1
|
Lanz B, Rackayova V, Braissant O, Cudalbu C. MRS studies of neuroenergetics and glutamate/glutamine exchange in rats: Extensions to hyperammonemic models. Anal Biochem 2017; 529:245-269. [DOI: 10.1016/j.ab.2016.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 01/27/2023]
|
2
|
Hyperpolarized MRS: New tool to study real-time brain function and metabolism. Anal Biochem 2016; 529:270-277. [PMID: 27665679 DOI: 10.1016/j.ab.2016.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/31/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022]
Abstract
The advent of dissolution dynamic nuclear polarization (DNP) led to the emergence of a new kind of magnetic resonance (MR) measurements providing the opportunity to probe metabolism in vivo in real time. It has been shown that, following the injection of hyperpolarized substrates prepared using dissolution DNP, specific metabolic bioprobes that can be used to differentiate between healthy and pathological tissue in preclinical and clinical studies can be readily detected by MR thanks to the tremendous signal enhancement. The present article aims at reviewing the studies of cerebral function and metabolism based on the use of hyperpolarized MR. The constraints and future opportunities that this technology could offer are discussed.
Collapse
|
3
|
In vivo N-15 MRS study of glutamate metabolism in the rat brain. Anal Biochem 2016; 529:179-192. [PMID: 27580850 DOI: 10.1016/j.ab.2016.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023]
Abstract
In vivo 15N MRS has made a unique contribution to kinetic studies of the individual pathways that control glutamate flux in the rat brain. This review covers the following topics: (1) the advantages and limitations of in vivo 15N MRS and its indirect detection through coupled 1H; (2) kinetic methods; (3) major findings from our and other laboratories in the areas: (a) the uptake of the neurotransmitter glutamate from the extracellular fluid into glia; (b) the metabolism of glutamate to glutamine; (c) glutamine transport to the extracellular fluid; (d) hydrolysis of neuronal glutamine to glutamate; and (e) contribution of transamination from leucine to replenish the glutamate nitrogen. In vivo glutamine synthetase activities measured at several levels of hyperammonemia showed that this enzyme becomes saturated at blood ammonia concentration >0.9 μmol/g, and causes the elevation of brain ammonia. Implications of the results for the cause of hyperammonemic encephalopathy are discussed. Leucine provides >25% of glutamate nitrogen. An intriguing possibility that supplementing leucine may restore cognitive function after brain injury is discussed. Finally, some characteristics of 15N MRS that may facilitate the future application of this technique to the study of the human brain at 4 or 7 T are described.
Collapse
|
4
|
Spanaki C, Kotzamani D, Plaitakis A. Widening Spectrum of Cellular and Subcellular Expression of Human GLUD1 and GLUD2 Glutamate Dehydrogenases Suggests Novel Functions. Neurochem Res 2016; 42:92-107. [PMID: 27422263 DOI: 10.1007/s11064-016-1986-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022]
Abstract
Mammalian glutamate dehydrogenase1 (GDH1) (E.C. 1.4.1.3) is a mitochondrial enzyme that catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate and ammonia while reducing NAD+ and/or NADP+ to NADH and/or NADPH. It links amino acid with carbohydrate metabolism, contributing to Krebs cycle anaplerosis, energy production, ammonia handling and redox homeostasis. Although GDH1 was one of the first major metabolic enzymes to be studied decades ago, its role in cell biology is still incompletely understood. There is however growing interest in a novel GDH2 isoenzyme that emerged via duplication in primates and underwent rapid evolutionary selection concomitant with prefrontal human cortex expansion. Also, the anaplerotic function of GDH1 and GDH2 is currently under sharp focus as this relates to the biology of glial tumors and other neoplasias. Here we used antibodies specific for human GDH1 (hGDH1) and human GDH2 (hGDH2) to study the expression of these isoenzymes in human tissues. Results revealed that both hGDH1 and hGDH2 are expressed in human brain, kidney, testis and steroidogenic organs. However, distinct hGDH1 and hGDH2 expression patterns emerged. Thus, while the Sertoli cells of human testis were strongly positive for hGDH2, they were negative for hGDH1. Conversely, hGDH1 showed very high levels of expression in human liver, but hepatocytes were virtually devoid of hGDH2. In human adrenals, both hGDHs were densely expressed in steroid-producing cells, with hGDH2 expression pattern matching that of the cholesterol side chain cleavage system involved in steroid synthesis. Similarly in human ovaries and placenta, both hGDH1 and hGDH2 were densely expressed in estrogen producing cells. In addition, hGDH1, being a housekeeping enzyme, was also expressed in cells that lack endocrine function. Regarding human brain, study of cortical sections using immunofluorescence (IF) with confocal microscopy revealed that hGDH1 and hGDH2 were both expressed in the cytoplasm of gray and white matter astrocytes within coarse structures resembling mitochondria. Additionally, hGDH1 localized to the nuclear membrane of a subpopulation of astrocytes and of the vast majority of oligodendrocytes and their precursors. Remarkably, hGDH2-specific staining was detected in human cortical neurons, with different expression patterns having emerged. One pattern, observed in large cortical neurons (some with pyramidal morphology), was a hGDH2-specific labeling of cytoplasmic structures resembling mitochondria. These were distributed either in the cell body-axon or on the cell surface in close proximity to astrocytic end-feet that encircle glutamatergic synapses. Another pattern was observed in small cortical neurons with round dense nuclei in which the hGDH2-specific staining was found in the nuclear membrane. A detailed description of these observations and their functional implications, suggesting that the GDH flux is used by different cells to serve some of their unique functions, is presented below.
Collapse
Affiliation(s)
- Cleanthe Spanaki
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Crete, Heraklion, Crete, 71003, Greece
| | - Dimitra Kotzamani
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Crete, Heraklion, Crete, 71003, Greece
| | - Andreas Plaitakis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Crete, Heraklion, Crete, 71003, Greece. .,Icahn School of Medicine at Mount Sinai, OneGustave L. Levy Place, New York, 10029, USA.
| |
Collapse
|
5
|
Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:9-42. [PMID: 27885625 DOI: 10.1007/978-3-319-45096-4_2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.
Collapse
|
6
|
Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36:595-612. [PMID: 23109059 DOI: 10.1007/s10545-012-9546-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Collapse
Affiliation(s)
- Olivier Braissant
- Service of Biomedicine, Lausanne University Hospital, Avenue Pierre-Decker 2, CI 02/33, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
7
|
Rothman DL, De Feyter HM, Maciejewski PK, Behar KL. Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes? Neurochem Res 2012; 37:2597-612. [PMID: 23104556 DOI: 10.1007/s11064-012-0898-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
The high in vivo flux of the glutamate/glutamine cycle puts a strong demand on the return of ammonia released by phosphate activated glutaminase from the neurons to the astrocytes in order to maintain nitrogen balance. In this paper we review several amino acid shuttles that have been proposed for balancing the nitrogen flows between neurons and astrocytes in the glutamate/glutamine cycle. All of these cycles depend on the directionality of glutamate dehydrogenase, catalyzing reductive glutamate synthesis (forward reaction) in the neuron in order to capture the ammonia released by phosphate activated glutaminase, while catalyzing oxidative deamination of glutamate (reverse reaction) in the astrocytes to release ammonia for glutamine synthesis. Reanalysis of results from in vivo experiments using (13)N and (15)N labeled ammonia and (15)N leucine in rats suggests that the maximum flux of the alanine/lactate or branched chain amino acid/branched chain amino acid transaminase shuttles between neurons and astrocytes are approximately 3-5 times lower than would be required to account for the ammonia transfer from neurons to astrocytes needed for glutamine synthesis (amide nitrogen) to sustain the glutamate/glutamine cycle. However, in the rat brain both the total ammonia fixation rate by glutamate dehydrogenase and the total branched chain amino acid transaminase activity are sufficient to support a branched chain amino acid/branched chain keto acid shuttle, as proposed by Hutson and coworkers, which would support the de novo synthesis of glutamine in the astrocyte to replace the ~20 % of neurotransmitter glutamate that is oxidized. A higher fraction of the nitrogen needs of total glutamate neurotransmitter cycling could be supported by hybrid cycles in which glutamate and tricarboxylic acid cycle intermediates act as a nitrogen shuttle. A limitation of all in vivo studies in animals conducted to date is that none have shown transfer of nitrogen for glutamine amide synthesis, either as free ammonia or via an amino acid from the neurons to the astrocytes. Future work will be needed, perhaps using methods for selectively labeling nitrogen in neurons, to conclusively establish the rate of amino acid nitrogen shuttles in vivo and their coupling to the glutamate/glutamine cycle.
Collapse
Affiliation(s)
- Douglas L Rothman
- Department of Diagnostic Radiology and Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, P.O. Box 208043, New Haven, CT 06520-8043, USA.
| | | | | | | |
Collapse
|
8
|
The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 2012; 37:2439-55. [PMID: 22618691 DOI: 10.1007/s11064-012-0803-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/24/2012] [Accepted: 05/07/2012] [Indexed: 02/07/2023]
Abstract
In the brain, glutamine synthetase (GS), which is located predominantly in astrocytes, is largely responsible for the removal of both blood-derived and metabolically generated ammonia. Thus, studies with [(13)N]ammonia have shown that about 25 % of blood-derived ammonia is removed in a single pass through the rat brain and that this ammonia is incorporated primarily into glutamine (amide) in astrocytes. Major pathways for cerebral ammonia generation include the glutaminase reaction and the glutamate dehydrogenase (GDH) reaction. The equilibrium position of the GDH-catalyzed reaction in vitro favors reductive amination of α-ketoglutarate at pH 7.4. Nevertheless, only a small amount of label derived from [(13)N]ammonia in rat brain is incorporated into glutamate and the α-amine of glutamine in vivo. Most likely the cerebral GDH reaction is drawn normally in the direction of glutamate oxidation (ammonia production) by rapid removal of ammonia as glutamine. Linkage of glutamate/α-ketoglutarate-utilizing aminotransferases with the GDH reaction channels excess amino acid nitrogen toward ammonia for glutamine synthesis. At high ammonia levels and/or when GS is inhibited the GDH reaction coupled with glutamate/α-ketoglutarate-linked aminotransferases may, however, promote the flow of ammonia nitrogen toward synthesis of amino acids. Preliminary evidence suggests an important role for the purine nucleotide cycle (PNC) as an additional source of ammonia in neurons (Net reaction: L-Aspartate + GTP + H(2)O → Fumarate + GDP + P(i) + NH(3)) and in the beat cycle of ependyma cilia. The link of the PNC to aminotransferases and GDH/GS and its role in cerebral nitrogen metabolism under both normal and pathological (e.g. hyperammonemic encephalopathy) conditions should be a productive area for future research.
Collapse
|
9
|
Cudalbu C, Lanz B, Duarte JMN, Morgenthaler FD, Pilloud Y, Mlynárik V, Gruetter R. Cerebral glutamine metabolism under hyperammonemia determined in vivo by localized (1)H and (15)N NMR spectroscopy. J Cereb Blood Flow Metab 2012; 32:696-708. [PMID: 22167234 PMCID: PMC3318147 DOI: 10.1038/jcbfm.2011.173] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain glutamine synthetase (GS) is an integral part of the glutamate-glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. (15)N MRS is an alternative approach to (13)C MRS. Incorporation of labeled (15)N from ammonia in cerebral glutamine allows to measure several metabolic reactions related to nitrogen metabolism, including the glutamate-glutamine cycle. To measure (15)N incorporation into the position 5N of glutamine and position 2N of glutamate and glutamine, we developed a novel (15)N pulse sequence to simultaneously detect, for the first time, [5-(15)N]Gln and [2-(15)N]Gln+Glu in vivo in the rat brain. In addition, we also measured for the first time in the same experiment localized (1)H spectra for a direct measurement of the net glutamine accumulation. Mathematical modeling of (1)H and (15)N MRS data allowed to reduce the number of assumptions and provided reliable determination of GS (0.30±0.050 μmol/g per minute), apparent neurotransmission (0.26±0.030 μmol/g per minute), glutamate dehydrogenase (0.029±0.002 μmol/g per minute), and net glutamine accumulation (0.033±0.001 μmol/g per minute). These results showed an increase of GS and net glutamine accumulation under hyperammonemia, supporting the concept of their implication in cerebral ammonia detoxification.
Collapse
Affiliation(s)
- Cristina Cudalbu
- Laboratory for Functional and Metabolic Imaging, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
10
|
Nehlig A, Coles JA. Cellular pathways of energy metabolism in the brain: Is glucose used by neurons or astrocytes? Glia 2007; 55:1238-1250. [PMID: 17659529 DOI: 10.1002/glia.20376] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 666, Faculty of Medicine, Strasbourg, France
| | - Jonathan A Coles
- INSERM Unité 594, Functional and Metabolic Neuroimaging, Université Joseph Fourier, Grenoble, France
| |
Collapse
|
11
|
Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 2006; 98:641-53. [PMID: 16787421 DOI: 10.1111/j.1471-4159.2006.03913.x] [Citation(s) in RCA: 760] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism. Discussions of stoichiometry, the relative role of glutamate vs. GABA and pathological conditions affecting the glutamate/GABA-glutamine cycling are presented. Furthermore, a section is devoted to the accompanying ammonia homeostasis of the glutamate/GABA-glutamine cycle, examining the possible means of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must be seen as a bi-directional transfer of not only carbon units but also nitrogen units.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Copenhagen, Denmark.
| | | | | |
Collapse
|
12
|
Vercauteren FGG, Clerens S, Roy L, Hamel N, Arckens L, Vandesande F, Alhonen L, Janne J, Szyf M, Cuello AC. Early dysregulation of hippocampal proteins in transgenic rats with Alzheimer's disease-linked mutations in amyloid precursor protein and presenilin 1. ACTA ACUST UNITED AC 2005; 132:241-59. [PMID: 15582162 DOI: 10.1016/j.molbrainres.2004.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2004] [Indexed: 01/01/2023]
Abstract
The response of the hippocampal proteome to expression of mutant proteins present in familial forms of Alzheimer's disease (AD) was studied using transgenic rats. These animals carry both the amyloid precursor protein Swedish and 717 mutation (APP(SW+717)) as well as the presenilin 1 Finnish mutation (PS1(FINN)). This transgenic rat model displays intracellular amyloid beta (Abeta) in neurons of the neocortex and the hippocampus (CA2 and CA3). The hippocampus was selected as it is one of the first brain regions affected in AD and is involved in the processing of short-term memory and spatial memory. Applying a proteomic approach, we demonstrate that the expression of APP(SW+717) and PS1(FINN) transgenes causes changes in expression of hippocampal proteins, some of which have been previously linked to learning and memory formation. The protein alterations documented here occur in the absence of plaque formation and prior to the onset of cognitive deficits later observed in these transgenic rats. This indicates that molecular changes take place in the hippocampal neurons in response to expression of mutant proteins APP(SW+717) and PS1(FINN), which precede the occurrence of overt extracellular accumulation of extracellular amyloid. The implications of these findings on our understanding of the early stages of AD are discussed.
Collapse
Affiliation(s)
- Freya G G Vercauteren
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Choi IY, Lee SP, Guilfoyle DN, Helpern JA. In vivo NMR studies of neurodegenerative diseases in transgenic and rodent models. Neurochem Res 2003; 28:987-1001. [PMID: 12737523 DOI: 10.1023/a:1023370104289] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vivo magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) provide unique quality to attain neurochemical, physiological, anatomical, and functional information non-invasively. These techniques have been increasingly applied to biomedical research and clinical usage in diagnosis and prognosis of diseases. The ability of MRS to detect early yet subtle changes of neurochemicals in vivo permits the use of this technology for the study of cerebral metabolism in physiological and pathological conditions. Recent advances in MR technology have further extended its use to assess the etiology and progression of neurodegeneration. This review focuses on the current technical advances and the applications of MRS and MRI in the study of neurodegenerative disease animal models including amyotrophic lateral sclerosis, Alzheimer's, Huntington's, and Parkinson's diseases. Enhanced MR measurable neurochemical parameters in vivo are described in regard to their importance in neurodegenerative disorders and their investigation into the metabolic alterations accompanying the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- In-Young Choi
- The Nathan S. Kline Institute, Center for Advanced Brain Imaging, Orangeburg, New York 10962, USA.
| | | | | | | |
Collapse
|
14
|
Gruetter R. Principles of the measurement of neuro-glial metabolism using in vivo 13C NMR spectroscopy. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
15
|
Burbaeva GS, Turishcheva MS, Vorobyeva EA, Savushkina OK, Tereshkina EB, Boksha IS. Diversity of glutamate dehydrogenase in human brain. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:427-35. [PMID: 11999891 DOI: 10.1016/s0278-5846(01)00273-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three forms of glutamate dehydrogenase (GDH, EC 1.4.1.3) are purified from human brain tissue. Two of them, named GDH I (consisting of 58+/-1-kDa subunit) and GDH II (consisting of 56+/-1 -kDa subunit), are readily solubilized and the third one, GDH III (consisting of 56+/-1-kDa subunit), is a membrane-associated (particulate bound) isoform. Kinetic constants were determined for GDH III. These GDH forms were found to differ in hydrophobicity as indicated by different affinity to Phenyl-Sepharose. All three GDH forms showed microheterogeneity on two-dimensional (2-D) gel electrophoresis. Specific polyclonal antibodies, which enable to determine the levels of immunoreactivities of all the GDH forms in human brain extracts by enzyme-chemiluminescent amplified (ECL)-Western immunoblotting, were obtained.
Collapse
Affiliation(s)
- Gulnur Sh Burbaeva
- Laboratory of Neurochemistry, Mental Health Research Center RAMS, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
16
|
Kemp GJ. Non-invasive methods for studying brain energy metabolism: what they show and what it means. Dev Neurosci 2000; 22:418-28. [PMID: 11111158 DOI: 10.1159/000017471] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This review summarises the ways in which magnetic resonance spectroscopy (MRS) and related methods can be used as windows on brain energy metabolism in vivo. (31)P-MRS can measure acute changes in non-oxidative ATP synthesis in transient states, and at steady state reflects the balance of ATP demand and mitochondrial function. (13)C-MRS labelling methods can measure a variety of carbon fluxes. The few (31)P- and (13)C-MRS studies of the response to functional activation suggest quite large increases in oxidative metabolism. Functional magnetic resonance imaging measures the hyperoxygenation that results from increase in cerebral blood flow in excess of glucose oxidation, attenuated somewhat by a smaller increase in oxygen consumption. Previous positron emission tomography studies disagree on the size of activation response. These are powerful but demanding techniques, valuable in understanding both normal physiology and pathophysiology. However, discrepancies remain to be reconciled, and this will require increasing sophistication of both techniques and analytical models.
Collapse
Affiliation(s)
- G J Kemp
- Department of Musculoskeletal Science, University of Liverpool, UK.
| |
Collapse
|
17
|
Shen J, Sibson NR, Cline G, Behar KL, Rothman DL, Shulman RG. 15N-NMR spectroscopy studies of ammonia transport and glutamine synthesis in the hyperammonemic rat brain. Dev Neurosci 2000; 20:434-43. [PMID: 9778582 DOI: 10.1159/000017341] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ammonia transport and glutamine synthesis were studied in the hyperammonaemic rat brain in vivo using 15N-NMR spectroscopy at a plasma ammonia level of approximately 0.39 mM raised via an intravenous [15N]-ammonium acetate infusion. The initial slope of the time course of the summed cerebral 15N-labelled metabolites was used to determine the rate of ammonia net transport during hyperammonemia as 0.13 +/- 0.02 micromol/min/g (mean +/- SD; n = 5). Based on the total accumulation of glutamine and the 1:2 stoichiometric relationship between fluxes of four-carbon skeletons and nitrogen atoms, the rate of de novo glutamine synthesis through anaplerosis and subsequent glutamate dehydrogenase action was calculated to be 0.065 +/- 0.01 micromol/min/g. The rate of total glutamine synthesis was estimated to be 0.20 +/- 0.06 micromol/min/g (n = 5) by fitting the [5-15N]glutamine time course to a previously described model of glutamate-glutamine cycling between astrocytes and neurones. A large dilution was also observed in [2-15N]glutamine, which supports the glutamate-glutamine cycle as being an important pathway for neuronal glutamate repletion in vivo.
Collapse
Affiliation(s)
- J Shen
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn., USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
We review the information obtained by 13C NMR methods on the metabolic compartmentation of the adult mammalian brain with emphasis on its quantitative aspects. Classical radiotracer evidence and more recent 13C NMR results support the presence in the brain of at least two glutamate pools, small and large, associated with two kinetically different tricarboxylic acid cycles localized in glia and neurons, respectively. Neuronal and glial cycles interact closely, utilizing common substrates like glucose and oxygen and exchanging a variety of metabolites including glutamate, glutamine and GABA. A model for the cerebral metabolism of (1,2-13C2) acetate has made it possible to calculate fluxes through both cycles and evaluate the exchanges of glutamate, glutamine and GABA under different physiopathological conditions. Calculated flux values through the neuronal and glial tricarboxylic acid cycles are 1.0 and 0.4 mumol/min g, respectively. In the adult normoxic brain, the small and large glutamate pools account for approximately 10% and 90% of cerebral glutamate with estimated turnover times of 1.25 and 5.8/min, respectively. Net transfers of neuronal glutamate and GABA to the glial compartment are calculated to be 0.1 and 0.04 mumol/min g while transfer of glial glutamine to the neuronal compartment is estimated as 0.1 mumol/min g. Pyruvate recycling in the adult brain occurs mainly in the synaptic terminals with a calculated flux of 0.3 mumol/min g. These flux values are altered severely in pathological states such as hypothyroidism or ischemia.
Collapse
Affiliation(s)
- F Cruz
- Instituto de Investigaciones Biomédicas C.S.I.C., Madrid, Spain
| | | |
Collapse
|
19
|
Abstract
Three-dimensional image-selected in vivo spectroscopy (ISIS), combined with proton-decoupled nuclear-Overhauser-enhanced 15N nuclear magnetic resonance (NMR), was used to localize [15N]metabolites, observed by a head coil, to the brain in rats. In spontaneously breathing anesthetized rats given intravenous [15N]ammonium acetate infusion, brain [5-15N]glutamine was observed in the localized spectrum with a v1/2 of 5 Hz in 19-28 min at 4.7 T, while the signal from blood [15N]urea was eliminated by the localization process. In rats given [15N]leucine infusion, the peak representing predominantly (89%) brain [15N]glutamate was observed, with elimination of the signal from muscle [15N]alanine. In vivo peak areas of the brain [15N]metabolites in the localized spectra were proportional to their concentrations. The advantages and limitations of localization by ISIS using a volume coil with a homogeneous B1 field are compared with those of localization by a surface coil for in vivo 15N NMR study of neurotransmitters in the brain.
Collapse
Affiliation(s)
- K Kanamori
- Magnetic Resonance Spectroscopy Laboratory, Huntington Medical Research Institutes, Pasadena, California 91105, USA
| | | |
Collapse
|
20
|
Affiliation(s)
- E Kvamme
- Neurochemical Laboratory, University of Oslo, Norway
| |
Collapse
|
21
|
Lie-Venema H, Hakvoort TB, van Hemert FJ, Moorman AF, Lamers WH. Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:243-308. [PMID: 9752723 DOI: 10.1016/s0079-6603(08)60829-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutamine synthetase, the enzyme that catalyzes the ATP-dependent conversion of glutamate and ammonia into glutamine, is expressed in a tissue-specific and developmentally controlled manner. The first part of this review focuses on its spatiotemporal pattern of expression, the factors that regulate its levels under (patho)physiological conditions, and its role in glutamine, glutamate, and ammonia metabolism in mammals. Glutamine synthetase protein stability is more than 10-fold reduced by its product glutamine and by covalent modifications. During late fetal development, translational efficiency increases more than 10-fold. Glutamine synthetase mRNA stability is negatively affected by cAMP, whereas glucocorticoids, growth hormone, insulin (all positive), and cAMP (negative) regulate its rate of transcription. The signal transduction pathways by which these factors may regulate the expression of glutamine synthetase are briefly discussed. The second part of the review focuses on the evolution, structure, and transcriptional regulation of the glutamine synthetase gene in rat and chicken. Two enhancers (at -6.5 and -2.5 kb) were identified in the upstream region and two enhancers (between +156 and +857 bp) in the first intron of the rat glutamine synthetase gene. In addition, sequence analysis suggests a regulatory role for regions in the 3' untranslated region of the gene. The immediate-upstream region of the chicken glutamine synthetase gene is responsible for its cell-specific expression, whereas the glucocorticoid-induced developmental appearance in the neural retina is governed by its far-upstream region.
Collapse
Affiliation(s)
- H Lie-Venema
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Cavallaro S, Meiri N, Yi CL, Musco S, Ma W, Goldberg J, Alkon DL. Late memory-related genes in the hippocampus revealed by RNA fingerprinting. Proc Natl Acad Sci U S A 1997; 94:9669-73. [PMID: 9275181 PMCID: PMC23247 DOI: 10.1073/pnas.94.18.9669] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although long-term memory is thought to require a cellular program of gene expression and increased protein synthesis, the identity of proteins critical for associative memory is largely unknown. We used RNA fingerprinting to identify candidate memory-related genes (MRGs), which were up-regulated in the hippocampus of water maze-trained rats, a brain area that is critically involved in spatial learning. Two of the original 10 candidate genes implicated by RNA fingerprinting, the rat homolog of the ryanodine receptor type-2 and glutamate dehydrogenase (EC 1.4.1.3), were further investigated by Northern blot analysis, reverse transcription-PCR, and in situ hybridization and confirmed as MRGs with distinct temporal and regional expression. Successive RNA screening as illustrated here may help to reveal a spectrum of MRGs as they appear in distinct domains of memory storage.
Collapse
Affiliation(s)
- S Cavallaro
- Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kanamori K, Bluml S, Ross B. Magnetic resonance spectroscopy in the study of hyperammonemia and hepatic encephalopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 420:185-94. [PMID: 9286434 DOI: 10.1007/978-1-4615-5945-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- K Kanamori
- Huntington Medical Research Institute, Santa Barbara, California, USA
| | | | | |
Collapse
|
24
|
Affiliation(s)
- B D Ross
- Magnetic Resonance Spectroscopy Unit, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| | | |
Collapse
|