1
|
Merens HE, Choquet K, Baxter-Koenigs AR, Churchman LS. Timing is everything: advances in quantifying splicing kinetics. Trends Cell Biol 2024; 34:968-981. [PMID: 38777664 DOI: 10.1016/j.tcb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Splicing is a highly regulated process critical for proper pre-mRNA maturation and the maintenance of a healthy cellular environment. Splicing events are impacted by ongoing transcription, neighboring splicing events, and cis and trans regulatory factors on the respective pre-mRNA transcript. Within this complex regulatory environment, splicing kinetics have the potential to influence splicing outcomes but have historically been challenging to study in vivo. In this review, we highlight recent technological advancements that have enabled measurements of global splicing kinetics and of the variability of splicing kinetics at single introns. We demonstrate how identifying features that are correlated with splicing kinetics has increased our ability to form potential models for how splicing kinetics may be regulated in vivo.
Collapse
Affiliation(s)
- Hope E Merens
- Harvard University, Department of Genetics, Boston, MA, USA
| | - Karine Choquet
- University of Sherbrooke, Department of Biochemistry and Functional Genomics, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
2
|
Tholen J. Branch site recognition by the spliceosome. RNA (NEW YORK, N.Y.) 2024; 30:1397-1407. [PMID: 39187383 PMCID: PMC11482624 DOI: 10.1261/rna.080198.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
The spliceosome is a eukaryotic multimegadalton RNA-protein complex that removes introns from transcripts. The spliceosome ensures the selection of each exon-intron boundary through multiple recognition events. Initially, the 5' splice site (5' SS) and branch site (BS) are bound by the U1 small nuclear ribonucleoprotein (snRNP) and the U2 snRNP, respectively, while the 3' SS is mostly determined by proximity to the branch site. A large number of splicing factors recognize the splice sites and recruit the snRNPs before the stable binding of the snRNPs occurs by base-pairing the snRNA to the transcript. Fidelity of this process is crucial, as mutations in splicing factors and U2 snRNP components are associated with many diseases. In recent years, major advances have been made in understanding how splice sites are selected in Saccharomyces cerevisiae and humans. Here, I review and discuss the current understanding of the recognition of splice sites by the spliceosome with a focus on recognition and binding of the branch site by the U2 snRNP in humans.
Collapse
Affiliation(s)
- Jonas Tholen
- Department of Structural Biology, Genentech Inc., South San Francisco, California 94080, USA
| |
Collapse
|
3
|
Tse V, Guiterrez M, Townley J, Romano J, Pearl J, Chacaltana G, Players E, Das R, Sanford JR, Stone MD. OpenASO: RNA Rescue - designing splice-modulating antisense oligonucleotides through community science. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618608. [PMID: 39463988 PMCID: PMC11507933 DOI: 10.1101/2024.10.15.618608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Splice-modulating antisense oligonucleotides (ASOs) are precision RNA-based drugs that are becoming an established modality to treat human disease. Previously, we reported the discovery of ASOs that target a novel, putative intronic RNA structure to rescue splicing of multiple pathogenic variants of F8 exon 16 that cause hemophilia A. However, the conventional approach to discovering splice-modulating ASOs is both laborious and expensive. Here, we describe an alternative paradigm that integrates data-driven RNA structure prediction and community science to discover splice-modulating ASOs. Using a splicing-deficient pathogenic variant of F8 exon 16 as a model, we show that 25% of the top-scoring molecules designed in the Eterna OpenASO challenge have a statistically significant impact on enhancing exon 16 splicing. Additionally, we show that a distinct combination of ASOs designed by Eterna players can additively enhance the inclusion of the splicing-deficient exon 16 variant. Together, our data suggests that crowdsourcing designs from a community of citizen scientists may accelerate the discovery of splice-modulating ASOs with potential to treat human disease.
Collapse
Affiliation(s)
- Victor Tse
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Martin Guiterrez
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jill Townley
- Eterna Massive Open Laboratory. Consortium authors listed in Supplemental Table 1
| | - Jonathan Romano
- Eterna Massive Open Laboratory. Consortium authors listed in Supplemental Table 1
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Jennifer Pearl
- Eterna Massive Open Laboratory. Consortium authors listed in Supplemental Table 1
| | - Guillermo Chacaltana
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Eterna Players
- Eterna Massive Open Laboratory. Consortium authors listed in Supplemental Table 1
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
- Eterna Massive Open Laboratory. Consortium authors listed in Supplemental Table 1
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Jeremy R. Sanford
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Michael D. Stone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
4
|
Choudhary B, Norris A. Conserved role for spliceosomal component PRPF40A in microexon splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615222. [PMID: 39386728 PMCID: PMC11463390 DOI: 10.1101/2024.09.26.615222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microexons (exons ≤30 nts) are important features of neuronal transcriptomes, but pose mechanistic challenges to the splicing machinery. We previously showed that PRP-40, a component of the U1 spliceosome, is globally required for microexon splicing in C. elegans. Here we show that the homologous PRPF40A is also globally required for microexon splicing in mouse neuroblastoma cells. We find that PRPF40A co-regulates microexons along with SRRM4, a neuron-specific regulator of microexon splicing. The relationship between exon size and dependence on PRPF40A/SRRM4 is distinct, with SRRM4-dependence exhibiting a size threshold (~30 nts) and PRPF40A-dependence exhibiting a graded decrease as exon size increases. Finally, we show that PRPF40A knockdown causes an increase in productive splicing of its spliceosomal binding partner Luc7l by skipping of a small "poison exon." Similar homeostatic cross-regulation is often observed across paralogous RNA binding proteins. Here we find this concept likewise applies across evolutionarily unrelated but functionally and physically coupled spliceosomal components.
Collapse
Affiliation(s)
| | - Adam Norris
- University of California, Riverside. Department of Biochemistry. 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
| |
Collapse
|
5
|
Bolikhova AK, Buyan AI, Mariasina SS, Rudenko AY, Chekh DS, Mazur AM, Prokhortchouk EB, Dontsova OA, Sergiev PV. Study of the RNA splicing kinetics via in vivo 5-EU labeling. RNA (NEW YORK, N.Y.) 2024; 30:1356-1373. [PMID: 39048310 PMCID: PMC11404452 DOI: 10.1261/rna.079937.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Splicing is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency, giving rise to alternative splicing products. At the same time, splice sites might be used at a variable rate. We used 5-ethynyl uridine labeling to sequence a nascent transcriptome of HeLa cells and deduced the rate of splicing for each donor and acceptor splice site. The following correlation analysis showed a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as a splicing rate decrease with a decreased complementarity of the donor splice site to U1 and acceptor sites to U2 snRNAs. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of the acceptor splicing site utilization, or the differences in splicing rate between long, short, and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the poly(A) site, which might be explained by the cooperativity of the splicing and polyadenylation. Additional analysis of splicing kinetics of SF3B4 knockdown cells suggested the impairment of a U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field, as they provide general splicing rate dependencies as well as help to justify the existence of slowly removed splice sites.
Collapse
Affiliation(s)
- Anastasiia K Bolikhova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey I Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofia S Mariasina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Y Rudenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daria S Chekh
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander M Mazur
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Egor B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
De Paolis E, Raspaglio G, Ciferri N, Zangrilli I, Ricciardi Tenore C, Urbani A, Ferraro PM, Minucci A, Concolino P. Single-Base Substitution Causing Dual-Exon Skipping Event in PKD2 Gene: Unusual Molecular Finding from Exome Sequencing in a Patient with Autosomal Dominant Polycystic Kidney Disease. J Clin Med 2024; 13:4682. [PMID: 39200828 PMCID: PMC11355194 DOI: 10.3390/jcm13164682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Pathogenic variants in the Polycystic Kidney Disease 2 (PKD2) gene are associated with Autosomal Dominant Polycystic Kidney Disease (ADPKD) in approximately 30% of cases. In recent years, the high-throughput sequencing techniques have significantly increased the number of variants identified in affected patients. Here, we described the peculiar effect of a PKD2 splicing variant, the c.1717-2A>G, identified in an Italian male patient with ADPKD. This variant led to the unusual and rare skipping of two consecutive exons, causing a large in-frame deletion. Methods: The genetic evaluation of the patient was performed using the Next-Generation Sequencing (NGS) assay Clinical Exome Solution® (SOPHiA Genetics). Bioinformatics analysis was performed using the SOPHiA DDM platform (SOPHiA Genetics). Prediction of pathogenicity was carried out by integrating several in silico tools. RNA evaluation was performed to test the effect of the variant on the PKD2 splicing using a Reverse-Transcription PCR coupled with cDNA sequencing. Results: NGS revealed the presence of the PKD2 c.1717-2A>G variant that lies in the canonical splice site of intron 7. This rare variant was predicted to have a significant impact on the splicing, proved by the RNA-based analysis. We identified the presence of a transcript characterised by the simultaneous skipping of exons 8 and 9, with a retained reading frame and the merging of exons 7-10. Conclusions: We described for the first time a dual-exon skip event related to the presence of a single-base substitution in the PKD2 gene in an ADPKD-affected patient. We assumed that the molecular basis of such a rare mechanism lies in the specific order of intron removal. The finding represents novel evidence of an alternative and unusual splicing mechanism in the PKD2 gene, adding insights to the pathogenesis of the ADPKD.
Collapse
Affiliation(s)
- Elisa De Paolis
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (G.R.); (I.Z.); (C.R.T.); (A.M.)
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Giuseppina Raspaglio
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (G.R.); (I.Z.); (C.R.T.); (A.M.)
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Nunzia Ciferri
- Nephrology Unit, Departement of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Ilaria Zangrilli
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (G.R.); (I.Z.); (C.R.T.); (A.M.)
| | - Claudio Ricciardi Tenore
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (G.R.); (I.Z.); (C.R.T.); (A.M.)
| | - Andrea Urbani
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Pietro Manuel Ferraro
- Section of Nephrology, Department of Medicine, Università degli Studi di Verona, 37127 Verona, Italy;
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (G.R.); (I.Z.); (C.R.T.); (A.M.)
| | - Paola Concolino
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (G.R.); (I.Z.); (C.R.T.); (A.M.)
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
7
|
Senn KA, Hoskins AA. Mechanisms and regulation of spliceosome-mediated pre-mRNA splicing in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1866. [PMID: 38972853 DOI: 10.1002/wrna.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Katherine Anne Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Shine M, Gordon J, Schärfen L, Zigackova D, Herzel L, Neugebauer KM. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat Rev Mol Cell Biol 2024; 25:534-554. [PMID: 38509203 PMCID: PMC11199108 DOI: 10.1038/s41580-024-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3'-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3'-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Morgan Shine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jackson Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lydia Herzel
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Zhang Z, Kumar V, Dybkov O, Will CL, Zhong J, Ludwig SEJ, Urlaub H, Kastner B, Stark H, Lührmann R. Structural insights into the cross-exon to cross-intron spliceosome switch. Nature 2024; 630:1012-1019. [PMID: 38778104 PMCID: PMC11208138 DOI: 10.1038/s41586-024-07458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron1. Alternatively, it can occur through an exon-defined pathway2-5, whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5' splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex6,7. Exon definition promotes the splicing of upstream introns2,8,9 and plays a key part in alternative splicing regulation10-16. However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind in trans to a U1 snRNP-bound 5' splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- State Key Laboratory of Biotherapy and Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Vinay Kumar
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Cindy L Will
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jiayun Zhong
- State Key Laboratory of Biotherapy and Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Sebastian E J Ludwig
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Vincerx Pharma, Monheim am Rhein, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Berthold Kastner
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Reinhard Lührmann
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
10
|
Zhang W, Zhang X, Zhan X, Bai R, Lei J, Yan C, Shi Y. Structural insights into human exon-defined spliceosome prior to activation. Cell Res 2024; 34:428-439. [PMID: 38658629 PMCID: PMC11143319 DOI: 10.1038/s41422-024-00949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/01/2024] [Indexed: 04/26/2024] Open
Abstract
Spliceosome is often assembled across an exon and undergoes rearrangement to span a neighboring intron. Most states of the intron-defined spliceosome have been structurally characterized. However, the structure of a fully assembled exon-defined spliceosome remains at large. During spliceosome assembly, the pre-catalytic state (B complex) is converted from its precursor (pre-B complex). Here we report atomic structures of the exon-defined human spliceosome in four sequential states: mature pre-B, late pre-B, early B, and mature B. In the previously unknown late pre-B state, U1 snRNP is already released but the remaining proteins are still in the pre-B state; unexpectedly, the RNAs are in the B state, with U6 snRNA forming a duplex with 5'-splice site and U5 snRNA recognizing the 3'-end of the exon. In the early and mature B complexes, the B-specific factors are stepwise recruited and specifically recognize the exon 3'-region. Our study reveals key insights into the assembly of the exon-defined spliceosomes and identifies mechanistic steps of the pre-B-to-B transition.
Collapse
Affiliation(s)
- Wenyu Zhang
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaofeng Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Rui Bai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yigong Shi
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Downs SR, Grace B, Pleiss JA. Decoding branch points and unlocking splicing secrets. Nat Struct Mol Biol 2024; 31:732-734. [PMID: 38740946 DOI: 10.1038/s41594-024-01308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- Sara R Downs
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Bec Grace
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Zhang X, Zhan X, Bian T, Yang F, Li P, Lu Y, Xing Z, Fan R, Zhang QC, Shi Y. Structural insights into branch site proofreading by human spliceosome. Nat Struct Mol Biol 2024; 31:835-845. [PMID: 38196034 DOI: 10.1038/s41594-023-01188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
Selection of the pre-mRNA branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is crucial to prespliceosome (A complex) assembly. The RNA helicase PRP5 proofreads BS selection but the underlying mechanism remains unclear. Here we report the atomic structures of two sequential complexes leading to prespliceosome assembly: human 17S U2 snRNP and a cross-exon pre-A complex. PRP5 is anchored on 17S U2 snRNP mainly through occupation of the RNA path of SF3B1 by an acidic loop of PRP5; the helicase domain of PRP5 associates with U2 snRNA; the BS-interacting stem-loop (BSL) of U2 snRNA is shielded by TAT-SF1, unable to engage the BS. In the pre-A complex, an initial U2-BS duplex is formed; the translocated helicase domain of PRP5 stays with U2 snRNA and the acidic loop still occupies the RNA path. The pre-A conformation is specifically stabilized by the splicing factors SF1, DNAJC8 and SF3A2. Cancer-derived mutations in SF3B1 damage its association with PRP5, compromising BS proofreading. Together, these findings reveal key insights into prespliceosome assembly and BS selection or proofreading by PRP5.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
- Division of Reproduction and Genetics, The First Affiliated Hospital of USTC; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xiechao Zhan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Tong Bian
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Fenghua Yang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Pan Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yichen Lu
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Zhihan Xing
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Rongyan Fan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Qiangfeng Cliff Zhang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
14
|
Sparber P, Sharova M, Davydenko K, Pyankov D, Filatova A, Skoblov M. Deciphering the impact of coding and non-coding SCN1A gene variants on RNA splicing. Brain 2024; 147:1278-1293. [PMID: 37956038 DOI: 10.1093/brain/awad383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Variants that disrupt normal pre-mRNA splicing are increasingly being recognized as a major cause of monogenic disorders. The SCN1A gene, a key epilepsy gene that is linked to various epilepsy phenotypes, is no exception. Approximately 10% of all reported variants in the SCN1A gene are designated as splicing variants, with many located outside of the canonical donor and acceptor splice sites, and most have not been functionally investigated. However, given its restricted expression pattern, functional analysis of splicing variants in the SCN1A gene could not be routinely performed. In this study, we conducted a comprehensive analysis of all reported SCN1A variants and their potential to impact SCN1A splicing and conclude that splicing variants are substantially misannotated and under-represented. We created a splicing reporter system consisting of 18 splicing vectors covering all 26 protein-coding exons with different genomic contexts and several promoters of varying strengths in order to reproduce the wild-type splicing pattern of the SCN1A gene, revealing cis-regulatory elements essential for proper recognition of SCN1A exons. Functional analysis of 95 SCN1A variants was carried out, including all 68 intronic variants reported in the literature, located outside of the splice sites canonical dinucleotides; 21 exonic variants of different classes (synonymous, missense, nonsense and in-frame deletion) and six variants observed in patients with epilepsy. Interestingly, almost 20% of tested intronic variants had no influence on SCN1A splicing, despite being reported as causative in the literature. Moreover, we confirmed that the majority of predicted exonic variants affect splicing unravelling their true molecular mechanism. We used functional data to perform genotype-phenotype correlation, revealing distinct distribution patterns for missense and splice-affecting 'missense' variants and observed no difference in the phenotype severity of variants leading to in-frame and out-of-frame isoforms, indicating that the Nav1.1 protein is highly intolerant to structural variations. Our work demonstrates the importance of functional analysis in proper variant annotation and provides a tool for high-throughput delineation of splice-affecting variants in SCN1A in a whole-gene manner.
Collapse
Affiliation(s)
- Peter Sparber
- Research Centre for Medical Genetics, Laboratory of Functional Genomics, Moscow 115478, Russia
| | - Margarita Sharova
- Research Centre for Medical Genetics, Laboratory of Functional Genomics, Moscow 115478, Russia
| | - Ksenia Davydenko
- Research Centre for Medical Genetics, Laboratory of Functional Genomics, Moscow 115478, Russia
| | - Denis Pyankov
- Genomed Ltd., Research Department, Moscow 107014, Russia
| | - Alexandra Filatova
- Research Centre for Medical Genetics, Laboratory of Functional Genomics, Moscow 115478, Russia
| | - Mikhail Skoblov
- Research Centre for Medical Genetics, Laboratory of Functional Genomics, Moscow 115478, Russia
| |
Collapse
|
15
|
Bakhtiar D, Vondraskova K, Pengelly RJ, Chivers M, Kralovicova J, Vorechovsky I. Exonic splicing code and coordination of divalent metals in proteins. Nucleic Acids Res 2024; 52:1090-1106. [PMID: 38055834 PMCID: PMC10853796 DOI: 10.1093/nar/gkad1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Exonic sequences contain both protein-coding and RNA splicing information but the interplay of the protein and splicing code is complex and poorly understood. Here, we have studied traditional and auxiliary splicing codes of human exons that encode residues coordinating two essential divalent metals at the opposite ends of the Irving-Williams series, a universal order of relative stabilities of metal-organic complexes. We show that exons encoding Zn2+-coordinating amino acids are supported much less by the auxiliary splicing motifs than exons coordinating Ca2+. The handicap of the former is compensated by stronger splice sites and uridine-richer polypyrimidine tracts, except for position -3 relative to 3' splice junctions. However, both Ca2+ and Zn2+ exons exhibit close-to-constitutive splicing in multiple tissues, consistent with their critical importance for metalloprotein function and a relatively small fraction of expendable, alternatively spliced exons. These results indicate that constraints imposed by metal coordination spheres on RNA splicing have been efficiently overcome by the plasticity of exon-intron architecture to ensure adequate metalloprotein expression.
Collapse
Affiliation(s)
- Dara Bakhtiar
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Katarina Vondraskova
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben J Pengelly
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Martin Chivers
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
16
|
Schwartz S, Wu C, Kajitani N. RNA elements that control human papillomavirus mRNA splicing-targets for therapy? J Med Virol 2024; 96:e29473. [PMID: 38362929 DOI: 10.1002/jmv.29473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Human papillomaviruses (HPVs) cause more than 4.5% of all cancer in the world and more than half of these cases are attributed to human papillomavirus type 16 (HPV16). Prophylactic vaccines are available but antiviral drugs are not. Novel targets for therapy are urgently needed. Alternative RNA splicing is extensively used by HPVs to express all their genes and HPV16 is no exception. This process must function to perfection since mis-splicing could perturb the HPV gene expression program by altering mRNA levels or by generating dysfunctional mRNAs. Cis-acting RNA elements on the viral mRNAs and their cognate cellular trans-acting factors control papillomavirus RNA splicing. The precise but delicate nature of the splicing process renders splicing sensitive to interference. As such, papillomavirus RNA splicing is a potential target for therapy. Here we summarize our current understanding of cis-acting HPV16 RNA elements that control HPV16 mRNA splicing via cellular proteins and discuss how they may be exploited as targets for therapy to papillomavirus infections and cancer.
Collapse
Affiliation(s)
- Stefan Schwartz
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Chengjun Wu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Naoko Kajitani
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Tse V, Chacaltana G, Gutierrez M, Forino N, Jimenez A, Tao H, Do P, Oh C, Chary P, Quesada I, Hamrick A, Lee S, Stone M, Sanford J. An intronic RNA element modulates Factor VIII exon-16 splicing. Nucleic Acids Res 2024; 52:300-315. [PMID: 37962303 PMCID: PMC10783525 DOI: 10.1093/nar/gkad1034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Pathogenic variants in the human Factor VIII (F8) gene cause Hemophilia A (HA). Here, we investigated the impact of 97 HA-causing single-nucleotide variants on the splicing of 11 exons from F8. For the majority of F8 exons, splicing was insensitive to the presence of HA-causing variants. However, splicing of several exons, including exon-16, was impacted by variants predicted to alter exonic splicing regulatory sequences. Using exon-16 as a model, we investigated the structure-function relationship of HA-causing variants on splicing. Intriguingly, RNA chemical probing analyses revealed a three-way junction structure at the 3'-end of intron-15 (TWJ-3-15) capable of sequestering the polypyrimidine tract. We discovered antisense oligonucleotides (ASOs) targeting TWJ-3-15 partially rescue splicing-deficient exon-16 variants by increasing accessibility of the polypyrimidine tract. The apical stem loop region of TWJ-3-15 also contains two hnRNPA1-dependent intronic splicing silencers (ISSs). ASOs blocking these ISSs also partially rescued splicing. When used in combination, ASOs targeting both the ISSs and the region sequestering the polypyrimidine tract, fully rescue pre-mRNA splicing of multiple HA-linked variants of exon-16. Together, our data reveal a putative RNA structure that sensitizes F8 exon-16 to aberrant splicing.
Collapse
Affiliation(s)
- Victor Tse
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Guillermo Chacaltana
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Martin Gutierrez
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Nicholas M Forino
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Arcelia G Jimenez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Hanzhang Tao
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Phong H Do
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Catherine Oh
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Priyanka Chary
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Isabel Quesada
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Antonia Hamrick
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Sophie Lee
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
19
|
Kataoka N. The Nuclear Cap-Binding Complex, a multitasking binding partner of RNA polymerase II transcripts. J Biochem 2023; 175:9-15. [PMID: 37830942 PMCID: PMC10771035 DOI: 10.1093/jb/mvad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
In eukaryotic cells, RNAs transcribed by RNA polymerase-II receive the modification at the 5' end. This structure is called the cap structure. The cap structure has a fundamental role for translation initiation by recruiting eukaryotic translation initiation factor 4F (eIF4F). The other important mediator of the cap structure is a nuclear cap-binding protein complex (CBC). CBC consists of two proteins, which are renamed as NCBP1 and NCBP2 (previously called as CBP80/NCBP and CBP20/NIP1, respectively). This review article discusses the multiple roles CBC mediates and co-ordinates in several gene expression steps in eukaryotes.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Agriculture Bldg. 7A, Room 703, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Stroup EK, Ji Z. Deep learning of human polyadenylation sites at nucleotide resolution reveals molecular determinants of site usage and relevance in disease. Nat Commun 2023; 14:7378. [PMID: 37968271 PMCID: PMC10651852 DOI: 10.1038/s41467-023-43266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023] Open
Abstract
The genomic distribution of cleavage and polyadenylation (polyA) sites should be co-evolutionally optimized with the local gene structure. Otherwise, spurious polyadenylation can cause premature transcription termination and generate aberrant proteins. To obtain mechanistic insights into polyA site optimization across the human genome, we develop deep/machine learning models to identify genome-wide putative polyA sites at unprecedented nucleotide-level resolution and calculate their strength and usage in the genomic context. Our models quantitatively measure position-specific motif importance and their crosstalk in polyA site formation and cleavage heterogeneity. The intronic site expression is governed by the surrounding splicing landscape. The usage of alternative polyA sites in terminal exons is modulated by their relative locations and distance to downstream genes. Finally, we apply our models to reveal thousands of disease- and trait-associated genetic variants altering polyadenylation activity. Altogether, our models represent a valuable resource to dissect molecular mechanisms mediating genome-wide polyA site expression and characterize their functional roles in human diseases.
Collapse
Affiliation(s)
- Emily Kunce Stroup
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60628, USA.
| |
Collapse
|
21
|
Yıldırım B, Vogl C. Purifying selection against spurious splicing signals contributes to the base composition evolution of the polypyrimidine tract. J Evol Biol 2023; 36:1295-1312. [PMID: 37564008 PMCID: PMC10946897 DOI: 10.1111/jeb.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 08/12/2023]
Abstract
Among eukaryotes, the major spliceosomal pathway is highly conserved. While long introns may contain additional regulatory sequences, the ones in short introns seem to be nearly exclusively related to splicing. Although these regulatory sequences involved in splicing are well-characterized, little is known about their evolution. At the 3' end of introns, the splice signal nearly universally contains the dimer AG, which consists of purines, and the polypyrimidine tract upstream of this 3' splice signal is characterized by over-representation of pyrimidines. If the over-representation of pyrimidines in the polypyrimidine tract is also due to avoidance of a premature splicing signal, we hypothesize that AG should be the most under-represented dimer. Through the use of DNA-strand asymmetry patterns, we confirm this prediction in fruit flies of the genus Drosophila and by comparing the asymmetry patterns to a presumably neutrally evolving region, we quantify the selection strength acting on each motif. Moreover, our inference and simulation method revealed that the best explanation for the base composition evolution of the polypyrimidine tract is the joint action of purifying selection against a spurious 3' splice signal and the selection for pyrimidines. Patterns of asymmetry in other eukaryotes indicate that avoidance of premature splicing similarly affects the nucleotide composition in their polypyrimidine tracts.
Collapse
Affiliation(s)
- Burçin Yıldırım
- Department of Biomedical SciencesVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Claus Vogl
- Department of Biomedical SciencesVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| |
Collapse
|
22
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Choquet K, Baxter-Koenigs AR, Dülk SL, Smalec BM, Rouskin S, Churchman LS. Pre-mRNA splicing order is predetermined and maintains splicing fidelity across multi-intronic transcripts. Nat Struct Mol Biol 2023; 30:1064-1076. [PMID: 37443198 PMCID: PMC10653200 DOI: 10.1038/s41594-023-01035-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Combinatorially, intron excision within a given nascent transcript could proceed down any of thousands of paths, each of which would expose different dynamic landscapes of cis-elements and contribute to alternative splicing. In this study, we found that post-transcriptional multi-intron splicing order in human cells is largely predetermined, with most genes spliced in one or a few predominant orders. Strikingly, these orders were conserved across cell types and stages of motor neuron differentiation. Introns flanking alternatively spliced exons were frequently excised last, after their neighboring introns. Perturbations to the spliceosomal U2 snRNA altered the preferred splicing order of many genes, and these alterations were associated with the retention of other introns in the same transcript. In one gene, early removal of specific introns was sufficient to induce delayed excision of three proximal introns, and this delay was caused by two distinct cis-regulatory mechanisms. Together, our results demonstrate that multi-intron splicing order in human cells is predetermined, is influenced by a component of the spliceosome and ensures splicing fidelity across long pre-mRNAs.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Sarah-Luisa Dülk
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Brendan M Smalec
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Silvi Rouskin
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Zhu D, Yang J, Zhang M, Han Z, Shao M, Fan Q, Ma Y, Xie D, Xiao W. Identification of neoantigens and immunological subtypes in clear cell renal cell carcinoma for mRNA vaccine development and patient selection. Aging (Albany NY) 2023; 15:204798. [PMID: 37315301 PMCID: PMC10292886 DOI: 10.18632/aging.204798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common urological malignancy with diverse histological types. This study aimed to detect neoantigens in ccRCC to develop mRNA vaccines and distinguish between ccRCC immunological subtypes for construction of an immune landscape to select patients suitable for vaccination. Using The Cancer Genome Atlas SpliceSeq database, The Cancer Genome Atlas, and the International Cancer Genome Consortium cohorts, we comprehensively analysed potential tumour antigens of ccRCC associated with aberrant alternative splicing, somatic mutation, nonsense-mediated mRNA decay factors, antigen-presenting cells, and overall survival. Immune subtypes (C1/C2) and nine immune gene modules of ccRCC were identified by consistency clustering and weighted correlation network analysis. The immune landscape as well as molecular and cellular characteristics of immunotypes were assessed. Rho-guanine nucleotide exchange factor 3 (ARHGEF3) was identified as a new ccRCC antigen for development of an mRNA vaccine. A higher tumour mutation burden, differential expression of immune checkpoints, and immunogenic cell death were observed in cases with the C2 immunotype. Cellular characteristics increased the complexity of the immune environment, and worse outcomes were observed in ccRCC cases with the C2 immunotype. We constructed the immune landscape for selecting patients with the C2 immunotype suitable for vaccination.
Collapse
Affiliation(s)
- Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jiabin Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Minyi Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhongxiao Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Meng Shao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yun Ma
- Department of pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Dandan Xie
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, Guangdong, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
25
|
Pan B, Ye F, Li T, Wei F, Warren A, Wang Y, Gao S. Potential role of N 6-adenine DNA methylation in alternative splicing and endosymbiosis in Paramecium bursaria. iScience 2023; 26:106676. [PMID: 37182097 PMCID: PMC10173741 DOI: 10.1016/j.isci.2023.106676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
N6-adenine DNA methylation (6mA), a rediscovered epigenetic mark in eukaryotic organisms, diversifies in abundance, distribution, and function across species, necessitating its study in more taxa. Paramecium bursaria is a typical model organism with endosymbiotic algae of the species Chlorella variabilis. This consortium therefore serves as a valuable system to investigate the functional role of 6mA in endosymbiosis, as well as the evolutionary importance of 6mA among eukaryotes. In this study, we report the first genome-wide, base pair-resolution map of 6mA in P. bursaria and identify its methyltransferase PbAMT1. Functionally, 6mA exhibits a bimodal distribution at the 5' end of RNA polymerase II-transcribed genes and possibly participates in transcription by facilitating alternative splicing. Evolutionarily, 6mA co-evolves with gene age and likely serves as a reverse mark of endosymbiosis-related genes. Our results offer new insights for the functional diversification of 6mA in eukaryotes as an important epigenetic mark.
Collapse
Affiliation(s)
- Bo Pan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Fei Ye
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Tao Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Fan Wei
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Yuanyuan Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Corresponding author
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
26
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
27
|
Schmitzová J, Cretu C, Dienemann C, Urlaub H, Pena V. Structural basis of catalytic activation in human splicing. Nature 2023; 617:842-850. [PMID: 37165190 PMCID: PMC10208982 DOI: 10.1038/s41586-023-06049-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Pre-mRNA splicing follows a pathway driven by ATP-dependent RNA helicases. A crucial event of the splicing pathway is the catalytic activation, which takes place at the transition between the activated Bact and the branching-competent B* spliceosomes. Catalytic activation occurs through an ATP-dependent remodelling mediated by the helicase PRP2 (also known as DHX16)1-3. However, because PRP2 is observed only at the periphery of spliceosomes3-5, its function has remained elusive. Here we show that catalytic activation occurs in two ATP-dependent stages driven by two helicases: PRP2 and Aquarius. The role of Aquarius in splicing has been enigmatic6,7. Here the inactivation of Aquarius leads to the stalling of a spliceosome intermediate-the BAQR complex-found halfway through the catalytic activation process. The cryogenic electron microscopy structure of BAQR reveals how PRP2 and Aquarius remodel Bact and BAQR, respectively. Notably, PRP2 translocates along the intron while it strips away the RES complex, opens the SF3B1 clamp and unfastens the branch helix. Translocation terminates six nucleotides downstream of the branch site through an assembly of PPIL4, SKIP and the amino-terminal domain of PRP2. Finally, Aquarius enables the dissociation of PRP2, plus the SF3A and SF3B complexes, which promotes the relocation of the branch duplex for catalysis. This work elucidates catalytic activation in human splicing, reveals how a DEAH helicase operates and provides a paradigm for how helicases can coordinate their activities.
Collapse
Affiliation(s)
- Jana Schmitzová
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constantin Cretu
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK
- Cluster of Excellence Multiscale Bioimaging (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christian Dienemann
- Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, Bioanalytics, University Medical Center Sciences, Göttingen, Germany
| | - Vladimir Pena
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK.
| |
Collapse
|
28
|
Tse V, Chacaltana G, Gutierrez M, Forino NM, Jimenez AG, Tao H, Do PH, Oh C, Chary P, Quesada I, Hamrick A, Lee S, Stone MD, Sanford JR. Rescue of blood coagulation Factor VIII exon-16 mis-splicing by antisense oligonucleotides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535160. [PMID: 37034721 PMCID: PMC10081312 DOI: 10.1101/2023.03.31.535160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The human Factor VIII ( F8 ) protein is essential for the blood coagulation cascade and specific F8 mutations cause the rare bleeding disorder Hemophilia A (HA). Here, we investigated the impact of HA-causing single-nucleotide mutations on F8 pre-mRNA splicing. We found that 14/97 (∼14.4%) coding sequence mutations tested in our study induced exon skipping. Splicing patterns of 4/11 (∼36.4%) F8 exons tested were especially sensitive to the presence of common disease-causing mutations. RNA-chemical probing analyses revealed a three-way junction structure at the 3' end of intron 15 (TWJ-3-15). TWJ-3-15 sequesters the polypyrimidine tract, a key determinant of 3' splice site strength. Using exon-16 of the F8 gene as a model, we designed specific antisense oligonucleotides (ASOs) that target TWJ-3-15 and identified three that promote the splicing of F8 exon-16. Interaction of TWJ-3-15 with ASOs increases accessibility of the polypyrimidine tract and inhibits the binding of hnRNPA1-dependent splicing silencing factors. Moreover, ASOs targeting TWJ-3-15 rescue diverse splicing-sensitive HA-causing mutations, most of which are distal to the 3' splice site being impacted. The TWJ-3-15 structure and its effect on mRNA splicing provide a model for HA etiology in patients harboring specific F8 mutations and provide a framework for precision RNA-based HA therapies.
Collapse
|
29
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
30
|
Koh E, Shin D, Kim KS. Exon definitive regions for MPC1 microexon splicing and its usage for splicing modulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:398-410. [PMID: 36817727 PMCID: PMC9929638 DOI: 10.1016/j.omtn.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Alternative splicing of microexons (3-30 base pairs [bp]) is involved in important biological processes in brain development and human cancers. However, understanding a splicing process of non-3x bp microexons is scarce. We showed that 4 bp microexon of mitochondrial pyruvate carrier1 (MPC1) is constitutively included in mRNA. Based on our studies with minigene and exon island constructs, we found the strong exon definition region in the proximal introns bordering MPC1 microexon. Ultimately, we defined a nucleotide fragment from the 3'ss 67 bp of MPC1 microexon to the 5'ss consensus sequence, as a core exon island, which can concatenate its microexon and neighboring exons by splicing. Furthermore, we showed that insertion of the core exon island into a target exon or intron induced skip the target exon or enhance the splicing of an adjacent exon, respectively. Collectively, we suggest that the exon island derived from MPC1 microexon modifies genuine splicing patterns depending on its position, thereby providing insights on strategies for splicing-mediated gene correction.
Collapse
Affiliation(s)
- Eunjin Koh
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Daye Shin
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kyung-Sup Kim
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea,Corresponding author: Kyung-Sup Kim, Department of Biochemistry and Molecular Biology, Institute of Genetic Science, College of Medicine, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
31
|
Horn T, Gosliga A, Li C, Enculescu M, Legewie S. Position-dependent effects of RNA-binding proteins in the context of co-transcriptional splicing. NPJ Syst Biol Appl 2023; 9:1. [PMID: 36653378 PMCID: PMC9849329 DOI: 10.1038/s41540-022-00264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/08/2022] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing is an important step in eukaryotic mRNA pre-processing which increases the complexity of gene expression programs, but is frequently altered in disease. Previous work on the regulation of alternative splicing has demonstrated that splicing is controlled by RNA-binding proteins (RBPs) and by epigenetic DNA/histone modifications which affect splicing by changing the speed of polymerase-mediated pre-mRNA transcription. The interplay of these different layers of splicing regulation is poorly understood. In this paper, we derived mathematical models describing how splicing decisions in a three-exon gene are made by combinatorial spliceosome binding to splice sites during ongoing transcription. We additionally take into account the effect of a regulatory RBP and find that the RBP binding position within the sequence is a key determinant of how RNA polymerase velocity affects splicing. Based on these results, we explain paradoxical observations in the experimental literature and further derive rules explaining why the same RBP can act as inhibitor or activator of cassette exon inclusion depending on its binding position. Finally, we derive a stochastic description of co-transcriptional splicing regulation at the single-cell level and show that splicing outcomes show little noise and follow a binomial distribution despite complex regulation by a multitude of factors. Taken together, our simulations demonstrate the robustness of splicing outcomes and reveal that quantitative insights into kinetic competition of co-transcriptional events are required to fully understand this important mechanism of gene expression diversity.
Collapse
Affiliation(s)
- Timur Horn
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Alison Gosliga
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Congxin Li
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Mihaela Enculescu
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
32
|
Ding Z, Meng YR, Fan YJ, Xu YZ. Roles of minor spliceosome in intron recognition and the convergence with the better understood major spliceosome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1761. [PMID: 36056453 DOI: 10.1002/wrna.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 01/31/2023]
Abstract
Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Zhan Ding
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Ran Meng
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Zeng Y, Fair BJ, Zeng H, Krishnamohan A, Hou Y, Hall JM, Ruthenburg AJ, Li YI, Staley JP. Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing. Mol Cell 2022; 82:4681-4699.e8. [PMID: 36435176 PMCID: PMC10448999 DOI: 10.1016/j.molcel.2022.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/10/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin J Fair
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Huilin Zeng
- 855 Jefferson Ave. Redwood City, CA 94063, USA
| | - Aiswarya Krishnamohan
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yichen Hou
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Johnathon M Hall
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yang I Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Tholen J, Galej WP. Structural studies of the spliceosome: Bridging the gaps. Curr Opin Struct Biol 2022; 77:102461. [PMID: 36116369 PMCID: PMC9762485 DOI: 10.1016/j.sbi.2022.102461] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 02/07/2023]
Abstract
The spliceosome is a multi-megadalton RNA-protein complex responsible for the removal of non-coding introns from pre-mRNAs. Due to its complexity and dynamic nature, it has proven to be a very challenging target for structural studies. Developments in single particle cryo-EM have overcome these previous limitations and paved the way towards a structural characterisation of the splicing machinery. Despite tremendous progress, many aspects of spliceosome structure and function remain elusive. In particular, the events leading to the definition of exon-intron boundaries, alternative and non-canonical splicing events, and cross-talk with other cellular machineries. Efforts are being made to address these knowledge gaps and further our mechanistic understanding of the spliceosome. Here, we summarise recent progress in the structural and functional analysis of the spliceosome.
Collapse
Affiliation(s)
- J Tholen
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France. https://twitter.com/@Structjon
| | - W P Galej
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
35
|
Espinosa S, De Bortoli F, Li X, Rossi J, Wagley ME, Lo HYG, Taliaferro JM, Zhao R. Human PRPF39 is an alternative splicing factor recruiting U1 snRNP to weak 5' splice sites. RNA (NEW YORK, N.Y.) 2022; 29:rna.079320.122. [PMID: 36316087 PMCID: PMC9808567 DOI: 10.1261/rna.079320.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Human PRPF39 is a homolog of the yeast Prp39 and Prp42 paralogs. We have previously shown that human PRPF39 forms a homodimer that interacts with the CTD of U1C, mirroring the yeast Prp39/Prp42 heterodimer. We demonstrate here that PRPF39 knockdown in HEK293 cells affects many alternative splicing events primarily by reducing the usage of weak 5'ss. Additionally, PRPF39 preferentially binds to a GC-rich RNA, likely at the interface between its NTD and CTD. These data indicate that PRPF39 potentially recruits U1 snRNP to a weak 5' ss, serving as a previously unrecognized alternative splicing factor. We further demonstrate that human TIA1 binds to U1C through its RRM1 and RRM3+Q domains but has no significant binding to PRPF39. Finally, all three human LUC7L isoforms directly interact with U1C. These results reveal significant parallels to the yeast U1 snRNP structure and support the use of yeast U1 snRNP as a model for understanding the mechanism of human alternative splicing.
Collapse
Affiliation(s)
- Sara Espinosa
- University of Colorado Denver Anschutz Medical Campus
| | | | - Xueni Li
- University of Colorado Denver Anschutz Medical Campus
| | - John Rossi
- University of Colorado Denver Anschutz Medical Campus
| | | | - Hei-Yong G Lo
- University of Colorado Denver Anschutz Medical Campus
| | | | - Rui Zhao
- University of Colorado Denver Anschutz Medical Campus
| |
Collapse
|
36
|
Transcriptome-Wide Detection of Intron/Exon Definition in the Endogenous Pre-mRNA Transcripts of Mammalian Cells and Its Regulation by Depolarization. Int J Mol Sci 2022; 23:ijms231710157. [PMID: 36077555 PMCID: PMC9456152 DOI: 10.3390/ijms231710157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Pairing of splice sites across an intron or exon is the central point of intron or exon definition in pre-mRNA splicing with the latter mode proposed for most mammalian exons. However, transcriptome-wide pairing within endogenous transcripts has not been examined for the prevalence of each mode in mammalian cells. Here we report such pairings in rat GH3 pituitary cells by measuring the relative abundance of nuclear RNA-Seq reads at the intron start or end (RISE). Interestingly, RISE indexes are positively correlated between 5′ and 3′ splice sites specifically across introns or exons but inversely correlated with the usage of adjacent exons. Moreover, the ratios between the paired indexes were globally modulated by depolarization, which was disruptible by 5-aza-Cytidine. The nucleotide matrices of the RISE-positive splice sites deviate significantly from the rat consensus, and short introns or exons are enriched with the cross-intron or -exon RISE pairs, respectively. Functionally, the RISE-positive genes cluster for basic cellular processes including RNA binding/splicing, or more specifically, hormone production if regulated by depolarization. Together, the RISE analysis identified the transcriptome-wide regulation of either intron or exon definition between weak splice sites of short introns/exons in mammalian cells. The analysis also provides a way to further track the splicing intermediates and intron/exon definition during the dynamic regulation of alternative splicing by extracellular factors.
Collapse
|
37
|
Mohamed AA, Vazquez Nunez R, Vos SM. Structural advances in transcription elongation. Curr Opin Struct Biol 2022; 75:102422. [PMID: 35816930 PMCID: PMC9398977 DOI: 10.1016/j.sbi.2022.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Transcription is the first step of gene expression and involves RNA polymerases. After transcription initiation, RNA polymerase enters elongation followed by transcription termination at the end of the gene. Only recently, structures of transcription elongation complexes bound to key transcription elongation factors have been determined in bacterial and eukaryotic systems. These structures have revealed numerous insights including the basis for transcriptional pausing, RNA polymerase interaction with large complexes such as the ribosome and the spliceosome, and the transition into productive elongation. Here, we review these structures and describe areas for future research.
Collapse
Affiliation(s)
- Abdallah A Mohamed
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/AMohamed_98
| | - Roberto Vazquez Nunez
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/rjareth
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA.
| |
Collapse
|
38
|
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 2022; 23:697-710. [PMID: 35821097 DOI: 10.1038/s41576-022-00514-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.
Collapse
Affiliation(s)
- Charlotte J Wright
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK. .,Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Pengelly RJ, Bakhtiar D, Borovská I, Královičová J, Vořechovský I. Exonic splicing code and protein binding sites for calcium. Nucleic Acids Res 2022; 50:5493-5512. [PMID: 35474482 PMCID: PMC9177970 DOI: 10.1093/nar/gkac270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/12/2022] Open
Abstract
Auxilliary splicing sequences in exons, known as enhancers (ESEs) and silencers (ESSs), have been subject to strong selection pressures at the RNA and protein level. The protein component of this splicing code is substantial, recently estimated at ∼50% of the total information within ESEs, but remains poorly understood. The ESE/ESS profiles were previously associated with the Irving-Williams (I-W) stability series for divalent metals, suggesting that the ESE/ESS evolution was shaped by metal binding sites. Here, we have examined splicing activities of exonic sequences that encode protein binding sites for Ca2+, a weak binder in the I-W affinity order. We found that predicted exon inclusion levels for the EF-hand motifs and for Ca2+-binding residues in nonEF-hand proteins were higher than for average exons. For canonical EF-hands, the increase was centred on the EF-hand chelation loop and, in particular, on Ca2+-coordinating residues, with a 1>12>3∼5>9 hierarchy in the 12-codon loop consensus and usage bias at codons 1 and 12. The same hierarchy but a lower increase was observed for noncanonical EF-hands, except for S100 proteins. EF-hand loops preferentially accumulated exon splits in two clusters, one located in their N-terminal halves and the other around codon 12. Using splicing assays and published crosslinking and immunoprecipitation data, we identify candidate trans-acting factors that preferentially bind conserved GA-rich motifs encoding negatively charged amino acids in the loops. Together, these data provide evidence for the high capacity of codons for Ca2+-coordinating residues to be retained in mature transcripts, facilitating their exon-level expansion during eukaryotic evolution.
Collapse
Affiliation(s)
- Reuben J Pengelly
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Dara Bakhtiar
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Jana Královičová
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
- Slovak Academy of Sciences, Institute of Zoology, 845 06 Bratislava, Slovak Republic
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
40
|
Tammer L, Hameiri O, Keydar I, Roy VR, Ashkenazy-Titelman A, Custódio N, Sason I, Shayevitch R, Rodríguez-Vaello V, Rino J, Lev Maor G, Leader Y, Khair D, Aiden EL, Elkon R, Irimia M, Sharan R, Shav-Tal Y, Carmo-Fonseca M, Ast G. Gene architecture directs splicing outcome in separate nuclear spatial regions. Mol Cell 2022; 82:1021-1034.e8. [PMID: 35182478 DOI: 10.1016/j.molcel.2022.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.
Collapse
Affiliation(s)
- Luna Tammer
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ifat Keydar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Vanessa Rachel Roy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Asaf Ashkenazy-Titelman
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Noélia Custódio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Itay Sason
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronna Shayevitch
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Victoria Rodríguez-Vaello
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Spain, ICREA, Barcelona, Spain
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Galit Lev Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Yodfat Leader
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Doha Khair
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Spain, ICREA, Barcelona, Spain
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
41
|
Prudêncio P, Savisaar R, Rebelo K, Martinho RG, Carmo-Fonseca M. Transcription and splicing dynamics during early Drosophila development. RNA (NEW YORK, N.Y.) 2022; 28:139-161. [PMID: 34667107 PMCID: PMC8906543 DOI: 10.1261/rna.078933.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 05/03/2023]
Abstract
Widespread cotranscriptional splicing has been demonstrated from yeast to human. However, most studies to date addressing the kinetics of splicing relative to transcription used either Saccharomyces cerevisiae or metazoan cultured cell lines. Here, we adapted native elongating transcript sequencing technology (NET-seq) to measure cotranscriptional splicing dynamics during the early developmental stages of Drosophila melanogaster embryos. Our results reveal the position of RNA polymerase II (Pol II) when both canonical and recursive splicing occur. We found heterogeneity in splicing dynamics, with some RNAs spliced immediately after intron transcription, whereas for other transcripts no splicing was observed over the first 100 nt of the downstream exon. Introns that show splicing completion before Pol II has reached the end of the downstream exon are necessarily intron-defined. We studied the splicing dynamics of both nascent pre-mRNAs transcribed in the early embryo, which have few and short introns, as well as pre-mRNAs transcribed later in embryonic development, which contain multiple long introns. As expected, we found a relationship between the proportion of spliced reads and intron size. However, intron definition was observed at all intron sizes. We further observed that genes transcribed in the early embryo tend to be isolated in the genome whereas genes transcribed later are often overlapped by a neighboring convergent gene. In isolated genes, transcription termination occurred soon after the polyadenylation site, while in overlapped genes, Pol II persisted associated with the DNA template after cleavage and polyadenylation of the nascent transcript. Taken together, our data unravel novel dynamic features of Pol II transcription and splicing in the developing Drosophila embryo.
Collapse
Affiliation(s)
- Pedro Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rosina Savisaar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Kenny Rebelo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rui Gonçalo Martinho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Department of Medical Sciences and Institute for Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
42
|
Amiñoso C, Solera J. Genetic analysis of 76 Spanish Pompe disease patients: Identification of 12 novel pathogenic GAA variants and functional characterization of splicing variants. Gene 2022; 808:145967. [PMID: 34530085 DOI: 10.1016/j.gene.2021.145967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 09/09/2021] [Indexed: 11/04/2022]
Abstract
Glycogenosis type II (GSDII), or Pompe disease (MIM 232300), is an inherited autosomal recessive disorder caused by deficiency of the lysosomal acid-α-glucosidase. Mutations in the GAA gene alter normal enzyme production and lead to progressive buildup of intralysosomal glycogen, which plays an essential role in the severity and progression of the disease. We report here the study of 76 patients from Spain with either infantile or late onset form of Pompe disease. The analysis consisted in the molecular study of exons and intron flanking fragments of GAA gene. We have identified 55 different molecular pathogenic variants, 12 of them not previously described. In addition, we have determined a frequency of 84.37% for the c.-32-13T>G mutation in patients with the late-onset form of the disease. Functional characterization of some splice mutations showed deleterious mechanisms on the processing of mRNA.
Collapse
Affiliation(s)
- Cinthia Amiñoso
- Molecular Oncogenetics Section, INGEMM, Hospital La Paz, 28046 Madrid, Spain
| | - Jesús Solera
- Molecular Oncogenetics Section, INGEMM, Hospital La Paz, 28046 Madrid, Spain; Department of Biochemistry, Faculty of Medicine, Autonoma University of Madrid, 28046 Madrid, Spain.
| |
Collapse
|
43
|
Abstract
Alternative splicing enables higher eukaryotes to expand mRNA diversity from a finite number of genes through highly combinatorial splice site selection mechanisms that are influenced by the sequence of competing splice sites, cis-regulatory elements binding trans-acting factors, the length of exons and introns harbouring alternative splice sites and RNA secondary structures at putative splice junctions. To test the hypothesis that the intron definition or exon definition modes of splice site recognition direct the selection of alternative splice patterns, we created a database of alternative splice site usage (ALTssDB). When alternative splice sites are embedded within short introns (intron definition), the 5' and 3' splice sites closest to each other across the intron preferentially pair, consistent with previous observations. However, when alternative splice sites are embedded within large flanking introns (exon definition), the 5' and 3' splice sites closest to each other across the exon are preferentially selected. Thus, alternative splicing decisions are influenced by the intron and exon definition modes of splice site recognition. The results demonstrate that the spliceosome pairs splice sites that are closest in proximity within the unit of initial splice site selection.
Collapse
Affiliation(s)
- Francisco Carranza
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, USA
| | - Hossein Shenasa
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, USA
| |
Collapse
|
44
|
Jutzi D, Ruepp MD. Alternative Splicing in Human Biology and Disease. Methods Mol Biol 2022; 2537:1-19. [PMID: 35895255 DOI: 10.1007/978-1-0716-2521-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative pre-mRNA splicing allows for the production of multiple mRNAs from an individual gene, which not only expands the protein-coding potential of the genome but also enables complex mechanisms for the post-transcriptional control of gene expression. Regulation of alternative splicing entails a combinatorial interplay between an abundance of trans-acting splicing factors, cis-acting regulatory sequence elements and their concerted effects on the core splicing machinery. Given the extent and biological significance of alternative splicing in humans, it is not surprising that aberrant splicing patterns can cause or contribute to a wide range of diseases. In this introductory chapter, we outline the mechanisms that govern alternative pre-mRNA splicing and its regulation and discuss how dysregulated splicing contributes to human diseases affecting the motor system and the brain.
Collapse
Affiliation(s)
- Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| |
Collapse
|
45
|
Tang H, Shi X, Zhang G. Novel compound heterozygous mutations in the CYP4F22 gene in a patient with autosomal recessive congenital ichthyosis. Clin Case Rep 2021; 9:e05082. [PMID: 34917360 PMCID: PMC8645175 DOI: 10.1002/ccr3.5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022] Open
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a rare form of keratinization disorder of the skin, which can be caused by mutations in 14 ARCI genes. We present a rare case of ARCI that carried a novel null mutation and a novel splice site mutation in the CYP4F22 gene.
Collapse
Affiliation(s)
- Haiyan Tang
- Department of Medical GeneticsThe Second Xiangya HospitalCentral South UniversityChangshaChina
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Xiaoliu Shi
- Department of Medical GeneticsThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Guiying Zhang
- Department of DermatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
46
|
Shi S, Li X, Zhao R. Detecting circRNA in purified spliceosomal P complex. Methods 2021; 196:30-35. [PMID: 33577981 PMCID: PMC8352997 DOI: 10.1016/j.ymeth.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circRNAs) generated from back-splicing of exons have been found in a wide range of eukaryotic species and exert a variety of biological functions. Unlike canonical splicing, the mechanism of back-splicing has long remained elusive. We recently determined the cryo-EM structure of the yeast spliceosomal E complex assembled on introns, leading us to hypothesize that the same E complex can assemble across an exon forming the exon-definition complex. This complex, when assembled on long exons, goes through the splicing cycle and catalyzes back-splicing to generate circRNAs. Supporting this hypothesis, we purified the yeast post-catalytic spliceosomal P complex (the best complex in the splicing cycle to trap splicing products and intermediates) and detected canonical and back-splicing products as well as splicing intermediates. Here we describe in detail this procedure, which may be applied to other organisms to facilitate research on the biogenesis and regulation of circRNA.
Collapse
Affiliation(s)
- Shasha Shi
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
47
|
Borao S, Ayté J, Hümmer S. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing. Int J Mol Sci 2021; 22:ijms222212444. [PMID: 34830325 PMCID: PMC8624252 DOI: 10.3390/ijms222212444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is a major process in the regulated expression of genes in eukaryotes, and alternative splicing is used to generate different proteins from the same coding gene. Splicing is a catalytic process that removes introns and ligates exons to create the RNA sequence that codifies the final protein. While this is achieved in an autocatalytic process in ancestral group II introns in prokaryotes, the spliceosome has evolved during eukaryogenesis to assist in this process and to finally provide the opportunity for intron-specific splicing. In the early stage of splicing, the RNA 5' and 3' splice sites must be brought within proximity to correctly assemble the active spliceosome and perform the excision and ligation reactions. The assembly of this first complex, termed E-complex, is currently the least understood process. We focused in this review on the formation of the E-complex and compared its composition and function in three different organisms. We highlight the common ancestral mechanisms in S. cerevisiae, S. pombe, and mammals and conclude with a unifying model for intron definition in constitutive and regulated co-transcriptional splicing.
Collapse
Affiliation(s)
- Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Correspondence: (J.A.); (S.H.)
| | - Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Translational Molecular Pathology, Vall d’Hebron Research Institute (VHIR), CIBERONC, 08035 Barcelona, Spain
- Correspondence: (J.A.); (S.H.)
| |
Collapse
|
48
|
Wang M, Li K, Li Y, Mi L, Hu Z, Guo S, Song CP, Duan Z. An Exon Skipping in CRS1 Is Associated with Perturbed Chloroplast Development in Maize. Int J Mol Sci 2021; 22:ijms221910668. [PMID: 34639010 PMCID: PMC8508894 DOI: 10.3390/ijms221910668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Chloroplasts of higher plants are semi-autonomous organelles that perform photosynthesis and produce hormones and metabolites. They play crucial roles in plant growth and development. Although many seedling-lethal nuclear genes or regulators required for chloroplast development have been characterized, the understanding of chloroplast development is still limited. Using a genetic screen, we isolated a mutant named ell1, with etiolated leaves and a seedling-lethal phenotype. Analysis by BN-PAGE and transmission electron microscopy revealed drastic morphological defects of chloroplasts in ell1 mutants. Genetic mapping of the mutant gene revealed a single mutation (G-to-A) at the 5′ splice site of intron 5 in CRS1, resulting in an exon skipping in CRS1, indicating that this mutation in CRS1 is responsible for the observed phenotype, which was further confirmed by genetic analysis. The incorrectly spliced CRS1 failed to mediate the splicing of atpF intron. Moreover, the quantitative analysis suggested that ZmCRS1 may participate in chloroplast transcription to regulate the development of chloroplast. Taken together, these findings improve our understanding of the ZmCRS1 protein and shed new light on the regulation of chloroplast development in maize.
Collapse
|
49
|
Horiuchi K, Kawamura T, Hamakubo T. Wilms' Tumor 1-Associating Protein complex regulates alternative splicing and polyadenylation at potential G-quadruplex-forming splice site sequences. J Biol Chem 2021; 297:101248. [PMID: 34582888 PMCID: PMC8605363 DOI: 10.1016/j.jbc.2021.101248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
Wilms’ tumor 1-associating protein (WTAP) is a core component of the N6-methyladenosine (m6A)-methyltransferase complex, along with VIRMA, CBLL1, ZC3H13 (KIAA0853), RBM15/15B, and METTL3/14, which generate m6A, a key RNA modification that affects various processes of RNA metabolism. WTAP also interacts with splicing factors; however, despite strong evidence suggesting a role of Drosophila WTAP homolog fl(2)d in alternative splicing (AS), its role in splicing regulation in mammalian cells remains elusive. Here we demonstrate using RNAi coupled with RNA-seq that WTAP, VIRMA, CBLL1, and ZC3H13 modulate AS, promoting exon skipping and intron retention in AS events that involve short introns/exons with higher GC content and introns with weaker polypyrimidine-tract and branch points. Further analysis of GC-rich sequences involved in AS events regulated by WTAP, together with minigene assay analysis, revealed potential G-quadruplex formation at splice sites where WTAP has an inhibitory effect. We also found that several AS events occur in the last exon of one isoform of MSL1 and WTAP, leading to competition for polyadenylation. Proteomic analysis also suggested that WTAP/CBLL1 interaction promotes recruitment of the 3′-end processing complex. Taken together, our results indicate that the WTAP complex regulates AS and alternative polyadenylation via inhibitory mechanisms in GC-rich sequences.
Collapse
Affiliation(s)
- Keiko Horiuchi
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, 113-0011, Japan.
| | - Takeshi Kawamura
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, 113-0011, Japan.
| |
Collapse
|
50
|
I El-Hallous E, Alharthi AA, Gaber A, M Hassan M. Molecular Screening of PAX2 Gene Polymorphism in Primary Vesicoureteral Reflux Patients in Taif Governorate, KSA. Pak J Biol Sci 2021; 24:492-499. [PMID: 34486308 DOI: 10.3923/pjbs.2021.492.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Primary Nonsyndromic Vesicoureteral Reflux (PVUR) is a widespread genetic malformation and considered a prevalent Congenital Abnormality of the Kidney and Urinary Tract (CAKUT). Mutations in the <i>PAX2 </i>gene have been associated with abnormalities in the kidney extending from CAKUT to oncogenic processes. The present study analyzes the <i>PAX2</i> polymorphisms and their association with primary VUR in Saudi children patients from the Taif governorate. <b>Materials and Methods:</b> Fifteen children with primary VUR were identified and screened for gene mutations in the <i>PAX2</i> gene by direct sequencing method of purified Polymerase Chain Reaction (PCR) products of all exons to elucidate the correlation between <i>PAX2</i> gene and VUR. <b>Results:</b> Seven new variants have been defined. Three polymorphic missense variants in homozygous genotype form were found in intron 8 and detected in eight patients, One missense mutation was found in exon 10 in the site of transactivation domain and detected in ten patients and <i>in-silico</i> analysis predicted it as a pathogenic one, Three mutations were found in exon 11 and detected in all patients as a compound homozygous. <b>Conclusion:</b> <i>PAX2</i>is important for normal kidney development and mutations in the gene possibly lead to disturbance in the protein structure and could be non-functional thus mutations in <i>PAX2</i> may be one of the causes of PVUR in Saudi Arabia. Further investigation is necessary to understand the aetiology of disease and maybe other genes implicated in VUR.
Collapse
|