1
|
Di Canito A, Altomare A, Fracassetti D, Messina N, Tirelli A, Foschino R, Vigentini I. The Riboflavin Metabolism in Four Saccharomyces cerevisiae Wine Strains: Assessment in Oenological Condition and Potential Implications with the Light-Struck Taste. J Fungi (Basel) 2023; 9:jof9010078. [PMID: 36675899 PMCID: PMC9867360 DOI: 10.3390/jof9010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Riboflavin (RF), or vitamin B2, is an essential compound for yeast growth and a precursor of the flavin coenzymes, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), involved in redox and non-redox processes. RF is a photosensitive compound involved in the light-struck taste (LST), a fault causing the formation of off-flavors that can develop when the wine is exposed to light in the presence of methionine (Met), as well. As both RF and Met can be associated with detrimental changes in wines, a better comprehension of its yeast-mediated production is relevant to predict the maintenance of the desired character of the wine. This study aims at assessing the production of flavin derivatives (FDs) and Met by S. cerevisiae oenological starters under laboratory conditions. The results showed the presence of extra- and intracellular FDs, and Met is a strain-dependent characteristic being also affected by the initial content of RF in the medium. This finding was confirmed when the winemaking was carried out in a relevant environment. Our results evidenced the important impact of the yeast strain on the content of RF and its derivatives.
Collapse
Affiliation(s)
- Alessandra Di Canito
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences (DSBCO), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy
| | - Alessio Altomare
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Daniela Fracassetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Natalia Messina
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Antonio Tirelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Roberto Foschino
- Department of Biomedical, Surgical and Dental Sciences (DSBCO), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy
| | - Ileana Vigentini
- Department of Biomedical, Surgical and Dental Sciences (DSBCO), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
2
|
Ram AK, Mallik M, Reddy RR, Suryawanshi AR, Alone PV. Altered proteome in translation initiation fidelity defective eIF5 G31R mutant causes oxidative stress and DNA damage. Sci Rep 2022; 12:5033. [PMID: 35322093 PMCID: PMC8943034 DOI: 10.1038/s41598-022-08857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The recognition of the AUG start codon and selection of an open reading frame (ORF) is fundamental to protein biosynthesis. Defect in the fidelity of start codon selection adversely affect proteome and have a pleiotropic effect on cellular function. Using proteomic techniques, we identified differential protein abundance in the translation initiation fidelity defective eIF5G31R mutant that initiates translation using UUG codon in addition to the AUG start codon. Consistently, the eIF5G31R mutant altered proteome involved in protein catabolism, nucleotide biosynthesis, lipid biosynthesis, carbohydrate metabolism, oxidation–reduction pathway, autophagy and re-programs the cellular pathways. The utilization of the upstream UUG codons by the eIF5G31R mutation caused downregulation of uridylate kinase expression, sensitivity to hydroxyurea, and DNA damage. The eIF5G31R mutant cells showed lower glutathione levels, high ROS activity, and sensitivity to H2O2.
Collapse
Affiliation(s)
- Anup Kumar Ram
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - Monalisha Mallik
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - R Rajendra Reddy
- Clinical Proteomics, DBT-Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | | | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India. .,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
Fracassetti D, Di Canito A, Bodon R, Messina N, Vigentini I, Foschino R, Tirelli A. Light-struck taste in white wine: Reaction mechanisms, preventive strategies and future perspectives to preserve wine quality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Ghanegolmohammadi F, Yoshida M, Ohnuki S, Sukegawa Y, Okada H, Obara K, Kihara A, Suzuki K, Kojima T, Yachie N, Hirata D, Ohya Y. Systematic analysis of Ca 2+ homeostasis in Saccharomyces cerevisiae based on chemical-genetic interaction profiles. Mol Biol Cell 2017; 28:3415-3427. [PMID: 28566553 PMCID: PMC5687040 DOI: 10.1091/mbc.e17-04-0216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
We investigated the global landscape of Ca2+ homeostasis in budding yeast based on high-dimensional chemical-genetic interaction profiles. The morphological responses of 62 Ca2+-sensitive (cls) mutants were quantitatively analyzed with the image processing program CalMorph after exposure to a high concentration of Ca2+ After a generalized linear model was applied, an analysis of covariance model was used to detect significant Ca2+-cls interactions. We found that high-dimensional, morphological Ca2+-cls interactions were mixed with positive (86%) and negative (14%) chemical-genetic interactions, whereas one-dimensional fitness Ca2+-cls interactions were all negative in principle. Clustering analysis with the interaction profiles revealed nine distinct gene groups, six of which were functionally associated. In addition, characterization of Ca2+-cls interactions revealed that morphology-based negative interactions are unique signatures of sensitized cellular processes and pathways. Principal component analysis was used to discriminate between suppression and enhancement of the Ca2+-sensitive phenotypes triggered by inactivation of calcineurin, a Ca2+-dependent phosphatase. Finally, similarity of the interaction profiles was used to reveal a connected network among the Ca2+ homeostasis units acting in different cellular compartments. Our analyses of high-dimensional chemical-genetic interaction profiles provide novel insights into the intracellular network of yeast Ca2+ homeostasis.
Collapse
Affiliation(s)
| | - Mitsunori Yoshida
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Yuko Sukegawa
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
- AIST-UTokyo Advanced Operand-Measurement Technology Open Innovation Laboratory, Kashiwa 277-0882, Japan
| | - Hiroki Okada
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058
| | - Keisuke Obara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kuninori Suzuki
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
- Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Tetsuya Kojima
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Dai Hirata
- Research and Development Department, Asahi Sake Brewing Co., Nagaoka 949-5494, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
5
|
Bioproduction of riboflavin: a bright yellow history. J Ind Microbiol Biotechnol 2016; 44:659-665. [PMID: 27696023 DOI: 10.1007/s10295-016-1842-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
Riboflavin (vitamin B2) is an essential nutrient for humans and animals that must be obtained from the diet. To ensure an optimal supply, riboflavin is used on a large scale as additive in the food and feed industries. Here, we describe a historical overview of the industrial process of riboflavin production starting from its discovery and the need to produce the vitamin in bulk at prices that would allow for their use in human and animal nutrition. Riboflavin was produced industrially by chemical synthesis for many decades. At present, the development of economical and eco-efficient fermentation processes, which are mainly based on Bacillus subtilis and Ashbya gossypii strains, has replaced the synthetic process at industrial scale. A detailed account is given of the development of the riboflavin overproducer strains as well as future prospects for its improvement.
Collapse
|
6
|
Nuebel E, Manganas P, Tokatlidis K. Orphan proteins of unknown function in the mitochondrial intermembrane space proteome: New pathways and metabolic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2613-2623. [PMID: 27425144 PMCID: PMC5404111 DOI: 10.1016/j.bbamcr.2016.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022]
Abstract
The mitochondrial intermembrane space (IMS) is involved in protein transport, lipid homeostasis and metal ion exchange, while further acting in signalling pathways such as apoptosis. Regulation of these processes involves protein modifications, as well as stress-induced import or release of proteins and other signalling molecules. Even though the IMS is the smallest sub-compartment of mitochondria, its redox state seems to be tightly regulated. However, the way in which this compartment participates in the cross-talk between the multiple organelles and the cytosol is far from understood. Here we focus on newly identified IMS proteins that may represent future challenges in mitochondrial research. We present an overview of the import pathways, the recently discovered new components of the IMS proteome and how these relate to key aspects of cell signalling and progress made in stem cell and cancer research. A brief overview of the classic mitochondrial import pathways is featured Recent studies assigning a number of new proteins to the mitochondrial IMS are discussed Analysis of the expanded IMS proteomes can provide insights into organelle cross-talk and signalling pathways
Collapse
Affiliation(s)
- Esther Nuebel
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Phanee Manganas
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
7
|
Ausió J. MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction. Clin Epigenetics 2016; 8:58. [PMID: 27213019 PMCID: PMC4875624 DOI: 10.1186/s13148-016-0214-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is a highly abundant chromosomal protein within the brain. It is hence not surprising that perturbations in its genome-wide distribution, and at particular loci within this tissue, can result in widespread neurological disorders that transcend the early implications of this protein in Rett syndrome (RTT). Yet, the details of its role and involvement in chromatin organization are still poorly understood. This paper focuses on what is known to date about all of this with special emphasis on the relation to different epigenetic modifications (DNA methylation, histone acetylation/ubiquitination, MeCP2 phosphorylation and miRNA). We showcase all of the above in two particular important neurological functional alterations in the brain: depression (major depressive disorder [MDD]) and cocaine addiction, both of which affect the MeCP2 homeostasis and result in significant changes in the overall levels of these epigenetic marks.
Collapse
Affiliation(s)
- Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6 Canada
| |
Collapse
|
8
|
Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation. Appl Microbiol Biotechnol 2015; 100:1407-1420. [PMID: 26450510 DOI: 10.1007/s00253-015-7028-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/13/2015] [Accepted: 09/20/2015] [Indexed: 01/27/2023]
Abstract
The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production.
Collapse
|
9
|
Gudipati V, Koch K, Lienhart WD, Macheroux P. The flavoproteome of the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:535-44. [PMID: 24373875 PMCID: PMC3991850 DOI: 10.1016/j.bbapap.2013.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 01/29/2023]
Abstract
Genome analysis of the yeast Saccharomyces cerevisiae identified 68 genes encoding flavin-dependent proteins (1.1% of protein encoding genes) to which 47 distinct biochemical functions were assigned. The majority of flavoproteins operate in mitochondria where they participate in redox processes revolving around the transfer of electrons to the electron transport chain. In addition, we found that flavoenzymes play a central role in various aspects of iron metabolism, such as iron uptake, the biogenesis of iron-sulfur clusters and insertion of the heme cofactor into apocytochromes. Another important group of flavoenzymes is directly (Dus1-4p and Mto1p) or indirectly (Tyw1p) involved in reactions leading to tRNA-modifications. Despite the wealth of genetic information available for S. cerevisiae, we were surprised that many flavoproteins are poorly characterized biochemically. For example, the role of the yeast flavodoxins Pst2p, Rfs1p and Ycp4p with regard to their electron donor and acceptor is presently unknown. Similarly, the function of the heterodimeric Aim45p/Cir1p, which is homologous to the electron-transferring flavoproteins of higher eukaryotes, in electron transfer processes occurring in the mitochondrial matrix remains to be elucidated. This lack of information extends to the five membrane proteins involved in riboflavin or FAD transport as well as FMN and FAD homeostasis within the yeast cell. Nevertheless, several yeast flavoproteins, were identified as convenient model systems both in terms of their mechanism of action as well as structurally to improve our understanding of diseases caused by dysfunctional human flavoprotein orthologs.
Collapse
Affiliation(s)
- Venugopal Gudipati
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| | - Karin Koch
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| | - Wolf-Dieter Lienhart
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| | - Peter Macheroux
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
10
|
A proteomic and metabolomic approach for understanding the role of the flor yeast mitochondria in the velum formation. Int J Food Microbiol 2014; 172:21-9. [DOI: 10.1016/j.ijfoodmicro.2013.11.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 02/04/2023]
|
11
|
Genome-wide identification of the targets for genetic manipulation to improve L-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection. J Biotechnol 2013; 168:185-93. [PMID: 23665193 DOI: 10.1016/j.jbiotec.2013.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/05/2013] [Accepted: 04/26/2013] [Indexed: 11/20/2022]
Abstract
To identify genome-wide targets for gene manipulation for increasing L-lactate production in recombinant Saccharomyces cerevisiae strains, we transformed all available single-gene deletion strains of S. cerevisiae with a plasmid carrying the human L-lactate dehydrogenase gene, and examined L-lactate production in the obtained transformants. The thresholds of increased or decreased L-lactate production were determined based on L-lactate production by the standard strain in repetitive experiments. L-lactate production data for 4802 deletion strains were obtained, and deletion strains with increased or decreased L-lactate production were identified. Functional category analysis of genes whose deletion increased L-lactate production revealed that ribosome biogenesis-related genes were overrepresented. Most deletion strains for genes related to ribosome biogenesis exhibited increased L-lactate production in 200-ml batch cultures. We deleted the genes related to ribosome biogenesis in a recombinant strain of S. cerevisiae with a genetic background different from that of the above deletion strains, and examined the effect of target gene deletion on L-lactate production. We observed that deletion of genes related to ribosome biogenesis leads to increased L-lactate production by recombinant S. cerevisiae strains, and the single-gene deletion strain collection could be utilized in identifying target genes for improving L-lactate production in S. cerevisiae recombinant strains.
Collapse
|
12
|
Vögtle FN, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou JC, Chacinska A, Sickmann A, Zahedi RP, Meisinger C. Intermembrane space proteome of yeast mitochondria. Mol Cell Proteomics 2012; 11:1840-52. [PMID: 22984289 PMCID: PMC3518125 DOI: 10.1074/mcp.m112.021105] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The intermembrane space (IMS) represents the smallest subcompartment of mitochondria. Nevertheless, it plays important roles in the transport and modification of proteins, lipids, and metal ions and in the regulation and assembly of the respiratory chain complexes. Moreover, it is involved in many redox processes and coordinates key steps in programmed cell death. A comprehensive profiling of IMS proteins has not been performed so far. We have established a method that uses the proapoptotic protein Bax to release IMS proteins from isolated mitochondria, and we profiled the protein composition of this compartment. Using stable isotope-labeled mitochondria from Saccharomyces cerevisiae, we were able to measure specific Bax-dependent protein release and distinguish between quantitatively released IMS proteins and the background efflux of matrix proteins. From the known 31 soluble IMS proteins, 29 proteins were reproducibly identified, corresponding to a coverage of >90%. In addition, we found 20 novel intermembrane space proteins, out of which 10 had not been localized to mitochondria before. Many of these novel IMS proteins have unknown functions or have been reported to play a role in redox regulation. We confirmed IMS localization for 15 proteins using in organello import, protease accessibility upon osmotic swelling, and Bax-release assays. Moreover, we identified two novel mitochondrial proteins, Ymr244c-a (Coa6) and Ybl107c (Mic23), as substrates of the MIA import pathway that have unusual cysteine motifs and found the protein phosphatase Ptc5 to be a novel substrate of the inner membrane protease (IMP). For Coa6 we discovered a role as a novel assembly factor of the cytochrome c oxidase complex. We present here the first and comprehensive proteome of IMS proteins of yeast mitochondria with 51 proteins in total. The IMS proteome will serve as a valuable source for further studies on the role of the IMS in cell life and death.
Collapse
Affiliation(s)
- F-Nora Vögtle
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Cellular reprogramming involves the artificial dedifferentiation of somatic cells to a pluripotent state. When affected by overexpressing specific transcription factors, the process is highly inefficient, as only 0.1-1% of cells typically undergo the transformation. This low efficiency has been attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors, histone modifications and DNA methylation.
Collapse
|
14
|
Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011; 75:321-60. [PMID: 21646432 PMCID: PMC3122625 DOI: 10.1128/mmbr.00030-10] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP.
Collapse
Affiliation(s)
| | - Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine
- University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
15
|
Yang D, Arya G. Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation. Phys Chem Chem Phys 2010; 13:2911-21. [PMID: 21157623 DOI: 10.1039/c0cp01487g] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H4 histone tail plays a critical role in chromatin folding and regulation--it mediates strong interactions with the acidic patch of proximal nucleosomes and its acetylation at lysine 16 (K16) leads to partial unfolding of chromatin. The molecular mechanism associated with the H4 tail/acidic patch interactions and its modulation via K16 acetylation remains unknown. Here we employ a combination of molecular dynamics simulations, molecular docking calculations, and free energy computations to investigate the structure of the H4 tail in solution, the binding of the H4 tail with the acidic patch, and the effects of K16 acetylation. The H4 tail exhibits a disordered configuration except in the region Ala15-Lys20, where it exhibits a strong propensity for an α-helical structure. This α-helical region is found to dock very favorably into the acidic patch groove of a nucleosome with a binding free energy of approximately -7 kcal mol(-1). We have identified the specific interactions that stabilize this binding as well as the associated energetics. The acetylation of K16 is found to reduce the α-helix forming propensity of the H4 tail and K16's accessibility for mediating external interactions. More importantly, K16 acetylation destabilizes the binding of the H4 tail at the acidic patch by mitigating specific salt bridges and longer-ranged electrostatic interactions mediated by K16. Our study thus provides new microscopic insights into the compaction of chromatin and its regulation via posttranslational modifications of histone tails, which could be of interest to chromatin biology, cancer, epigenetics, and drug design.
Collapse
Affiliation(s)
- Darren Yang
- Department of NanoEngineering, University of California at San Diego, 9500 Gilman Drive, MC 0448, La Jolla, CA 92093, USA
| | | |
Collapse
|
16
|
Bonomi HR, Marchesini MI, Klinke S, Ugalde JE, Zylberman V, Ugalde RA, Comerci DJ, Goldbaum FA. An atypical riboflavin pathway is essential for Brucella abortus virulence. PLoS One 2010; 5:e9435. [PMID: 20195542 PMCID: PMC2828483 DOI: 10.1371/journal.pone.0009435] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/04/2010] [Indexed: 11/30/2022] Open
Abstract
Brucellosis is a worldwide zoonosis that affects livestock and humans and is caused by closely related Brucella spp., which are adapted to intracellular life within cells of a large variety of mammals. Brucella can be considered a furtive pathogen that infects professional and non-professional phagocytes. In these cells Brucella survives in a replicative niche, which is characterized for having a very low oxygen tension and being deprived from nutrients such as amino acids and vitamins. Among these vitamins, we have focused on riboflavin (vitamin B2). Flavin metabolism has been barely implicated in bacterial virulence. We have recently described that Brucella and other Rhizobiales bear an atypical riboflavin metabolic pathway. In the present work we analyze the role of the flavin metabolism on Brucella virulence. Mutants on the two lumazine synthases (LS) isoenzymes RibH1 and RibH2 and a double RibH mutant were generated. These mutants and different complemented strains were tested for viability and virulence in cells and in mice. In this fashion we have established that at least one LS must be present for B. abortus survival and that RibH2 and not RibH1 is essential for intracellular survival due to its LS activity in vivo. In summary, we show that riboflavin biosynthesis is essential for Brucella survival inside cells or in mice. These results highlight the potential use of flavin biosynthetic pathway enzymes as targets for the chemotherapy of brucellosis.
Collapse
Affiliation(s)
| | - María Inés Marchesini
- Instituto de Investigaciones Biotecnológicas-CONICET, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | | | - Juan E. Ugalde
- Instituto de Investigaciones Biotecnológicas-CONICET, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | | | - Rodolfo A. Ugalde
- Instituto de Investigaciones Biotecnológicas-CONICET, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Diego J. Comerci
- Instituto de Investigaciones Biotecnológicas-CONICET, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | | |
Collapse
|
17
|
Yatsyshyn VY, Fedorovych DV, Sibirny AA. The microbial synthesis of flavin nucleotides: A review. APPL BIOCHEM MICRO+ 2009. [DOI: 10.1134/s000368380902001x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Abstract
Epigenetic mechanisms including DNA methylation and histone modifications are critically involved in immune responses. Antigen stimulation along with a specific cytokine milieu drives helper T-cell differentiation into specific subsets with distinct functional capacities. This process occurs by inducing chromatin remodeling and altering transcriptional accessibility of key cytokine genes such as IFN-gamma, IL-4 and IL-17. These epigenetic changes, by definition, are carried over throughout cell division to ensure selective survival of a cell lineage. Over the past decade, a growing body of literature mechanistically uncovered the central role for epigenetic regulation in immunity. In this review, we focus on epigenetics in T helper cell differentiation, regulatory T-cell function, and IL-2 production.
Collapse
Affiliation(s)
- Amr H Sawalha
- US Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
19
|
Schlösser T, Wiesenburg A, Gätgens C, Funke A, Viets U, Vijayalakshmi S, Nieland S, Stahmann KP. Growth stress triggers riboflavin overproduction in Ashbya gossypii. Appl Microbiol Biotechnol 2007; 76:569-78. [PMID: 17639374 DOI: 10.1007/s00253-007-1075-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
The filamentous fungus Ashbya gossypii is used for riboflavin biosynthesis on an industrial scale, but even the wild type displays overproduction. Because riboflavin overproduction was known to start at the transition between growth and stationary phase, it was suspected that overproduction was induced at low growth rates. However, chemostatic cultivations performed at different growth rates did not result in any detectable riboflavin formation. In this study, we report that it was not the final growth rate that triggered riboflavin overproduction but a decline in growth rate. Therefore, continuous fermenter cultivations with dilution rate shifts were performed. Peaks of riboflavin overproduction were observed in the wild type and in a RIB3placZ reporter strain after downshifts in dilution rate. Accumulation of riboflavin correlated with an increased expression of lacZ reporter activity. The step size of the downshifts corresponded to the peak size of riboflavin formation and reporter activity. Expression of further RIB genes encoding riboflavin biosynthetic enzymes was analyzed by RT-PCR. RIB mRNA levels of the ribulose-5-phosphate branch of the divided riboflavin biosynthesis pathway (RIB3, RIB4, and RIB5) were found to increase in the riboflavin production phase, whereas the RIB2 and RIB7 mRNA levels belonging to the GTP branch remained constant. We propose that a decline in growth rate triggers the increased expression of RIB3, RIB4, and RIB5 resulting in riboflavin overproduction. Because although a reduction in oxygen supply, temperature increase or decrease, or salt stress did affect growth, but neither did lead to riboflavin overproduction nor did induce RIB3 reporter expression, we conclude that declining nutrition must be the stress stimulus. Because about half of the cells in the hyphae of Ashbya gossypii did not accumulate riboflavin, the regulatory response on the cellular level can be estimated to be at least twice as great in comparison to what we detected as overall signals.
Collapse
Affiliation(s)
- Thomas Schlösser
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Li W, Dou SX, Xie P, Wang PY. Brownian dynamics simulation of the effect of histone modification on nucleosome structure. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:051915. [PMID: 17677106 DOI: 10.1103/physreve.75.051915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 03/21/2007] [Indexed: 05/16/2023]
Abstract
Using Brownian dynamics we simulate the effect of histone modification, such as phosphorylation, acetylation, and methylation, on nucleosome structure by varying the interaction force between DNA and the histone octamer. The simulation shows that the structural stability of nucleosome is very sensitive to the interaction force, and the DNA unwrapping from the modified histone octamer usually occurs turn by turn. Furthermore, the effects of temperature and DNA break as well as the competition between modified and normal histone octamers are investigated, with the simulation results being in agreement with the experimental observation that phosphorylated nucleosomes near DNA breaks are more easily depleted. Though the simulation study may only give a coarse grained view of the DNA unwrapping process for the modified histone octamer, it may provide insight into the mechanism of DNA repair.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
21
|
González-Prieto JM, Domínguez A, Rosas-Quijano R, Cervantes-Chávez JA, Ruiz-Herrera J. Isolation and molecular analysis of Umhda2 a gene encoding a histone deacetylase from Ustilago maydis. ACTA ACUST UNITED AC 2004; 15:44-50. [PMID: 15354354 DOI: 10.1080/10425170310001652192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
By use of the polymerase chain reaction and synthetic oligonucleotides designed from conserved regions, we amplified a fragment of a gene from Ustilago maydis encoding a putative histone deacetylase. With this probe we isolated the full gene from a minigenomic library. The gene (designated as Umhda2) contains an open reading frame (ORF) of 1701bp encoding a protein of 566 amino acids. Multiple comparison analysis with other histone deacetylases suggests that the Umhda2 gene product belongs to the Rpd3-related family of proteins. The highest degree of homology with histone deacetylases from other organisms corresponded to Hdalp of Schizosaccharomyces pombe and Rpd3p of Saccharomyces cerevisiae with 64.2 and 62.2% of sequence similarity, respectively. It displayed a substantially lower similarity with another histone deacetylase from U. maydis (Hdalp, 52.4%). Semi-quantitative RTPCR results indicate that the gene is transcriptionally up-regulated during the in vitro yeast-to-mycelium dimorphic transition.
Collapse
Affiliation(s)
- Juan Manuel González-Prieto
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Apartado Postal 629, Irapuato Gto., Mexico
| | | | | | | | | |
Collapse
|
22
|
Jin C, Barrientos A, Tzagoloff A. Yeast dihydroxybutanone phosphate synthase, an enzyme of the riboflavin biosynthetic pathway, has a second unrelated function in expression of mitochondrial respiration. J Biol Chem 2003; 278:14698-703. [PMID: 12595523 DOI: 10.1074/jbc.m300593200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
aE280/U1 is a pet mutant of Saccharomyces cerevisiae partially deficient in cytochromes a, a3, and cytochrome b. The ability of this mutant to respire is restored by RIB3, a gene previously shown to code for 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBP synthase), an enzyme of the riboflavin biosynthetic pathway. The sequences of RIB3 from wild type and aE280/U1 indicated a single base change resulting in an A137T substitution. The alanine 137 is a conserved residue located in a cavity on the surface of the protein distant from the active site and from the subunit interaction domain involved in homodimer formation. The respiratory defect elicited by this mutation cannot be explained by a flavin insufficiency based on the following evidence: 1) growth of the aE280/U1 on respiratory substrates is not rescued by exogenous riboflavin; 2) the levels of flavin nucleotides are not significantly different in the mutant and wild type. We proposed that in addition to its known function in riboflavin synthesis, RIB3 also functions in expression of mitochondrial respiration. Restoration by riboflavin of growth of a rib3 deletion mutant on glucose but not glycerol/ethanol also supported this conclusion. An antibody against the N-terminal half of DHBP synthase was used to study its subcellular distribution. Most of the protein was localized in the cytosolic fraction, but a small fraction was detected in the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- Can Jin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | | | |
Collapse
|
23
|
Lim SH, Choi JS, Park EY. Microbial production of riboflavin using riboflavin overproducers,Ashbya gossypii, Bacillus subtilis, andCandida famate: An overview. BIOTECHNOL BIOPROC E 2001. [DOI: 10.1007/bf02931951] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Abstract
The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate as substrates. The imidazole ring of GTP is hydrolytically opened, yielding a 4, 5-diaminopyrimidine which is converted to 5-amino-6-ribitylamino-2, 4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction and dephosphorylation. Condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3, 4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate affords 6,7-dimethyl-8-ribityllumazine. Dismutation of the lumazine derivative yields riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is recycled in the biosynthetic pathway. The structure of the biosynthetic enzyme, 6,7-dimethyl-8-ribityllumazine synthase, has been studied in considerable detail.
Collapse
Affiliation(s)
- A Bacher
- Lehrstuhl für Organische Chemie und Biochemie, Lichtenbergstr. 4, D-85747 Garching, Federal Republic of Germany.
| | | | | | | | | |
Collapse
|
25
|
Metabolism of Aromatic Compounds and Nucleic Acid Bases. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Santos MA, Jimenez A, Revuelta JL. Molecular characterization of FMN1, the structural gene for the monofunctional flavokinase of Saccharomyces cerevisiae. J Biol Chem 2000; 275:28618-24. [PMID: 10887197 DOI: 10.1074/jbc.m004621200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flavokinase catalyzes the transfer of the gamma-phosphoryl group of ATP to riboflavin to form the flavocoenzyme FMN. Consistent patterns of sequence similarities have identified the open reading frame of unknown function YDR236c as a candidate to encode flavokinase in Saccharomyces cerevisiae. In order to determine whether the product of this gene corresponds to yeast flavokinase, its coding region was amplified from S. cerevisiae genomic DNA by polymerase chain reaction and expressed in Escherichia coli. The purified form of the expressed recombinant protein efficiently catalyzed the formation of FMN from riboflavin and ATP. In contrast to bifunctional prokaryotic flavokinase/FAD synthetase enzymes, the yeast enzyme did not show accompanying FAD synthetase activity. Deletion of YDR236c produced yeast mutants unable to grow on rich medium; however, the growth of the ydr236cDelta mutants could be rescued by the addition of FMN to the medium. Overexpression of YDR236c caused a 50-fold increase in flavokinase specific activity in yeast cells. These findings demonstrate that YDR236c corresponds to the gene encoding a monofunctional flavokinase in yeast, which we propose to be designated as FMN1. The FMN1 gene codes for a 25-kDa protein with characteristics of signals for import into mitochondria. By immunoblotting analysis of Saccharomyces subcellular fractions, we provide evidence that the Fmn1 protein is localized in microsomes and in mitochondria. Analysis of submitochondrial fractions revealed that the mitochondrial form of Fmn1p is an integral protein of the inner membrane exposing its COOH-terminal domain to the matrix space. A similarity search in the data base banks revealed the presence of sequences homologous to yeast flavokinase in the genome of several eukaryotic organisms such as Schizosaccharomyces pombe, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, and humans.
Collapse
Affiliation(s)
- M A Santos
- Departamento de Microbiologia y Genética, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
27
|
Baldi PC, Velikovsky CA, Braden BC, Giambartolomei GH, Fossati CA, Goldbaum FA. Structural, functional and immunological studies on a polymeric bacterial protein. Braz J Med Biol Res 2000; 33:741-7. [PMID: 10881048 DOI: 10.1590/s0100-879x2000000700003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The characterization of proteins from Brucella spp, the causative agent of brucellosis, has been the subject of intensive research. We have described an 18-kDa cytoplasmic protein of Brucella abortus and shown the potential usefulness of this protein as an antigen for the serologic diagnosis of brucellosis. The amino acid sequence of the protein showed a low but significant homology with that of lumazine synthases. Lumazine is an intermediate product in bacterial riboflavin biosynthesis. The recombinant form of the 18-kDa protein (expressed in E. coli) folds like the native Brucella protein and has lumazine-synthase enzymatic activity. Three-dimensional analysis by X-ray crystallography of the homolog Bacillus subtilis lumazine synthase has revealed that the enzyme forms an icosahedral capsid. Recombinant lumazine synthase from B. abortus was crystallized, diffracted X rays to 2.7-A resolution at room temperature, and the structure successfully solved by molecular replacement procedures. The macromolecular assembly of the enzyme differs from that of the enzyme from B. subtilis. The Brucella enzyme remains pentameric (90 kDa) in its crystallographic form. Nonetheless, the active sites of the two enzymes are virtually identical at the structural level, indicating that inhibitors of these enzymes could be viable pharmaceuticals across a broad species range. We describe the structural reasons for the differences in their quaternary arrangement and also discuss the potential use of this protein as a target for the development of acellular vaccines.
Collapse
Affiliation(s)
- P C Baldi
- Instituto de Estudios de la Inmunidad Humoral, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
28
|
Braden BC, Velikovsky CA, Cauerhff AA, Polikarpov I, Goldbaum FA. Divergence in macromolecular assembly: X-ray crystallographic structure analysis of lumazine synthase from Brucella abortus. J Mol Biol 2000; 297:1031-6. [PMID: 10764570 DOI: 10.1006/jmbi.2000.3640] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have determined the three-dimensional structure of 6, 7-dimethyl-8-ribityllumazine synthase (lumazine synthase) from Brucella abortus, the infectious organism of the disease brucellosis in animals. This enzyme catalyses the formation of 6, 7-dimethyl-8-ribityllumazine, the penultimate product in the synthesis of riboflavin. The three-dimensional X-ray crystal structure of the enzyme from B. abortus has been solved and refined at 2.7 A resolution to a final R-value of 0.18 (R(free)=0.23). The macromolecular assembly of the enzyme differs from that of the enzyme from Bacillus subtilis, the only other lumazine synthase structure known. While the protein from B. subtilis assembles into a 60 subunit icosahedral capsid built from 12 pentameric units, the enzyme from B. abortus is pentameric in its crystalline form. Nonetheless, the active sites of the two enzymes are virtually identical indicating inhibitors to theses enzymes could be effective pharmaceuticals across a broad species range. Furthermore, we compare the structures of the enzyme from B. subtilis and B. abortus and describe the C teminus structure which accounts for the differences in quaternary structure.
Collapse
Affiliation(s)
- B C Braden
- Department of Natural Sciences, Bowie State University, Bowie, MD, USA.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Persson K, Schneider G, Jordan DB, Viitanen PV, Sandalova T. Crystal structure analysis of a pentameric fungal and an icosahedral plant lumazine synthase reveals the structural basis for differences in assembly. Protein Sci 1999; 8:2355-65. [PMID: 10595538 PMCID: PMC2144189 DOI: 10.1110/ps.8.11.2355] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lumazine synthase catalyzes the penultimate step in the synthesis of riboflavin in plants, fungi, and microorganisms. The enzyme displays two quaternary structures, the pentameric forms in yeast and fungi and the 60-meric icosahedral capsids in plants and bacteria. To elucidate the structural features that might be responsible for differences in assembly, we have determined the crystal structures of lumazine synthase, complexed with the inhibitor 5-nitroso-6-ribitylamino-2,4-pyrimidinedione, from spinach and the fungus Magnaporthe grisea to 3.3 and 3.1 A resolution, respectively. The overall structure of the subunit and the mode of inhibitor binding are very similar in these enzyme species. The core of the subunit consists of a four-stranded parallel beta-sheet sandwiched between two helices on one side and three helices on the other. The packing of the five subunits in the pentameric M. grisea lumazine synthase is very similar to the packing in the pentameric substructures in the icosahedral capsid of the plant enzyme. Two structural features can be correlated to the differences in assembly. In the plant enzyme, the N-terminal beta-strand interacts with the beta-sheet of the adjacent subunit, thus extending the sheet from four to five strands. In fungal lumazine synthase, an insertion of two residues after strand beta1 results in a completely different orientation of this part of the polypeptide chain and this conformational difference prevents proper packing of the subunits at the trimer interface in the icosahedron. In the spinach enzyme, the beta-hairpin connecting helices alpha4 and alpha5 participates in the packing at the trimer interface of the icosahedron. Another insertion of two residues at this position of the polypeptide chain in the fungal enzyme disrupts the hydrogen bonding in the hairpin, and the resulting change in conformation of this loop also interferes with proper intrasubunit contacts at the trimer interface.
Collapse
Affiliation(s)
- K Persson
- Molecular Structural Biology, Medical Biochemistry and Biophysics, Doktorsringen 9, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
31
|
Mahlknecht U, Hoelzer D, Bucala R, Verdin E. Cloning and characterization of the murine histone deacetylase (HDAC3). Biochem Biophys Res Commun 1999; 263:482-90. [PMID: 10491319 DOI: 10.1006/bbrc.1999.1389] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone acetylation modifiers have been described to participate as cofactors in mammalian transcriptional complexes involved in the regulation of cellular proliferation and differentiation. The acetylation of core histone proteins is reversible and regulated by two competing enzymatic activities, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Increasing evidence suggests a connection between histone acetylation and the development of cancer and leukemia. We have recently mapped HDAC3 to mouse chromosome 18B3, a region which is syntenic with human chromosome 5q31, where HDAC3 is imbedded in a group of potential tumor suppressor genes and which has been reported to be the smallest commonly deleted segment in malignant myeloid disease. We report herein the identification and characterization of HDAC3, a yeast RPD3 ortholog in the mouse. Studies on murine HDAC3 may yield important insights on the understanding of myeloproliferative disease in humans.
Collapse
Affiliation(s)
- U Mahlknecht
- Picower Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA.
| | | | | | | |
Collapse
|
32
|
Jordan DB, Bacot KO, Carlson TJ, Kessel M, Viitanen PV. Plant riboflavin biosynthesis. Cloning, chloroplast localization, expression, purification, and partial characterization of spinach lumazine synthase. J Biol Chem 1999; 274:22114-21. [PMID: 10419541 DOI: 10.1074/jbc.274.31.22114] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lumazine synthase, which catalyzes the penultimate step of riboflavin biosynthesis, has been cloned from three higher plants (spinach, tobacco, and arabidopsis) through functional complementation of an Escherichia coli auxotroph. Whereas the three plant proteins exhibit some structural similarities to known microbial homologs, they uniquely possess N-terminal polypeptide extensions that resemble typical chloroplast transit peptides. In vitro protein import assays with intact chloroplasts and immunolocalization experiments verify that higher plant lumazine synthase is synthesized in the cytosol as a larger molecular weight precursor protein, which is post-translationally imported into chloroplasts where it is proteolytically cleaved to its mature size. The authentic spinach enzyme is estimated to constitute <0.02% of the total chloroplast protein. Recombinant "mature" spinach lumazine synthase is expressed in E. coli at levels exceeding 30% of the total soluble protein and is readily purified to homogeneity using a simple two-step procedure. Apparent V(max) and K(m) values obtained with the purified plant protein are similar to those reported for microbial lumazine synthases. Electron microscopy and hydrodynamic studies reveal that native plant lumazine synthase is a hollow capsid-like structure comprised of 60 identical 16.5-kDa subunits, resembling its icosahedral counterparts in E. coli and Bacillus subtilis.
Collapse
Affiliation(s)
- D B Jordan
- E. I. DuPont de Nemours Agricultural Products, Stine-Haskell Research Center, Newark, Delaware 19714, USA
| | | | | | | | | |
Collapse
|
33
|
Nightingale KP, Becker PB. Structural and functional analysis of chromatin assembled from defined histones. Methods 1998; 15:343-53. [PMID: 9740722 DOI: 10.1006/meth.1998.0638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review we describe how the extract-mediated chromatin assembly system derived from preblastoderm Drosophila embryos can be modified to assemble chromatin from defined histones. This approach combines the advantages of assembling (i) chromatin templates from homogeneous histones with (ii) an assembly system that generates chromatin with physiological nucleosome spacing and density and that contains the biological complexity of in vivo chromatin. We have used this technique to assemble nonacetylated and hyperacetylated histones into chromatin (K. P. Nightingale, R. Wellinger, J. Sogo, and P. B. Becker, 1998, EMBO J. 17, 2865-2876; W. A. Krajewski and P. B. Becker, 1998, Proc. Natl. Acad. Sci. USA 95, 1540-1545), and use this as an example to detail the structural and transcriptional assays used to compare and characterize these chromatin templates. The application of this procedure to assemble chromatin from recombinant histones should facilitate a wide variety of studies on the role(s) of histone mutants and variants.
Collapse
Affiliation(s)
- K P Nightingale
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
34
|
Wako T, Fukuda M, Furushima-Shimogawara R, Belyaev ND, Turner BM, Fukui K. Comparative analysis of topographic distribution of acetylated histone H4 by using confocal microscopy and a deconvolution system. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(97)00619-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Hansen JC, Kreider JI, Demeler B, Fletcher TM. Analytical ultracentrifugation and agarose gel electrophoresis as tools for studying chromatin folding in solution. Methods 1997; 12:62-72. [PMID: 9169196 DOI: 10.1006/meth.1997.0448] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Analytical ultracentrifugation and agarose gel electrophoresis each can be used to accurately quantify changes in structure that accompany chromatin folding in solution. Analytical ultracentrifugation directly measures the extent of compaction of each species present in a chromatin sample under a wide range of solution conditions. Agarose gel electrophoresis yields information about changes in the average surface charge density, size and/or shape, and conformational flexibility during chromatin folding. When used together, these methodologies are particularly powerful. Protocols for the characterization of chromatin folding by analytical ultracentrifugation and agarose gel electrophoresis are described. Discussion focuses on analysis and interpretation of experimental chromatin folding data.
Collapse
Affiliation(s)
- J C Hansen
- Department of Biochemistry, University of Texas Health Science Center at San Antonio
| | | | | | | |
Collapse
|
36
|
Bacher A, Eberhardt S, Fischer M, Mörtl S, Kis K, Kugelbrey K, Scheuring J, Schott K. Biosynthesis of riboflavin: lumazine synthase and riboflavin synthase. Methods Enzymol 1997; 280:389-99. [PMID: 9211334 DOI: 10.1016/s0076-6879(97)80130-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A Bacher
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mörtl S, Fischer M, Richter G, Tack J, Weinkauf S, Bacher A. Biosynthesis of riboflavin. Lumazine synthase of Escherichia coli. J Biol Chem 1996; 271:33201-7. [PMID: 8969176 DOI: 10.1074/jbc.271.52.33201] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A gene located at 443 kilobases on the Escherichia coli chromosome (subsequently designated ribE) was expressed in a recombinant E. coli strain and was shown to code for the enzyme 6, 7-dimethyl-8-ribityllumazine synthase. The recombinant enzyme was purified to homogeneity. The protein is an icosahedral capsid of 60 subunits with a mass of about 1 MDa as shown by hydrodynamic studies and by electron microscopy. In contrast to the icosahedral lumazine synthase-riboflavin synthase complex of Bacillus subtilis, the lumazine synthase of E. coli is not physically associated with another enzyme of the riboflavin pathway, and the core of the icosahedral capsid is empty. The RIB4 gene of Saccharomyces cerevisiae was also expressed to a high level (about 40% of cellular protein) in E. coli. The recombinant protein is a pentamer of 90 kDa. An insertion of 4 amino acids into helix alpha4 is likely to hinder the formation of an icosahedral capsid by the yeast protein. The kinetic properties of lumazine synthase of E. coli, B. subtilis, and S. cerevisiae are similar.
Collapse
Affiliation(s)
- S Mörtl
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85747 Garching, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, 20892-2710, USA
| | | |
Collapse
|