1
|
Ramírez Martínez L, Vargas Mejía M, Espadamala J, Gomez N, Lizcano JM, López-Bayghen E. Neuronal Growth Factor regulates Brain Specific Kinase 1 expression by inhibiting promoter methylation and promoting Sp1 recruitment. Neurochem Int 2018; 120:213-223. [PMID: 30196145 DOI: 10.1016/j.neuint.2018.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022]
Abstract
Brain specific kinases (BRSKs) are serine/threonine kinases, preferentially expressed in the brain after Embryonic Day 12. Although BRSKs are crucial neuronal development factors and regulation of their enzymatic activity has been widely explored, little is known of their transcriptional regulation. In this work, we show that Neuronal Growth Factor (NGF) increased the expression of Brsk1 in PC12 cells. Furthermore, during neuronal differentiation, Brsk1 mRNA increased through a MAPK-dependent Sp1 activation. To gain further insight into this regulation, we analyzed the transcriptional activity of the Brsk1 promoter in PC12 cells treated with NGF. Initially, we defined the minimal promoter region (-342 to +125 bp) responsive to NGF treatment. This region had multiple Sp1 binding sites, one of which was within a CpG island. In vitro binding assays showed that NGF-induced differentiation increased Sp1 binding to this site and that DNA methylation inhibited Sp1 binding. In vitro methylation of the Brsk1 promoter reduced its transcriptional activity and impaired the NGF effect. To evaluate the participation of DNA methyltransferases in Brsk1 gene regulation, the 5'Aza-dC inhibitor was used. 5'Aza-dC acted synergistically with NGF to promote Brsk1 promoter activity. Accordingly, DNMT3B overexpression abolished the response of the Brsk1 promoter to NGF. Surprisingly, we found Dnmt3b to be a direct target of NGF regulation, via the MAPK pathway. In conclusion, our results provide evidence of a novel mechanism of Brsk1 transcriptional regulation changing the promoter's methylation status, which was incited by the NGF-induced neuronal differentiation process.
Collapse
Affiliation(s)
- Leticia Ramírez Martínez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07360, Mexico; Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07360, Mexico
| | - Miguel Vargas Mejía
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07360, Mexico
| | - Josep Espadamala
- Institut de Neurociencies i Departament de Bioquímica i Biología Molecular, Facultat de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Néstor Gomez
- Institut de Neurociencies i Departament de Bioquímica i Biología Molecular, Facultat de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - José M Lizcano
- Institut de Neurociencies i Departament de Bioquímica i Biología Molecular, Facultat de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07360, Mexico.
| |
Collapse
|
2
|
White R, Chenciner N, Bonello G, Salas M, Blancou P, Gauduin MC. Epithelial stem cells as mucosal antigen-delivering cells: A novel AIDS vaccine approach. Vaccine 2013; 33:6914-21. [PMID: 24286835 DOI: 10.1016/j.vaccine.2013.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/12/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
A key obstacle limiting development of an effective AIDS vaccine is the inability to deliver antigen for a sufficient period of time resulting in weak and transient protection. HIV transmission occurs predominantly across mucosal surfaces; therefore, an ideal vaccine strategy would be to target HIV at mucosal entry sites to prevent infection. Such a novel strategy relies on the activation of mucosal immune response via presentation of viral antigens by the mucosal epithelial cells. The use of a terminally differentiated epithelial cell promoter to drive expression of antigens leading to viral protein production in the upper layers of the epithelium is central to the success of this approach. Our results show that when administered intradermally to mice, a GFP-reporter gene under the transcriptional control of the involucrin promoter is expressed in the upper layers of the epidermis and, although transduced cells were very low in number, high and sustained anti-GFP antibody production is observed in vivo. A subsequent experiment investigates the effectiveness of GFP-tagged replication-competent SIVdeltaNef and GFP-tagged replication-deficient SIVdeltaVifdeltaNef constructs under the transcriptional control of the involucrin promoter. Optimal conditions for production of pseudotyped VSV-G viral particles destined to transduce basal epithelial stem cells at the mucosal sites of entry of SIV in our animal model were determined. Altogether, the data demonstrate the feasibility of an epithelium-based vaccine containing involucrin-driven viral antigen encoding sequences that integrate into epithelial stem cells and show long-term expression in the upper layer of the epithelium even after multiple cycle of epithelia renewal. Such epithelium-based vaccine should elicit a long-term immunity against HIV/SIV infection at the site of entry of the virus.
Collapse
Affiliation(s)
- Robert White
- Texas Biomedical Research Institute, Department of Virology and Immunology, San Antonio, TX 78227, USA
| | - Nicole Chenciner
- Institut Pasteur, Unité de Rétrovirologie Moléculaire, CNRS URA 3015, 75724 Paris Cedex 15, France
| | - Gregory Bonello
- Texas Biomedical Research Institute, Department of Virology and Immunology, San Antonio, TX 78227, USA
| | - Mary Salas
- Texas Biomedical Research Institute, Department of Virology and Immunology, San Antonio, TX 78227, USA
| | - Philippe Blancou
- Institut National de la Santé et de la Recherche Médicale, University of Nice-Sophia Antipolis, Valbonne, France
| | - Marie-Claire Gauduin
- Texas Biomedical Research Institute, Department of Virology and Immunology, San Antonio, TX 78227, USA; Southwest National Primate Research Center, San Antonio, TX 78227, USA.
| |
Collapse
|
3
|
Abstract
Yin Yang 1 (YY1) is a transcription factor with diverse and complex biological functions. YY1 either activates or represses gene transcription, depending on the stimuli received by the cells and its association with other cellular factors. Since its discovery, a biological role for YY1 in tumor development and progression has been suggested because of its regulatory activities toward multiple cancer-related proteins and signaling pathways and its overexpression in most cancers. In this review, we primarily focus on YY1 studies in cancer research, including the regulation of YY1 as a transcription factor, its activities independent of its DNA binding ability, the functions of its associated proteins, and mechanisms regulating YY1 expression and activities. We also discuss the correlation of YY1 expression with clinical outcomes of cancer patients and its target potential in cancer therapy. Although there is not a complete consensus about the role of YY1 in cancers based on its activities of regulating oncogene and tumor suppressor expression, most of the currently available evidence supports a proliferative or oncogenic role of YY1 in tumorigenesis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
4
|
Kobayashi T. Suppression of matrix metalloproteinase-9 expression in undifferentiated, non-apoptotic keratinocytes is abrogated by the cleavage of poly(ADP-ribose) polymerase-1. Apoptosis 2012; 16:1205-16. [PMID: 21915713 DOI: 10.1007/s10495-011-0650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Matrix metalloproteinase (MMP)-9, an enzyme that degrades the extracellular matrix, has been implicated as a key enzyme in the process of tissue remodeling. This study demonstrates the regulation of MMP-9 transcription through a gene regulatory element in its promoter (the KRE-M9 element). The KRE-M9-binding protein was purified and identified as poly(ADP-ribose) polymerase-1 (PARP-1), which inhibits the transcription of MMP-9 similar to involucrin. This regulation occurs in non-apoptotic keratinocytes using the distinctive culture conditions of high and low Ca(2+) levels. PARP cleavage, which occurs during apoptosis, results in de-repression of MMP-9 promoter activity. These data clarify a new role of PARP-1 and suggest a physiologically relevant connection between caspase activation and MMP-9 expression.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Dermatology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| |
Collapse
|
5
|
Martínez-Lozada Z, Hernández-Kelly LC, Aguilera J, López-Bayghen E, Ortega A. Signaling through EAAT-1/GLAST in cultured Bergmann glia cells. Neurochem Int 2011; 59:871-9. [DOI: 10.1016/j.neuint.2011.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 12/22/2022]
|
6
|
Poblete-Naredo I, Guillem AM, Juárez C, Zepeda RC, Ramírez L, Caba M, Hernández-Kelly LC, Aguilera J, López-Bayghen E, Ortega A. Brain-derived neurotrophic factor and its receptors in Bergmann glia cells. Neurochem Int 2011; 59:1133-44. [PMID: 22019477 DOI: 10.1016/j.neuint.2011.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/27/2011] [Accepted: 10/09/2011] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor is an abundant and widely distributed neurotrophin expressed in the Central Nervous System. It is critically involved in neuronal differentiation and survival. The expression of brain-derived neurotrophic factor and that of its catalytic active cognate receptor (TrkB) has been extensively studied in neuronal cells but their expression and function in glial cells is still controversial. Despite of this fact, brain-derived neurotrophic factor is released from astrocytes upon glutamate stimulation. A suitable model to study glia/neuronal interactions, in the context of glutamatergic synapses, is the well-characterized culture of chick cerebellar Bergmann glia cells. Using, this system, we show here that BDNF and its functional receptor are present in Bergmann glia and that BDNF stimulation is linked to the activation of the phosphatidyl-inositol 3 kinase/protein kinase C/mitogen-activated protein kinase/Activator Protein-1 signaling pathway. Accordingly, reverse transcription-polymerase chain reaction (RT-PCR) experiments predicted the expression of full-length and truncated TrkB isoforms. Our results suggest that Bergmann glia cells are able to express and respond to BDNF stimulation favoring the notion of their pivotal role in neuroprotection.
Collapse
Affiliation(s)
- Irais Poblete-Naredo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F. 07000, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Castro-Coronel Y, Del Razo LM, Huerta M, Hernandez-Lopez A, Ortega A, López-Bayghen E. Arsenite Exposure Downregulates EAAT1/GLAST Transporter Expression in Glial Cells. Toxicol Sci 2011; 122:539-50. [DOI: 10.1093/toxsci/kfr126] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Jackson B, Brown SJ, Avilion AA, O'Shaughnessy RFL, Sully K, Akinduro O, Murphy M, Cleary ML, Byrne C. TALE homeodomain proteins regulate site-specific terminal differentiation, LCE genes and epidermal barrier. J Cell Sci 2011; 124:1681-90. [PMID: 21511732 DOI: 10.1242/jcs.077552] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epidermal barrier varies over the body surface to accommodate regional environmental stresses. Regional skin barrier variation is produced by site-dependent epidermal differentiation from common keratinocyte precursors and often manifests as site-specific skin disease or irritation. There is strong evidence for body-site-dependent dermal programming of epidermal differentiation in which the epidermis responds by altering expression of key barrier proteins, but the underlying mechanisms have not been defined. The LCE multigene cluster encodes barrier proteins that are differentially expressed over the body surface, and perturbation of LCE cluster expression is linked to the common regional skin disease psoriasis. LCE subclusters comprise genes expressed variably in either external barrier-forming epithelia (e.g. skin) or in internal epithelia with less stringent barriers (e.g. tongue). We demonstrate here that a complex of TALE homeobox transcription factors PBX1, PBX2 and Pknox (homologues of Drosophila Extradenticle and Homothorax) preferentially regulate external rather than internal LCE gene expression, competitively binding with SP1 and SP3. Perturbation of TALE protein expression in stratified squamous epithelia in mice produces external but not internal barrier abnormalities. We conclude that epidermal barrier genes, such as the LCE multigene cluster, are regulated by TALE homeodomain transcription factors to produce regional epidermal barriers.
Collapse
Affiliation(s)
- Ben Jackson
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Simon M, Barberet P, Delville MH, Moretto P, Seznec H. Titanium dioxide nanoparticles induced intracellular calcium homeostasis modification in primary human keratinocytes. Towards anin vitroexplanation of titanium dioxide nanoparticles toxicity. Nanotoxicology 2010; 5:125-39. [DOI: 10.3109/17435390.2010.502979] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Sinitsyna NN, Reznikova TV, Qin Q, Song H, Phillips MA, Rice RH. Arsenite suppression of involucrin transcription through AP1 promoter sites in cultured human keratinocytes. Toxicol Appl Pharmacol 2009; 243:275-82. [PMID: 20006635 DOI: 10.1016/j.taap.2009.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/07/2009] [Accepted: 12/05/2009] [Indexed: 02/08/2023]
Abstract
While preserving keratinocyte proliferative ability, arsenite suppresses cellular differentiation markers by preventing utilization of AP1 transcriptional response elements. In present experiments, arsenite had a dramatic effect in electrophoretic mobility supershift analysis of proteins binding to an involucrin promoter AP1 response element. Without arsenite treatment, binding of JunB and Fra1 was readily detected in nuclear extracts from preconfluent cultures and was not detected a week after confluence, while c-Fos was detected only after confluence. By contrast, band shift of nuclear extracts from arsenite treated cultures showed only JunB and Fra1 binding in postconfluent as well as preconfluent cultures. Immunoblotting of cell extracts showed that arsenite treatment prevented the loss of Fra1 and the increase in c-Fos proteins that occurred after confluence in untreated cultures. Chromatin immunoprecipitation assays demonstrated substantial reduction of c-Fos and acetylated histone H3 at the proximal and distal AP1 response elements in the involucrin promoter and of coactivator p300 at the proximal element. Alteration of AP1 transcription factors was also examined in response to treatment with four metal containing compounds (chromate, vanadate, hemin, divalent cadmium) that also suppress involucrin transcription. These agents all influenced transcription at AP1 elements in a transcriptional reporter assay, but exhibited less effect than arsenite on binding activity assessed by mobility shift and chromatin immunoprecipitation and displayed variable effects on AP1 protein levels. These findings help trace a mechanism by which transcriptional effects of arsenite become manifest and help rationalize the unique action of arsenite, compared to the other agents, to preserve proliferative ability.
Collapse
Affiliation(s)
- Nadezda N Sinitsyna
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| | | | | | | | | | | |
Collapse
|
11
|
Characterization of CRTAM gene promoter: AP-1 transcription factor control its expression in human T CD8 lymphocytes. Mol Immunol 2009; 46:3379-87. [PMID: 19695707 DOI: 10.1016/j.molimm.2009.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 01/21/2023]
Abstract
Class-I MHC-restricted T-cell associated molecule (CRTAM) is a member of the Nectin-like adhesion molecule family. It is rapidly induced in NK, NKT and CD8(+) T cells. Interaction with its ligand Nectin-like 2 results in increased secretion of IFN-gamma by activated CD8(+) T lymphocytes. Through sequential bioinformatic analyses of the upstream region of the human CRTAM gene, we detected cis-elements potentially important for CRTAM gene transcription. Analyzing 2kb upstream from the ATG translation codon by mutation analysis in conjunction with luciferase reporter assays, electrophoretic mobility shify assay (EMSA) and supershift assays, we identified an AP-1 binding site, located at 1.4kb from the ATG translation codon of CRTAM gene as an essential element for CRTAM expression in activated but not resting human CD8(+) T cells. CRTAM expression was reduced in activated CD8(+) T cells treated with the JNK inhibitor SP600125, indicating that CRTAM expression is driven by the JNK-AP-1 signaling pathway. This study represents the first CRTAM gene promoter analysis in human T cells and indicates that AP-1 is a positive transcriptional regulator of this gene, a likely important finding because CRTAM has recently been shown to play a role in IFN-gamma and IL-17 production and T cell proliferation.
Collapse
|
12
|
Cruz-Solis I, Zepeda RC, Ortiz S, Aguilera J, López-Bayghen E, Ortega A. Glutamate-dependent transcriptional control in Bergmann glia: Sox10 as a repressor. J Neurochem 2009; 109:899-910. [PMID: 19425178 DOI: 10.1111/j.1471-4159.2009.06017.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
UNLABELLED Glutamate (Glu) is the major excitatory transmitter in the vertebrate brain. Ligand-gated and G protein-coupled Glu receptors present in glial cells are presumably involved in neuronal function. Activation of Bergmann glial Glu receptors triggers a membrane to nuclei signaling cascade that regulates gene expression at the transcriptional and translational levels. Sry-related high-mobility group box (Sox10), a member of the conserved high-mobility group box transcription factor family is expressed in neural crest stem cells and in a subset of neural crest-derived lineages that include glial, but not neuronal cells. To gain insight into the role of Sox10 in Bergmann glial cells, we explored its expression and regulation. We demonstrate herein that Sox10 is expressed in Bergmann glial cells and that its DNA binding activity, mRNA, and protein levels as well as its transcriptional behavior augments upon the activation of metabotropic Glu receptors. Increase in Sox10-DNA complexes and Sox10 mRNA and protein levels were found upon exposure to Glu. Over-expression of Sox10 leads to transcriptional repression in reporter gene assays and in one of its target genes: the chick kainate binding protein gene. These findings add a new perspective into glial glutamatergic signaling and suggest the participation of Sox10 in cerebellar glutamatergic transactions. KEYWORDS Bergmann glial cells, glutamate, metabotropic glutamate receptors, signaling, Sox10, transcriptional control.
Collapse
Affiliation(s)
- Irma Cruz-Solis
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado, México
| | | | | | | | | | | |
Collapse
|
13
|
Poblete-Naredo I, Angulo C, Hernández-Kelly L, López-Bayghen E, Aguilera J, Ortega A. Insulin-dependent regulation of GLAST/EAAT1 in Bergmann glial cells. Neurosci Lett 2009; 451:134-8. [DOI: 10.1016/j.neulet.2008.12.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/01/2008] [Accepted: 12/24/2008] [Indexed: 11/25/2022]
|
14
|
Tirumurugaan KG, Kang BN, Panettieri RA, Foster DN, Walseth TF, Kannan MS. Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-alpha and dexamethasone. Respir Res 2008; 9:26. [PMID: 18341691 PMCID: PMC2278140 DOI: 10.1186/1465-9921-9-26] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 03/14/2008] [Indexed: 11/20/2022] Open
Abstract
Background CD38 is expressed in human airway smooth muscle (HASM) cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α). CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene. Methods We cloned a putative 3 kb promoter fragment of the human cd38 gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative cd38 promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE) motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies. Results TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to some of the putative cd38 GREs by dexamethasone. Conclusion The EMSA results and the cd38 promoter-reporter assays confirm the functional role of NF-κB, AP-1 and GREs in the cd38 promoter in the transcriptional regulation of CD38.
Collapse
Affiliation(s)
- Krishnaswamy G Tirumurugaan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St, Paul, MN, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Glutamate-Dependent Transcriptional Regulation in Bergmann Glia Cells: Involvement of p38 MAP Kinase. Neurochem Res 2008; 33:1277-85. [DOI: 10.1007/s11064-007-9580-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 12/26/2007] [Indexed: 11/25/2022]
|
16
|
Aguirre G, Rosas S, López-Bayghen E, Ortega A. Valproate-dependent transcriptional regulation of GLAST/EAAT1 expression: involvement of Ying-Yang 1. Neurochem Int 2008; 52:1322-31. [PMID: 18336953 DOI: 10.1016/j.neuint.2008.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/23/2008] [Accepted: 01/31/2008] [Indexed: 01/29/2023]
Abstract
Valproate, a widely used anti-epileptic drug also employed in the treatment of neurological diseases such as bipolar disorder and migraine, regulates the glutamatergic and GABAergic systems, although its effects in cell physiology have not been thoroughly characterized. High concentrations of glutamate reached during abnormal neurotransmission if not removed properly, become neurotoxic. Glutamate clearance is carried out by high affinity Na(+)-dependent glutamate transporter systems. The glutamate/aspartate transporter GLAST/EAAT1 plays the major role in glutamate removal and is regulated at different levels: transcription, post-translational modifications and cytoplasmic trafficking. The aim of this work was to gain insight into a plausible effect of valproate in GLAST function. Using cultured Bergmann glia cells from chick cerebellum we demonstrate here that valproate exposure elicits a dual regulatory effect on GLAST. In the short-term, valproate increases its Na(+)-dependent [(3)H]-d-aspartate uptake activity in a cytochalasin B-sensitive manner. Interestingly, a synergism between valproate and a histone deacetylase inhibitor was observed. Long-term valproate treatment up-regulates chglast promoter activity, GLAST mRNA levels, GLAST molecules at the plasma membrane and its uptake activity. Furthermore, valproate induces histone 3 lysine 14 acetylation and regulates Ying-Yang 1 (YY1) transcriptional repression on the chglast promoter. These results suggest that valproate elicits its effect through its histone deacetylase inhibitor properties.
Collapse
Affiliation(s)
- Gisela Aguirre
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Cinvestav-IPN, Apartado Postal 14-740, México, D.F. 07000, Mexico
| | | | | | | |
Collapse
|
17
|
Huerta M, Muñoz R, Tapia R, Soto-Reyes E, Ramírez L, Recillas-Targa F, González-Mariscal L, López-Bayghen E. Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc. Mol Biol Cell 2007; 18:4826-36. [PMID: 17881732 PMCID: PMC2096592 DOI: 10.1091/mbc.e07-02-0109] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent reports have indicated the participation of tight junction (TJ) proteins in the regulation of gene expression and cell proliferation. Here, we have studied the role of zona occludens (ZO)-2, a TJ peripheral protein, in the regulation of cyclin D1 transcription. We found that ZO-2 down-regulates cyclin D1 transcription in a dose-dependent manner. To understand how ZO-2 represses cyclin D1 promoter activity, we used deletion analyses and found that ZO-2 negatively regulates cyclin D1 transcription via an E box and that it diminishes cell proliferation. Because ZO-2 does not associate directly with DNA, electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay were used to identify the transcription factors mediating the ZO-2-repressive effect. c-Myc was found to bind the E box present in the cyclin D1 promoter, and the overexpression of c-Myc augmented the inhibition generated by ZO-2 transfection. The presence of ZO-2 and c-Myc in the same complex was further demonstrated by immunoprecipitation. ChIP and reporter gene assays using histone deacetylases (HDACs) inhibitors demonstrated that HDACs are necessary for ZO-2 repression and that HDAC1 is recruited to the E box. We conclude that ZO-2 down-regulates cyclin D1 transcription by interacting with the c-Myc/E box element and by recruiting HDAC1.
Collapse
Affiliation(s)
| | | | - Rocío Tapia
- Fisiología, Biofísica y Neurociencias, Cinvestav-Zacatenco, México D.F. 07360, México; and
| | - Ernesto Soto-Reyes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | | | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | | | | |
Collapse
|
18
|
Susa T, Kato T, Kato Y. Reproducible transfection in the presence of carrier DNA using FuGENE6 and Lipofectamine2000. Mol Biol Rep 2007; 35:313-9. [PMID: 17508267 DOI: 10.1007/s11033-007-9088-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/09/2007] [Indexed: 10/23/2022]
Abstract
We have examined transfection conditions of chinese hamster ovary cells using FuGENE6 and immortalized gonadotrope cell line LbetaT2 cells using Lipofectamin 2000 and to obtain reproducible and reliable transfection. The experiments were performed with fluorescent protein expression vectors, pEYFP-C1 and pECFP-C1, or secreted-type alkaline phosphatase vector, pSEAP2, as reporter genes. The number of cells that received reporter plasmid increased in proportion to the amount of DNA and reached a plateau at a large amount. Co-transfection using two fluorescence vectors with a small amount of DNA demonstrated that every transfected cell received both vectors without discrimination. The results further indicate that there is a hierarchy of DNA receptiveness among competent cells. Simultaneously, we observed that a reliable transfection took place at the high dose of DNA. That is, the addition of carrier DNA makes possible a reliable delivery of a small amount of DNA of interest to the competent cells. Similar results were also obtained by pSEAP2 vector. Co-transfection of pEYFP-C1 and pECFP-C1 with various ratios at adequate amounts demonstrated that the fluorescence intensities by each vector are proportional to each amount of vector used with comparable efficiency. In addition, we observed that the variation of the assay using fluorescent vectors or secreted alkaline phosphatase vectors were small enough within the +/- 25% (SD, n = 4), showing that the internal marker often used to normalize the data is not essential, since the vectors used allow us to exclude cell-harvest and cell-lysis. Thus, the present study demonstrates that the addition of carrier DNA during transfection provides reproducible and reliable results.
Collapse
Affiliation(s)
- Takao Susa
- Laboratory of Molecular Biology and Gene Regulation, Division of Life Science, Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kanagawa, Japan.
| | | | | |
Collapse
|
19
|
Rosas S, Vargas MA, López-Bayghen E, Ortega A. Glutamate‐dependent transcriptional regulation of GLAST/EAAT1: a role for YY1. J Neurochem 2007; 101:1134-44. [PMID: 17394550 DOI: 10.1111/j.1471-4159.2007.04517.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamate is the major excitatory transmitter in the vertebrate brain and its extracellular levels are tightly regulated to prevent excitotoxic effects. The Na(+)-dependent glutamate/aspartate transporter GLAST/EAAT1 is regulated in the short and in the long term by glutamate. A receptors-independent change in its membrane translocation rate, accounts for an acute modulation in GLAST/EAAT1 transport. In contrast, activation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate subtype of glutamate receptors represses the transcription of the chick glast gene. A glutamate responsive element has been mapped to the promoter region of this gene containing a bonafide binding site for the transcription factor Ying-Yang 1. Using cultured chick cerebellar Bergmann glia cells, glutamate elicited a time and dose-dependent increase in Ying-Yang 1 DNA binding consistent with the negative response generated in a reporter gene construct controlled for Ying-Yang 1. Over-expression of this transcription factor leads to a substantial reduction in GLAST/EAAT1 transporter uptake and an important decrease in mRNA levels, all associated with the transcriptional repression of the chick glast promoter activity. These results provide evidence for an involvement of Ying-Yang 1 in the transcriptional response to glutamate in glial cells and favor the notion of a relevant role of this factor in GLAST/EAAT1 transcriptional control.
Collapse
Affiliation(s)
- Sandra Rosas
- Departamento de Genética y Biología Molecular y Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados Campus Zacatenco, México City, México
| | | | | | | |
Collapse
|
20
|
Ramírez-Sotelo G, López-Bayghen E, Hernández-Kelly LCR, Arias-Montaño JA, Bernabé A, Ortega A. Regulation of the Mouse Na+-Dependent Glutamate/Aspartate Transporter GLAST: Putative Role of an AP-1 DNA Binding Site. Neurochem Res 2006; 32:73-80. [PMID: 17151912 DOI: 10.1007/s11064-006-9227-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/10/2006] [Indexed: 11/30/2022]
Abstract
Appropriate removal of L: -glutamate from the synaptic cleft is important for prevention of the excitotoxic effects of this neurotransmitter. The Na+-dependent glutamate/aspartate transporter GLAST is regulated in the short term, by a transporter-dependent decrease in uptake activity while in the long term, a receptor's-dependent decrease in GLAST protein levels leads to a severe reduction in glutamate uptake. The promoter region of the mouse glast gene harbors an Activator Protein-1 site (AP-1). To gain insight into the molecular mechanisms triggered by Glu-receptors activation involved in GLAST regulation, we took advantage of the neonatal mouse cerebellar prisms model. We characterized the glutamate uptake activity; the glutamate-dependent effect on GLAST protein levels and over the interaction of nuclear proteins with a mouse glast promoter AP-1 probe. A time and dose dependent decrease in transporter activity matching with a decrease in GLAST levels was recorded upon glutamate treatment. Moreover, a significant increase in glast AP-1 DNA binding was found. Pharmacological experiments established that both effects are mediated through alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors, favoring the notion of the critical involvement of glutamate in the regulation of its binding partners: receptors and transporters.
Collapse
Affiliation(s)
- Guadalupe Ramírez-Sotelo
- Departamento de Genética y Biología Molecular, Cinvestav Campus Zacatenco, Apartado Postal 14-740, Mexico, D.F. 07000, Mexico
| | | | | | | | | | | |
Collapse
|
21
|
Villanueva R, Morales-Peza N, Castelán-Sánchez I, García-Villa E, Tapia R, Cid-Arregui Á, García-Carrancá A, López-Bayghen E, Gariglio P. Heparin (GAG-hed) inhibits LCR activity of human papillomavirus type 18 by decreasing AP1 binding. BMC Cancer 2006; 6:218. [PMID: 16945153 PMCID: PMC1574339 DOI: 10.1186/1471-2407-6-218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/31/2006] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. METHODS Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. RESULTS We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G2/M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. CONCLUSION Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell proliferation. Our data suggest that GAG-hed could have antitumoral and antiviral activity mainly by inhibiting AP1 binding to the HPV18-LCR.
Collapse
Affiliation(s)
- Rita Villanueva
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| | - Néstor Morales-Peza
- Unidad de Investigación Biomedica en Cáncer, UNAM- Instituto Nacional de Cancerología, Av. San Fernando 22, México D.F. 14000, México
| | - Irma Castelán-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| | - Enrique García-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| | - Rocio Tapia
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| | - Ángel Cid-Arregui
- Tumor Gene Therapy German Cancer Research Center (DKFZ) Im Neuenheimer Feld 280 69120-Heidelberg, Germany
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomedica en Cáncer, UNAM- Instituto Nacional de Cancerología, Av. San Fernando 22, México D.F. 14000, México
| | - Esther López-Bayghen
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, México D.F. 07000, México
| |
Collapse
|
22
|
López-Bayghen E, Cruz-Solís I, Corona M, López-Colomé AM, Ortega A. Glutamate-induced octamer DNA binding and transcriptional control in cultured radial glia cells. J Neurochem 2006; 98:851-9. [PMID: 16787415 DOI: 10.1111/j.1471-4159.2006.03929.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutamate, the main excitatory neurotransmitter in the vertebrate brain, is critically involved in gene expression regulation in neurons and in glia cells. Neuron-glia interactions provide the framework for synaptic plasticity. Retinal and cerebellar radial glia cells surround glutamatergic excitatory synapses and sense synaptic activity through glutamate receptors expressed in their membranes. Several glutamate-dependent membrane to nuclei signaling cascades have been described in these cells. Octamer DNA binding factors, namely Oct-1 and Oct-2 recognize similar DNA sequences on regulatory regions, but their final transcriptional effect depends on several factors. By these means, different responses can be achieved in different cell types. Here, we describe a comparison between the glutamate-induced DNA binding of octamer factors and their functional activities in two important types of radial glia, retinal Müller and cerebellar Bergmann glial cells. While Oct-1 is expressed in both cell types and in both glutamate treatments results in an increase in Oct-1 DNA binding, this complex is capable of transactivating a reporter gene only in Müller glia cells. In contrast, Oct-2 expression is restricted to Bergmann glia cells in which glutamate treatment results in an augmentation of Oct-2 DNA binding complexes and the repression of kainate binding protein gene transcription. Our present findings demonstrate a differential role for Oct-1 and Oct-2 transcription factors in glial glutamate signaling, and further strengthen the notion of an important role for glial cells in glutamatergic transactions in the central nervous system.
Collapse
Affiliation(s)
- Esther López-Bayghen
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | | | | | | | | |
Collapse
|
23
|
Kawada H, Nishiyama C, Takagi A, Tokura T, Nakano N, Maeda K, Mayuzumi N, Ikeda S, Okumura K, Ogawa H. Transcriptional regulation of ATP2C1 gene by Sp1 and YY1 and reduced function of its promoter in Hailey-Hailey disease keratinocytes. J Invest Dermatol 2005; 124:1206-14. [PMID: 15955096 DOI: 10.1111/j.0022-202x.2005.23748.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hailey-Hailey disease (HHD) is a blistering skin disease caused by malfunction of the Ca2+-dependent ATPase, ATP2C1. In this study, key regulatory regions necessary for the expression of the gene encoding human ATP2C1 were investigated. The transient reporter assay demonstrated that region +21/+57 was necessary for activation of the ATP2C1 promoter, and the electrophoretic mobility shift assay demonstrated that the region was recognized by the transcription factors, Sp1 and YY1. In accordance with this result, when Sp1 or YY1 was overexpressed in keratinocytes, an obvious increase in ATP2C1 promoter activity was observed, which was in contrast with the case where a mutant promoter lacking the binding sites for Sp1 and YY1 was used as the reporter. Ca2+-stimulation signal increased nuclear Sp1 proteins and ATP2C1 mRNA levels in normal keratinocytes. In contrast, both these increases were suppressed in keratinocytes from HHD patients. These results indicate that Sp1 and YY1 transactivate the human ATP2C1 promoter via cis-enhancing elements and that incomplete upregulation of ATP2C1 transcription contributes to the keratinocyte-specific pathogenesis of HHD. This is a report describing the regulation of the expression of ATP2C1.
Collapse
Affiliation(s)
- Hiroshi Kawada
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Takahashi H, Hashimoto Y, Ishida-Yamamoto A, Iizuka H. Roxithromycin suppresses involucrin expression by modulation of activator protein-1 and nuclear factor-kappaB activities of keratinocytes. J Dermatol Sci 2005; 39:175-82. [PMID: 16140218 DOI: 10.1016/j.jdermsci.2005.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2004] [Revised: 02/22/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Roxithromycin (RXM), a new 14-member macrolide antibiotic, is effective for chronic airway diseases such as diffuse panbronchiolitis and bronchial asthma. Recent study disclosed that RXM inhibits nuclear factor-kappaB (NF-kappaB)-mediated inflammation. Involucrin is one of the precursor proteins of the cornified cell envelope (CE) and is markedly increased in inflammatory skin diseases such as psoriasis. However, its molecular mechanism of action remains unknown. OBJECTIVE To determine the effect of RXM on involucrin expression of keratinocytes. METHODS We constructed chloramphenicol acetyltransferase (CAT)-involucrin promoter expression vector and CAT assay was performed. Furthermore, western blot and RT-PCR were performed to examine the expression of involucrin in RXM-treated cultured human keratinocytes. RESULTS The increased involucrin expression by 12-O-tetradecanoylphorbol acetate (TPA) was suppressed by 10(-6) M RXM and the maximal inhibitory effect was observed at 48 h. RXM suppressed increased CAT activity by TPA and the effect was not inhibited by H-7 or cafferic acid phenethyl ester (CAPE). Deletion of T1 region (-119 to -113) of involucrin promoter completely abolished TPA-dependent stimulatory and RXM-dependent inhibitory promoter activity. Gel shift assay showed that c-Jun (but not p65) selectively binds to the T1 region. The assay of activator protein-1 (AP-1) and NF-kappaB activities revealed that RXM decreased both transcriptional activities. Co-transfection of c-jun and c-fos expression vectors, or p65 and p50 expression vectors, rescued decreased CAT activity by RXM, respectively. CONCLUSION Our study demonstrated for the first time that involucrin expression of keratinocytes is suppressed by RXM through direct inhibition of AP-1 and indirect inhibition of NF-kappaB.
Collapse
Affiliation(s)
- Hidetoshi Takahashi
- Department of Dermatology, Asahikawa Medical College, 2-1-1-1 Midorigaokahigashi, Asahikawa 078-8510, Japan.
| | | | | | | |
Collapse
|
25
|
Certiorari Granted in Merck v. Integra; Denial of Promoter Patent Upheld by CAFC; Geron Wins Interference Proceeding on Nuclear Transfer Technology; Syngenta to Appeal Patent Verdict; Monsanto, Bayer CropScience Arrange Cross Licenses; "Star Fruits Must Await a Rejection ... and Then Litigate the Propriety of That Rejection"; What Constitutes Litigation Misconduct and Vexatious Behavior?; The Meaning of "About". Biotechnol Law Rep 2005. [DOI: 10.1089/blr.2005.24.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Oh JE, Kook JK, Min BM. Beta ig-h3 induces keratinocyte differentiation via modulation of involucrin and transglutaminase expression through the integrin alpha3beta1 and the phosphatidylinositol 3-kinase/Akt signaling pathway. J Biol Chem 2005; 280:21629-37. [PMID: 15805105 DOI: 10.1074/jbc.m412293200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Beta ig-h3 is an extracellular matrix protein whose expression is highly induced by transforming growth factor (TGF)-beta1. Whereas beta ig-h3 is known to mediate keratinocyte adhesion and migration, its effects on keratinocyte differentiation remain unclear. In the present study, it was demonstrated that expression of both beta ig-h3 and TGF-beta1 was enhanced during keratinocyte differentiation and that expression of the former was strongly induced by that of the latter. This study also asked whether changes in beta-h3 expression would affect keratinocyte differentiation. Indeed, down-regulation of beta ig-h3 by transfection with antisense beta ig-h3 cDNA constructs effectively inhibited keratinocyte differentiation by decreasing the promoter activities and thus expression of involucrin and transglutaminase. The result was an approximately 2-fold increase in mitotic capacity of the cells. Conversely, overexpression of beta ig-h3, either by transfection with beta ig-h3 expression plasmids or by exposure to recombinant beta ig-h3, enhanced keratinocyte differentiation by inhibiting cell proliferation and concomitantly increasing involucrin and transglutaminase expression. Recombinant beta ig-h3 also promoted keratinocyte adhesion through interaction with integrin alpha3beta1. Changes in beta ig-h3 expression did not affect intracellular calcium levels. Subsequent analysis revealed not only induction of Akt phosphorylation by recombinant beta ig-h3 but also blockage of Akt phosphorylation by LY294002, an inhibitor of phosphatidylinositol 3-kinase. Taken together, these findings indicate that enhanced beta ig-h3, induced by enhanced TGF-beta during keratinocyte differentiation, provoked cell differentiation by enhancing involucrin and transglutaminase expression through the integrin alpha3beta1 and phosphatidylinositol 3-kinase/Akt signaling pathway. Lastly, it was observed that beta ig-h3-mediated keratinocyte differentiation was caused by promotion of cell adhesion and not by calcium regulation.
Collapse
Affiliation(s)
- Ju-Eun Oh
- Department of Oral Biochemistry and Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, and BK21 HLS, Seoul National University College of Dentistry, Seoul 110-749, Korea
| | | | | |
Collapse
|
27
|
Méndez JA, López-Bayghen E, Ortega A. Glutamate activation of Oct-2 in cultured chick Bergmann glia cells: Involvement of NFκB. J Neurosci Res 2005; 81:21-30. [PMID: 15929072 DOI: 10.1002/jnr.20519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate, the major excitatory neurotransmitter in the central nervous system, is critically involved in gene expression regulation at the transcriptional and translational levels. Its activity through ionotropic as well as metabotropic receptors modifies the protein repertoire in neurons and glial cells. In avian cerebellar Bergmann glia cells, glutamate receptors trigger a diverse array of signaling cascades that include activity-dependent transcription factors such as the activator protein-1, the cAMP response-element binding protein, and Oct-2. We analyze the upstream regulatory elements involved in Oct-2 activation. Our results demonstrate that Ca2+ influx, protein kinase C, phosphatidylinositol-3 kinase, Src, and nuclear factor (NF)kappaB are involved in this signaling pathway. Our findings link alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation to a negative phase of chkbp gene regulation, controlled by NFkappaB.
Collapse
Affiliation(s)
- J Alfredo Méndez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios, Avanzados del Instituto Politécnico Nacional, México
| | | | | |
Collapse
|
28
|
Tran N, Crowe D. Regulation of the human involucrin gene promoter by co-activator proteins. Biochem J 2004; 381:267-73. [PMID: 15025563 PMCID: PMC1133785 DOI: 10.1042/bj20031653] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 03/15/2004] [Accepted: 03/16/2004] [Indexed: 11/17/2022]
Abstract
Stratified squamous epithelial cells undergo an orderly process of terminal differentiation that is characterized by specific molecular and morphological changes, including expression of the cornified envelope protein involucrin. Significant progress has been made in characterizing the upstream regulatory region of the involucrin gene. Binding sites for AP-1 (activator protein 1) and Sp1 transcription factors were shown to be important for involucrin promoter activity and tissue-specific expression. Defective terminal differentiation is often characterized by decreased or lack of involucrin expression. Recently, a dominant-negative construct of the transcriptional co-activator P/CAF [p300/CBP-associated factor, where CBP stands for CREB (cAMP-response-element-binding protein)-binding protein] was shown to inhibit involucrin expression in immortalized keratinocytes [Kawabata, Kawahara, Kanekura, Araya, Daitoku, Hata, Miura, Fukamizu, Kanzaki, Maruyama and Nakajima (2002) J. Biol. Chem. 277, 8099-8105]. Loss of expression or inactivation of other co-activators has also been demonstrated [Suganuma, Kawabata, Ohshima, and Ikeda (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 13073-13078]. In the present study, we re-expressed CBP and P/CAF in immortalized keratinocyte lines that had lost expression of these co-activator proteins. Re-expression of these proteins restored calcium- and RA (retinoic acid)-responsive involucrin expression in these cells. RA and calcium signalling induced exchange of CBP and P/CAF occupancy at the AP-1 sites of the involucrin promoter. CBP and P/CAF inductions of the involucrin expression were not dependent on MEK (mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase), p38, protein kinase C or CaM kinase (calcium/calmodulin-dependent kinase) signalling. Kinase-induced changes in involucrin promoter activity directly resulted from changes in AP-1 protein expression. We concluded that CBP and P/CAF are important regulators of involucrin expression in stratified squamous epithelial cells.
Collapse
Affiliation(s)
- Nhu Q. Tran
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, U.S.A
| | - David L. Crowe
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, U.S.A
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
29
|
Abstract
The Na+-dependent glutamate/aspartate transporter GLAST plays a major role in the removal of glutamate from the synaptic cleft. Short-term, as well as long-term changes in transporter activity are triggered by glutamate. An important locus of regulation is the density of transporter molecules present at the plasma membrane. A substrate-dependent change in the translocation rate of the transporter molecules accounts for the short-term effect, whereas the long-term modulation apparently involves transcriptional regulation. Using cultured chick cerebellar Bergmann glial cells, we report here that glutamate receptors activation mediate a substantial reduction in the transcriptional activity of the chglast promoter through the Ca2+/diacylglicerol-dependent protein kinase (PKC) signaling cascade. Overexpression of constitutive active PKC isoforms of mimic the glutamate effect. Accordingly, increased levels of c-Jun or c-Fos, but not Jun-B, Jun-D or Fos-B, lower the chglast promoter activity. Serial deletions and electrophorectic mobility shift assays were used to define a specific region within the 5' proximal region of the chglast promoter, associated with transcriptional repression. A putative glutamate response element could be defined in the proximal promoter stretch more likely between nts -40 and -78. These results demonstrate that GLAST is under glutamate-dependent transcriptional control through PKC, and support the notion of a pivotal role of this neurotransmitter in the regulation of its own removal from the synaptic cleft, thereby modulating, mainly in the long term, glutamatergic transmission.
Collapse
MESH Headings
- Amino Acid Transport System X-AG/genetics
- Amino Acid Transport System X-AG/metabolism
- Animals
- Arthropod Proteins
- Cells, Cultured
- Cerebellum/cytology
- Cerebellum/drug effects
- Chick Embryo
- Chloramphenicol O-Acetyltransferase/metabolism
- Drug Interactions
- Electrophoretic Mobility Shift Assay/methods
- Enzyme Inhibitors/pharmacology
- Excitatory Amino Acid Agonists/pharmacology
- Gene Deletion
- Genes, Reporter/drug effects
- Genes, Reporter/physiology
- Genes, fos/drug effects
- Genes, fos/physiology
- Genes, jun/drug effects
- Genes, jun/physiology
- Glutamic Acid/pharmacology
- Indoles/pharmacology
- Invertebrate Hormones
- Maleimides/pharmacology
- Models, Biological
- Neuroglia/drug effects
- Neuroglia/metabolism
- Promoter Regions, Genetic/physiology
- Protein Kinase C/physiology
- Pyridines/pharmacology
- Sequence Analysis, DNA/methods
- Staurosporine/pharmacology
- TATA Box/drug effects
- TATA Box/physiology
- Transcription, Genetic/drug effects
- Transfection/methods
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- Esther López-Bayghen
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | | |
Collapse
|
30
|
Eckert RL, Crish JF, Efimova T, Dashti SR, Deucher A, Bone F, Adhikary G, Huang G, Gopalakrishnan R, Balasubramanian S. Regulation of Involucrin Gene Expression. J Invest Dermatol 2004; 123:13-22. [PMID: 15191537 DOI: 10.1111/j.0022-202x.2004.22723.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The epidermis is a dynamic renewing structure that provides life-sustaining protection from the environment. The major cell type of the epidermis, the epidermal keratinocyte, undergoes a carefully choreographed program of differentiation. Alteration of these events results in a variety of debilitating and life-threatening diseases. Understanding how this process is regulated is an important current goal in biology. In this review, we summarize the literature regarding regulation of involucrin, an important marker gene that serves as a model for understanding the mechanisms that regulate the differentiation process. Current knowledge describing the role of transcription factors and signaling cascades in regulating involucrin gene expression are presented. These studies describe a signaling cascade that includes the novel protein kinase C isoforms, Ras, MEKK1, MEK3, and a p38delta-extracellular signal regulated kinase 1/2 complex. This cascade regulates activator protein one, Sp1, and CCATT/enhancer-binding protein transcription factor DNA binding to two discrete involucrin promoter regions, the distal- and proximal-regulatory regions, to regulate involucrin gene expression.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Azuara-Liceaga E, Sandoval M, Corona M, Gariglio P, López-Bayghen E. The human involucrin gene is transcriptionally repressed through a tissue-specific silencer element recognized by Oct-2. Biochem Biophys Res Commun 2004; 318:361-71. [PMID: 15120610 DOI: 10.1016/j.bbrc.2004.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 11/16/2022]
Abstract
Involucrin is an important marker of epithelial differentiation which expression is upregulated just after basal cells are pushed into the suprabasal layer in stratified epithelia. Several transcription factors and regulatory elements had been described as responsible for turning on the gene. However, it is evident that in basal cell layer, additional mechanisms are involved in keeping the gene silent before the differentiation process starts. In this work, we located a potential transcriptional silencer in a 52bp sequence whose integrity is necessary for silencing the proximal enhancer promoter element (PEP) in multiplying keratinocytes. Octamer-binding sites were noticed in this fragment and the specific binding of Oct-2 transcription factor was detected. Oct-2 appears to be implicated in an epithelial-specific repression activity recorded only in keratinocytes and C33-A cell line. Overexpression of Oct-2 repressed the involucrin promoter activity in epithelial cells and in the presence of the silencer element.
Collapse
Affiliation(s)
- Elisa Azuara-Liceaga
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del I.P.N., Mexico D.F. 07000, Mexico
| | | | | | | | | |
Collapse
|
32
|
Betanzos A, Huerta M, Lopez-Bayghen E, Azuara E, Amerena J, González-Mariscal L. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res 2004; 292:51-66. [PMID: 14720506 DOI: 10.1016/j.yexcr.2003.08.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ZO-2 is a membrane-associated guanylate kinase (MAGUK) protein present at the tight junction (TJ) of epithelial cells. While confluent monolayers have ZO-2 at their cellular borders, sparse cultures conspicuously show ZO-2 at the nuclei. To study the role of nuclear ZO-2, we tested by pull-down assays and gel shift analysis the interaction between ZO-2 GST fusion proteins and different transcription factors. We identified the existence of a specific interaction of ZO-2 with Fos, Jun and C/EBP (CCAAT/enhancer binding protein). To analyze if this association is present "in vivo", we performed immunoprecipitation and immunolocalization experiments, which revealed an interaction of ZO-2 with Jun, Fos and C/EBP not only at the nucleus but also at the TJ region. To test if the association of ZO-2 with AP-1 (activator protein-1) modulates gene transcription, we performed reporter gene assays employing chloramphenicol acetyltransferase (CAT) constructs with promoters under the control of AP-1 sites. We observed that the co-transfected ZO-2 down-regulates CAT expression in a dose-dependent manner. Since ZO-2 is a multidomain protein, we proceeded to determine which region of the molecule is responsible for the modulation of gene expression, and observed that both the amino and the carboxyl domains are capable of inhibiting gene transcription.
Collapse
Affiliation(s)
- Abigail Betanzos
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), México DF, 07000, Mexico
| | | | | | | | | | | |
Collapse
|
33
|
Kobayashi T, Kishimoto J, Hattori S, Wachi H, Shinkai H, Burgeson RE. Matrix Metalloproteinase 9 Expression is Coordinately Modulated by the KRE-M9 and 12-O-Tetradecanoyl-Phorbol-13-Acetate Responsive Elements. J Invest Dermatol 2004; 122:278-85. [PMID: 15009705 DOI: 10.1046/j.0022-202x.2004.22210.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the pathophysiologic role of matrix metalloproteinase 9 (MMP-9), we analyzed the mechanism of its transcriptional regulation in keratinocytes and in HT1080 fibrosarcoma cells in culture. The KRE-M9 element, which is located between the 12-O-tetradecanoyl-phorbol-13-acetate responsive element (TRE) and the transcription initiation site in the MMP-9 promoter, is essential for MMP-9 transcription in the absence of the TRE. The KRE-M9 binding protein, however, is shown to be a repressor of transcription rather than an activator; we found several times higher transcriptional activity when the KRE-M9 element was mutated. In contrast, activator protein 1 proteins (AP-1) are shown to activate transcription of MMP-9 by binding to the TRE, which is located adjacent to the KRE-M9 element. Moreover, we found that the KRE-M9 binding protein could serve as a differentiation repressing factor 1 (DRF-1) as shown by the decrease in levels of this protein with differentiation. In addition, the TRE binding protein is able to bind to the KRE-M9 to some extent. These results indicate that the coordinated modulation of MMP-9 transcription via the TRE and the KRE-M9 elements is important in epidermal and mesenchymal tissues. Our findings could facilitate consideration of the molecular mechanism in a variety of pathophysiologic conditions with which MMP-9 is involved.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Dermatology/Clinical Biology of Extracellular Matrix, Chiba University School of Medicine, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Méndez JA, López-Bayghen E, Rojas F, Hernández ME, Ortega A. Glutamate regulates Oct-2 DNA-binding activity through α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in cultured chick Bergmann glia cells. J Neurochem 2004; 88:835-43. [PMID: 14756804 DOI: 10.1046/j.1471-4159.2003.02206.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ionotropic glutamate receptors in cerebellar Bergmann glial cells are linked to transcriptional regulation and, by these means, are thought to play an important role in plasticity, learning and memory and in several neuropathologies. Within the CNS, the transcription factors of the POU family bind their target DNA sequences after a growth factor-dependent phosphorylation-dephosphorylation cascade. Exposure of cultured Bergmann glial cells to glutamate leads to a time- and dose-dependent increase in Oct-2 DNA-binding activity. The use of specific pharmacological tools established the involvement of Ca2+-permeable alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors. Furthermore, the signaling cascade includes phosphatidyl inositol 3-kinase as well as protein kinase C activation. Interestingly, transcriptional as well as translational inhibitors abolish the glutamate effect, suggesting a transcriptional up-regulation of the oct-2 gene. These data demonstrate that Oct-2 expression is not restricted to neurons and further strengthen the notion that the glial glutamate receptors participate in the modulation of glutamatergic cerebellar neurotransmission.
Collapse
Affiliation(s)
- J Alfredo Méndez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del instituto Politécnico Nacional, México
| | | | | | | | | |
Collapse
|
35
|
Butcher NJ, Arulpragasam A, Pope C, Minchin RF. Identification of a minimal promoter sequence for the human N-acetyltransferase Type I gene that binds AP-1 (activator protein 1) and YY-1 (Yin and Yang 1). Biochem J 2003; 376:441-8. [PMID: 12946272 PMCID: PMC1223780 DOI: 10.1042/bj20030650] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 08/07/2003] [Accepted: 08/28/2003] [Indexed: 12/29/2022]
Abstract
Human N -acetyltransferase Type I (NAT1) catalyses the acetylation of many aromatic amine and hydrazine compounds and it has been implicated in the catabolism of folic acid. The enzyme is widely expressed in the body, although there are considerable differences in the level of activity between tissues. A search of the mRNA databases revealed the presence of several NAT1 transcripts in human tissue that appear to be derived from different promoters. Because little is known about NAT1 gene regulation, the present study was undertaken to characterize one of the putative promoter sequences of the NAT1 gene located just upstream of the coding region. We show with reverse-transcriptase PCR that mRNA transcribed from this promoter (Promoter I) is present in a variety of human cell-lines, but not in quiescent peripheral blood mononuclear cells. Using deletion mutant constructs, we identified a 20 bp sequence located 245 bases upstream of the translation start site which was sufficient for basal NAT1 expression. It comprised an AP-1 (activator protein 1)-binding site, flanked on either side by a TCATT motif. Mutational analysis showed that the AP-1 site and the 3' TCATT sequence were necessary for gene expression, whereas the 5' TCATT appeared to attenuate promoter activity. Electromobility shift assays revealed two specific bands made up by complexes of c-Fos/Fra, c-Jun, YY-1 (Yin and Yang 1) and possibly Oct-1. PMA treatment enhanced expression from the NAT1 promoter via the AP-1-binding site. Furthermore, in peripheral blood mononuclear cells, PMA increased endogenous NAT1 activity and induced mRNA expression from Promoter I, suggesting that it is functional in vivo.
Collapse
Affiliation(s)
- Neville J Butcher
- Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | | | | | | |
Collapse
|
36
|
Marchat LA, Gómez C, Pérez DG, Paz F, Mendoza L, Orozco E. Two CCAAT/enhancer binding protein sites are cis-activator elements of the Entamoeba histolytica EhPgp1 (mdr-like) gene expression. Cell Microbiol 2002; 4:725-37. [PMID: 12427095 DOI: 10.1046/j.1462-5822.2002.00220.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we show the relevance of promoter regions (-74 to +24, -167 to -75 and -259 to -168 bp) in the transcriptional activation of the multidrug resistance gene EhPgp1 in Entamoeba histolytica, using mutated plasmids and transfection assays. We also demonstrate that both CCAAT/enhancer binding protein sites (-54 to -43 bp and -198 to -186 bp) are cis-activating elements of gene expression in the drug-resistant (clone C2) and -sensitive (clone A) trophozoites. Nuclear proteins from trophozoites of both clones and C/EBP sequences of the core promoter formed specific complexes, which were abolished by anti-human C/EBPbeta antibodies. UV cross-linking and Western blot assays revealed 25 and 65 kDa bands in urea treated and untreated proteins respectively. The nuclear factors that bind to C/EBP sites were semi-purified by affinity chromatography. They were immunodetected by anti-human C/EBPbeta antibodies and formed a specific complex with the C/EBP probe. The antibodies recognized proteins in the cytoplasm, nucleus and EhkO organelles in immunofluorescence and confocal microscopy experiments. Based on our results, we propose that the C/EBP site at -54 bp stabilizes the transcription pre-initiation complex, whereas the other site at -198 bp may be involved in the formation of a multiprotein complex, which provokes DNA folding and promotes the EhPgp1 gene transcription.
Collapse
Affiliation(s)
- Laurence A Marchat
- Programa de Biomedicina Molecular, ENMYH-IPN, Guillermo Massieu Helguera 239 Fracc. La Escalera, Ticoman, CP 07320 México D. F
| | | | | | | | | | | |
Collapse
|
37
|
Aguirre A, López-Bayghen E, Ortega A. Glutamate-dependent transcriptional regulation of the chkbp gene: signaling mechanisms. J Neurosci Res 2002; 70:117-27. [PMID: 12237870 DOI: 10.1002/jnr.10394] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glutamate, the major excitatory neurotransmitter, induces a signal from the membrane to the nucleus that regulates gene expression. The gene encoding the chick kainate binding protein undergoes a glutamate-dependent transcriptional regulation via an activator protein-1 site within its promoter region. To characterize this event, cultured chick Bergmann glia cells were exposed to glutamate, and a dose-dependent increase in promoter activity was established. The glutamate effect is mediated through Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors. The signaling cascade includes phosphatidyl inositol 3-kinase, Ca(2+)/calmodulin-dependent protein kinase II, mitogen-activated protein kinase, and p90 ribosomal S6 kinase activation. The cAMP response-element binding protein becomes phosphorylated and activates fos transcription. Finally, the activator protein-1 complex binds to the glutamate response element in the chick kainate binding protein promoter region inducing its activity. We propose that the mitogen-activated protein kinase/p90 ribosomal S6 kinase pathway plays a critical role in glutamate-induced gene transcription.
Collapse
Affiliation(s)
- Adán Aguirre
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | | | | |
Collapse
|
38
|
Kubo E, Fatma N, Sharma P, Shinohara T, Chylack LT, Akagi Y, Singh DP. Transactivation of involucrin, a marker of differentiation in keratinocytes, by lens epithelium-derived growth factor (LEDGF). J Mol Biol 2002; 320:1053-63. [PMID: 12126624 DOI: 10.1016/s0022-2836(02)00551-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human involucrin (hINV), first appears in the cytosol of keratinocytes and ultimately cross-linked to membrane proteins via transglutaminase and forms a protective barrier as an insoluble envelope beneath the plasma membrane. Although the function and evolution of involucrin is known, the regulation of its gene expression is not well understood. An analysis of the hINV gene sequence, upstream of the transcription start site (-534 to +1 nt) revealed the presence of potential sites for binding of lens epithelium-derived growth factor (LEDGF); stress response element (STRE; A/TGGGGA/T) and heat shock element (HSE; nGAAn). We reported earlier that LEDGF activates stress-associated genes by binding to these elements and elevates cellular resistance to various stresses. Here, gel-shift and super-shift assays confirm the binding of LEDGF to the DNA fragments containing HSEs and STREs that are present in the involucrin gene promoter. Furthermore, hINV promoter linked to CAT reporter gene, cotransfected in human corneal simian virus 40-transformed keratinocytes (HCK), was transactivated by LEDGF significantly. In contrast, the activity of hINV promoter bearing mutations at the WT1 (containing HSE and STRE), WT2 (containing STRE) and WT3 (containing STRE) binding sites was diminished. In addition, in HCK cell over-expressing LEDGF, the levels of hINV mRNA and hINV protein are increased by four to five-fold. LEDGF is inducible to oxidants. Cells treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate production of H(2)O(2), showed higher levels of LEDGF mRNA. Furthermore, our immunohistochemical studies revealed that hINV protein is found in the cytoplasm of HCK cells over-expressing LEDGF, but not detectable in the normal HCK cells or HCK cells transfected with vector. This regulation appears to be physiologically important, as over-expression of HCK with LEDGF increases the expression of the endogenous hINV gene and may provide new insight to understand the molecular mechanism of transcriptional regulation of this gene. LEDGF may play an important role in establishing an important barrier in corneal keratinocytes by maintaining epidermal turn-over rate, and protecting HCKs against stress.
Collapse
Affiliation(s)
- E Kubo
- Center for Ophthalmic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kobayashi T, Kishimoto J, Ge Y, Jin W, Hudson DL, Ouahes N, Ehama R, Shinkai H, Burgeson RE. A novel mechanism of matrix metalloproteinase-9 gene expression implies a role for keratinization. EMBO Rep 2001; 2:604-8. [PMID: 11463743 PMCID: PMC1083943 DOI: 10.1093/embo-reports/kve129] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate the pathophysiological role of matrix metalloproteinase (MMP)-9 in the skin, we analyzed MMP-9 expression from human keratinocytes in culture. MMP-9 and the terminal differentiation marker involucrin were co-localized in the same keratinocytes with a high concentration of Ca(2+), a potent stimulator of differentiation. We identified the novel KRE-M9 element, further downstream to the previously reported TPA responsive element in the MMP-9 promoter, and both of these two elements were shown to be important for MMP-9 transcription and Ca(2+) induction. The concomitant upregulation of MMP-9 and involucrin transcripts was probably due to the very similar gene regulatory elements, KRE-M9 and KRE-4, in their respective promoters. These results indicate a novel mechanism of transcriptional regulation for MMP-9 in the process of keratinization, implying the probable association of apoptosis and differentiation of keratinocytes in epidermal skin tissue.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Dermatology, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Angel P, Szabowski A, Schorpp-Kistner M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 2001; 20:2413-23. [PMID: 11402337 DOI: 10.1038/sj.onc.1204380] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mouse skin has become the model of choice to study the regulation and function of AP-1 subunits in many physiological and pathological processes in vivo and in vitro. Genetically modified mice, in vitro reconstituted skin equivalents and epidermal cell lines were established, in which AP-1-regulated genetic programs of cell proliferation, differentiation and tumorigenesis can be analysed. Since the epidermis, as our interface with the environment, is subjected to radiation and injury, signal transduction pathways and critical AP-1 members regulating the mammalian stress response could be identified. Regulated expression of important components of the cytokine network, cell surface receptors and proteases, which orchestrate the process of wound healing has been found to rely on AP-1 activity. Here we review our current knowledge on the function of AP-1 subunits and AP-1 target genes in these fascinating fields of skin physiology and pathology.
Collapse
Affiliation(s)
- P Angel
- Deutsches Krebsforschungszentrum, Division of Signal Transduction and Growth Control, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
41
|
Aguirre A, López T, López-Bayghen E, Ortega A. Glutamate regulates kainate-binding protein expression in cultured chick Bergmann glia through an activator protein-1 binding site. J Biol Chem 2000; 275:39246-53. [PMID: 10993879 DOI: 10.1074/jbc.m002847200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the chick kainate-binding protein, a member of the ionotropic glutamate receptor family, is restricted to the cerebellum, specifically to Bergmann glia. Glutamate induces a membrane to nuclei signaling involved in gene expression regulation. Exposure of cultured chick Bergmann glia cells to glutamate leads to an increase in kainate binding protein and mRNA levels, suggesting a transcriptional level of regulation. The 5' proximal region of the chick kainate binding gene was cloned and transfected 4into Bergmann glia cells. Three main regulatory regions could be defined, a minimal promoter region, a negative regulatory region, and interestingly, a glutamate-responsive element. Deletion of this element abolishes the agonist effect. Moreover, electrophoretic mobility shift assays, cotransfection experiments, and site-directed mutagenesis clearly suggest that the glutamate effect is mediated through an AP-1 site by a Fos/Jun heterodimer. The present results favor the notion of a functional role of kainate-binding protein in glutamatergic cerebellar neurotransmission.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Cerebellum/metabolism
- Chick Embryo
- Chloramphenicol O-Acetyltransferase/metabolism
- Cloning, Molecular
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation
- Glutamic Acid/physiology
- Models, Biological
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Neuroglia/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-fos/metabolism
- Proto-Oncogene Proteins c-jun/metabolism
- RNA, Messenger/metabolism
- Receptors, Glutamate/biosynthesis
- Receptors, Glutamate/genetics
- Receptors, Kainic Acid/biosynthesis
- Receptors, Kainic Acid/genetics
- Response Elements
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription Factor AP-1/chemistry
- Transcription Factor AP-1/metabolism
- Transcription, Genetic
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- A Aguirre
- Departamento de Genética y Biologia Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F. 07000, México
| | | | | | | |
Collapse
|
42
|
Ng DC, Shafaee S, Lee D, Bikle DD. Requirement of an AP-1 site in the calcium response region of the involucrin promoter. J Biol Chem 2000; 275:24080-8. [PMID: 10816578 DOI: 10.1074/jbc.m002508200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Involucrin is a major protein of the cornified envelope of keratinocytes that provides much of the structural integrity of the skin. The gene expression of this differentiation marker is induced by elevated extracellular calcium in cultured human keratinocytes. A 3.7-kilobase fragment of this gene contains the necessary elements to drive a luciferase reporter in a calcium-dependent manner. We have sequenced the upstream region of the involucrin promoter and localized a calcium response element that contains an activating protein-1 (AP-1) site (TGAGTCA). Mutation of this site abolished the promoter activation by calcium. Compared with cells grown in 0.03 mm calcium, the binding activity of factors within nuclear extracts from keratinocytes for this AP-1 site was enhanced 3-fold in cells grown in 1.2 mm calcium. Immunoelectrophoretic mobility shift (supershift) assays identified JunD, Fra1, and Fra2 as the major factors that bind to the AP-1 element. Western analysis of the proteins in the nuclear extracts showed that the levels of c-Jun, JunB, JunD, FosB, and Fra2 increased and the levels of c-Fos and Fra1 decreased slightly with calcium treatment. The effect of calcium on the involucrin promoter was enhanced synergistically by phorbol 12-myristate 13-acetate (PMA) in a protein kinase-dependent manner. In conclusion, calcium-regulated involucrin gene expression is mediated at least in part by AP-1 transcription factors.
Collapse
Affiliation(s)
- D C Ng
- Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
43
|
DiSepio D, Bickenbach JR, Longley MA, Bundman DS, Rothnagel JA, Roop DR. Characterization of loricrin regulation in vitro and in transgenic mice. Differentiation 1999; 64:225-35. [PMID: 10365440 DOI: 10.1046/j.1432-0436.1999.6440225.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that the promoter of a 6.5 kb mouse loricrin clone contains a functional AP-1 element and directs tissue-specific, but not differentiation-specific, expression. We now report the isolation of a 14-kb genomic clone containing an additional 7 kb of genomic sequence. The additional sequences limit expression of a reporter construct to differentiated keratinocytes in culture. The expression of the 6.5-kb and 14-kb loricrin constructs were also analyzed in transgenic mice. Significantly, loricrin was found in all layers of the epidermis of the 6.5-kb transgenics, including basal and spinous cells. The expression of the 14-kb clone was indistinguishable from that of the endogenous gene, confirming that the additional sequences contain negative regulatory elements that restrict loricrin expression to the granular layer in vivo. In addition, we show the AP-1 element localized in the loricrin proximal promoter is necessary but not sufficient for expression of the loricrin gene in vivo in transgenic mice. Finally, to gain further insight into how AP-1 family members regulate expression of the loricrin gene, we co-transfected the loricrin reporter constructs with expression plasmids for various fos and jun family members and demonstrated that c-Fos/Jun-B heterodimers could mimic the differentiation-specific induction of loricrin.
Collapse
Affiliation(s)
- D DiSepio
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
44
|
Xu PA, Winston JH, Datta SK, Kellems RE. Regulation of forestomach-specific expression of the murine adenosine deaminase gene. J Biol Chem 1999; 274:10316-23. [PMID: 10187819 DOI: 10.1074/jbc.274.15.10316] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maturation of stratified squamous epithelium of the upper gastrointestinal tract is a highly ordered process of development and differentiation. Information on the molecular basis of this process is, however, limited. Here we report the identification of the first murine forestomach regulatory element using the murine adenosine deaminase (Ada) gene as a model. In the adult mouse, Ada is highly expressed in the terminally differentiated epithelial layer of upper gastrointestinal tract tissues. The data reported here represent the identification and detailed analysis of a 1. 1-kilobase (kb) sequence located 3.4-kb upstream of the transcription initiation site of the murine Ada gene, which is sufficient to target cat reporter gene expression to the forestomach in transgenic mice. This 1.1-kb fragment is capable of directing cat reporter gene expression mainly to the forestomach of transgenic mice, with a level comparable to the endogenous Ada gene. This expression is localized to the appropriate cell types, confers copy number dependence, and shows the same developmental regulation. Mutational analysis revealed the functional importance of multiple transcription factor-binding sites.
Collapse
Affiliation(s)
- P A Xu
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
45
|
Agarwal C, Efimova T, Welter JF, Crish JF, Eckert RL. CCAAT/enhancer-binding proteins. A role in regulation of human involucrin promoter response to phorbol ester. J Biol Chem 1999; 274:6190-4. [PMID: 10037704 DOI: 10.1074/jbc.274.10.6190] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) is a potent inducer of keratinocyte differentiation and of involucrin gene expression. In the present study we show that a CCAAT/enhancer-binding protein (C/EBP) site in the proximal regulatory region is required for the phorbol ester response. Mutation of the C/EBP site results in the loss of basal and TPA-responsive activity. Gel mobility supershift analysis shows that C/EBPalpha binding to this site is increased by TPA treatment. Moreover, cotransfection of the human involucrin reporter plasmid with C/EBPalpha increases promoter activity to an extent comparable with TPA treatment. Mutation of the C/EBP-binding site eliminates these responses. Transfection experiments using GADD153 to create C/EBP-null conditions confirm that C/EBP factors are absolutely required for promoter activity and TPA responsiveness. C/EBPbeta and C/EBPdelta inhibit both TPA- and C/EBPalpha-dependent promoter activation, indicating functional differences among C/EBP family members. These results suggest that C/EBP transcription factor activity is necessary for basal promoter activity and TPA response of the involucrin gene.
Collapse
Affiliation(s)
- C Agarwal
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | |
Collapse
|
46
|
Rutberg SE, Adams TL, Olive M, Alexander N, Vinson C, Yuspa SH. CRE DNA binding proteins bind to the AP-1 target sequence and suppress AP-1 transcriptional activity in mouse keratinocytes. Oncogene 1999; 18:1569-79. [PMID: 10102627 DOI: 10.1038/sj.onc.1202463] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previously, we have shown that nuclear extracts from cultured mouse keratinocytes induced to differentiate by increasing the levels of extra-cellular calcium contain Fra-1, Fra-2, Jun B, Jun D and c-Jun proteins that bind to the AP-1 DNA binding sequence. Despite this DNA binding activity, AP-1 reporter activity was suppressed in these cells. Here, we have detected the CREB family proteins CREB and CREMalpha as additional participants in the AP-1 DNA binding complex in differentiating keratinocytes. AP-1 and CRE DNA binding activity correlated with the induction of CREB, CREMalpha and ATF-1 and CREB phosphorylation at ser133 (ser133 phospho-CREB) in the transition from basal to differentiating keratinocytes, but the activity of a CRE reporter remained unchanged. In contrast, the CRE reporter was activated in the presence of the dominant-negative (DN) CREB mutants, KCREB and A-CREB, proteins that dimerize with CREB family members and block their ability to bind to DNA. The increase in CRE reporter activity in the presence of these mutants suggests that CRE-mediated transcriptional activity is suppressed in keratinocytes through protein-protein interactions involving a factor that dimerizes with the CREB leucine zipper. In experiments where the A-CREB mutant was co-transfected with an AP-1 reporter construct, transcriptional activity was also increased indicating that a CREB family member binds AP-1 sites and represses AP-1 transcriptional activity as well. Exogenous expression of the transcriptional repressor CREMalpha down-regulated both CRE and AP-1 reporters in keratinocytes suggesting that this factor may contribute to the suppression of AP-1 transcriptional activity observed in differentiating keratinocytes.
Collapse
Affiliation(s)
- S E Rutberg
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
47
|
Fischer DF, van Drunen CM, Winkler GS, van de Putte P, Backendorf C. Involvement of a nuclear matrix association region in the regulation of the SPRR2A keratinocyte terminal differentiation marker. Nucleic Acids Res 1998; 26:5288-94. [PMID: 9826750 PMCID: PMC147987 DOI: 10.1093/nar/26.23.5288] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The small proline-rich protein genes ( SPRRs ) code for precursors of the cornified cell envelope, and are specifically expressed during keratinocyte terminal differentiation. The single intron of SPRR2A enhanced the activity of the SPRR2A promoter in transient transfection assays. This enhancement was position dependent, and did not function in combination with a heterologous promoter, indicating that the intron does not contain a classical enhancer, and that the enhancement was not due to the splicing reaction per se. Mild DNAse-I digestion of nuclei showed the SPRR2 genes to be tightly associated with the nuclear matrix, in contrast to the other cornified envelope precursor genes mapping to the same chromosomal location (epidermal differentiation complex). In vitro binding studies indicated that both the proximal promoter and the intron of SPRR2A are required for optimal association of this gene with nuclear matrices. Neither nuclear matrix association nor the relative transcriptional enhancement by the intron changed during keratinocyte differentiation. Apparently, the association of the SPRR2A gene with the nuclear matrix results in a general, differentiation-independent enhancement of gene expression.
Collapse
Affiliation(s)
- D F Fischer
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Bickenbach JR, Vormwald-Dogan V, Bachor C, Bleuel K, Schnapp G, Boukamp P. Telomerase is not an epidermal stem cell marker and is downregulated by calcium. J Invest Dermatol 1998; 111:1045-52. [PMID: 9856815 DOI: 10.1046/j.1523-1747.1998.00420.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ribonucleoprotein complex telomerase, which was found to be active in germ line, immortal, and tumor cells, and in cells from continuously renewing normal tissues such as epidermis or bone marrow, is thought to be correlated with an indefinite life span. Therefore, it has been postulated that in the normal tissues, telomerase activity may be restricted to stem cells, the possible precursors of tumor cells. Here, we demonstrate that a 56% enriched population of epidermal stem cells exhibited less telomerase activity than the more actively proliferating transit amplifying cells, which are destined to differentiate after a finite number of cell divisions. Thus telomerase is not a stem cell marker. In human epidermis we found a heterogeneous expression of the telomerase RNA component (hTR) within the basal layer, with clusters of hTR-positive cells showing variable activities. Histone-3 expressing S-phase basal cells were distributed evenly, illustrating that hTR upregulation may not strictly be correlated with proliferation. We further show for human epidermal cells that differentiation-dependent downregulation of telomerase correlates with Ca++-induced cell differentiation and that increasing the amount of Ca++ but not Mg++ or Zn++ reduced telomerase activity in a dose-dependent manner in a cell-free system (differentiation-independent). Furthermore, addition of ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid completely reversed this Ca++-induced inhibition. These data indicate that Ca++ is not only an important regulator of epidermal differentiation but also a key regulator of telomerase.
Collapse
Affiliation(s)
- J R Bickenbach
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, USA
| | | | | | | | | | | |
Collapse
|
49
|
Crish JF, Zaim TM, Eckert RL. The distal regulatory region of the human involucrin promoter is required for expression in epidermis. J Biol Chem 1998; 273:30460-5. [PMID: 9804813 DOI: 10.1074/jbc.273.46.30460] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human involucrin (hINV) is a precursor of the keratinocyte cornified envelope that is specifically expressed in the suprabasal layers of stratifying squamous epithelia. The promoter distal (DRR) and proximal regulatory regions (PRR) are required for optimal in vitro expression (Welter, J. F., Crish, J. F., Agarwal, C., and Eckert, R. L. (1995) J. Biol. Chem. 270, 12614-12622; and Banks, E. B., Crish, J. F., Welter, J. F., and Eckert, R. L. (1998) Biochem. J. 331, 61-68). We now present the complete sequence of these regions and evaluate their ability to drive in vivo transcription. Transgenes containing 5000 or 2473 base pairs of upstream regulatory region drive tissue- and differentiation-appropriate expression in stratifying surface epithelia. In contrast, transgenes containing 1953, 1333, 986, or 41 base pairs of upstream regulatory region are not expressed in surface epithelia, indicating that loss of the DRR (nucleotides -2474/-1953) results in loss of expression. Fusing the isolated DRR region directly to the hINV minimal promoter restores surface epithelial expression. Sequences downstream of the transcribed gene are not required for appropriate expression. The -1953/-41 segment influences the pattern of differentiation-dependent expression. The -986/-41 region, which includes the PRR, drives expression in internal epithelia.
Collapse
Affiliation(s)
- J F Crish
- Departments of Physiology and Biophysics, Biochemistry and Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | |
Collapse
|
50
|
Efimova T, LaCelle P, Welter JF, Eckert RL. Regulation of human involucrin promoter activity by a protein kinase C, Ras, MEKK1, MEK3, p38/RK, AP1 signal transduction pathway. J Biol Chem 1998; 273:24387-95. [PMID: 9733728 DOI: 10.1074/jbc.273.38.24387] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Involucrin is a marker of keratinocyte terminal differentiation. Our previous studies show that involucrin mRNA levels are increased by the keratinocyte differentiating agent, 12-O-tetradecanoylphorbol-13-acetate (TPA) (Welter, J. F., Crish, J. F., Agarwal, C., and Eckert, R. L. (1995) J. Biol. Chem. 270, 12614-12622). We now study the signaling cascade responsible for this regulation. Protein kinase C and tyrosine kinase inhibitors inhibit both the TPA-dependent mRNA increase and the TPA-dependent increase in hINV promoter activity. The relevant response element is located within the promoter proximal regulatory region and includes an AP1 site, AP1-1. Co-transfection of the hINV promoter with dominant negative forms of Ras, MEKK1, MEK1, MEK7, MEK3, p38/RK, and c-Jun inhibit the TPA-dependent increase. Wild type MEKK1 enhances promoter activity and the activity can be inhibited by dominant negative MEKK1, MEK1, MEK7, MEK3, p38/RK, and c-Jun. In contrast, wild type Raf-1, ERK1, ERK2, MEK4, or JNK1 produced no change in activity and the dominant negative forms of these kinases failed to suppress TPA-dependent transcription. Treatment with an S6 kinase (S6K) inhibitor, or transfection with constitutively active S6K produced relatively minor changes in promoter activity, ruling out a regulatory role for S6K. These results suggest that activation of involucrin transcription involves a pathway that includes protein kinase C, Ras, MEKK1, MEK3, and p38/RK. Additional pathways that transfer MEKK1 activation via MEK1 and MEK7 also may function, but the downstream targets of these kinases need to be identified. AP1 transcription factors appear to be the ultimate target of this regulation.
Collapse
Affiliation(s)
- T Efimova
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | |
Collapse
|