulted in significant increase in reactive oxygen species (ROS), vascular endothelial growth factor (VEGF) and decreased nitric oxide (NO), these act as signaling molecules for activation of MAPK and also contribute in development of vascular leakage (an indicator of pulmonary edema) as confirmed by histological studies. Our results confirmed JNK activation as an immediate early response (peaked at 6-48 hr), activation of ERKs (peaked at 24-72 hr) and p38 (peaked at 72-120 hr) as a secondary response to hypoxia. The MAPK pathway up regulated its downstream targets phospho c-Jun (peaked at 6-120 hr), JunB (peaked at 24-120 hr) however, decreased c-Fos, and JunD levels. DNA binding activity also confirmed activation of AP-1 transcription factor in lung tissue under hypobaric hypoxia. Further, we analyzed the proliferative and inflammatory genes regulated by different subunits of AP-1 to explore its role in vascular leakage. Increased expression of cyclin D1 (peaked at 12-72 hr) and p16 level (peaked at 48-120 hr) were correlated to the activation of c-jun, c-Fos and JunB. Administration of NFκB inhibitor caffeic acid phenethyl ester (CAPE) and SP600125 (JNK inhibitor) had no effect on increased levels of Interferon-γ (IFN-γ), Interleukin-1 (IL-1), and Tumor Necrosis Factor-α (TNF-α) thereby confirming the involvement of AP-1 as well as NFκB in inflammation. Expression of c-jun, c-Fos were correlated with activation of proliferative genes and JunB, Fra-1 with pro-inflammatory cytokines. In conclusion immediate response to hypobaric hypoxia induced c-Jun:c-Fos subunits of AP-1; responsible for proliferation that might cause inhomogeneous vasoconstriction leading to vascular leakage and inflammation at increased duration of hypobaric hypoxia exposure.
Collapse
Affiliation(s)
- Mrinalini Singh
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Seema Yadav
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Meetul Kumar
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Shweta Saxena
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Deepika Saraswat
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Anju Bansal
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Shashi B Singh
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| |
Collapse
|
49
|
Borello U, Berarducci B, Delahaye E, Price DJ, Dehay C. SP8 Transcriptional Regulation of Cyclin D1 During Mouse Early Corticogenesis. Front Neurosci 2018; 12:119. [PMID: 29599703 PMCID: PMC5863514 DOI: 10.3389/fnins.2018.00119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/14/2018] [Indexed: 11/13/2022] Open
Abstract
Multiple signals control the balance between proliferation and differentiation of neural progenitor cells during corticogenesis. A key point of this regulation is the control of G1 phase length, which is regulated by the Cyclin/Cdks complexes. Using genome-wide chromatin immunoprecipitation assay and mouse genetics, we have explored the transcriptional regulation of Cyclin D1 (Ccnd1) during the early developmental stages of the mouse cerebral cortex. We found evidence that SP8 binds to the Ccnd1 locus on exon regions. In vitro experiments show SP8 binding activity on Ccnd1 gene 3'-end, and point to a putative role for SP8 in modulating PAX6-mediated repression of Ccnd1 along the dorso-ventral axis of the developing pallium, creating a medialLow-lateralHigh gradient of neuronal differentiation. Activation of Ccnd1 through the promoter/5'-end of the gene does not depend on SP8, but on βcatenin (CTNNB1). Importantly, alteration of the Sp8 level of expression in vivo affects Ccnd1 expression during early corticogenesis. Our results indicate that Ccnd1 regulation is the result of multiple signals and that SP8 is a player in this regulation, revealing an unexpected and potentially novel mechanism of transcriptional activation.
Collapse
Affiliation(s)
- Ugo Borello
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- Inovarion, Paris, France
| | - Barbara Berarducci
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Edwige Delahaye
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David J. Price
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Colette Dehay
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| |
Collapse
|
50
|
Dewdney B, Hebbard L. A novel role for polymeric immunoglobulin receptor in tumour development: beyond mucosal immunity and into hepatic cancer cell transformation. Hepatobiliary Surg Nutr 2018. [PMID: 29531947 DOI: 10.21037/hbsn.2017.12.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brittany Dewdney
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| |
Collapse
|