1
|
Song K, Rampelt H. Isolation of yeast mitochondria by differential centrifugation. Methods Enzymol 2024; 706:3-18. [PMID: 39455221 DOI: 10.1016/bs.mie.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The isolation of intact and functional mitochondria is a powerful approach to characterize and study this organelle. The classical biochemical method of differential centrifugation is routinely used to isolate mitochondria. This method has several advantages, such as a high yield and easy adaptability. The isolated mitochondria are physiologically active and can be used for a variety of follow-up experiments, for example protein import and respiration measurements. Here, we describe the procedure to purify mitochondria from the budding yeast Saccharomyces cerevisiae. In addition, two approaches are introduced to assess the quality of isolated mitochondria, by limited proteinase K digestion or measurement of the membrane potential.
Collapse
Affiliation(s)
- Kuo Song
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Franco LVR, Su CH, Simas Teixeira L, Almeida Clarck Chagas J, Barros MH, Tzagoloff A. Allotopic expression of COX6 elucidates Atco-driven co-assembly of cytochrome oxidase and ATP synthase. Life Sci Alliance 2023; 6:e202301965. [PMID: 37604582 PMCID: PMC10442929 DOI: 10.26508/lsa.202301965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
The Cox6 subunit of Saccharomyces cerevisiae cytochrome oxidase (COX) and the Atp9 subunit of the ATP synthase are encoded in nuclear and mitochondrial DNA, respectively. The two proteins interact to form Atco complexes that serve as the source of Atp9 for ATP synthase assembly. To determine if Atco is also a precursor of COX, we pulse-labeled Cox6 in isolated mitochondria of a cox6 nuclear mutant with COX6 in mitochondrial DNA. Only a small fraction of the newly translated Cox6 was found to be present in Atco, which can explain the low concentration of COX and poor complementation of the cox6 mutation by the allotopic gene. This and other pieces of evidence presented in this study indicate that Atco is an obligatory source of Cox6 for COX biogenesis. Together with our finding that atp9 mutants fail to assemble COX, we propose a regulatory model in which Atco unidirectionally couples the biogenesis of COX to that of the ATP synthase to maintain a proper ratio of these two complexes of oxidative phosphorylation.
Collapse
Affiliation(s)
- Leticia Veloso R Franco
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
3
|
Callegari S, Cruz-Zaragoza LD, Rehling P. From TOM to the TIM23 complex - handing over of a precursor. Biol Chem 2021; 401:709-721. [PMID: 32074073 DOI: 10.1515/hsz-2020-0101] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Mitochondrial precursor proteins with amino-terminal presequences are imported via the presequence pathway, utilizing the TIM23 complex for inner membrane translocation. Initially, the precursors pass the outer membrane through the TOM complex and are handed over to the TIM23 complex where they are sorted into the inner membrane or translocated into the matrix. This handover process depends on the receptor proteins at the inner membrane, Tim50 and Tim23, which are critical for efficient import. In this review, we summarize key findings that shaped the current concepts of protein translocation along the presequence import pathway, with a particular focus on the precursor handover process from TOM to the TIM23 complex. In addition, we discuss functions of the human TIM23 pathway and the recently uncovered pathogenic mutations in TIM50.
Collapse
Affiliation(s)
- Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Luis Daniel Cruz-Zaragoza
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany.,Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
4
|
|
5
|
Overexpression of branched-chain amino acid aminotransferases rescues the growth defects of cells lacking the Barth syndrome-related gene TAZ1. J Mol Med (Berl) 2019; 97:269-279. [PMID: 30604168 DOI: 10.1007/s00109-018-1728-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
The yeast protein Taz1 is the orthologue of human Tafazzin, a phospholipid acyltransferase involved in cardiolipin (CL) remodeling via a monolyso CL (MLCL) intermediate. Mutations in Tafazzin lead to Barth syndrome (BTHS), a metabolic and neuromuscular disorder that primarily affects the heart, muscles, and immune system. Similar to observations in fibroblasts and platelets from patients with BTHS or from animal models, abolishing yeast Taz1 results in decreased total CL amounts, increased levels of MLCL, and mitochondrial dysfunction. However, the biochemical mechanisms underlying the mitochondrial dysfunction in BTHS remain unclear. To better understand the pathomechanism of BTHS, we searched for multi-copy suppressors of the taz1Δ growth defect in yeast cells. We identified the branched-chain amino acid transaminases (BCATs) Bat1 and Bat2 as such suppressors. Similarly, overexpression of the mitochondrial isoform BCAT2 in mammalian cells lacking TAZ improves their growth. Elevated levels of Bat1 or Bat2 did not restore the reduced membrane potential, altered stability of respiratory complexes, or the defective accumulation of MLCL species in yeast taz1Δ cells. Importantly, supplying yeast or mammalian cells lacking TAZ1 with certain amino acids restored their growth behavior. Hence, our findings suggest that the metabolism of amino acids has an important and disease-relevant role in cells lacking Taz1 function. KEY MESSAGES: Bat1 and Bat2 are multi-copy suppressors of retarded growth of taz1Δ yeast cells. Overexpression of Bat1/2 in taz1Δ cells does not rescue known mitochondrial defects. Supplementation of amino acids enhances growth of cells lacking Taz1 or Tafazzin. Altered metabolism of amino acids might be involved in the pathomechanism of BTSH.
Collapse
|
6
|
Backes S, Hess S, Boos F, Woellhaf MW, Gödel S, Jung M, Mühlhaus T, Herrmann JM. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J Cell Biol 2018; 217:1369-1382. [PMID: 29382700 PMCID: PMC5881500 DOI: 10.1083/jcb.201708044] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/12/2017] [Accepted: 01/17/2018] [Indexed: 11/22/2022] Open
Abstract
N-terminal matrix-targeting signals (MTSs) are critical for mitochondrial protein import. Backes et al. identified additional internal MTS-like sequences scattered along the sequences of mitochondrial proteins. By binding to Tom70 on the mitochondrial surface, these sequences support the import process. The biogenesis of mitochondria depends on the import of hundreds of preproteins. N-terminal matrix-targeting signals (MTSs) direct preproteins to the surface receptors Tom20, Tom22, and Tom70. In this study, we show that many preproteins contain additional internal MTS-like signals (iMTS-Ls) in their mature region that share the characteristic properties of presequences. These features allow the in silico prediction of iMTS-Ls. Using Atp1 as model substrate, we show that iMTS-Ls mediate the binding to Tom70 and have the potential to target the protein to mitochondria if they are presented at its N terminus. The import of preproteins with high iMTS-L content is significantly impaired in the absence of Tom70, whereas preproteins with low iMTS-L scores are less dependent on Tom70. We propose a stepping stone model according to which the Tom70-mediated interaction with internal binding sites improves the import competence of preproteins and increases the efficiency of their translocation into the mitochondrial matrix.
Collapse
Affiliation(s)
- Sandra Backes
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Steffen Hess
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Felix Boos
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Sabrina Gödel
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Martin Jung
- Medical Biochemistry, Saarland University, Homburg, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
7
|
Bruderek M, Jaworek W, Wilkening A, Rüb C, Cenini G, Förtsch A, Sylvester M, Voos W. IMiQ: a novel protein quality control compartment protecting mitochondrial functional integrity. Mol Biol Cell 2017; 29:256-269. [PMID: 29212875 PMCID: PMC5996957 DOI: 10.1091/mbc.e17-01-0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Aggregation processes can cause severe perturbations of cellular homeostasis and are frequently associated with diseases. We performed a comprehensive analysis of mitochondrial quality and function in the presence of aggregation-prone polypeptides. Despite a significant aggregate formation inside mitochondria, we observed only a minor impairment of mitochondrial function. Detoxification of aggregated reporter polypeptides as well as misfolded endogenous proteins inside mitochondria takes place via their sequestration into a specific organellar deposit site we termed intramitochondrial protein quality control compartment (IMiQ). Only minor amounts of endogenous proteins coaggregated with IMiQ deposits and neither resolubilization nor degradation by the mitochondrial protein quality control system were observed. The single IMiQ aggregate deposit was not transferred to daughter cells during cell division. Detoxification of aggregates via IMiQ formation was highly dependent on a functional mitochondrial fission machinery. We conclude that the formation of an aggregate deposit is an important mechanism to maintain full functionality of mitochondria under proteotoxic stress conditions.
Collapse
Affiliation(s)
- Michael Bruderek
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Witold Jaworek
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Anne Wilkening
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Cornelia Rüb
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Arion Förtsch
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Marc Sylvester
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| |
Collapse
|
8
|
Kritsiligkou P, Chatzi A, Charalampous G, Mironov A, Grant CM, Tokatlidis K. Unconventional Targeting of a Thiol Peroxidase to the Mitochondrial Intermembrane Space Facilitates Oxidative Protein Folding. Cell Rep 2017; 18:2729-2741. [PMID: 28297675 PMCID: PMC5368413 DOI: 10.1016/j.celrep.2017.02.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/01/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Thiol peroxidases are conserved hydrogen peroxide scavenging and signaling molecules that contain redox-active cysteine residues. We show here that Gpx3, the major H2O2 sensor in yeast, is present in the mitochondrial intermembrane space (IMS), where it serves a compartment-specific role in oxidative metabolism. The IMS-localized Gpx3 contains an 18-amino acid N-terminally extended form encoded from a non-AUG codon. This acts as a mitochondrial targeting signal in a pathway independent of the hitherto known IMS-import pathways. Mitochondrial Gpx3 interacts with the Mia40 oxidoreductase in a redox-dependent manner and promotes efficient Mia40-dependent oxidative protein folding. We show that cells lacking Gpx3 have aberrant mitochondrial morphology, defective protein import capacity, and lower inner membrane potential, all of which can be rescued by expression of a mitochondrial-only form of Gpx3. Together, our data reveal a novel role for Gpx3 in mitochondrial redox regulation and protein homeostasis. A pool of yeast Gpx3 localizes to mitochondria via translation from a non-AUG codon Loss of Gpx3 causes defects in mitochondrial architecture and membrane potential Gpx3 interacts with the oxidative protein folding machinery in the IMS
Collapse
Affiliation(s)
- Paraskevi Kritsiligkou
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Afroditi Chatzi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Georgia Charalampous
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Aleksandr Mironov
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
9
|
Arinbasarova AY, Baskunov BP, Medentsev AG. A low-molecular mass antimicrobial peptide from Trichoderma cf. aureoviride Rifai VKM F-4268D. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717020059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Schulz C, Schendzielorz A, Rehling P. Unlocking the presequence import pathway. Trends Cell Biol 2015; 25:265-75. [DOI: 10.1016/j.tcb.2014.12.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
11
|
Becker D, Voos W. In vitro analysis of the mitochondrial preprotein import machinery using recombinant precursor polypeptides. Methods Mol Biol 2015; 1270:15-36. [PMID: 25702106 DOI: 10.1007/978-1-4939-2309-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The import of proteins into mitochondria represents an essential process for the survival of eukaryotic cells. Most mitochondrial proteins are synthesized as cytosolic precursor proteins. A complex chain of reactions needs to be followed to achieve a successful transport of these precursors from the cytosol through the double membrane system to their final destination inside the mitochondria. In order to elucidate the details of the translocation process, in vitro import assays have been developed that are based on the incubation of isolated active mitochondria with natural or artificial precursor proteins containing the appropriate targeting information. Using this basic system, most of the protein components of the import machinery have been identified and functionally characterized. However, a detailed definition of the molecular mechanisms requires more specialized assay techniques. Here we describe modifications of the standard in vitro import assay technique that are based on the utilization of large amounts of recombinant preprotein constructs. The application of saturating amounts of substrate preproteins is a prerequisite for the determination of translocation kinetics and energy requirements of the import process. Accumulation of preproteins as membrane-spanning translocation intermediates further provides a basis for the functional and structural characterization of the active translocation machinery.
Collapse
Affiliation(s)
- Dorothea Becker
- Institut für Biochemie und Molekularbiologie, Universität Bonn, Nussallee 11, Bonn, 53115, Germany
| | | |
Collapse
|
12
|
Böttinger L, Guiard B, Oeljeklaus S, Kulawiak B, Zufall N, Wiedemann N, Warscheid B, van der Laan M, Becker T. A complex of Cox4 and mitochondrial Hsp70 plays an important role in the assembly of the cytochrome c oxidase. Mol Biol Cell 2013; 24:2609-19. [PMID: 23864706 PMCID: PMC3756914 DOI: 10.1091/mbc.e13-02-0106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biogenesis of Cox4 is unknown. Cox4, mtHsp70, and Mge1 form a complex that promotes the assembly of cytochrome c oxidase. In the absence of the mature cytochrome c oxidase, Cox4 arrests at the chaperone complex. This complex delivers Cox4 into the assembly line of complex IV when needed. The formation of the mature cytochrome c oxidase (complex IV) involves the association of nuclear- and mitochondria-encoded subunits. The assembly of nuclear-encoded subunits like cytochrome c oxidase subunit 4 (Cox4) into the mature complex is poorly understood. Cox4 is crucial for the stability of complex IV. To find specific biogenesis factors, we analyze interaction partners of Cox4 by affinity purification and mass spectroscopy. Surprisingly, we identify a complex of Cox4, the mitochondrial Hsp70 (mtHsp70), and its nucleotide-exchange factor mitochondrial GrpE (Mge1). We generate a yeast mutant of mtHsp70 specifically impaired in the formation of this novel mtHsp70-Mge1-Cox4 complex. Strikingly, the assembly of Cox4 is strongly decreased in these mutant mitochondria. Because Cox4 is a key factor for the biogenesis of complex IV, we conclude that the mtHsp70-Mge1-Cox4 complex plays an important role in the formation of cytochrome c oxidase. Cox4 arrests at this chaperone complex in the absence of mature complex IV. Thus the mtHsp70-Cox4 complex likely serves as a novel delivery system to channel Cox4 into the assembly line when needed.
Collapse
Affiliation(s)
- Lena Böttinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
14
|
Kulawiak B, Höpker J, Gebert M, Guiard B, Wiedemann N, Gebert N. The mitochondrial protein import machinery has multiple connections to the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:612-26. [PMID: 23274250 DOI: 10.1016/j.bbabio.2012.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane harbors the complexes of the respiratory chain and protein translocases required for the import of mitochondrial precursor proteins. These complexes are functionally interdependent, as the import of respiratory chain precursor proteins across and into the inner membrane requires the membrane potential. Vice versa the membrane potential is generated by the proton pumping complexes of the respiratory chain. Besides this basic codependency four different systems for protein import, processing and assembly show further connections to the respiratory chain. The mitochondrial intermembrane space import and assembly machinery oxidizes cysteine residues within the imported precursor proteins and is able to donate the liberated electrons to the respiratory chain. The presequence translocase of the inner membrane physically interacts with the respiratory chain. The mitochondrial processing peptidase is homologous to respiratory chain subunits and the carrier translocase of the inner membrane even shares a subunit with the respiratory chain. In this review we will summarize the import of mitochondrial precursor proteins and highlight these special links between the mitochondrial protein import machinery and the respiratory chain. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
COLAÇO R, MORENO N, FEIJÓ J. On the fast lane: mitochondria structure, dynamics and function in growing pollen tubes. J Microsc 2012; 247:106-18. [DOI: 10.1111/j.1365-2818.2012.03628.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex. EMBO Rep 2011; 12:542-8. [PMID: 21546912 DOI: 10.1038/embor.2011.72] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 03/16/2011] [Accepted: 03/18/2011] [Indexed: 11/08/2022] Open
Abstract
The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion.
Collapse
|
17
|
Kuhn S, Bussemer J, Chigri F, Vothknecht UC. Calcium depletion and calmodulin inhibition affect the import of nuclear-encoded proteins into plant mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:694-705. [PMID: 19175770 DOI: 10.1111/j.1365-313x.2009.03810.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many metabolic processes essential for plant viability take place in mitochondria. Therefore, mitochondrial function has to be carefully balanced in accordance with the developmental stage and metabolic requirements of the cell. One way to adapt organellar function is the alteration of protein composition. Since most mitochondrial proteins are nuclear encoded, fine-tuning of mitochondrial protein content could be achieved by the regulation of protein translocation. Here we present evidence that the import of nuclear-encoded mitochondrial proteins into plant mitochondria is influenced by calcium and calmodulin. In pea mitochondria, the calmodulin inhibitor ophiobolin A as well as the calcium ionophores A23187 and ionomycin inhibit translocation of nuclear-encoded proteins in a concentration-dependent manner, an effect that can be countered by the addition of external calmodulin or calcium, respectively. Inhibition was observed exclusively for proteins translocating into or across the inner membrane but not for proteins residing in the outer membrane or the intermembrane space. Ophiobolin A and the calcium ionophores further inhibit translocation into mitochondria with disrupted outer membranes, but their effect is not mediated via a change in the membrane potential across the inner mitochondrial membrane. Together, our results suggest that calcium/calmodulin influences the import of a subset of mitochondrial proteins at the inner membrane. Interestingly, we could not observe any influence of ophiobolin A or the calcium ionophores on protein translocation into mitochondria of yeast, indicating that the effect of calcium/calmodulin on mitochondrial protein import might be a plant-specific trait.
Collapse
|
18
|
Mokranjac D, Neupert W. Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:33-41. [PMID: 18672008 DOI: 10.1016/j.bbamcr.2008.06.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/16/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
Abstract
Mitochondria are essential organelles of the eukaryotic cells that are made by expansion and division of pre-existing mitochondria. The majority of their protein constituents are synthesized in the cytosol. They are transported into and put together within the organelle. This complex process is facilitated by several protein translocases. Here we summarize current knowledge on these sophisticated molecular machines that mediate recognition, transport across membranes and intramitochondrial sorting of many hundreds of mitochondrial proteins.
Collapse
Affiliation(s)
- Dejana Mokranjac
- Institute for Physiological Chemistry, Ludwig-Maximilians University, Butenandtstr. 5, 81377 Munich, Germany
| | | |
Collapse
|
19
|
Popov-Celeketić D, Mapa K, Neupert W, Mokranjac D. Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria. EMBO J 2008; 27:1469-80. [PMID: 18418384 DOI: 10.1038/emboj.2008.79] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 03/19/2008] [Indexed: 11/09/2022] Open
Abstract
The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments.
Collapse
Affiliation(s)
- Dusan Popov-Celeketić
- Munich Center for Integrated Protein Science, Institute for Physiological Chemistry, University of Munich, Munich, Germany
| | | | | | | |
Collapse
|
20
|
Becker D, Krayl M, Voos W. In vitro analysis of the mitochondrial preprotein import machinery using recombinant precursor polypeptides. Methods Mol Biol 2008; 457:59-83. [PMID: 19066019 DOI: 10.1007/978-1-59745-261-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The import of precursor proteins into mitochondria represents a cell biological process that is absolutely required for the survival of an eukaryotic cell. A complex chain of reactions needs to be followed to achieve a successful transport of mitochondrial proteins from the cytosol through the double membrane system to their final destination. In order to elucidate the details of the translocation process, in vitro import assays have been developed that are based on the incubation of isolated active mitochondria with natural or artificial precursor proteins containing the appropriate targeting information. Although most of the protein components of the import machinery have been identified and functionally characterized using this basic system, the definition of the molecular mechanisms requires more specialized assay techniques. Here we describe modifications of the standard in vitro import assay technique that are based on the utilization of recombinant preprotein constructs. The application of saturating amounts of substrate preproteins is a prerequisite for the determination of translocation kinetics and energy requirements of the import process. Accumulation of preproteins as membrane-spanning translocation intermediates further provides a basis for the functional and structural characterization of the active translocation machinery.
Collapse
Affiliation(s)
- Dorothea Becker
- Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
21
|
Abstract
About 10% to 15% of the nuclear genes of eukaryotic organisms encode mitochondrial proteins. These proteins are synthesized in the cytosol and recognized by receptors on the surface of mitochondria. Translocases in the outer and inner membrane of mitochondria mediate the import and intramitochondrial sorting of these proteins; ATP and the membrane potential are used as energy sources. Chaperones and auxiliary factors assist in the folding and assembly of mitochondrial proteins into their native, three-dimensional structures. This review summarizes the present knowledge on the import and sorting of mitochondrial precursor proteins, with a special emphasis on unresolved questions and topics of current research.
Collapse
Affiliation(s)
- Walter Neupert
- Institut für Physiologische Chemie, Universität München, 81377 München, Germany.
| | | |
Collapse
|
22
|
Affiliation(s)
- Diana Stojanovski
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
23
|
Khalimonchuk O, Ott M, Funes S, Ostermann K, Rödel G, Herrmann JM. Sequential processing of a mitochondrial tandem protein: insights into protein import in Schizosaccharomyces pombe. EUKARYOTIC CELL 2006; 5:997-1006. [PMID: 16835444 PMCID: PMC1489288 DOI: 10.1128/ec.00092-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sequencing of the genome of Schizosaccharomyces pombe revealed the presence of a number of genes encoding tandem proteins, some of which are mitochondrial components. One of these proteins (pre-Rsm22-Cox11) consists of a fusion of Rsm22, a component of the mitochondrial ribosome, and Cox11, a factor required for copper insertion into cytochrome oxidase. Since in Saccharomyces cerevisiae, Cox11 is physically attached to the mitochondrial ribosome, it was suggested that the tandem organization of Rsm22-Cox11 is used to covalently tie the mitochondrial ribosome to Cox11 in S. pombe. We report here that pre-Rsm22-Cox11 is matured in two subsequent processing events. First, the mitochondrial presequence is removed. At a later stage of the import process, the Rsm22 and Cox11 domains are separated by cleavage of the mitochondrial processing peptidase at an internal processing site. In vivo data obtained using a tagged version of pre-Rsm22-Cox11 confirmed the proteolytic separation of Cox11 from the Rsm22 domain. Hence, the tandem organization of pre-Rsm22-Cox11 does not give rise to a persistent fusion protein but rather might be used to increase the import efficiency of Cox11 and/or to coordinate expression levels of Rsm22 and Cox11 in S. pombe.
Collapse
|
24
|
Meier S, Neupert W, Herrmann JM. Conserved N-terminal Negative Charges in the Tim17 Subunit of the TIM23 Translocase Play a Critical Role in the Import of Preproteins into Mitochondria. J Biol Chem 2005; 280:7777-85. [PMID: 15618217 DOI: 10.1074/jbc.m412158200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TIM23 complex of the mitochondrial inner membrane mediates the import of preproteins that contain positively charged targeting signals. This translocase consists of the two phylogenetically related membrane-embedded subunits Tim17 and Tim23 to which four largely hydrophilic subunits, Tim50, Tim44, Tim16, and Tim14, are attached. Whereas in vitro reconstitution experiments have suggested a pore-forming capacity of recombinant Tim23, virtually nothing is known about the properties and function of Tim17. We employed a combined genetic and biochemical approach to address the function of Tim17 in preprotein translocation. Tim17 exposes an N-terminal hydrophilic stretch into the intermembrane space. Truncation of the first 11 amino acid residues of this stretch did not affect the stability or integrity of TIM23 subunits but strongly impaired the import of preproteins. Moreover, expression of the truncated Tim17 variant led to a dominant negative effect on the mitochondrial membrane potential. By an alanine-scanning approach we identified two conserved negative charges in the N terminus of Tim17 as critical for Tim17 function. The replacement of these positions by positively charged residues results in a strong growth defect, which can be cured by reverting two conserved positive charges into aspartate residues between transmembrane domains two and three of Tim17. On the basis of these observations we propose that charged residues in Tim17 are critical for the preprotein-induced gating of the TIM23 translocase.
Collapse
Affiliation(s)
- Stephan Meier
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 München, Germany
| | | | | |
Collapse
|
25
|
Kozany C, Mokranjac D, Sichting M, Neupert W, Hell K. The J domain-related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nat Struct Mol Biol 2004; 11:234-41. [PMID: 14981506 DOI: 10.1038/nsmb734] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 01/23/2004] [Indexed: 01/25/2023]
Abstract
Mitochondria import the vast majority of their proteins from the cytosol. The mitochondrial import motor of the TIM23 translocase drives the translocation of precursor proteins across the outer and inner membrane in an ATP-dependent reaction. Tim44 at the inner face of the translocation pore recruits the chaperone mtHsp70, which binds the incoming precursor protein. This reaction is assisted by the cochaperones Tim14 and Mge1. We have identified a novel essential cochaperone, Tim16. It is related to J-domain proteins and forms a stable subcomplex with the J protein Tim14. Depletion of Tim16 has a marked effect on protein import into the mitochondrial matrix, impairs the interaction of Tim14 with the TIM23 complex and leads to severe structural changes of the import motor. In conclusion, Tim16 is a constituent of the TIM23 preprotein translocase, where it exerts crucial functions in the import motor.
Collapse
Affiliation(s)
- Christian Kozany
- Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
26
|
Frazier AE, Dudek J, Guiard B, Voos W, Li Y, Lind M, Meisinger C, Geissler A, Sickmann A, Meyer HE, Bilanchone V, Cumsky MG, Truscott KN, Pfanner N, Rehling P. Pam16 has an essential role in the mitochondrial protein import motor. Nat Struct Mol Biol 2004; 11:226-33. [PMID: 14981507 DOI: 10.1038/nsmb735] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 01/23/2004] [Indexed: 11/09/2022]
Abstract
Mitochondrial preproteins destined for the matrix are translocated by two channel-forming transport machineries, the translocase of the outer membrane and the presequence translocase of the inner membrane. The presequence translocase-associated protein import motor (PAM) contains four essential subunits: the matrix heat shock protein 70 (mtHsp70) and its three cochaperones Mge1, Tim44 and Pam18. Here we report that the PAM contains a fifth essential subunit, Pam16 (encoded by Saccharomyces cerevisiae YJL104W), which is selectively required for preprotein translocation into the matrix, but not for protein insertion into the inner membrane. Pam16 interacts with Pam18 and is needed for the association of Pam18 with the presequence translocase and for formation of a mtHsp70-Tim44 complex. Thus, Pam16 is a newly identified type of motor subunit and is required to promote a functional PAM reaction cycle, thereby driving preprotein import into the matrix.
Collapse
Affiliation(s)
- Ann E Frazier
- Institut für Biochemie und Molekularbiologie, und Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gao S, Chen J, Brodsky SV, Huang H, Adler S, Lee JH, Dhadwal N, Cohen-Gould L, Gross SS, Goligorsky MS. Docking of endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane: a pentabasic amino acid sequence in the autoinhibitory domain of eNOS targets a proteinase K-cleavable peptide on the cytoplasmic face of mitochondria. J Biol Chem 2004; 279:15968-74. [PMID: 14761967 DOI: 10.1074/jbc.m308504200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite growing evidence for a mitochondrial localization of nitric oxide (NO) synthase and a broadening spectrum of NO actions on mitochondrial respiration and apoptosis, the basis for interaction between the enzyme and the organelle remain obscure. Here we investigated mitochondrial localization of endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells and human embryonic kidney cells transfected or infected with eNOS expression vectors. Copurification of eNOS with mitochondria was observed in both human umbilical vein endothelial cells and eNOS-expressing human embryonic kidney cells. Immunodetectable eNOS was cleaved from mitochondria by proteinase K treatment, suggesting eNOS association with the outer mitochondrial membrane. Localization of eNOS to a proteinase K-cleavable site on the cytoplasmic face of the outer membrane was confirmed by immunogold labeling of non-permeabilized mitochondria. Markers for mitochondrial subfractions ruled out the possibility of eNOS association with an intramitochondrial site or inverted mitochondrial particles. Denaturation of eNOS did not attenuate association with mitochondria. Mutant eNOS lacking a pentabasic amino acid sequence within the autoinhibitory domain (residues 628-632 of the bovine eNOS) showed dramatically reduced binding to the mitochondrial but not to the plasma membrane, which was associated with increased oxygen consumption. Collectively, these findings argue in favor of eNOS localization to the outer mitochondrial membrane in endothelial cells and identify elements of a novel anchoring mechanism.
Collapse
Affiliation(s)
- Shujuan Gao
- Department of Pharmacology, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Frazier AE, Chacinska A, Truscott KN, Guiard B, Pfanner N, Rehling P. Mitochondria use different mechanisms for transport of multispanning membrane proteins through the intermembrane space. Mol Cell Biol 2003; 23:7818-28. [PMID: 14560025 PMCID: PMC207575 DOI: 10.1128/mcb.23.21.7818-7828.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial inner membrane contains numerous multispanning integral proteins. The precursors of these hydrophobic proteins are synthesized in the cytosol and therefore have to cross the mitochondrial outer membrane and intermembrane space to reach the inner membrane. While the import pathways of noncleavable multispanning proteins, such as the metabolite carriers, have been characterized in detail by the generation of translocation intermediates, little is known about the mechanism by which cleavable preproteins of multispanning proteins, such as Oxa1, are transferred from the outer membrane to the inner membrane. We have identified a translocation intermediate of the Oxa1 preprotein in the translocase of the outer membrane (TOM) and found that there are differences from the import mechanisms of carrier proteins. The intermembrane space domain of the receptor Tom22 supports the stabilization of the Oxa1 intermediate. Transfer of the Oxa1 preprotein to the inner membrane is not affected by inactivation of the soluble TIM complexes. Both the inner membrane potential and matrix heat shock protein 70 are essential to release the preprotein from the TOM complex, suggesting a close functional cooperation of the TOM complex and the presequence translocase of the inner membrane. We conclude that mitochondria employ different mechanisms for translocation of multispanning proteins across the aqueous intermembrane space.
Collapse
Affiliation(s)
- Ann E Frazier
- Institut für Biochemie und Molekularbiologie. Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Mokranjac D, Sichting M, Neupert W, Hell K. Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J 2003; 22:4945-56. [PMID: 14517234 PMCID: PMC204468 DOI: 10.1093/emboj/cdg485] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The TIM23 translocase mediates the deltaPsi- and ATP-dependent import of proteins into mitochondria. We identified Tim14 as a novel component of the TIM23 translocase. Tim14 is an integral protein of the inner membrane with a typical J-domain exposed to the matrix space. TIM14 genes are present in the genomes of virtually all eukaryotes. In yeast, Tim14 is essential for viability. Mitochondria from cells depleted of Tim14 are deficient in the import of proteins mediated by the TIM23 complex. In particular, import of proteins that require the action of mtHsp70 is affected. Tim14 interacts with Tim44 and mtHsp70 in an ATP-dependent manner. A mutation in the HPD motif of the J-domain of Tim14 is lethal. Thus, Tim14 is a constituent of the mitochondrial import motor. We propose a model in which Tim14 is required for the activation of mtHsp70 and enables this chaperone to act in a rapid and regulated manner in the Tim44-mediated trapping of unfolded preproteins entering the matrix.
Collapse
Affiliation(s)
- Dejana Mokranjac
- Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 München, Germany
| | | | | | | |
Collapse
|
30
|
Fedorovich SV, Kaler GV, Konev SV. Effect of low pH on glutamate uptake and release in isolated presynaptic endings from rat brain. Neurochem Res 2003; 28:715-21. [PMID: 12716022 DOI: 10.1023/a:1022809716834] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of acidification of the incubation medium on the membrane potential and glutamate uptake and release was studied in isolated presynaptic neuronal endings (synaptosomes) from rat brain. Using the fluorescent probe diS-C3-(5), a rapid depolarization of plasma membrane was detected at pH 6.0, most probably as a result of the inhibition of the sodium pump and potassium channel blockade. The membrane potential decrease did not result in increase of basal efflux of glutamate. Glutamate release following K(+)-induced depolarization was decreased upon lowering pH to 6.0. Acidosis inhibited mainly calcium-dependent (vesicular) release of glutamate and did not significantly reduce [14C]glutamate uptake. This inhibition of glutamate release but not of glutamate uptake may be a mechanism of the protective effect of acidosis during brain ischemia.
Collapse
Affiliation(s)
- Sergei V Fedorovich
- Institute of Photobiology, Akademicheskaya Street, 27, Minsk 220072, Belarus.
| | | | | |
Collapse
|
31
|
Rehling P, Pfanner N, Meisinger C. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane--a guided tour. J Mol Biol 2003; 326:639-57. [PMID: 12581629 DOI: 10.1016/s0022-2836(02)01440-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.
Collapse
Affiliation(s)
- Peter Rehling
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
32
|
Mokranjac D, Paschen SA, Kozany C, Prokisch H, Hoppins SC, Nargang FE, Neupert W, Hell K. Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J 2003; 22:816-25. [PMID: 12574118 PMCID: PMC145450 DOI: 10.1093/emboj/cdg090] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The preprotein translocase of the inner membrane of mitochondria (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. We isolated the TIM23 complex of Neurospora crassa. Besides Tim23 and Tim17, it contained a novel component, referred to as Tim50. Tim50 spans the inner membrane with a single transmembrane segment and exposes a large hydrophilic domain in the intermembrane space. Tim50 is essential for viability of yeast. Mitochondria from cells depleted of Tim50 displayed strongly reduced import kinetics of preproteins using the TIM23 complex. Tim50 could be cross-linked to preproteins that were halted at the level of the translocase of the outer membrane (TOM complex) or spanning both TOM and TIM23 complexes. We suggest that Tim50 plays a crucial role in the transfer of preproteins from the TOM complex to the TIM23 complex through the intermembrane space.
Collapse
Affiliation(s)
| | | | | | | | - Suzanne C. Hoppins
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, D-81377 München, Germany and
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada Corresponding author e-mail:
| | - Frank E. Nargang
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, D-81377 München, Germany and
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada Corresponding author e-mail:
| | - Walter Neupert
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, D-81377 München, Germany and
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada Corresponding author e-mail:
| | | |
Collapse
|
33
|
Geissler A, Chacinska A, Truscott KN, Wiedemann N, Brandner K, Sickmann A, Meyer HE, Meisinger C, Pfanner N, Rehling P. The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 2002; 111:507-18. [PMID: 12437924 DOI: 10.1016/s0092-8674(02)01073-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondrial proteins with N-terminal targeting signals are transported across the inner membrane via the presequence translocase, which consists of membrane-integrated channel proteins and the matrix Hsp70 import motor. It has not been known how preproteins are directed to the import channel. We have identified the essential protein Tim50, which exposes its major domain to the intermembrane space. Tim50 interacts with preproteins in transit and directs them to the channel protein Tim23. Inactivation of Tim50 strongly inhibits the import of preproteins with a classical matrix-targeting signal, while preproteins carrying an additional inner membrane-sorting signal do not strictly depend on Tim50. Thus, Tim50 is crucial for guiding the precursors of matrix proteins to their insertion site in the inner membrane.
Collapse
Affiliation(s)
- Andreas Geissler
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Truscott KN, Wiedemann N, Rehling P, Müller H, Meisinger C, Pfanner N, Guiard B. Mitochondrial import of the ADP/ATP carrier: the essential TIM complex of the intermembrane space is required for precursor release from the TOM complex. Mol Cell Biol 2002; 22:7780-9. [PMID: 12391147 PMCID: PMC134741 DOI: 10.1128/mcb.22.22.7780-7789.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Revised: 08/05/2002] [Accepted: 08/16/2002] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial intermembrane space contains a protein complex essential for cell viability, the Tim9-Tim10 complex. This complex is required for the import of hydrophobic membrane proteins, such as the ADP/ATP carrier (AAC), into the inner membrane. Different views exist about the role played by the Tim9-Tim10 complex in translocation of the AAC precursor across the outer membrane. For this report we have generated a new tim10 yeast mutant that leads to a strong defect in AAC import into mitochondria. Thereby, for the first time, authentic AAC is stably arrested in the translocase complex of the outer membrane (TOM), as shown by antibody shift blue native electrophoresis. Surprisingly, AAC is still associated with the receptors Tom70 and Tom20 when the function of Tim10 is impaired. The nonessential Tim8-Tim13 complex of the intermembrane space is not involved in the transfer of AAC across the outer membrane. These results define a two-step mechanism for translocation of AAC across the outer membrane. The initial insertion of AAC into the import channel is independent of the function of Tim9-Tim10; however, completion of translocation across the outer membrane, including release from the TOM complex, requires a functional Tim9-Tim10 complex.
Collapse
Affiliation(s)
- Kaye N Truscott
- Institut für Biochemie und Molekularbiologie. Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- M T Ryan
- Department of Biochemistry, La Trobe University, 3086 Melbourne, Australia
| | | |
Collapse
|
36
|
Abstract
Proteins that are destined for the matrix of mitochondria are transported into this organelle by two translocases: the TOM complex, which transports proteins across the outer mitochondrial membrane; and the TIM23 complex, which gets them through the inner mitochondrial membrane. Two models have been proposed to explain how this protein-import machinery works -- a targeted Brownian ratchet, in which random motion is translated into vectorial motion, or a 'power stroke', which is exerted by a component of the import machinery. Here, we review the data for and against each model.
Collapse
Affiliation(s)
- Walter Neupert
- Institut für Physiologische Chemie, Universität München, Butenandtstrabetae 5, Gebäude B, D-81377 Munich, Germany.
| | | |
Collapse
|
37
|
Geissler A, Rassow J, Pfanner N, Voos W. Mitochondrial import driving forces: enhanced trapping by matrix Hsp70 stimulates translocation and reduces the membrane potential dependence of loosely folded preproteins. Mol Cell Biol 2001; 21:7097-104. [PMID: 11564892 PMCID: PMC99885 DOI: 10.1128/mcb.21.20.7097-7104.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial heat shock protein Hsp70 (mtHsp70) is essential for driving translocation of preproteins into the matrix. Two models, trapping and pulling by mtHsp70, are discussed, but positive evidence for either model has not been found so far. We have analyzed a mutant mtHsp70, Ssc1-2, that shows a reduced interaction with the membrane anchor Tim44, but an enhanced trapping of preproteins. Unexpectedly, at a low inner membrane potential, ssc1-2 mitochondria imported loosely folded preproteins more efficiently than wild-type mitochondria. The import of a tightly folded preprotein, however, was not increased in ssc1-2 mitochondria. Thus, enhanced trapping by mtHsp70 stimulates the import of loosely folded preproteins and reduces the dependence on the import-driving activity of the membrane potential, directly demonstrating that trapping is one of the molecular mechanisms of mtHsp70 action.
Collapse
Affiliation(s)
- A Geissler
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
38
|
Abstract
The vast majority of mitochondrial proteins are synthesized in the cytosol and are imported into mitochondria by protein machineries located in the mitochondrial membranes. It has become clear that hydrophilic as well as hydrophobic preproteins use a common translocase in the outer mitochondrial membrane, but diverge to two distinct translocases in the inner membrane. The translocases are dynamic, high-molecular-weight complexes that have to provide specific means for the recognition of preproteins, channel formation and generation of import-driving forces.
Collapse
Affiliation(s)
- N Pfanner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.
| | | |
Collapse
|
39
|
Metzler DE, Metzler CM, Sauke DJ. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Geissler A, Krimmer T, Bömer U, Guiard B, Rassow J, Pfanner N. Membrane potential-driven protein import into mitochondria. The sorting sequence of cytochrome b(2) modulates the deltapsi-dependence of translocation of the matrix-targeting sequence. Mol Biol Cell 2000; 11:3977-91. [PMID: 11071921 PMCID: PMC15051 DOI: 10.1091/mbc.11.11.3977] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transport of preproteins into or across the mitochondrial inner membrane requires the membrane potential Deltapsi across this membrane. Two roles of Deltapsi in the import of cleavable preproteins have been described: an electrophoretic effect on the positively charged matrix-targeting sequences and the activation of the translocase subunit Tim23. We report the unexpected finding that deletion of a segment within the sorting sequence of cytochrome b(2), which is located behind the matrix-targeting sequence, strongly influenced the Deltapsi-dependence of import. The differential Deltapsi-dependence was independent of the submitochondrial destination of the preprotein and was not attributable to the requirement for mitochondrial Hsp70 or Tim23. With a series of preprotein constructs, the net charge of the sorting sequence was altered, but the Deltapsi-dependence of import was not affected. These results suggested that the sorting sequence contributed to the import driving mechanism in a manner distinct from the two known roles of Deltapsi. Indeed, a charge-neutral amino acid exchange in the hydrophobic segment of the sorting sequence generated a preprotein with an even better import, i.e. one with lower Deltapsi-dependence than the wild-type preprotein. The sorting sequence functioned early in the import pathway since it strongly influenced the efficiency of translocation of the matrix-targeting sequence across the inner membrane. These results suggest a model whereby an electrophoretic effect of Deltapsi on the matrix-targeting sequence is complemented by an import-stimulating activity of the sorting sequence.
Collapse
Affiliation(s)
- A Geissler
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M, Pfanner N, Greenberg ML. Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 2000; 275:22387-94. [PMID: 10777514 DOI: 10.1074/jbc.m909868199] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiolipin (CL) is a unique phospholipid which is present throughout the eukaryotic kingdom and is localized in mitochondrial membranes. Saccharomyces cerevisiae cells containing a disruption of CRD1, the structural gene encoding CL synthase, have no CL in mitochondrial membranes. To elucidate the physiological role of CL, we compared mitochondrial functions in the crd1Delta mutant and isogenic wild type. The crd1Delta mutant loses viability at elevated temperature, and prolonged culture at 37 degrees C leads to loss of the mitochondrial genome. Mutant membranes have increased phosphatidylglycerol (PG) when grown in a nonfermentable carbon source but have almost no detectable PG in medium containing glucose. In glucose-grown cells, maximum respiratory rate, ATPase and cytochrome oxidase activities, and protein import are deficient in the mutant. The ADP/ATP carrier is defective even during growth in a nonfermentable carbon source. The mitochondrial membrane potential is decreased in mutant cells. The decrease is more pronounced in glucose-grown cells, which lack PG, but is also apparent in membranes containing PG (i.e. in nonfermentable carbon sources). We propose that CL is required for maintaining the mitochondrial membrane potential and that reduced membrane potential in the absence of CL leads to defects in protein import and other mitochondrial functions.
Collapse
Affiliation(s)
- F Jiang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bertrand KI, Hajduk SL. Import of a constitutively expressed protein into mitochondria from procyclic and bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol 2000; 106:249-60. [PMID: 10699254 DOI: 10.1016/s0166-6851(99)00218-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trypanosoma brucei developmentally regulates mitochondrial function during its life cycle. Numerous nuclear encoded mitochondrial proteins undergo posttranslational regulation in a developmental fashion, but exactly how that regulation is achieved is unclear. We are interested in mitochondrial import as a potential regulatory step for nuclear encoded mitochondrial proteins. Previously, an in vitro import system was developed for the procyclic lifestage. We report here the development of an in vitro import system for bloodstream trypanosomes using a crude mitochondrial preparation. NADH dehydrogenase subunit K (NdhK) is a nuclear encoded mitochondrial protein that is constitutively expressed in bloodstream and procyclic trypanosomes. We examined the import of NdhK into procylic and bloodstream mitochondria in vitro. In both lifestages import of NdhK requires a membrane potential across the inner mitochondrial membrane, mitochondrial matrix ATP, and is time dependent. The precursor protein is processed by a matrix associated metalloprotease in a single cleavage step to mature protein.
Collapse
Affiliation(s)
- K I Bertrand
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
43
|
Kurz M, Martin H, Rassow J, Pfanner N, Ryan MT. Biogenesis of Tim proteins of the mitochondrial carrier import pathway: differential targeting mechanisms and crossing over with the main import pathway. Mol Biol Cell 1999; 10:2461-74. [PMID: 10397776 PMCID: PMC25469 DOI: 10.1091/mbc.10.7.2461] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two major routes of preprotein targeting into mitochondria are known. Preproteins carrying amino-terminal signals mainly use Tom20, the general import pore (GIP) complex and the Tim23-Tim17 complex. Preproteins with internal signals such as inner membrane carriers use Tom70, the GIP complex, and the special Tim pathway, involving small Tims of the intermembrane space and Tim22-Tim54 of the inner membrane. Little is known about the biogenesis and assembly of the Tim proteins of this carrier pathway. We report that import of the preprotein of Tim22 requires Tom20, although it uses the carrier Tim route. In contrast, the preprotein of Tim54 mainly uses Tom70, yet it follows the Tim23-Tim17 pathway. The positively charged amino-terminal region of Tim54 is required for membrane translocation but not for targeting to Tom70. In addition, we identify two novel homologues of the small Tim proteins and show that targeting of the small Tims follows a third new route where surface receptors are dispensable, yet Tom5 of the GIP complex is crucial. We conclude that the biogenesis of Tim proteins of the carrier pathway cannot be described by either one of the two major import routes, but involves new types of import pathways composed of various features of the hitherto known routes, including crossing over at the level of the GIP.
Collapse
Affiliation(s)
- M Kurz
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
44
|
Bömer U, Maarse AC, Martin F, Geissler A, Merlin A, Schönfisch B, Meijer M, Pfanner N, Rassow J. Separation of structural and dynamic functions of the mitochondrial translocase: Tim44 is crucial for the inner membrane import sites in translocation of tightly folded domains, but not of loosely folded preproteins. EMBO J 1998; 17:4226-37. [PMID: 9687491 PMCID: PMC1170756 DOI: 10.1093/emboj/17.15.4226] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The essential gene TIM44 encodes a subunit of the inner mitochondrial membrane preprotein translocase that forms a complex with the matrix heat-shock protein Hsp70. The specific role of Tim44 in protein import has not yet been defined because of the lack of means to block its function. Here we report on a Saccharomyces cerevisiae mutant allele of TIM44 that allows selective and efficient inactivation of Tim44 in organello. Surprisingly, the mutant mitochondria are still able to import preproteins. The import rate is only reduced by approximately 30% compared with wild-type as long as the preproteins do not carry stably folded domains. Moreover, the number of import sites is not reduced. However, the mutant mitochondria are strongly impaired in pulling folded domains of preproteins close to the outer membrane and in promoting their unfolding. Our results demonstrate that Tim44 is not an essential structural component of the import channel, but is crucial for import of folded domains. We suggest that the concerted action of Tim44 and mtHsp70 drives unfolding of preproteins and accelerates translocation of loosely folded preproteins. While mtHsp70 is essential for import of both tightly and loosly folded preproteins, Tim44 plays a more specialized role in translocation of tightly folded domains.
Collapse
Affiliation(s)
- U Bömer
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Palmisano A, Zara V, Hönlinger A, Vozza A, Dekker PJ, Pfanner N, Palmieri F. Targeting and assembly of the oxoglutarate carrier: general principles for biogenesis of carrier proteins of the mitochondrial inner membrane. Biochem J 1998; 333 ( Pt 1):151-8. [PMID: 9639574 PMCID: PMC1219567 DOI: 10.1042/bj3330151] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have studied the targeting and assembly of the 2-oxoglutarate carrier (OGC), an integral inner-membrane protein of mitochondria. The precursor of OGC, synthesized without a cleavable presequence, is transported into mitochondria in an ATP- and membrane potential-dependent manner. Import of the mammalian OGC occurs efficiently into both mammalian and yeast mitochondria. Targeting of OGC reveals a clear dependence on the mitochondrial surface receptor Tom70 (the 70 kDa subunit of the translocase of the outer mitochondrial membrane), whereas a cleavable preprotein depends on Tom20 (the 20 kDa subunit), supporting a model of specificity differences of the receptors and the existence of distinct targeting pathways to mitochondria. The assembly of minute amounts of OGC imported in vitro to the dimeric form can be monitored by blue native electrophoresis of digitonin-lysed mitochondria. The assembly of mammalian OGC and fungal ADP/ATP carrier occurs with high efficiency in both mammalian and yeast mitochondria. These findings indicate a dynamic behaviour of the carrier dimers in the mitochondrial inner membrane and suggest a high conservation of the assembly reactions from mammals to fungi.
Collapse
Affiliation(s)
- A Palmisano
- Dipartimento Farmaco-Biologico, Università di Bari, Via E. Orabona 4, I-70125 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Rojo EE, Guiard B, Neupert W, Stuart RA. Sorting of D-lactate dehydrogenase to the inner membrane of mitochondria. Analysis of topogenic signal and energetic requirements. J Biol Chem 1998; 273:8040-7. [PMID: 9525904 DOI: 10.1074/jbc.273.14.8040] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-Lactate dehydrogenase (D-LD) is located in the inner membrane of mitochondria. It spans the membrane once in an Nin-Cout orientation with the bulk of the protein residing as a folded domain in the intermembrane space. D-LD is synthesized as a precursor with an N-terminal cleavable presequence and is imported into the mitochondria in a Deltapsi-dependent, but mt-Hsp70-independent manner. Upon import in vitro D-LD folds in the intermembrane space to attain a conformation indistinguishable from endogenous D-LD. Sorting of D-LD to the inner membrane is directed by a composite topogenic signal consisting of the hydrophobic transmembrane segment and a cluster of charged amino acids C-terminal to it. We propose a model for the mode of operation of the sorting signal of D-LD. This model also accounts for the driving force of translocation across the outer membrane, in the apparent absence of mt-Hsp70-dependent assisted import and involves the folding of the D-LD in the intermembrane space.
Collapse
Affiliation(s)
- E E Rojo
- Institut für Physiologische Chemie, Geethestrasse 33, 80336 München, Germany
| | | | | | | |
Collapse
|
47
|
Hell K, Herrmann J, Pratje E, Neupert W, Stuart RA. Oxa1p mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Lett 1997; 418:367-70. [PMID: 9428747 DOI: 10.1016/s0014-5793(97)01412-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxa1p is a mitochondrial protein reported to be involved in the assembly of the cytochrome oxidase complex. In the absence of a functional Oxa1p, subunit II of the cytochrome oxidase accumulates as its precursor form (pCoxII). Using mitochondria isolated from a yeast strain bearing a temperature sensitive mutation in the Oxa1p, pet ts1402, we have analyzed the function of the Oxa1p protein. We demonstrate that the accumulation of pCoxII in the pet ts1402 mitochondria does not reflect a compromised Imp1p activity in this mutant. Furthermore, measurement of the membrane potential has shown it to be sufficient to support the export of CoxII from the matrix. Rather, we found that newly synthesized pCoxII accumulates in the matrix of the pet ts1402 mitochondria, because export across the inner membrane is inhibited in the pet ts1402 mitochondria. In conclusion, Oxa1p mediates the export of the N- and C-termini of the mitochondrially encoded subunit II of cytochrome oxidase from the matrix to the intermembrane space.
Collapse
Affiliation(s)
- K Hell
- Institut für Physiologische Chemie der Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|
48
|
Moczko M, Bömer U, Kübrich M, Zufall N, Hönlinger A, Pfanner N. The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences. Mol Cell Biol 1997; 17:6574-84. [PMID: 9343421 PMCID: PMC232511 DOI: 10.1128/mcb.17.11.6574] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial protein import is thought to involve the sequential interaction of preproteins with binding sites on cis and trans sides of the membranes. For translocation across the outer membrane, preproteins first interact with the cytosolic domains of import receptors (cis) and then are translocated through a general import pore, in a process proposed to involve binding to a trans site on the intermembrane space (IMS) side. Controversial results have been reported for the role of the IMS domain of the essential outer membrane protein Tom22 in formation of the trans site. We show with different mutant mitochondria that a lack of the IMS domain only moderately reduces the direct import of preproteins with N-terminal targeting sequences. The dependence of import on the IMS domain of Tom22 is significantly enhanced by removing the cytosolic domains of import receptors or by performing import in two steps, i.e., accumulation of a preprotein at the outer membrane in the absence of a membrane potential (delta psi) and subsequent import after reestablishment of a delta psi. After the removal of cytosolic receptor domains, two-step import of a cleavable preprotein strictly requires the IMS domain. In contrast, preproteins with internal targeting information do not depend on the IMS domain of Tom22. We conclude that the negatively charged IMS domain of Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences, in agreement with the acid chain hypothesis of mitochondrial protein import.
Collapse
Affiliation(s)
- M Moczko
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Dekker PJ, Martin F, Maarse AC, Bömer U, Müller H, Guiard B, Meijer M, Rassow J, Pfanner N. The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70-Tim44. EMBO J 1997; 16:5408-19. [PMID: 9312000 PMCID: PMC1170172 DOI: 10.1093/emboj/16.17.5408] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Preprotein import into mitochondria is mediated by translocases located in the outer and inner membranes (Tom and Tim) and a matrix Hsp70-Tim44 driving system. By blue native electrophoresis, we identify an approximately 90K complex with assembled Tim23 and Tim17 as the core of the inner membrane import site for presequence-containing preproteins. Preproteins spanning the two membranes link virtually all Tim core complexes with one in four Tom complexes in a stable 600K supercomplex. Neither mtHsp70 nor Tim44 are present in stoichiometric amounts in the 600K complex. Preproteins in transit stabilize the Tim core complex, preventing an exchange of subunits. Our studies define a central role for the Tim core complexes in mitochondrial protein import; they are not passive diffusion channels, but can stably interact with preproteins and determine the number of translocation contact sites. We propose the hypothesis that mtHsp70 functions in protein import not only by direct interaction with preproteins, but also by exerting a regulatory effect on the Tim channel.
Collapse
Affiliation(s)
- P J Dekker
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gruhler A, Arnold I, Seytter T, Guiard B, Schwarz E, Neupert W, Stuart RA. N-terminal hydrophobic sorting signals of preproteins confer mitochondrial hsp70 independence for import into mitochondria. J Biol Chem 1997; 272:17410-5. [PMID: 9211883 DOI: 10.1074/jbc.272.28.17410] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The requirement of mitochondrial hsp70 (mt-hsp70) for the import of a series of preproteins containing hydrophobic sorting signals into isolated yeast mitochondria was investigated. Here we demonstrate that the presence of such a sorting signal in proximity to the N-terminal matrix-targeting sequence of a preprotein can secure a translocating polypeptide chain in the import channel in a manner that does not require mt-hsp70 activity. Trapping the translocating chain in this fashion leads to efficient processing by the mitochondrial processing peptidase and to complete translocation across the outer mitochondrial membrane into the intermembrane space. These mt-hsp70-independent effects appear to be exerted at the level of the inner membrane through an interaction of the hydrophobic core of the sorting signal with component(s) of the translocase of the inner membrane. Hydrophobic sorting signals of inner membrane proteins inserted into the membrane from the matrix, as well as those of intermembrane space proteins, are capable of causing this mt-hsp70-independent stabilization, demonstrating that this phenomenon is not unique to those preproteins normally sorted to the intermembrane space.
Collapse
Affiliation(s)
- A Gruhler
- Institut für Physiologische Chemie, Universität München, Goethestrasse 33, 80336 München, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|