1
|
Bianchi-Smiraglia A, Bagati A, Fink EE, Affronti HC, Lipchick BC, Moparthy S, Long MD, Rosario SR, Lightman SM, Moparthy K, Wolff DW, Yun DH, Han Z, Polechetti A, Roll MV, Gitlin II, Leonova KI, Rowsam AM, Kandel ES, Gudkov AV, Bergsagel PL, Lee KP, Smiraglia DJ, Nikiforov MA. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J Clin Invest 2018; 128:4682-4696. [PMID: 30198908 PMCID: PMC6159960 DOI: 10.1172/jci70712] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Polyamine inhibition for cancer therapy is, conceptually, an attractive approach but has yet to meet success in the clinical setting. The aryl hydrocarbon receptor (AHR) is the central transcriptional regulator of the xenobiotic response. Our study revealed that AHR also positively regulates intracellular polyamine production via direct transcriptional activation of 2 genes, ODC1 and AZIN1, which are involved in polyamine biosynthesis and control, respectively. In patients with multiple myeloma (MM), AHR levels were inversely correlated with survival, suggesting that AHR inhibition may be beneficial for the treatment of this disease. We identified clofazimine (CLF), an FDA-approved anti-leprosy drug, as a potent AHR antagonist and a suppressor of polyamine biosynthesis. Experiments in a transgenic model of MM (Vk*Myc mice) and in immunocompromised mice bearing MM cell xenografts revealed high efficacy of CLF comparable to that of bortezomib, a first-in-class proteasome inhibitor used for the treatment of MM. This study identifies a previously unrecognized regulatory axis between AHR and polyamine metabolism and reveals CLF as an inhibitor of AHR and a potentially clinically relevant anti-MM agent.
Collapse
Affiliation(s)
| | | | | | - Hayley C. Affronti
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Brittany C. Lipchick
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sudha Moparthy
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mark D. Long
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Spencer R. Rosario
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Shivana M. Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kalyana Moparthy
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David W. Wolff
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Zhannan Han
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Matthew V. Roll
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | - Aryn M. Rowsam
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | | | | | - Kelvin P. Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Dominic J. Smiraglia
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mikhail A. Nikiforov
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
2
|
Zhao J, Chen Q, Li H, Myerburg M, Spannhake EW, Natarajan V, Zhao Y. Lysophosphatidic acid increases soluble ST2 expression in mouse lung and human bronchial epithelial cells. Cell Signal 2011; 24:77-85. [PMID: 21871564 DOI: 10.1016/j.cellsig.2011.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/18/2022]
Abstract
Lysophosphatidic acid (LPA), a naturally occurring bioactive lysophospholipid increases the expression of both pro-inflammatory and anti-inflammatory mediators in airway epithelial cells. Soluble ST2 (sST2), an anti-inflammatory mediator, has been known to function as a decoy receptor of interleukin (IL)-33 and attenuates endotoxin-induced inflammatory responses. Here, we show that LPA increased sST2 mRNA expression and protein release in a dose and time dependent manner in human bronchial epithelial cells (HBEpCs). LPA receptors antagonist and Gαi inhibitor, pertussis toxin, attenuated LPA-induced sST2 release. Inhibition of NF-κB or JNK pathway reduced LPA-induced sST2 release. LPA treatment decreased histone deacetylase 3 (HDAC3) expression and enhanced acetylation of histone H3 at lysine 9 that binds to the sST2 promoter region. Furthermore, limitation of intracellular LPA generation by the down-regulation of acetyl glycerol kinase attenuated exogenous LPA-induced histone H3 acetylation on sST2 promoter region, as well as sST2 gene expression. Treatment of HBEpCs with recombinant sST2 protein or sST2-rich cell culture media attenuated endotoxin-induced phosphorylation of PKC and airway epithelial barrier disruption. These results unravel a novel sST2 mediated signaling pathway that has physiological relevance to airway inflammation and remodeling.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Dickerson SJ, Xing Y, Robinson AR, Seaman WT, Gruffat H, Kenney SC. Methylation-dependent binding of the epstein-barr virus BZLF1 protein to viral promoters. PLoS Pathog 2009; 5:e1000356. [PMID: 19325883 PMCID: PMC2654727 DOI: 10.1371/journal.ppat.1000356] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/27/2009] [Indexed: 11/19/2022] Open
Abstract
The switch between latent and lytic Epstein-Barr virus (EBV) infection is mediated by the viral immediate-early (IE) protein, BZLF1 (Z). Z, a homologue of c-jun that binds to AP1-like motifs (ZREs), induces expression of the BRLF1 (R) and BRRF1 (Na) viral proteins, which cooperatively activate transcription of the Z promoter and thereby establish a positive autoregulatory loop. A unique feature of Z is its ability to preferentially bind to, and activate, the methylated form of the BRLF1 promoter (Rp). To date, however, Rp is the only EBV promoter known to be regulated in this unusual manner. We now demonstrate that the promoter driving transcription of the early BRRF1 gene (Nap) has two CpG-containing ZREs (ACGCTCA and TCGCCCG) that are only bound by Z in the methylated state. Both Nap ZREs are highly methylated in cells with latent EBV infection. Z efficiently activates the methylated, but not unmethylated, form of Nap in reporter gene assays, and both ZREs are required. Z serine residue 186, which was previously shown to be required for Z binding to methylated ZREs in Rp, but not for Z binding to the AP1 site, is required for Z binding to methylated Nap ZREs. The Z(S186A) mutant cannot activate methylated Nap in reporter gene assays and does not induce Na expression in cells with latent EBV infection. Molecular modeling studies of Z bound to the methylated Nap ZREs help to explain why methylation is required for Z binding, and the role of the Z Ser186 residue. Methylation-dependent Z binding to critical viral promoters may enhance lytic reactivation in latently infected cells, where the viral genome is heavily methylated. Conversely, since the incoming viral genome is initially unmethylated, methylation-dependent Z activation may also help the virus to establish latency following infection. In cells with long-term latent Epstein-Barr virus (EBV) infection, the majority of the EBV genome becomes highly methylated. Methylation of cytosines plays a critical role in inhibiting the expression of cellular genes. In contrast, our laboratory previously showed that the EBV protein, BZLF1 (Z), which mediates viral reactivation and replication, preferentially binds to, and activates, the methylated form of the viral BRLF1 promoter. To date, however, BRLF1 is the only EBV promoter known to be activated by Z in this unusual manner. Here, we show that another EBV promoter (Nap, driving transcription of the BRRF1 gene) likewise has two methylation-dependent Z binding sites, and that Z only activates the Nap efficiently in the methylated form. Molecular modeling studies suggest why methylation of the Nap enhances Z binding. Since the BRLF1 and BRRF1 genes encode essential viral transcription factors that work cooperatively with Z to induce the lytic form of viral infection, our results indicate that methylation of the EBV genome enhances Z-mediated disruption of viral latency.
Collapse
Affiliation(s)
- Sarah J. Dickerson
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Yongna Xing
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Amanda R. Robinson
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - William T. Seaman
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Henri Gruffat
- Laboratoire de Virologie U758, ENS-Lyon, INSERM, Lyon, France
| | - Shannon C. Kenney
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
4
|
Wei LH, Yang Y, Wu G, Ignarro LJ. IL-4 and IL-13 upregulate ornithine decarboxylase expression by PI3K and MAP kinase pathways in vascular smooth muscle cells. Am J Physiol Cell Physiol 2008; 294:C1198-205. [PMID: 18367589 DOI: 10.1152/ajpcell.00325.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and rate-controlling enzyme in the synthesis of polyamines, which are essential for normal cell growth. We have previously demonstrated that IL-4 and IL-13 can stimulate rat aortic smooth muscle cell (RASMC) proliferation. The objective of this study was to determine whether IL-4 and IL-13 induce cell proliferation by upregulating ODC expression in RASMC. The results revealed that incubation of RASMC with IL-4 and IL-13 for 24 h caused four- to fivefold induction of ODC catalytic activity. The increased ODC catalytic activity was attributed to the increased expression of ODC mRNA. Moreover, these observations were paralleled by increased production of polyamines. We further investigated the signal transduction pathways responsible for ODC induction by IL-4 and IL-13. The data illustrated that PD-98059, a MEK (MAPK kinase) inhibitor, LY-294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, and H-89, a protein kinase A (PKA) inhibitor, substantially decreased the induction of ODC catalytic activity and ODC mRNA expression induced by IL-4 and IL-13, suggesting positive regulation of the ODC gene by ERK, PI3K, and PKA pathways. Interestingly, dexamethasone, a known inhibitor of cell proliferation, completely abrogated the response of RASMC to IL-4 and IL-13. Furthermore, the inhibition of ODC by these inhibitors led to the reduced production of polyamines and decreased DNA synthesis as monitored by [(3)H]thymidine incorporation. Our data indicate that upregulation of ODC by IL-4 and IL-13 might play an important role in the pathophysiology of vascular disorders characterized by excessive smooth muscle growth.
Collapse
Affiliation(s)
- Liu Hua Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735, USA
| | | | | | | |
Collapse
|
5
|
Amin MR, Dudeja PK, Ramaswamy K, Malakooti J. Involvement of Sp1 and Sp3 in differential regulation of human NHE3 promoter activity by sodium butyrate and IFN-gamma/TNF-alpha. Am J Physiol Gastrointest Liver Physiol 2007; 293:G374-82. [PMID: 17540780 DOI: 10.1152/ajpgi.00128.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously, we reported that IFN-gamma and TNF-alpha downregulate the expression of the human Na(+)/H(+) exchanger (NHE)3 gene by modulating Sp1/Sp3 transcription factors in C2BBe1 cells. It is reported that butyrate inhibits IFN-gamma and TNF-alpha signaling pathways. In this study, we have investigated the effect of sodium butyrate (NaB) and IFN-gamma/TNF-alpha on human NHE3 promoter activity. In transient transfection studies, NaB (5 mM) led to 10-fold stimulation of NHE3 promoter activity after incubation for 24 h. With 5'-deletion analysis, the NaB-responsive region was mapped to the NHE3 core promoter, bp -95 to + 5, which we had shown previously to confer responsiveness to IFN-gamma/TNF-alpha. The stimulatory effect of NaB on the NHE3 promoter was reduced by 60% in the presence of IFN-gamma/TNF-alpha. Mutually, the repressive effect of these cytokines was attenuated by NaB. Knockdown of Sp1 and Sp3 expression with small interfering RNA (siRNA) resulted in a significant resistance to NaB effects. NaB treatment showed no effect on Sp1 and Sp3 protein expression as assessed by Western blot analyses. Gel mobility shift assays with nuclear proteins from NaB-treated cells showed enhanced binding of Sp1 and Sp3 to the NHE3 promoter. The phosphatase inhibitor okadaic acid (200 nM) blocked the stimulatory effect of NaB on the NHE3 promoter. NaB effects on the NHE3 promoter were significantly attenuated by protein phosphatase (PP)1alpha- and PP2Aalpha-specific siRNA transfection. Our data suggest that the differential regulation of NHE3 gene expression by NaB and IFN-gamma/TNF-alpha is mediated through alternative pathways that converge on Sp1/Sp3.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
6
|
Cheng YH, Imir A, Suzuki T, Fenkci V, Yilmaz B, Sasano H, Bulun SE. SP1 and SP3 mediate progesterone-dependent induction of the 17beta hydroxysteroid dehydrogenase type 2 gene in human endometrium. Biol Reprod 2006; 75:605-14. [PMID: 16807381 DOI: 10.1095/biolreprod.106.051912] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The opposing actions of estrogen and progesterone during the menstrual cycle regulate the cyclical and predictable endometrial proliferation and differentiation that is required for implantation. Progesterone indirectly stimulates the expression of 17beta hydroxysteroid dehydrogenase type 2 (HSD17B2), which catalyzes the conversion of biologically potent estradiol to weakly estrogenic estrone in the endometrial epithelium. We previously demonstrated upregulation of the HSD17B2 gene in human endometrial epithelial cells by factors secreted from endometrial stromal cells in response to progesterone. We investigated the underlying mechanism by which these stroma-derived, progesterone-induced paracrine factors stimulate HSD17B2 expression. Here, we show that transcription factors SP1 and SP3 interact with specific motifs in HSD17B2 promoter to upregulate enzyme expression in human endometrial epithelial cell lines. Conditioned medium (CM) from progestin-treated stromal cells increased levels of SP1 and SP3 in endometrial epithelial cells and induced HSD17B2 mRNA expression. Mithramycin A, an inhibitor of SP1-DNA interaction, reduced epithelial HSD17B2 promoter activity in a dose-dependent manner. Serial deletion and site-directed mutants of the HSD17B2 promoter demonstrated that two overlapping SP1 motifs (nt -82/-65) are essential for induction of promoter activity by CM or overexpression of SP1/SP3. CM markedly enhanced, whereas anti-SP1/SP3 antibodies inhibited, binding of nuclear proteins to this region of the HSD17B2 promoter. In vivo, we demonstrated a significant spatiotemporal association between epithelial SP1/SP3 and HSD17B2 levels in human endometrial biopsies. Taken together, these data suggest that HSD17B2 expression in endometrial epithelial cells, and, therefore, estrogen inactivation, is regulated by SP1 and SP3, which are downstream targets of progesterone-dependent paracrine signals originating from endometrial stromal cells.
Collapse
Affiliation(s)
- You-Hong Cheng
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611-3095, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Amin MR, Malakooti J, Sandoval R, Dudeja PK, Ramaswamy K. IFN-gamma and TNF-alpha regulate human NHE3 gene expression by modulating the Sp family transcription factors in human intestinal epithelial cell line C2BBe1. Am J Physiol Cell Physiol 2006; 291:C887-96. [PMID: 16760259 DOI: 10.1152/ajpcell.00630.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diarrhea associated with inflammatory bowel disease has been attributed to stimulated secretion of proinflammatory cytokines like IFN-gamma and TNF-alpha, which have been shown to downregulate the expression of the sodium-hydrogen exchanger-3 (NHE3) gene. In this study, we have investigated the mechanism of NHE3 gene regulation by IFN-gamma and TNF-alpha in C2BBe1 cells. In response to both IFN-gamma (30 ng/ml) and TNF-alpha (20 ng/ml), the construct containing the bp -95 to +5 region of the human NHE3 promoter, which harbors a number of cis-elements including four potential Sp1 binding sites, showed a maximum repression of 60%. Knockdown of Sp1 and Sp3 expression using small interfering RNA resulted in a significant inhibition of the NHE3 promoter activity and resistance to cytokines effects. These cytokines showed no effects on the expression of Sp1 and Sp3 mRNA and protein levels as assessed by RT-PCR and Western blot analyses, respectively. After treatment with cytokines, the binding of Sp1 and Sp3 proteins to NHE3 promoter decreased significantly, as seen by gel mobility shift assays and chromatin immunoprecipitation assays. The inhibitory effects of both cytokines on the NHE3 promoter were completely blocked by the broad-range kinase inhibitor staurosporine and the selective protein kinase A (PKA) inhibitor 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer. The binding affinity of Sp1 and Sp3 proteins for NHE3 Sp1 probe was significantly decreased after in vitro phosphorylation of nuclear proteins by the alpha-catalytic subunit of PKA. Our data indicate that IFN-gamma and TNF-alpha may repress the NHE3 promoter activity in C2BBe1 cells by PKA-mediated phosphorylation of Sp1 and Sp3 transcription factors.
Collapse
Affiliation(s)
- Md Ruhul Amin
- University of Illinois at Chicago, Dept. of Medicine, Section of Digestive Diseases and Nutrition, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Recent analyses revealed that Krüppel-like factors (KLFs) play important roles in both normal development and carcinogenesis. Of the 16 known KLFs, KLF4 has been shown to be involved in the regulation of proliferation, differentiation and tumorigenesis of gastrointestinal tract epithelium. Clinical, experimental and mechanistic findings indicate that KLF4 is a bona fide tumor suppressor for both gastric and colorectal cancers. In this review, we summarize how this growing area of research has formed and the challenging new frontiers for better understanding of the oncogenic potential of the KLFs.
Collapse
Affiliation(s)
- Daoyan Wei
- Department of Gastrointestinal Medical Oncology, Department of Neurosurgery and Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
9
|
Qin C, Samudio I, Ngwenya S, Safe S. Estrogen-dependent regulation of ornithine decarboxylase in breast cancer cells through activation of nongenomic cAMP-dependent pathways. Mol Carcinog 2004; 40:160-70. [PMID: 15224348 DOI: 10.1002/mc.20030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
17beta-estradiol (E2) induces ornithine decarboxylase (ODC) activity in several E2-responsive tissues/cells, and this study investigated the mechanism of hormone-induced transactivation in MCF-7 human breast cancer cells. E2-induced reporter gene (luciferase) activity in MCF-7 cells transfected with a construct (pODC1) containing the -164 to +29 region of the human ODC gene promoter linked to bacterial luciferase. This promoter sequence contains GC-rich Sp1 binding sites, CAAT, LSF, cAMP response element (CRE), and TATA motifs. Deletion and mutational analysis of the ODC promoter showed that both CAAT and LSF sites were required for hormone-induced transactivation. Gel mobility shift and DNA footprinting assays indicated that NFYA and LSF bound the CAAT and LSF motifs, respectively, and GAL4-NFYA/GAL4-LSF chimeras were also activated by E2, 8-bromo-cAMP, and protein kinase A (PKA) expression plasmid. However, E2-induced transactivation of GAL4-NFYA and GAL4-LSF was blocked by the PKA inhibitor SQ22356 indicating that the mechanism of ODC induction by E2 involves upregulation of cAMP/PKA through nongenomic pathways of estrogen action.
Collapse
Affiliation(s)
- Chunhua Qin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | |
Collapse
|
10
|
Kim E, Muga SJ, Fischer SM. Identification and Characterization of a Phorbol Ester-responsive Element in the Murine 8S-Lipoxygenase Gene. J Biol Chem 2004; 279:11188-97. [PMID: 14711820 DOI: 10.1074/jbc.m313291200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Murine 8S-lipoxygenase (8S-LOX) is a 12-O-tetradecanoylphorbol-13-acetate (TPA)-inducible lipoxygenase. That is, it is not detected in normal mouse skin, however, a significant increase in expression is detected in the skin of TPA promotion-sensitive strains of mice after TPA treatment. In this study, we found TPA-induced 8S-LOX mRNA expression is a result of increased transcription in SSIN primary keratinocytes and further investigated transcriptional regulation of 8S-LOX expression by cloning its promoter. The cloned 8S-LOX promoter ( approximately 2 kb) in which a transcription initiation site was mapped at -27 from the ATG has neither a TATA box nor a CCAAT box. However, the promoter was highly responsive to TPA in TPA promotion-sensitive SSIN but not in TPA promotion-resistant C57BL/6J primary keratinocytes. We then identified a Sp1 binding site located -77 to -68 from the ATG that is a TPA-responsive element (TRE) of the promoter and that Sp1, Sp2, and Sp3 proteins bind to the TRE. We also found that the binding of these proteins to the TRE was significantly increased by TPA treatment and inhibition of the binding by mithramycin A decreased TPA-induced promoter activity as well as 8S-LOX mRNA expression. These data suggest that increased binding of Sp1, Sp2, and Sp3 to the TRE of the 8S-LOX promoter is a mechanism by which TPA induces 8S-LOX expression in keratinocytes.
Collapse
Affiliation(s)
- Eunjung Kim
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | |
Collapse
|
11
|
Ghosh R, Tummala R, Mitchell DL. Ultraviolet radiation-induced DNA damage in promoter elements inhibits gene expression. FEBS Lett 2003; 554:427-32. [PMID: 14623106 DOI: 10.1016/s0014-5793(03)01215-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Repair of DNA damage in gene promoters is slower than in actively transcribed genes. Persistent damage in gene promoters though transient can have significant biological effects on regulated gene expression. In this study we investigated the effect of ultraviolet radiation on gene promoter-associated functions when DNA damage is located within and outside transcription factor binding sites. Our results show that both cyclobutane pyrimidine dimers and (6-4) photoproducts inhibit DNA-protein interaction, in vitro transcript production and transactivation of reporter genes. The biological significance of transient DNA damage as a mechanism in carcinogenesis is discussed.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Cancer Causation and Prevention, AMC Cancer Research Centre and the University of Colorado Comprehensive Cancer Centre, 1600 Pierce Street, Denver, CO 80214, USA.
| | | | | |
Collapse
|
12
|
Kumar AP, Garcia GE, Ghosh R, Rajnarayanan RV, Alworth WL, Slaga TJ. 4-Hydroxy-3-methoxybenzoic acid methyl ester: a curcumin derivative targets Akt/NF kappa B cell survival signaling pathway: potential for prostate cancer management. Neoplasia 2003; 5:255-66. [PMID: 12869308 PMCID: PMC1502412 DOI: 10.1016/s1476-5586(03)80057-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription factor NFkappaB and the serine/threonine kinase Akt play critical roles in mammalian cell survival signaling and have been shown to be activated in various malignancies including prostate cancer (PCA). We have developed an analogue of curcumin called 4-hydroxy-3-methoxybenzoic acid methyl ester (HMBME) that targets the Akt/NFkappaB signaling pathway. Here, we demonstrate the ability of this novel compound to inhibit the proliferation of human and mouse PCA cells. HMBME-induced apoptosis in these cells was tested by using multiple biochemical approaches, in addition to morphologic analysis. Overexpression of constitutively active Akt reversed the HMBME-induced growth inhibition and apoptosis, illustrating the direct role of Akt signaling in HMBME-mediated growth inhibition and apoptosis. Further, investigation of the molecular events associated with its action in LNCaP cells shows that: 1) HMBME reduces the level of activated form of Akt (phosphorylated Akt); and 2) inhibits the Akt kinase activity. Further, the transcriptional activity of NFkappaB, the DNA-binding activity of NFkappaB, and levels of p65 were all significantly reduced following treatment with HMBME. Overexpression of constitutively active Akt, but not the kinase dead mutant of Akt, activated the basal NFkappaB transcriptional activity. HMBME treatment had no influence on this constitutively active Akt-augmented NFkappaB transcriptional activity. These data indicate that HMBME-mediated inhibition of Akt kinase activity may have a potential in suppressing/decreasing the activity of major survival/antiapoptotic pathways. The potential use of HMBME as an agent that targets survival mechanisms in PCA cells is discussed.
Collapse
Affiliation(s)
- Addanki P Kumar
- Center for Cancer Causation and Prevention, AMC Cancer Research Center and University of Colorado Comprehensive Cancer Center, Denver, CO 80214, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Chen ZY, Shie JL, Tseng CC. Gut-enriched Kruppel-like factor represses ornithine decarboxylase gene expression and functions as checkpoint regulator in colonic cancer cells. J Biol Chem 2002; 277:46831-9. [PMID: 12297499 DOI: 10.1074/jbc.m204816200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gut-enriched Krüppel-like factor (GKLF, KLF4) is an epithelial-specific transcription factor that expresses in the gastrointestinal tract and mediates growth arrest of colonic epithelium. The molecular mechanisms governing its growth inhibitory effect have not been fully elucidated. In the present study, we showed that induction of GKLF mRNA and protein expression by interferon-gamma treatment was associated with reduction of ornithine decarboxylase (ODC) gene expression and enzyme activity in colon cancer HT-29 cells. Overexpression of GKLF in HT-29 cells significantly reduced ODC mRNA and protein levels as well as enzyme activity and resulted in growth arrest, indicating that ODC might be a downstream target of GKLF. This conclusion was further supported by data showing that GKLF mRNA and protein concentrations were the highest at the G(1)/S boundary of the cell cycle, where ODC mRNA and protein levels were the lowest and that overexpression of GKLF resulted in cell arrested at the G(1) phase. Reporter gene transfection studies and electrophoretic mobility gel shift assays demonstrated that GKLF repressed ODC promoter activity and that these effects appeared to be mediated through interaction with a GC box in the proximal portion of the promoter. Transfection studies using reporter constructs and chromatin immunoprecipitation assays also demonstrated that GKLF inhibited transactivation of the ODC gene by interfering with the binding of Sp1 to the ODC promoter. These results indicate that GKLF may function as a G(1)/S checkpoint regulator and exert its growth arrest effect through down-regulation of ODC gene expression. Furthermore, GKLF is a transcriptional repressor of the ODC gene, and these effects are mediated by interaction with the GC-rich region on the promoter.
Collapse
Affiliation(s)
- Zhi Y Chen
- Section of Gastroenterology, Veterans Affairs Boston Healthcare System and Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | | | | |
Collapse
|
14
|
Zhao B, Butler AP. Core promoter involvement in the induction of rat ornithine decarboxylase by phorbol esters. Mol Carcinog 2001; 32:92-9. [PMID: 11746821 DOI: 10.1002/mc.1068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of ornithine decarboxylase (ODC) is an important oncogenic event in tumorigenesis. Although ODC was one of the first genes described whose product is inducible by 12-O-tetradecanoylphorbol-13-acetate (TPA), the mechanisms of ODC transcriptional regulation have remained elusive. In this study, we systematically analyzed the rat ODC core promoter region for novel TPA response elements. Analysis of linker scanning mutants of the ODC promoter from the TATA box to the transcription start site demonstrated that mutation of the TATA box reduced the TPA induction ratio by 40%, while the basal ODC promoter activity was not significantly changed. A novel region between nt - 20 to - 10 was shown to be critical for both basal promoter activity and induction by TPA. Random mutagenesis of this region showed that conversion of the GC-rich wild-type sequence into a T-rich sequence could either substantially increase the basal promoter activity and decrease the TPA induction ratio or dramatically reduce the basal promoter activity, depending on the T content. Mutant R5, containing an ATTT sequence at nt - 15 to - 12, caused a more than twofold increase of basal promoter activity and 80% reduction of TPA induction ratio. We suggest that this region interacts with components of the general transcription machinery and that the strength of this interaction is mediated by the T-content in this region.
Collapse
Affiliation(s)
- B Zhao
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
15
|
Kumar AP, Garcia GE, Slaga TJ. 2-methoxyestradiol blocks cell-cycle progression at G(2)/M phase and inhibits growth of human prostate cancer cells. Mol Carcinog 2001; 31:111-24. [PMID: 11479920 DOI: 10.1002/mc.1046] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
2-Methoxyestradiol (2-ME), an endogenous metabolite of 17beta-estradiol, is present in human blood and urine. Here we show for the first time that 2-ME significantly inhibited the growth of normal prostate epithelial cells and androgen-dependent LNCaP and androgen-independent DU145 prostate cancer cells. This growth inhibition was accompanied by a twofold increase in the G(2)/M population, with a concomitant decrease in the G(1) population, as shown by cell-cycle analysis. 2-ME treatment affected the cell-cycle progression of prostate cancer cells specifically by blocking cells in the G(2) phase. Immunoblot analysis of the key cell-cycle regulatory proteins in the G(2)/M phase showed a 14-fold increase in the expression of p21 and an eightfold increase in the expression of p34 cell division cycle 2 (cdc2). We also found an accumulation of phosphorylated cdc2 after 2-ME treatment. Furthermore, Wee 1 kinase was detectable after 2-ME treatment. 2-ME treatment also led to an increase in the activity of caspase-3, followed by apoptosis, as shown by terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate-biotin nick end-labeling and fluorescein isothiocyanate-poly(ADP-ribose) polymerase assay. Estrogen receptor levels did not change after treatment with 2-ME. Examination of the signaling pathways that mediate 2-ME-induced apoptosis showed reduction in the level of p53 expression and its DNA-binding activity. Given the fact that p53 mutations are common in patients with metastatic prostate cancer, our finding that 2-ME-mediated growth inhibition of human prostate cancer cells occurred in a p53-independent manner has considerable clinical significance. These findings, combined with the limited toxicity of 2-ME, may have significant implications for alternative treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- A P Kumar
- Center for Cancer Causation and Prevention, AMC Cancer Research Center and University of Colorado Comprehensive Cancer Center, Denver, Colorado 80214, USA
| | | | | |
Collapse
|
16
|
Horie S, Ishii H, Matsumoto F, Kusano M, Kizaki K, Matsuda J, Kazama M. Acceleration of thrombomodulin gene transcription by retinoic acid: retinoic acid receptors and Sp1 regulate the promoter activity through interactions with two different sequences in the 5'-flanking region of human gene. J Biol Chem 2001; 276:2440-50. [PMID: 11036068 DOI: 10.1074/jbc.m004942200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions between retinoic acid- (RA)-dependent transcriptional regulatory sequences of the 5'-untranslated region of the thrombomodulin gene and nuclear RA-responsive proteins were studied using human pancreas BxPC-3 cells. Deletion mutants of pTM-CAT plasmid revealed the presence of distal and proximal RA-responsive regions containing direct repeat with 4 spaces (DR4) and three of four Sp1 sites, respectively. Cotransfection of a pTM-CAT plasmid with expression plasmids of RA receptors (RARalpha, RARbeta, and RARgamma) augmented the promoter activity under the condition of lower retinoid X receptor-alpha (RXRalpha) expression, whereas the activity was greatly diminished when RXRalpha was highly expressed. An electrophoretic mobility shift assay with cDNA containing the DR4 indicated that heterodimers of RAR and RXRalpha interacted with the DR4 site, although the interaction gradually disappeared with the increase in the ratio of RXRalpha/RAR. On the other hand, Sp1 protein interacted especially with the tandem Sp1 site corresponding to the first and second Sp1 sequences of the four Sp1 sites in the proximal RA-responsive region. The binding of Sp1 to Sp1 sites was independent of RAR-RXR heterodimer but increased with the increase in Sp1 concentration in the presence of unknown factor(s) of reticulocyte lysate. Upon treatment of the cells with RA, time-dependent increases in the ratio of RARbeta to RXRalpha and the phosphorylated form of Sp1 were observed. We concluded that two genomic DNA regions, the DR4 site (-1531 to -1516) and the first and second Sp1-binding sites (-145 to -121), were involved in the RA-dependent augmentation of thrombomodulin gene expression through increased interactions of the two regions with heterodimer of RAR-RXRalpha and nuclear Sp1, respectively.
Collapse
Affiliation(s)
- S Horie
- Department of Clinical Biochemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui, Kanagawa 199-0195, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhao B, Kumar AP, Butler AP. A negative regulatory element within the proximal promoter region of the rat ornithine decarboxylase gene. Mol Carcinog 2000; 29:212-8. [PMID: 11170259 DOI: 10.1002/1098-2744(200012)29:4<212::aid-mc1003>3.0.co;2-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A putative Ets site with a core of GGAA located at nt -88 to -85 of the rat ornithine decarboxylase (ODC) gene was characterized by site-directed mutagenesis and transient expression assays. Mutation of this site, when in pODClux2m, which contains a cluster of four Sp1-binding sites, resulted in a 2.6-fold increase in basal promoter activity in untreated cells, whereas the ratio of activity in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated cells relative to the ratio in untreated cells (the induction ratio) remained largely unchanged. However, when the mutation was in pODClux168, which contains only a single Sp1-binding site (GC box V), it caused little alteration to either basal promoter activity or TPA induction ratio. A protein of 55-60 kDa was found specifically bound to this site, as shown by ultraviolet cross-linking assay. In competition assay and methylation interference assay, this protein was shown to occupy the GGAA core, although it showed no antigenic relation to c-Ets-1 in an supershift assay. We suggest that this protein binds specifically to the GGAA core and functions to inhibit activation of the ODC promoter by distal elements, including the upstream Sp1 sites.
Collapse
Affiliation(s)
- B Zhao
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | |
Collapse
|
18
|
Wang Q, Ji Y, Wang X, Evers BM. Isolation and molecular characterization of the 5'-upstream region of the human TRAIL gene. Biochem Biophys Res Commun 2000; 276:466-71. [PMID: 11027498 DOI: 10.1006/bbrc.2000.3512] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TRAIL, a novel member of the TNF family, acts through membrane receptors to induce apoptosis of activated T lymphocytes and may represent a mechanism for the "immune escape" of certain cancers. Various cytokines appear to increase expression of other TNF family members; however, the regulation of TRAIL has not been defined. The purpose of this study was to assess molecular mechanisms regulating TRAIL gene expression in human colon cancers. In this study, we have cloned the human TRAIL (hTRAIL) promoter ( approximately 1.6 kb) and identified a number of putative transcription factor binding sites such as NFAT, AP-1 and Sp1 sequences which are important for the expression of other TNF family members. Transient transfections of 5'-deletion promoter constructs into either Caco-2 or HT29 colon cancer cells identified TRAIL promoter regions critical for both basal and interferon-gamma (IFN-gamma)-mediated induction. Furthermore, induction of TRAIL mRNA levels was demonstrated in HT29 and Caco-2 cells with IFN-gamma treatment suggesting an important role for this cytokine in TRAIL expression.
Collapse
Affiliation(s)
- Q Wang
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555-0536, USA
| | | | | | | |
Collapse
|
19
|
Schepers U, Lemm T, Herzog V, Sandhoff K. Characterization of regulatory elements in the 5'-flanking region of the GM2 activator gene. Biol Chem 2000; 381:531-44. [PMID: 10987359 DOI: 10.1515/bc.2000.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lysosomal degradation of the ganglioside GM2 by human beta-hexosaminidase A requires the presence of the GM2 activator protein as an essential cofactor. Here we demonstrate that GM2 activator mRNA is differentially expressed and mainly localized to the apical part of the epithelial cells of distal renal tubules and the collecting duct. In order to understand the mechanism underlying the regulation of the GM2 activator gene, we analyzed the genomic organization upstream exon 2 as well as the 5'-flanking region. The GM2 activator gene spans about 16.8 kb with a first intron of 6.5 kb, and the transcription start is located at position -96 upstream from the ATG. DNA elements responsible for GM2 activator expression were identified in a PCR-based method of long-distance DNA walking. Sequence analysis revealed a 2.9 kb region upstream of the ATG that contained regulatory elements like CAAT boxes, Sp1 binding sites as well as AP1, and AP2 sites. Transfection experiments in COS-1 cells with a series of chimeras of 5'-stepwise deletion mutants of the GM2 activator gene 5'-flanking region and the secretory alkaline phosphatase (SEAP)-reporter gene indicated that a genomic fragment encompassing -323 to +1 bp had significant promoter activity. EMSA experiments showed that Sp1 and other transcription factors like AP1, AP2 and CCAAT-Box binding proteins are involved in GM2 activator gene regulation.
Collapse
Affiliation(s)
- U Schepers
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | | | | | |
Collapse
|
20
|
Kumar AP, Butler AP. Enhanced Sp1 DNA-binding activity in murine keratinocyte cell lines and epidermal tumors. Cancer Lett 1999; 137:159-65. [PMID: 10374837 DOI: 10.1016/s0304-3835(98)00351-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Altered regulation of ornithine decarboxylase (ODC) is frequently observed in epidermal tumors. We have shown that the transcription factor Sp1 is one of the regulators of ODC expression and that Sp3 antagonizes this Sp1-mediated activation of ODC expression. These results led us to examine the levels and binding activity of Sp1 and Sp3 in nuclear extracts prepared from cultured murine keratinocytes, transformed keratinocyte cell lines and epidermal tumors. Here we show that the Sp1 DNA-binding activity is higher in established keratinocyte cell line extracts than in primary keratinocyte extracts. Sp1 message levels and Sp1 DNA-binding activity was found to be low in 20-week papillomas and high in squamous cell carcinomas. These results suggest that increased levels of Sp1 and enhanced Sp1 DNA binding activity are correlated with epidermal tumor progression. Based on these results, we propose that increased Sp1 DNA binding may augment the proliferative capacity of tumor cells through overexpression of Sp1-responsive genes, possibly including ODC.
Collapse
Affiliation(s)
- A P Kumar
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville 78957, USA.
| | | |
Collapse
|
21
|
Aziz N, Cherwinski H, McMahon M. Complementation of defective colony-stimulating factor 1 receptor signaling and mitogenesis by Raf and v-Src. Mol Cell Biol 1999; 19:1101-15. [PMID: 9891045 PMCID: PMC116040 DOI: 10.1128/mcb.19.2.1101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ras-activated signal transduction pathways are implicated in the control of cell proliferation, differentiation, apoptosis, and tumorigenesis, but the molecular mechanisms mediating these diverse functions have yet to be fully elucidated. Conditionally active forms of Raf, v-Src, and MEK1 were used to identify changes in gene expression that participate in oncogenic transformation, as well as in normal growth control. Activation of Raf, v-Src, and MEK1 led to induced expression of c-Myc and cyclin D1. Induction of c-Myc mRNA by Raf was an immediate-early response, whereas the induction of cyclin D1 mRNA was delayed and inhibited by cycloheximide. Raf activation also resulted in the induction of an established c-Myc target gene, ornithine decarboxylase (ODC). ODC induction by Raf was mediated, in part, by tandem E-boxes contained in the first intron of the gene. Activation of the human colony-stimulating factor 1 (CSF-1) receptor in NIH 3T3 cells leads to activation of the mitogen-activated protein (MAP) kinase pathway and induced expression of c-Fos, c-Myc, and cyclin D1, leading to a potent mitogenic response. By contrast, a mutated form of this receptor fails to activate the MAP kinases or induce c-Myc and cyclin D1 expression and fails to elicit a mitogenic response. The biological significance of c-Myc and cyclin D1 induction by Raf and v-Src was confirmed by the demonstration that both of these protein kinases complemented the signaling and mitogenic defects of cells expressing this mutated form of the human CSF-1 receptor. Furthermore, the induction of c-Myc and cyclin D1 by oncogenes and growth factors was inhibited by PD098059, a specific MAP kinase kinase (MEK) inhibitor. These data suggest that the Raf/MEK/MAP kinase pathway plays an important role in the regulation of c-Myc and cyclin D1 expression in NIH 3T3 cells. The ability of oncogenes such as Raf and v-Src to regulate the expression of these proteins reveals new lines of communication between cytosolic signal transducers and the cell cycle machinery.
Collapse
Affiliation(s)
- N Aziz
- Department of Cell Signaling, DNAX Research Institute, Palo Alto, California 94304-1104, USA
| | | | | |
Collapse
|
22
|
Abstract
EGF stimulates gene expression through a variety of signal transduction pathways that include the ras-Erk pathway. We have shown previously that EGF receptor activation stimulates gastrin gene expression through a GC-rich element called gERE. This element binds Sp1 family members and raises the possibility that the ras-Erk signal transduction cascade may target this novel EGF responsive element. Moreover, it is known that Erk 2 is capable of phosphorylating other mitogen-inducible transcription factors, e.g., Elk, Sap suggesting that Erk may also inducibly phosphorylate Sp1. To test this hypothesis directly using cotransfection experiments, we show that ras and Erk 2 activation indeed target the gERE element. The Mek 1 kinase inhibitor, PD98059, blocks 50% of EGF-inducible gastrin promoter activity. Pretreatment of the extracts with recombinant Erk2 stimulated Sp1 binding; whereas dephosphorylation reduced but did not eliminate Sp1 binding. Together, these studies demonstrate the novel finding that inducible binding of Sp1 is regulated by its state of phosphorylation. Further, gastrin promoter activation is mediated in part by the ras-Erk signaling cascade that targets Sp1.
Collapse
Affiliation(s)
- J L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109-0650, USA
| | | | | |
Collapse
|
23
|
Shantz LM, Pegg AE. Translational regulation of ornithine decarboxylase and other enzymes of the polyamine pathway. Int J Biochem Cell Biol 1999; 31:107-22. [PMID: 10216947 DOI: 10.1016/s1357-2725(98)00135-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has long been known that polyamines play an essential role in the proliferation of mammalian cells, and the polyamine biosynthetic pathway may provide an important target for the development of agents that inhibit carcinogenesis and tumor growth. The rate-limiting enzymes of the polyamine pathway, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC), are highly regulated in the cell, and much of this regulation occurs at the level of translation. Although the 5' leader sequences of ODC and AdoMetDC are both highly structured and contain small internal open reading frames (ORFs), the regulation of their translation appears to be quite different. The translational regulation of ODC is more dependent on secondary structure, and therefore responds to the intracellular availability of active eIF-4E, the cap-binding subunit of the eIF-4F complex, which mediates translation initiations. Cell-specific translation of AdoMetDC appears to be regulated exclusively through the internal ORF, which causes ribosome stalling that is independent of eIF-4E levels and decreases the efficiency with which the downstream ORF encoding AdoMetDC protein is translated. The translation of both ODC and AdoMetDC is negatively regulated by intracellular changes in the polyamines spermidine and spermine. Thus, when polyamine levels are low, the synthesis of both ODC and AdoMetDC is increased, and an increase in polyamine content causes a corresponding decrease in protein synthesis. However, an increase in active eIF-4E may allow for the synthesis of ODC even in the presence of polyamine levels that repress ODC translation in cells with lower levels of the initiation factor. In contrast, the amino acid sequence that is encoded by the upstream ORF is critical for polyamine regulation of AdoMetDC synthesis and polyamines may affect synthesis by interaction with the putative peptide, MAGDIS.
Collapse
Affiliation(s)
- L M Shantz
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 1703, USA.
| | | |
Collapse
|
24
|
Adnane J, Bizouarn FA, Qian Y, Hamilton AD, Sebti SM. p21(WAF1/CIP1) is upregulated by the geranylgeranyltransferase I inhibitor GGTI-298 through a transforming growth factor beta- and Sp1-responsive element: involvement of the small GTPase rhoA. Mol Cell Biol 1998; 18:6962-70. [PMID: 9819384 PMCID: PMC109279 DOI: 10.1128/mcb.18.12.6962] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Accepted: 08/26/1998] [Indexed: 11/20/2022] Open
Abstract
We have recently reported that the geranylgeranyltransferase I inhibitor GGTI-298 arrests human tumor cells at the G1 phase of the cell cycle and increases the protein and RNA levels of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). Here, we show that GGTI-298 acts at the transcriptional level to induce p21(WAF1/CIP1) in a human pancreatic carcinoma cell line, Panc-1. This upregulation of p21(WAF1/CIP1) promoter was selective, since GGTI-298 inhibited serum responsive element- and E2F-mediated transcription. A functional analysis of the p21(WAF1/CIP1) promoter showed that a GC-rich region located between positions -83 and -74, which contains a transforming growth factor beta-responsive element and one Sp1-binding site, is sufficient for the upregulation of p21(WAF1/CIP1) promoter by GGTI-298. Electrophoretic mobility shift assays showed a small increase in the amount of DNA-bound Sp1-Sp3 complexes. Furthermore, the analysis of Sp1 transcriptional activity in GGTI-298-treated cells by using GAL4-Sp1 chimera or Sp1-chloramphenicol acetyltransferase reporter revealed a significant increase in Sp1-mediated transcription. Moreover, GGTI-298 treatment also resulted in increased Sp1 and Sp3 phosphorylation. These results suggest that GGTI-298-mediated upregulation of p21(WAF1/CIP1) involves both an increase in the amount of DNA-bound Sp1-Sp3 and enhancement of Sp1 transcriptional activity. To identify the geranylgeranylated protein(s) involved in p21(WAF1/CIP1) transcriptional activation, we analyzed the effects of the small GTPases Rac1 and RhoA on p21(WAF1/CIP1) promoter activity. The dominant negative mutant of RhoA, but not Rac1, was able to activate p21(WAF1/CIP1). In contrast, constitutively active RhoA repressed p21(WAF1/CIP1). Accordingly, the ADP-ribosyl transferase C3, which specifically inhibits Rho proteins, enhanced the activity of p21(WAF1/CIP1). Taken together, these results suggest that one mechanism by which GGTI-298 upregulates p21(WAF1/CIP1) transcription is by preventing the small GTPase RhoA from repressing p21(WAF1/CIP1) induction.
Collapse
Affiliation(s)
- J Adnane
- Drug Discovery Program, H. Lee Moffitt Cancer Center, and Department of Biochemistry and Molecular Biology, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
25
|
Thomassen E, Bird TA, Renshaw BR, Kennedy MK, Sims JE. Binding of interleukin-18 to the interleukin-1 receptor homologous receptor IL-1Rrp1 leads to activation of signaling pathways similar to those used by interleukin-1. J Interferon Cytokine Res 1998; 18:1077-88. [PMID: 9877452 DOI: 10.1089/jir.1998.18.1077] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interleukin-18 (IL-18) is an inflammatory cytokine that has been shown to enhance a variety of Th1 type T cell responses. Because IL-18 is homologous to IL-1, we tested binding of IL-18 to the known IL-1R family members. We could show binding of IL-18 to the orphan receptor IL-1Rrp1 but not to other IL-1R homologous proteins. IL-1Rrp1 and IL-1RI share highly conserved domains within their cytoplasmic regions. Comparison of the IL-1 and IL-18 signaling mechanisms showed that they activate identical cytoplasmic messengers. IL-18, like IL-1, induced association of its receptor with IRAK and subsequent recruitment of TRAF6. IL-18 activated p38 MAP kinase, jun kinase, and beta casein kinase (TIP kinase), an apparently novel kinase previously thought to be specifically activated by IL-1 and tumor necrosis factor (TNF). IL-18 activated NF-kappaB in EL4/6.1 thymoma cells but not in COS-7 cells, even though the latter presumably contain all components required for the IL-1 signaling pathway. From our binding and signaling studies, we conclude that the IL-18 receptor complex consists of IL-18, the IL-1Rrp1, and another thus far unidentified receptor molecule.
Collapse
|
26
|
Abstract
We compared the Sp1 binding activity of Rat2 fibroblasts in nuclear extracts prepared from quiescent cells and cells stimulated with 20% serum. Increased DNA-binding activity was observed in extracts from serum-stimulated cells when an Sp1 oligonucleotide was used as radiolabeled probe in electrophoretic mobility shift assays. This increase in Sp1 DNA-binding activity is not due to changes in the amount of Sp1 in the nucleus as shown by immunoblot analysis. The transcriptional activity of a reporter construct containing six Sp1 sites upstream of a minimal adenovirus promoter or an Sp1-dependent promoter such as ornithine decarboxylase (ODC) containing Sp1 sites was enhanced following serum stimulation in transient transfection assays. Dephosphorylation of the nuclear extracts with potato acid phosphatase abolished the Sp1 DNA-binding activity, demonstrating a possible correlation between phosphorylation of Sp1 and DNA-binding activity. These results implicate a potential role for Sp1 in mediating signal transduction pathways in response to mitogenic signals.
Collapse
Affiliation(s)
- A P Kumar
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, 78957, USA
| | | |
Collapse
|
27
|
Law GL, Itoh H, Law DJ, Mize GJ, Merchant JL, Morris DR. Transcription factor ZBP-89 regulates the activity of the ornithine decarboxylase promoter. J Biol Chem 1998; 273:19955-64. [PMID: 9685330 DOI: 10.1074/jbc.273.32.19955] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Appropriate cellular levels of polyamines are required for cell growth and differentiation. Ornithine decarboxylase is a key regulatory enzyme in the biosynthesis of polyamines, and precise regulation of the expression of this enzyme is required, according to cellular growth state. A variety of mitogens increase the level of ornithine decarboxylase activity, and, in most cases, this elevation is due to increased levels of mRNA. A GC box in the proximal promoter of the ornithine decarboxylase gene is required for basal and induced transcriptional activity, and two proteins, Sp1 and NF-ODC1, bind to this region in a mutually exclusive manner. Using a yeast one-hybrid screening method, ZBP-89, a DNA-binding protein, was identified as a candidate for the protein responsible for NF-ODC1 binding activity. Three lines of evidence verified this identification; ZBP-89 copurified with NF-ODC1 binding activity, ZBP-89 antibodies specifically abolished NF-ODC1 binding to the GC box, and binding affinities of 12 different double-stranded oligonucleotides were indistinguishable between NF-ODC1, in nuclear extract, and in vitro translated ZBP-89. ZBP-89 inhibited the activation of the ornithine decarboxylase promoter by Sp1 in Schneider's Drosophila line 2, consistent with properties previously attributed to NF-ODC1.
Collapse
Affiliation(s)
- G L Law
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hayashi T, Usui M, Nishioka J, Zhang ZX, Suzuki K. Regulation of the human protein C inhibitor gene expression in HepG2 cells: role of Sp1 and AP2. Biochem J 1998; 332 ( Pt 2):573-82. [PMID: 9601089 PMCID: PMC1219515 DOI: 10.1042/bj3320573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein C inhibitor (PCI) is the plasma inhibitor of activated protein C, which is the main protease of the anticoagulant protein C pathway. In this study the transcriptional regulation of human PCI gene in the human hepatoma cell line, HepG2, was characterized by evaluating the transient expression of a luciferase reporter gene. The 5' flanking region (residues -1587 to +2) of the PCI gene showed an adequate transcriptional activity, the maximum transcriptional activity being in a region between residues -452 and -94, which contains an Sp1-binding site, two AP2-binding sites and an inverted AP2-binding site. Transient expression assays with various deletion mutants and site-directed mutants showed that the Sp1-binding site (residues -302 to -294) has a potent promoter activity and that the upstream AP2-binding site (residues -350 to -343) has a potent enhancer activity; no activity was detected in the inverted (residues -413 to -404) and downstream (residues -136 to -127) AP2-binding sites. In addition, a region of the PCI gene (residues -452 to -414) containing the STATx-binding site, the A-activator (AA)-binding site, and the interferon alpha (IFN-alpha) response element, and another region of the PCI gene (residues -176 to -147) containing the GATA-1 and the IFN-gamma response element showed potent silencer activities. Gel mobility-shift assays with various DNA fragments indicated that the Sp1-binding site, the upstream AP2-binding site, the AA-binding site and the IFN-gamma response element interact with nuclear protein(s) of HepG2 cells. These findings suggest that the Sp1-binding site is the promoter, the AP2-binding site (residues -350 to -343) the enhancer, and both the AA-binding site and the IFN-gamma response element are the silencers of human PCI gene expression in HepG2 cells.
Collapse
Affiliation(s)
- T Hayashi
- Department of Molecular Pathobiology, Mie University School of Medicine, Tsu-city, Mie 514, Japan
| | | | | | | | | |
Collapse
|
29
|
Zawia NH, Sharan R, Brydie M, Oyama T, Crumpton T. Sp1 as a target site for metal-induced perturbations of transcriptional regulation of developmental brain gene expression. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 107:291-8. [PMID: 9593950 DOI: 10.1016/s0165-3806(98)00023-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Differential gene expression is partially regulated by zinc finger proteins (ZFP) such as Sp1, which may be potential targets for perturbations by environmental metals. In this paper, we discuss the selective effects of lead (Pb) and other heavy metals on the in vitro and in vivo DNA-binding of Sp1, and the developmental expression of its target genes. We have found that the presence of Pb, Zn and Cd in a DNA-binding assay differentially modulated the binding of Sp1 to its specific DNA sequence, while Ca, Mg and Ba, did not. In PC12 cells, cultured in the presence of low concentrations of Pb, a premature enhancement of Sp1 DNA-binding was observed. Similarly, Sp1 DNA-binding in the cerebellum of Pb-exposed animals was shifted to the first week after birth, while the developmental profile of a non-ZFP, NFkB, was not. Furthermore, selective premature peaks of myelin basic protein and proteolipid protein mRNA expression were observed to occur in a manner relative to the changes in Sp1 DNA-binding. Since these genes are high targets for Sp1, these data suggest that exposure to heavy metals may alter developmental gene expression and brain development through selective modulation of the transcriptional activity of Sp1.
Collapse
Affiliation(s)
- N H Zawia
- Department of Pharmacology and Environmental Health Division, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, USA. zawian33ccvax.mmc.edu
| | | | | | | | | |
Collapse
|
30
|
Nahon E, Raveh D. Targeting a truncated Ho-endonuclease of yeast to novel DNA sites with foreign zinc fingers. Nucleic Acids Res 1998; 26:1233-9. [PMID: 9469831 PMCID: PMC147390 DOI: 10.1093/nar/26.5.1233] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ho-endonuclease of the yeast, Saccharomyces cerevisiae, initiates a mating type switch by making a site-specific double strand break in the mating type gene, MAT. Ho is a dodecamer endonuclease and shares six of the seven intein motifs with PI- Sce I endonuclease, an intein encoded by the VMAI gene. We show that a 113 residue truncated Ho-endonuclease starting at intein motif C initiates a mating type switch in yeast. Ho is the only dodecamer endonuclease with zinc fingers. To see whether they have a role in determining site specificity we exchanged them for zinc fingers of the yeast transcription factor, Swi5. A chimeric endonuclease comprising the dodecamer motifs of Ho (C-E) and the zinc finger domain of Swi5 cleaves a Swi5 substrate plasmid in vivo. A similar chimera with the zinc fingers of SpI cleaves a GC box rich substrate plasmid. These experiments delineate a catalytic fragment of Ho-endonuclease that can be fused to various DNA binding moieties in the design of chimeric endonucleases with new site specificities.
Collapse
Affiliation(s)
- E Nahon
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba 84105, Israel
| | | |
Collapse
|
31
|
Brochard D, Morel L, Cheyvialle D, Veyssiere G, Jean C. Androgen induction of the SVS family related protein MSVSP99: identification of a functional androgen response element. Mol Cell Endocrinol 1997; 136:91-9. [PMID: 9510071 DOI: 10.1016/s0303-7207(97)00222-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gene encoding MSVSP99 (mouse seminal vesicle secretory protein of 99 amino acids) is specifically expressed in the mouse seminal vesicle under androgenic control. To study hormonal regulation, fragments of the 5'-flanking region, extending from -2365 to +16 were linked to the chloramphenicol acetyl transferase (CAT) gene and cotransfected with an androgen receptor expression vector into CV-1 cells. A minimal region (-387 to +16) was sufficient for full androgen induction. Further deletion, up to nt-261, almost completely abolished androgen inducibility. DNase I footprinting and band-shift assays, using the DNA binding domain of the androgen receptor (AR-DBD), revealed three AR binding sites: two putative androgen response elements (AREs) occurring at positions -361 (AREd) and -208 (AREp), and an androgen receptor binding region (ARBR) located between positions -317 and -293. Transient transfection assays revealed that site-directed mutation in AREp abolished androgen induced expression, whereas mutation in AREd or in ARBR had no effect. The results demonstrate that AREp is a functional sequence that must cooperate with additional cis-acting elements, located between -387 and -261, for androgen induction of the MSVSP99 gene.
Collapse
Affiliation(s)
- D Brochard
- Laboratoire Reproduction et Développement, UMR 6547 du CNRS, Université Blaise Pascal-Clermont-Ferrand II, Aubière, France
| | | | | | | | | |
Collapse
|
32
|
Wo YY, Stewart J, Greenlee WF. Functional analysis of the promoter for the human CYP1B1 gene. J Biol Chem 1997; 272:26702-7. [PMID: 9334254 DOI: 10.1074/jbc.272.42.26702] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Our laboratory has cloned the cDNA (Sutter, T. R., Tang, Y. M., Hayes, C. L., Wo, Y.-Y. P., Jabs, E. W., Li, X., Yin, H., Cody, C. W. , and Greenlee, W. F. (1994) J. Biol. Chem. 269, 13092-13099) and gene (Tang, Y. M., Wo, Y.-Y. P., Jabs, E. W., Stewart, J. C., Sutter, T. R., and Greenlee, W. F. (1996) J. Biol. Chem. 271, 28324-28330) for human CYP1B1, a new member of the cytochrome P450 superfamily. Here, we report on the mapping and function of the CYP1B1 promoter. The CYP1B1 promoter is fully functional, when it is uncoupled from upstream enhancer elements. Deletion analysis and site-directed mutagenesis identified four regulatory elements required for maximum promoter activity: two antisense Sp1 sites (-84 to -89 and -68 to -73), a TATA-like box (-34 to -29), and an initiator motif (-5 to +3). The initiator and the TATA-like elements are both required for basal promoter activity, with enhanced activity mediated by the two antisense Sp1 elements. The CYP1B1 initiator was demonstrated by in vitro transcription analysis to be a positioning element that maintained fidelity of transcription from a single site. Specific binding to a CYP1B1 initiator probe by human nuclear extract proteins was competed either by the highly homologous murine terminal deoxynucleotidyl transferase initiator or, to a lesser extent, by the adenovirus major late initiator. Taken together, these results indicate that the structure and function of the CYP1B1 promoter confers constitutive expression of the gene and assures fidelity of transcription initiation from a single site. The CYP1B1 promoter is distinct from the promoters of the closely related cytochrome P450s CYP1A1 and CYP1A2 and is structurally and functionally similar to the promoters of constitutively expressed genes and at least two viruses.
Collapse
Affiliation(s)
- Y Y Wo
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
33
|
Darne CH, Morel L, Claessens F, Manin M, Fabre S, Veyssière G, Rombauts W, Jean CL. Ubiquitous transcription factors NF1 and Sp1 are involved in the androgen activation of the mouse vas deferens protein promoter. Mol Cell Endocrinol 1997; 132:13-23. [PMID: 9324042 DOI: 10.1016/s0303-7207(97)00116-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcription of the mouse vas deferens protein (MVDP) gene is stimulated by androgens and we have previously shown that in a 162 bp fragment, located at position -121 to +41, a TGAAGTtccTGTTCT sequence functions as an androgen-dependent enhancer. To determine which factors are involved in the hormonally regulated MVDP gene transcription, we have used DNase I footprinting and band-shift assays to examine in vitro binding of proteins to the enhancer and promoter sequences and have determined the functional significance of the recognized DNA sequences in transient transfection assays. Studies using recombinant proteins such as the DNA binding domain of the androgen receptor (AR-DBD) and Sp1, and crude cellular extracts from T47D and vas deferens epithelial cells (VDEC) showed that in addition to AR-DBD, the transcriptional activators NF1 and Sp1 interact with the -121/+41 fragment in a specific manner. Transient transfection assays revealed that site-directed mutations in the NF1 and Sp1 binding elements strongly reduced (NF1) or abolished (Sp1) androgen induced expression. The results demonstrate that the -121/+41 sequence is a composite site for the androgen receptor mediated transactivation of the MVDP gene.
Collapse
Affiliation(s)
- C H Darne
- Laboratoire Reproduction et Développement, Centre National de la Recherche Scientifique Unité de Recherche Associée 1940, Université Blaise Pascal-Clermont-Ferrand II, Aubière, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
DeSilva DR, Jones EA, Feeser WS, Manos EJ, Scherle PA. The p38 mitogen-activated protein kinase pathway in activated and anergic Th1 cells. Cell Immunol 1997; 180:116-23. [PMID: 9341741 DOI: 10.1006/cimm.1997.1182] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimulation of T cells through the TCR leads to activation of the mitogen-activated protein kinase (MAPK) family members ERK (extracellular signal-regulated kinase) and JNK (jun NH2-terminal kinase). These kinases act in synergy to increase the activity of the transcription factor AP-1 which is involved in the transcriptional upregulation of IL-2. Recently a third MAPK member, p38, has been identified. The effects of T cell activation on this pathway have not yet been elucidated. Using two murine Th1 clones, we demonstrate that the p38 pathway is induced upon anti-CD3 plus anti-CD28 crosslinking or PMA plus ionomycin stimulation. p38 activity was induced fully by anti-CD3 or PMA alone and is not enhanced by costimulation even at low levels of TCR signaling. p38 activity peaked at 20 min and was significantly decreased by 2 hr. Anergic (tolerant) Th1 cells showed decreased p38 activity as well as decreased ERK and JNK activities even though levels of these proteins remained unchanged.
Collapse
Affiliation(s)
- D R DeSilva
- Inflammatory Diseases Research, Dupont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0400, USA
| | | | | | | | | |
Collapse
|
35
|
Remington MC, Tarlé SA, Simon B, Merchant JL. ZBP-89, a Krüppel-type zinc finger protein, inhibits cell proliferation. Biochem Biophys Res Commun 1997; 237:230-4. [PMID: 9268691 DOI: 10.1006/bbrc.1997.7119] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ZBP-89 is a Krüppel-type zinc finger transcription factor that binds to GC-rich sequences. Overexpression of this factor prevents EGF induction of the gastrin promoter; therefore, we postulated that ZBP-89 may modulate cellular proliferation. To test this hypothesis, ZBP-89 was overexpressed in immortalized (GH4) and malignant (AGS) cell lines. Growth parameters, e.g., 3H-thymidine, BrdU labeling, flow cytometry and ornithine decarboxylase promoter activity were analyzed. The results show that DNA synthesis is inhibited and progression to S phase is blocked in GH4 cells. Collectively, these studies demonstrate that ZBP-89 inhibits cellular proliferation at least in part through its ability to bind and repress ornithine deacarboxlyase promoter activity.
Collapse
Affiliation(s)
- M C Remington
- Department of Internal Medicine and Physiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | | | | |
Collapse
|
36
|
Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR. Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 1997; 235:533-8. [PMID: 9207191 DOI: 10.1006/bbrc.1997.6849] [Citation(s) in RCA: 385] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel homologue of p38 MAP kinase, called SAPK4, has been cloned which shares 61% amino acid identity with p38 and is expressed predominantly in testes, pancreas and small intestine. We also cloned an alternative form of p38beta, termed p38beta2, which lacks the additional 8 amino acid insertion unique to p38beta. p38, p38beta, p38beta2, ERK6/p38gamma/SAPK3, and SAPK4 were characterized with respect to stimulus-dependent activation in transfected cells, substrate specificity, and sensitivity to inhibition by pyridinyl imidazoles. All homologues were stimulated, although to differing extents, by IL-1beta, TNF, sorbitol, and UV. Only SAPK3 and SAPK4 were stimulated significantly by PMA. p38beta showed the weakest activation overall. MBP, ATF-2, and both MAPKAP kinase-2 and kinase-3 were good substrates of p38 and p38beta in vitro. In contrast, only MBP, ATF2, and MAPKAP kinase-3 proved to be significant substrates of SAPK3 and SAPK4, and of these three, MAPKAP kinase-3 was by far the weakest. p38beta had very poor kinase activity for all substrates except MBP. While both p38 and p38beta2 were comparably inhibited by SB 203580 and SB 202190, neither SAPK3 nor SAPK4 were inhibited. p38beta was partially inhibited by both inhibitors. These data suggest that SAPK3 and SAPK4 form a distinct subset of the p38 MAP kinases with different expression pattern, response to stimuli, substrate specificity, and inhibitor sensitivity.
Collapse
Affiliation(s)
- S Kumar
- Department of Cellular Biochemistry, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406-0939, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Kumar S, Tzimas MN, Griswold DE, Young PR. Expression of ST2, an interleukin-1 receptor homologue, is induced by proinflammatory stimuli. Biochem Biophys Res Commun 1997; 235:474-8. [PMID: 9207179 DOI: 10.1006/bbrc.1997.6810] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ST2/T1 is an orphan receptor highly homologous to the IL-1 receptor. Using ST2 cDNA, ST2 specific primers, and a polyclonal antibody generated against ST2, the expression of mRNA and protein corresponding to both the soluble and membrane anchored forms of ST2 was studied. ST2 mRNAs were ubiquitously expressed in all the human tissues examined and were induced by cytokines and phorbol esters. Three different species of mRNAs were observed in different human cells and tissues. In contrast, only two species of ST2 mRNAs were observed in murine Balb/c-3T3 cells and no ST2 mRNA was seen in most tissues of normal mice. However, in a murine model where mouse ears are exposed to UVB irradiation leading to inflammation, ST2 mRNA was expressed 48 h post UV exposure. Similarly, in Balb/c-3T3 cells, the expression of soluble ST2 mRNA and protein was induced by pro-inflammatory stimuli such as TNF, IL-1alpha, IL-1beta and PMA in both exponentially growing and quiescent cells. The expression of the membrane ST2, however, remained constant. These data suggest a role for ST2 in inflammation.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- Cell Division/drug effects
- Cell Line
- Cells, Cultured
- Cycloheximide/pharmacology
- Cytokines/pharmacology
- DNA Primers
- Ear
- Endothelium, Vascular/immunology
- Fibroblasts/immunology
- HL-60 Cells
- Humans
- Inflammation/immunology
- Interleukin-1/pharmacology
- Interleukin-1 Receptor-Like 1 Protein
- Jurkat Cells
- Membrane Proteins
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Organ Specificity
- Polymerase Chain Reaction
- Protein Biosynthesis
- RNA, Messenger/biosynthesis
- Receptors, Cell Surface
- Receptors, Interleukin
- Receptors, Interleukin-1
- Skin/immunology
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription, Genetic/drug effects
- Transcription, Genetic/radiation effects
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/pharmacology
- Ultraviolet Rays
- Umbilical Veins
Collapse
Affiliation(s)
- S Kumar
- Department of Cellular Biochemistry, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | |
Collapse
|
38
|
Flamigni F, Faenza I, Marmiroli S, Stanic' I, Giaccari A, Muscari C, Stefanelli C, Rossoni C. Inhibition of the expression of ornithine decarboxylase and c-Myc by cell-permeant ceramide in difluoromethylornithine-resistant leukaemia cells. Biochem J 1997; 324 ( Pt 3):783-9. [PMID: 9210401 PMCID: PMC1218493 DOI: 10.1042/bj3240783] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ceramide has emerged as a novel lipid mediator in cell growth and apoptosis. In difluoromethylornithine-resistant L1210 cells stimulated to growth from quiescence, the cell-permeant analogues of ceramide N-acetylsphingosine (C2-ceramide) and N-hexanoylsphingosine (C6-ceramide) inhibited the induction of ornithine decarboxylase (ODC) activity with IC50 of 8.3 and 1.5 microM respectively. This effect was strictly related to the ability to inhibit cell growth and [3H]thymidine incorporation. The suppression of cell growth was also associated with apoptosis. The addition of bacterial sphingomyelinase resulted in a significant, but limited, reduction of ODC induction and [3H]thymidine incorporation. Bacterial lipopolysaccharide, which may act as a ceramide analogue, also inhibited the induction of the enzyme. Moreover, C6-ceramide largely prevented the accumulation of ODC mRNA and its precursor, ODC heterogeneous nuclear RNA, that accompanied the induction of ODC activity. A slight increase in ODC turnover was also observed. The DNA-binding activity of some transcription factors known to bind and transactivate the ODC gene was investigated by gel mobility-shift assay under the same experimental conditions. However, only the binding of Myc/Max was negatively affected by the treatment with C6-ceramide. Furthermore, the amount of immunoreactive c-Myc, which increased after stimulation of the cells to growth, was strongly reduced by C6-ceramide. These results suggest that the inhibition of c-Myc and ODC expression may be early events in the response of leukaemia cells to ceramide.
Collapse
Affiliation(s)
- F Flamigni
- Dipartimento di Biochimica 'G.Moruzzi', Università di Bologna, via Irnerio 48, 40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kumar AP, Butler AP. Transcription factor Sp3 antagonizes activation of the ornithine decarboxylase promoter by Sp1. Nucleic Acids Res 1997; 25:2012-9. [PMID: 9115370 PMCID: PMC146696 DOI: 10.1093/nar/25.10.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ornithine decarboxylase (ODC) expression is important for proliferation and is elevated in many tumor cells. We previously showed that Sp1 is a major positive regulator of ODC transcription. In this paper we have investigated transcriptional regulation of rat ODC by the closely related factor Sp3. While over-expression of Sp1 caused a dramatic activation of the ODC promoter, over-expression of Sp3 caused little or no activation in either Drosophila SL2 cells (lacking endogenous Sp1 or Sp3) or in H35 rat hepatoma cells. Furthermore, co-transfection studies demonstrated that Sp3 abolished trans -activation of the ODC promoter by Sp1. DNase I footprint studies and electrophoretic mobility shift assays demonstrated that both recombinant Sp1 and Sp3 bind specifically to several sites within the ODC promoter also protected by nuclear extracts, including overlapping GC and CT motifs located between -116 and -104. This CT element is a site of negative ODC regulation. Mutation of either element reduced binding, but mutation of both sites was required to eliminate binding of either Sp1 or Sp3. These results demonstrate that ODC is positively regulated by Sp1 and negatively regulated by Sp3, suggesting that the ratio of these transcription factors may be an important determinant of ODC expression during development or transformation.
Collapse
Affiliation(s)
- A P Kumar
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | |
Collapse
|
40
|
Xu XM, Tang JL, Chen X, Wang LH, Wu KK. Involvement of two Sp1 elements in basal endothelial prostaglandin H synthase-1 promoter activity. J Biol Chem 1997; 272:6943-50. [PMID: 9054382 DOI: 10.1074/jbc.272.11.6943] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Prostaglandin H synthase-1 (PGHS-1) is a constitutively expressed key enzyme in the biosynthesis of physiologically important prostanoids. The promoter of the human PGHS-1 gene lacks a TATA box, has a very GC-rich region, and contains multiple transcription start sites. To identify the elements involved in the constitutive expression of the PGHS-1 gene, we constructed a 2075-base pair fragment (-2095 to -21 relative to the translation start codon) and a series of 5'-deletion mutants into a promoterless luciferase expression vector, which was transfected in HUVEC. Two important regions were identified. DNase I footprinting identified a protected segment, which contains an Sp1 binding site proximal to the transcription start sites. Band shift assays confirmed specific binding of Sp1 to this segment. Band shift assays further revealed specific binding of Sp1 to a distal region containing a canonical Sp1 site. Mutation of either Sp1 binding site significantly reduced the promoter activity. When both sites were mutated, the activity was reduced to 29% of that of the wild type. Mutation of Sp1 sites did not abrogate promoter activity stimulated by phorbol ester. These results indicate that binding of Sp1 or its related proteins to two widely separated Sp1 sites on the promoter region activates the basal PGHS-1 gene transcription.
Collapse
Affiliation(s)
- X M Xu
- Vascular Biology Research Center and Division of Hematology, University of Texas-Houston Health Science Center, Houston, Texas 77225, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Adaptation of cells to hypertonicity often involves changes in gene expression. Since the concentration of salt in the interstitial fluid surrounding renal inner medullary cells varies with operation of the renal concentrating mechanism and generally is very high, the adaptive mechanisms of these cells are of special interest. Renal medullary cells compensate for hypertonicity by accumulating variable amounts of compatible organic osmolytes, including sorbitol, myo-inositol, glycine betaine, and taurine. In this review we consider how these solutes help relieve the stress of hypertonicity and the nature of transporters and enzymes responsible for their variable accumulation. We emphasize recent developments concerning the molecular basis for osmotic regulation of these genes, including identification and characterization of osmotic response elements. Although osmotic stresses are much smaller in other parts of the body than in the renal medulla, similar mechanisms operate throughout, yielding important physiological and pathophysiological consequences.
Collapse
Affiliation(s)
- M B Burg
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-0951, USA
| | | | | |
Collapse
|
42
|
Reddig PJ, Kim YJ, Verma AK. Localization of the 12-O-tetradecanoylphorbol-13-acetate response of the human ornithine decarboxylase promoter to the TATA box. Mol Carcinog 1996; 17:92-104. [PMID: 8890958 DOI: 10.1002/(sici)1098-2744(199610)17:2<92::aid-mc6>3.0.co;2-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In a previous study, we narrowed the region of the human ornithine decarboxylase (ODC) promoter responsive to 12-O-tetradecanoylphorbol-13-acetate (TPA) to nt -42 to +54 around the transcription initiation site (Kim YJ, Pan H, Verma AK, Mol Carcinog 10:169-179, 1994). Here we report defining the role of the TATA box in TPA-induced transcription from the -42/+54 ODC promoter fragment. A transversion mutation at the third position of the TATA box (TATAAGT-->TAAAAGT) reduced TPA responsiveness of the reporter construct -42/+54 ODC-Luc by 49%. Electrophoretic mobility shift assays (EMSAs) using HeLa cell nuclear protein extracts revealed no differences in the binding pattern between the natural -42/+54 ODC promoter element and the -42/+54 ODC promoter element containing the T-->A mutation. However, antibodies to the general transcription factor TFIIB disrupted the DNA-protein complexes normally formed with the -42/+54 ODC promoter element in EMSAs. A consensus TATA box oligonucleotide formed two bands, with the faster mobility band displaying enhanced binding with nuclear protein extracts from TPA treated cells. Furthermore, incubation of HeLa cell nuclear extracts with an oligonucleotide containing the ODC TATA box also caused formation of two specific bands in EMSA. Both bands exhibited augmented binding to nuclear proteins from TPA-treated cells. Introduction of the T-->A transversion mutation in the ODC TATA oligonucleotide eliminated binding of the faster migrating band formed with the natural ODC TATA oligonucleotide. These results indicate that TPA modulation of the general transcription machinery may play a role in the TPA-activated transcription of the human ODC promoter.
Collapse
Affiliation(s)
- P J Reddig
- Department of Human Oncology, University of Wisconsin-Madison Medical School 53792, USA
| | | | | |
Collapse
|
43
|
Palvimo JJ, Partanen M, Jänne OA. Characterization of cell-specific modulatory element in the murine ornithine decarboxylase promoter. Biochem J 1996; 316 ( Pt 3):993-8. [PMID: 8670180 PMCID: PMC1217446 DOI: 10.1042/bj3160993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The promoter of the murine ornithine decarboxylase (ODC) gene contains, adjacent to the TATA box, a cAMP response element (CRE)-like motif that interacts with specific nuclear proteins. Here we examine the role of this CRE-like element (CREL) in ODC promoter activation in proliferating cells. Mutations that abolished binding of nuclear proteins to CREL influenced only marginally the cAMP induction of the reporter constructs driven by 1.6 kb of the ODC promoter. Instead, these mutations altered the basal promoter function in a cell-specific manner, in that they reduced the promoter activity in CV-1 cells, but increased it in NIH/3T3, CHO and HeLa cells. Thus, depending on the cell type, the CREL motif is able to confer either repression or activation on ODC gene transcription. In contrast with 1.6 kb promoter constructs, the same mutations in the context of a shorter sequence (proximal 133 nt) reduced the promoter strength in all cell types studied. The ability of the CREL element to attenuate transcription seems to be connected with the function of some upstream regulatory elements. Differences in nuclear proteins binding to CREL, as studied by electrophoretic mobility shift assays (EMSAs), did not explain the findings on cell-type specificity in transcriptional activation, as mutations in CREL abrogated formation of specific CREL-protein complexes in all cell lines examined. The protein complexes interacting with CREL were not recognized by antibodies specific for CRE-binding proteins CREB-1 and CREB-2, or activating transcription factors ATF-1, ATF-2 and ATF-3. EMSA experiments also demonstrated co-operative interactions between the CREL motif-binding proteins and other nuclear proteins, such as Sp1, interacting with CG-rich sequences of the promoter. In conclusion, the proximal ODC promoter contains a well-conserved regulatory element, which is clearly different from the CRE/ATF element. This motif acts in concert with other distal and proximal elements in a complex cell-specific manner.
Collapse
Affiliation(s)
- J J Palvimo
- Department of Physiology, University of Helsinki, Finland
| | | | | |
Collapse
|
44
|
Mar PK, Kumar AP, Kang DC, Zhao B, Martinez LA, Montgomery RL, Anderson L, Butler AP. Characterization of novel phorbol ester- and serum-responsive sequences of the rat ornithine decarboxylase gene promoter. Mol Carcinog 1995; 14:240-50. [PMID: 8519413 DOI: 10.1002/mc.2940140404] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ornithine decarboxylase (ODC), the key regulatory enzyme in mammalian polyamine biosynthesis, is rapidly induced by mitogens and tumor promoters. We used transient expression assays and DNA-protein binding studies to examine the regulation of ODC promoter activity by phorbol esters and serum growth factors. A fragment of the ODC 5' flanking region (nt-1156 to +13) was sufficient to confer 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive expression to a luciferase reporter gene when transfected into H35 cells. However, induction by TPA was not observed in Rat2 fibroblasts, although refeeding of serum-starved Rat2 cells with fresh serum-containing medium rapidly induced a fivefold to sixfold increase in ODC promoter activity, maximal about 8 h after refeeding. Deletion analysis demonstrated that several sequences contributed to basal ODC promoter activity but that nt -92 to +13 was sufficient for induction by TPA or by serum. This sequence lacked canonical TPA-responsive elements, and an activator protein-1 (AP-1) consensus oligonucleotide failed to compete effectively for proteins binding to this region. Two of four protein complexes observed by gel-shift analysis of nt -92 to +13 were competitively inhibited by wild-type but not mutant oligonucleotides encompassing a variant cyclic AMP-response element (CRE) (ODC nt -50 to -42); however, a consensus CRE did not compete. Mutagenesis of this site demonstrated that it contributes to basal expression of the ODC promoter but not to TPA or serum responsiveness. Thus, we conclude that the proximal ODC promoter (nt -92 to +13) responds to TPA and serum stimulation in a cell-type-specific manner that is not mediated by canonical AP-1 elements.
Collapse
Affiliation(s)
- P K Mar
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Leggett RW, Armstrong SA, Barry D, Mueller CR. Sp1 is phosphorylated and its DNA binding activity down-regulated upon terminal differentiation of the liver. J Biol Chem 1995; 270:25879-84. [PMID: 7592774 DOI: 10.1074/jbc.270.43.25879] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using nuclear extracts prepared from rat liver it was demonstrated that binding of a transcription factor to site II of the D-site binding protein promoter could be induced by dephosphorylation of these extracts. Competition band shifts and supershift assays reveal this protein to be the general transcription factor Sp1. Phosphorylation of Sp1 appears to occur as a result of terminal differentiation of the liver. Proteins from both 1-day-old rat liver and adult liver undergoing regeneration have less of the phosphorylated form of Sp1 present with consequent increased DNA binding activity. Sp1 is similarly phosphorylated in brain, kidney, and spleen with phosphatase treatment of the extracts significantly increasing the level of DNA binding activity. Dephosphorylation of Sp1 results in a 10-fold increase in the affinity of Sp1 for its cognate site. Two-dimensional gel electrophoresis reveals that approximately 20% of the detectable protein appears to be in the phosphorylated form in adult liver extracts. Another protein with similar characteristics also appears to be present in the liver. Decreasing Sp1 DNA binding activity by phosphorylation may be an important mechanism for regulating gene expression, and possibly bringing about growth arrest during terminal differentiation.
Collapse
Affiliation(s)
- R W Leggett
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|