1
|
Lindberg BG, Tang X, Dantoft W, Gohel P, Seyedoleslami Esfahani S, Lindvall JM, Engström Y. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis. PLoS Pathog 2018; 14:e1006936. [PMID: 29499056 PMCID: PMC5851638 DOI: 10.1371/journal.ppat.1006936] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/14/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub) encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB), JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic transcription factor isoforms.
Collapse
Affiliation(s)
- Bo G. Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xiongzhuo Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Widad Dantoft
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Priya Gohel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Jessica M. Lindvall
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
2
|
Fujita R, Ounzain S, Wang ACY, Heads RJ, Budhram-Mahadeo VS. Hsp-27 induction requires POU4F2/Brn-3b TF in doxorubicin-treated breast cancer cells, whereas phosphorylation alters its cellular localisation following drug treatment. Cell Stress Chaperones 2011; 16:427-39. [PMID: 21279488 PMCID: PMC3118820 DOI: 10.1007/s12192-011-0256-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 11/28/2022] Open
Abstract
POU4F2/Brn-3b transcription factor (referred to as Brn-3b) is elevated in >60% of breast cancers and profoundly alters growth and behaviour of cancer cells by regulating distinct subsets of target genes. Previous studies showed that Brn-3b was required to maximally transactivate small heat shock protein, HSPB1/Hsp-27 (referred to as Hsp-27), and consequently, Brn-3b expression correlated well with Hsp27 levels in human breast biopsies. In these studies, we showed that Brn-3b is increased in MCF7 breast cancer cells that survive following treatment with chemotherapeutic drug doxorubicin (Dox) with concomitant increases in Hsp-27 expression. Targeting of Brn-3b using short interfering RNA reduced Hsp-27 in Dox-treated cells, suggesting that Brn-3b regulates Hsp-27 expression under these conditions. Wound healing assays showed increased Brn-3b in Dox-treated migratory cells that also express Hsp-27. Interestingly, Hsp-27 phosphorylation and cellular localisation are also significantly altered at different times following Dox treatment. Thus, phospho-Hsp-27 (p-Hsp27) protein displayed widespread distribution after 24 hrs of Dox treatment but was restricted to the nucleus after 5 days. However, in drug-resistant cells (grown in Dox for > 1 month), p-Hsp-27 was excluded from nuclei and most of the cytoplasm and appeared to be associated with the cell membrane. Studies to determine how this protein promotes survival and migration in breast cancer cells showed that the protective effects were conferred by unphosphorylated Hsp-27 protein. Thus, complex and dynamic mechanisms underlie effects of Hsp-27 protein in breast cancer cells following treatment with chemotherapeutic drugs such as Dox, and this may contribute to invasiveness and drug resistance following chemotherapy.
Collapse
Affiliation(s)
- Rieko Fujita
- Medical Molecular Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Samir Ounzain
- Medical Molecular Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Alice Chun Yin Wang
- Medical Molecular Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Richard John Heads
- Cardiovascular Division, Kings College London, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, SE1 7EH, London, UK
- Cardiology Department, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| | | |
Collapse
|
3
|
Berwick DC, Diss JKJ, Budhram-Mahadeo VS, Latchman DS. A simple technique for the prediction of interacting proteins reveals a direct Brn-3a-androgen receptor interaction. J Biol Chem 2010; 285:15286-15295. [PMID: 20228055 DOI: 10.1074/jbc.m109.071456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of multiprotein complexes constitutes a key step in determining the function of any translated gene product. Thus, the elucidation of interacting partners for a protein of interest is of fundamental importance to cell biology. Here we describe a simple methodology for the prediction of novel interactors. We have applied this to the developmental transcription factor Brn-3a to predict and verify a novel interaction between Brn-3a and the androgen receptor (AR). We demonstrate that these transcription factors form complexes within the nucleus of ND7 neuroblastoma cells, while in vitro pull-down assays show direct association. As a functional consequence of the Brn-3a-AR interaction, the factors bind cooperatively to multiple elements within the promoter of the voltage-gated sodium channel, Nav1.7, leading to a synergistic increase in its expression. Thus, these data define AR as a direct Brn-3a interactor and verify a simple interacting protein prediction methodology that is likely to be useful for many other proteins.
Collapse
Affiliation(s)
- Daniel C Berwick
- Medical Molecular Biology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - James K J Diss
- Medical Molecular Biology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Vishwanie S Budhram-Mahadeo
- Medical Molecular Biology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - David S Latchman
- Medical Molecular Biology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; Birkbeck, University of London, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
4
|
Farooqui-Kabir SR, Diss JKJ, Henderson D, Marber MS, Latchman DS, Budhram-Mahadeo V, Heads RJ. Cardiac expression of Brn-3a and Brn-3b POU transcription factors and regulation of Hsp27 gene expression. Cell Stress Chaperones 2008; 13:297-312. [PMID: 18368538 PMCID: PMC2673938 DOI: 10.1007/s12192-008-0028-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/29/2008] [Accepted: 01/31/2008] [Indexed: 11/24/2022] Open
Abstract
The Brn-3 family of transcription factors play a critical role in regulating expression of genes that control cell fate, including the small heat shock protein Hsp27. The aim of this study was to investigate the relationship between Brn-3a and Brn-3b and Hsp27 expression in the developing rodent heart. Brn-3a and Brn-3b were detected from embryonic days 9.5-10.5 (E9.5-E10.5) in the mouse heart, with significant increases seen later during development. Two isoforms (long and short) of each protein were detected during embryogenesis and postnatally. Brn-3a messenger RNA (mRNA) and protein were localized by E13.0 to the atrio-ventricular (AV) valve cushions and leaflets, outflow tract (OFT), epicardium and cardiac ganglia. By E14.5, Brn-3a was also localised to the septa and compact ventricular myocardium. An increase in expression of the long Brn-3a(l) isoform between E17 and adult coincided with a decrease in expression of Brn-3b(l) and a marked increase in expression of Hsp27. Hearts from Brn-3a-/- mice displayed a partially penetrant phenotype marked by thickening of the endocardial cushions and AV valve leaflets and hypoplastic ventricular myocardium. Loss of Brn-3a was correlated with a compensatory increase in Brn-3b and GATA3 mRNA but no change in Hsp27 mRNA. Reporter assays in isolated cardiomyocytes demonstrated that both Brn-3a and Brn-3b activate the hsp27 promoter via a consensus Brn-3-binding site. Therefore, Brn-3 POU factors may play an important role in the development and maintenance of critical cell types and structures within the heart, in part via developmental regulation of myocardial Hsp27 expression. Furthermore, Brn-3a may be necessary for correct valve and myocardial remodelling and maturation.
Collapse
Affiliation(s)
- Saleha R. Farooqui-Kabir
- Cardiovascular Division, King’s College London School of Medicine, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| | - James K. J. Diss
- Medical Molecular Biology Unit, The Institute of Child Health, University College London, London, WC1N 1EH UK
| | - Deborah Henderson
- Institute of Human Genetics, University of Newcastle-Upon-Tyne, International Centre for Life, Newcastle-Upon Tyne, NE1 3BZ UK
| | - Michael S. Marber
- Cardiovascular Division, King’s College London School of Medicine, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| | - David S. Latchman
- Medical Molecular Biology Unit, The Institute of Child Health, University College London, London, WC1N 1EH UK
| | - Vishwanie Budhram-Mahadeo
- Medical Molecular Biology Unit, The Institute of Child Health, University College London, London, WC1N 1EH UK
| | - Richard J. Heads
- Cardiovascular Division, King’s College London School of Medicine, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| |
Collapse
|
5
|
Lee SA, Ndisang D, Patel C, Dennis JH, Faulkes DJ, D'Arrigo C, Samady L, Farooqui-Kabir S, Heads RJ, Latchman DS, Budhram-Mahadeo VS. Expression of the Brn-3b Transcription Factor Correlates with Expression of HSP-27 in Breast Cancer Biopsies and Is Required for Maximal Activation of the HSP-27 Promoter. Cancer Res 2005; 65:3072-80. [PMID: 15833836 DOI: 10.1158/0008-5472.can-04-2865] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In breast cancer, overexpression of the small heat shock protein, HSP-27, is associated with increased anchorage-independent growth, increased invasiveness, and resistance to chemotherapeutic drugs and is associated with poor prognosis and reduced disease-free survival. Therefore, factors that increase the expression of HSP-27 in breast cancer are likely to affect the prognosis and outcome of treatment. In this study, we show a strong correlation between elevated levels of the Brn-3b POU transcription factor and high levels of HSP-27 protein in manipulated MCF-7 breast cancer cells as well as in human breast biopsies. Conversely, HSP-27 is decreased on loss of Brn-3b. In cotransfection assays, Brn-3b can strongly transactivate the HSP-27 promoter, supporting a role for direct regulation of HSP-27 expression. Brn-3b also cooperates with the estrogen receptor (ER) to facilitate maximal stimulation of the HSP-27 promoter, with significantly enhanced activity of this promoter observed on coexpression of Brn-3b and ER compared with either alone. RNA interference and site-directed mutagenesis support the requirement for the Brn-3b binding site on the HSP-27 promoter, which facilitates maximal transactivation either alone or on interaction with the ER. Chromatin immunoprecipitation provides evidence for association of Brn-3b with the HSP-27 promoter in the intact cell. Thus, Brn-3b can, directly and indirectly (via interaction with the ER), activate HSP-27 expression, and this may represent one mechanism by which Brn-3b mediates its effects in breast cancer cells.
Collapse
Affiliation(s)
- Sonia A Lee
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
DeCarvalho AC, Cappendijk SLT, Fadool JM. Developmental expression of the POU domain transcription factor Brn-3b (Pou4f2) in the lateral line and visual system of zebrafish. Dev Dyn 2004; 229:869-76. [PMID: 15042710 DOI: 10.1002/dvdy.10475] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the class IV POU domain transcription factors are important regulators of neural development. In mouse, Brn-3b (Pou4f2, Brn3.2) and Brn-3c (Pou4f3, Brn3.1) are essential for the normal differentiation and maturation of retinal ganglion cells (RGCs) and hair cells of the auditory system, respectively. In this report, the cloning and expression profile of brn-3b in the zebrafish (Danio rerio) were assessed as the first step for understanding its role in the development of sensory systems. Two brn-3b alternative transcripts exhibited different onset of expression during development but shared overlapping expression domains in the adult visual system. The brn-3b expression in the zebrafish retina was consistent with a conserved role in differentiation and maintenance of RGCs. Expression was also observed in the optic tectum. Unexpectedly, brn-3b was prominently expressed in the migrating posterior lateral line primordium and larval neuromasts. For comparison, brn-3c expression was limited to the otic vesicle and was not detected in the lateral line during embryonic development. The expression of brn-3b in the mechanosensory lateral line of fish suggests a conserved function of a class IV POU domain transcription factor in sensory system development.
Collapse
Affiliation(s)
- Ana C DeCarvalho
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA
| | | | | |
Collapse
|
7
|
Irshad S, Pedley RB, Anderson J, Latchman DS, Budhram-Mahadeo V. The Brn-3b transcription factor regulates the growth, behavior, and invasiveness of human neuroblastoma cells in vitro and in vivo. J Biol Chem 2004; 279:21617-27. [PMID: 14970234 DOI: 10.1074/jbc.m312506200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroblastomas are the second most common solid tumor in children but the molecular mechanisms underlying the initiation and progression of this disease are poorly understood. We previously showed that the Brn-3b transcription factor is highly expressed in actively proliferating neuroblastoma cells but is significantly decreased when these cells are induced to differentiate. In this study, we analyzed the effects of manipulating Brn-3b levels in the human neuroblastoma cell line, IMR-32 and showed that constitutive overexpression of Brn-3b consistently increased cellular growth and proliferation in monolayer as well as in an anchorage-independent manner compared with controls whereas stably decreasing Brn-3b can reduce the rate of growth of these cells. Cells with high Brn-3b also fail to respond to growth inhibitory retinoic acid, as they continue to proliferate. Moreover, Brn-3b levels significantly modified tumor growth in vivo with elevated Brn-3b resulting in faster tumor growth in xenograft models whereas decreasing Brn-3b resulted in slower growth compared with controls. Interestingly, elevated Brn-3b levels also enhances the invasive capacity of these neuroblastoma cells with significantly larger numbers of migrating cells observed in overexpressing clones compared with controls. Because invasion and metastasis influence morbidity and mortality in neuroblastoma and so significantly affect the course and outcome of neuroblastomas, this finding is very important. Our results therefore suggest that Brn-3b transcription factor contributes to proliferation of neuroblastoma cells in vivo and in vitro but may also influence progression and/or invasion during tumorigenesis. It is possible that decreasing Brn-3b levels may reverse some effects on growth and proliferation of these cells.
Collapse
Affiliation(s)
- Shazia Irshad
- Medical Molecular Biology Unit, Institute of Child Health, 30 Guilford Street, London WC1N 12EH, UK
| | | | | | | | | |
Collapse
|
8
|
Weiss S, Gottfried I, Mayrose I, Khare SL, Xiang M, Dawson SJ, Avraham KB. The DFNA15 deafness mutation affects POU4F3 protein stability, localization, and transcriptional activity. Mol Cell Biol 2003; 23:7957-64. [PMID: 14585957 PMCID: PMC262385 DOI: 10.1128/mcb.23.22.7957-7964.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutation in the POU4F3 gene (BRN-3.1, BRN3C) is responsible for DFNA15 (MIM 602459), autosomal-dominant nonsyndromic hearing loss. POU4F3 is a member of the POU family of transcription factors and is essential for inner-ear hair cell maintenance. To test the potential effects of the human POU4F3 mutation, we performed a series of experiments in cell culture to mimic the human mutation. Mutant POU4F3 loses most of its transcriptional activity and most of its ability to bind to DNA and does not function in a dominant-negative manner. Moreover, whereas wild-type POU4F3 is found exclusively in the nucleus, our studies demonstrate that the mutant protein is localized both to the nucleus and the cytoplasm. Two nuclear localization signals were identified; both are essential for proper nuclear entry of POU4F3 protein. We found that the mutant protein half-life is longer than that of the wild type. We propose that the combination of defects caused by the mutation on the function of the POU4F3 transcription factor eventually leads to hair cell morbidity in affected family H members.
Collapse
Affiliation(s)
- Sigal Weiss
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
9
|
Frass B, Vassen L, Möröy T. Gene expression of the POU factor Brn-3a is regulated by two different promoters. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1579:207-13. [PMID: 12427558 DOI: 10.1016/s0167-4781(02)00540-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Expression of the POU transcription factor Brn-3a is regulated spatially and temporally during embryogenesis and can be detected in a particular subset of neurons and neuronal tumors. In the present study, we investigated the transcriptional regulation of Brn-3a expression. The human promoter is TATA-less and contains two bona fide mRNA start sites spread over 500 nucleotides 5' of the ATG translation initiation codon. Furthermore, a second TATA-less promoter was detected in the first intron of the Brn-3a gene and our data suggest that this promoter regulates expression of the shorter isoform of the Brn-3a gene. Transcriptional activity from this promoter was found in neuronal cell lines but not in epithelial cells. The activity of this promoter was strongly enhanced upon deletion of a 24 base pair (bp) DNA element downstream of the transcription initiation sites. In addition, this DNA element was able to repress transcription from a heterologous promoter suggesting a function as a transcriptional silencer. The more distal upstream Brn-3a promoter directing the expression of the longer Brn-3a isoform is not affected by the presence of this putative 24 bp DNA element. We propose therefore that the existence of two promoters in the Brn-3a gene offers a possibility for the observed differential and cell type-specific expression of the gene.
Collapse
Affiliation(s)
- Beate Frass
- Institut für Zellbiologie (Tumorforschung), I F Z, Universitätsklinikum Essen, Virchowstrasse 173, Essen, Germany
| | | | | |
Collapse
|
10
|
Liu W, Khare SL, Liang X, Peters MA, Liu X, Cepko CL, Xiang M. All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development 2000; 127:3237-47. [PMID: 10887080 DOI: 10.1242/dev.127.15.3237] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeted gene disruption studies in the mouse have demonstrated crucial roles for the Brn3 POU domain transcription factor genes, Brn3a, Brn3b, Brn3c (now called Pou4f1, Pou4f2, Pou4f3, respectively) in sensorineural development and survival. During mouse retinogenesis, the Brn3b gene is expressed in a large set of postmitotic ganglion cell precursors and is required for their early and terminal differentiation. In contrast, the Brn3a and Brn3c genes, which are expressed later in ganglion cells, appear to be dispensable for ganglion cell development. To understand the mechanism that causes the functional differences of Brn3 genes in retinal development, we employed a gain-of-function approach in the chick embryo. We find that Brn3b(l) and Brn3b(s), the two isoforms encoded by the Brn3b gene, as well as Brn3a and Brn3c all have similar DNA-binding and transactivating activities. We further find that the POU domain is minimally required for these activities. Consequently, we show that all these Brn3 proteins have a similar ability to promote development of ganglion cells when ectopically expressed in retinal progenitors. During chick retinogenesis, cBrn3c instead of cBrn3b exhibits a spatial and temporal expression pattern characteristic of ganglion cell genesis and its misexpression can also increase ganglion cell production. Based on these data, we propose that all Brn3 factors are capable of promoting retinal ganglion cell development, and that this potential may be limited by the order of expression in vivo.
Collapse
Affiliation(s)
- W Liu
- Graduate Program in Molecular Genetics and Microbiology, Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The POU-IV or Brn-3 class of transcription factors exhibit conserved structure, DNA-binding properties, and expression in specific subclasses of neurons across widely diverged species. In the mouse CNS, Brn-3.0 expression characterizes specific neurons from neurogenesis through the life of the cell. This irreversible activation of expression suggests positive autoregulation. To search for cis-acting elements that could mediate autoregulation we used a novel method, complex stability screening, which we applied to rapidly identify functional Brn-3.0 recognition sites within a large genomic region encompassing the mouse brn-3.0 locus. This method is based on the observation that the kinetic stability of Brn-3.0 complexes with specific DNA sequences, as measured by their dissociation half-lives, is highly correlated with the ability of those sequences to mediate transcriptional activation by Brn-3.0. The principal Brn-3.0 autoregulatory region lies approximately 5 kb upstream from the Brn-3.0 transcription start site and contains multiple Brn-3.0-binding sites that strongly resemble the optimal binding site for this protein class. This region also mediates transactivation by the closely related protein Brn-3.2, suggesting a regulatory cascade of POU proteins in specific neurons in which Brn-3.2 expression precedes Brn-3.0.
Collapse
|
12
|
Vahava O, Morell R, Lynch ED, Weiss S, Kagan ME, Ahituv N, Morrow JE, Lee MK, Skvorak AB, Morton CC, Blumenfeld A, Frydman M, Friedman TB, King MC, Avraham KB. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 1998; 279:1950-4. [PMID: 9506947 DOI: 10.1126/science.279.5358.1950] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The molecular basis for autosomal dominant progressive nonsyndromic hearing loss in an Israeli Jewish family, Family H, has been determined. Linkage analysis placed this deafness locus, DFNA15, on chromosome 5q31. The human homolog of mouse Pou4f3, a member of the POU-domain family of transcription factors whose targeted inactivation causes profound deafness in mice, was physically mapped to the 25-centimorgan DFNA15-linked region. An 8-base pair deletion in the POU homeodomain of human POU4F3 was identified in Family H. A truncated protein presumably impairs high-affinity binding of this transcription factor in a dominant negative fashion, leading to progressive hearing loss.
Collapse
Affiliation(s)
- O Vahava
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Budhram-Mahadeo V, Parker M, Latchman DS. POU transcription factors Brn-3a and Brn-3b interact with the estrogen receptor and differentially regulate transcriptional activity via an estrogen response element. Mol Cell Biol 1998; 18:1029-41. [PMID: 9448000 PMCID: PMC108815 DOI: 10.1128/mcb.18.2.1029] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1997] [Accepted: 11/19/1997] [Indexed: 02/05/2023] Open
Abstract
The estrogen receptor (ER) modulates transcription by forming complexes with other proteins and then binding to the estrogen response element (ERE). We have identified a novel interaction of this receptor with the POU transcription factors Brn-3a and Brn-3b which was independent of ligand binding. By pull-down assays and the yeast two-hybrid system, the POU domain of Brn-3a and Brn-3b was shown to interact with the DNA-binding domain of the ER. Brn-3-ER interactions also affect transcriptional activity of an ERE-containing promoter, such that in estradiol-stimulated cells, Brn-3b strongly activated the promoter via the ERE, while Brn-3a had a mild inhibitory effect. The POU domain of Brn-3b which interacts with the ER was sufficient to confer this activation potential, and the change of a single amino acid in the first helix of the POU homeodomain of Brn-3a to its equivalent in Brn-3b can change the mild repressive effect of Brn-3a to a stimulatory Brn-3b-like effect. These observations and their implications for transcriptional regulation by the ER are discussed.
Collapse
Affiliation(s)
- V Budhram-Mahadeo
- Department of Molecular Pathology, The Windeyer Institute of Medical Sciences, University College Medical School, London, United Kingdom
| | | | | |
Collapse
|
14
|
Veenstra GJ, van der Vliet PC, Destrée OH. POU domain transcription factors in embryonic development. Mol Biol Rep 1997; 24:139-55. [PMID: 9291088 DOI: 10.1023/a:1006855632268] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- G J Veenstra
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | |
Collapse
|
15
|
Mori T, Okano I, Mizuno K, Tohyama M, Wanaka A. Comparison of tissue distribution of two novel serine/threonine kinase genes containing the LIM motif (LIMK-1 and LIMK-2) in the developing rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 45:247-54. [PMID: 9149099 DOI: 10.1016/s0169-328x(96)00257-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously isolated two novel serine/threonine kinase genes containing the LIM motif (LIMK-1 and LIMK-2) from a rat cDNA library. To examine the functions of these genes, we performed in situ hybridization in the developing rat nervous system. LIMK-1 and LIMK-2 mRNAs mostly co-localized during development and are expressed preferentially in the central nervous system during mid-to-late gestation but the signals decreased during the post-natal period. However, differential gene expression was observed in some nuclei in the CNS; LIMK-1 mRNA was intensely expressed in the facial motor nucleus, the hypoglossal nucleus, deep nuclei of the cerebellum and the layers 3, 5 and 6 of the adult cerebral cortex while only LIMK-2 mRNA was preferentially expressed in the some parts of the epithelium. In the nasal cavity, LIMK-1 and LIMK-2 mRNAs were expressed complementarily. Our results suggest that LIMK-1 and LIMK-2 may have different functions in these regions during development.
Collapse
Affiliation(s)
- T Mori
- Department of Cell Science, Institute of Biomedical Science, Fukushima Medical College, Fukushima City, Japan
| | | | | | | | | |
Collapse
|