1
|
Lachance-Brais C, Yao C, Reyes-Valenzuela A, Asohan J, Guettler E, Sleiman HF. Exceptional Nuclease Resistance of DNA and RNA with the Addition of Small-Molecule Nucleobase Mimics. J Am Chem Soc 2024; 146:5811-5822. [PMID: 38387071 DOI: 10.1021/jacs.3c07023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nucleases present a formidable barrier to the application of nucleic acids in biology, significantly reducing the lifetime of nucleic acid-based drugs. Here, we develop a novel methodology to protect DNA and RNA from nucleases by reconfiguring their supramolecular structure through the addition of a nucleobase mimic, cyanuric acid. In the presence of cyanuric acid, polyadenine strands assemble into triple helical fibers known as the polyA/CA motif. We report that this motif is exceptionally resistant to nucleases, with the constituent strands surviving for up to 1 month in the presence of serum. The conferred stability extends to adjacent non-polyA sequences, albeit with diminishing returns relative to their polyA sections due to hypothesized steric clashes. We introduce a strategy to regenerate stability through the introduction of free polyA strands or positively charged amino side chains, enhancing the stability of sequences of varied lengths. The proposed protection mechanism involves enzyme failure to recognize the unnatural polyA/CA motif, coupled with the motif's propensity to form long, bundling supramolecular fibers. The methodology provides a fundamentally new mechanism to protect nucleic acids from degradation using a supramolecular approach and increases lifetime in serum to days, weeks, or months.
Collapse
Affiliation(s)
| | - Chihyu Yao
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| | | | - Jathavan Asohan
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| | - Elizabeth Guettler
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| | - Hanadi F Sleiman
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| |
Collapse
|
2
|
Wang F, Calvo-Roitberg E, Rembetsy-Brown JM, Fang M, Sousa J, Kartje Z, Krishnamurthy PM, Lee J, Green M, Pai A, Watts J. G-rich motifs within phosphorothioate-based antisense oligonucleotides (ASOs) drive activation of FXN expression through indirect effects. Nucleic Acids Res 2022; 50:12657-12673. [PMID: 36511872 PMCID: PMC9825156 DOI: 10.1093/nar/gkac1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Friedreich's ataxia is an incurable disease caused by frataxin (FXN) protein deficiency, which is mostly induced by GAA repeat expansion in intron 1 of the FXN gene. Here, we identified antisense oligonucleotides (ASOs), complementary to two regions within the first intron of FXN pre-mRNA, which could increase FXN mRNA by ∼2-fold in patient fibroblasts. The increase in FXN mRNA was confirmed by the identification of multiple overlapping FXN-activating ASOs at each region, two independent RNA quantification assays, and normalization by multiple housekeeping genes. Experiments on cells with the ASO-binding sites deleted indicate that the ASO-induced FXN activation was driven by indirect effects. RNA sequencing analyses showed that the two ASOs induced similar transcriptome-wide changes, which did not resemble the transcriptome of wild-type cells. This RNA-seq analysis did not identify directly base-paired off-target genes shared across ASOs. Mismatch studies identified two guanosine-rich motifs (CCGG and G4) within the ASOs that were required for FXN activation. The phosphorodiamidate morpholino oligomer analogs of our ASOs did not activate FXN, pointing to a PS-backbone-mediated effect. Our study demonstrates the importance of multiple, detailed control experiments and target validation in oligonucleotide studies employing novel mechanisms such as gene activation.
Collapse
Affiliation(s)
- Feng Wang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ezequiel Calvo-Roitberg
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Julia M Rembetsy-Brown
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Minggang Fang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Zachary J Kartje
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
3
|
Lopes-Nunes J, Oliveira PA, Cruz C. G-Quadruplex-Based Drug Delivery Systems for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:671. [PMID: 34358097 PMCID: PMC8308530 DOI: 10.3390/ph14070671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
G-quadruplexes (G4s) are a class of nucleic acids (DNA and RNA) with single-stranded G-rich sequences. Owing to the selectivity of some G4s, they are emerging as targeting agents to overtake side effects of several potential anticancer drugs, and delivery systems of small molecules to malignant cells, through their high affinity or complementarity to specific targets. Moreover, different systems are being used to improve their potential, such as gold nano-particles or liposomes. Thus, the present review provides relevant data about the different studies with G4s as drug delivery systems and the challenges that must be overcome in the future research.
Collapse
Affiliation(s)
- Jéssica Lopes-Nunes
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Paula A. Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
4
|
Development of Specific Inhibitors for Oncogenic Phosphatase PPM1D by Using Ion-Responsive DNA Aptamer Library. Catalysts 2020. [DOI: 10.3390/catal10101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Ser/Thr protein phosphatase PPM1D is an oncogenic protein. In normal cells, however, PPM1D plays essential roles in spermatogenesis and immune response. Hence, it is necessary to develop novel PPM1D inhibitors without side effects on normal cells. Stimuli-responsive molecules are suitable for the spatiotemporal regulation of inhibitory activity. (2) Methods: In this study, we designed an ion-responsive DNA aptamer library based on G-quadruplex DNA that can change its conformation and function in response to monovalent cations. (3) Results: Using this library, we identified the PPM1D specific inhibitor M1D-Q5F aptamer. The M1D-Q5F aptamer showed anti-cancer activity against breast cancer MCF7 cells. Interestingly, the induction of the structural change resulting in the formation of G-quadruplex upon stimulation by monovalent cations led to the enhancement of the inhibitory activity and binding affinity of M1D-Q5F. (4) Conclusions: These data suggest that the M1D-Q5F aptamer may act as a novel stimuli-responsive anti-cancer agent.
Collapse
|
5
|
Esposito V, Esposito F, Pepe A, Gomez Monterrey I, Tramontano E, Mayol L, Virgilio A, Galeone A. Probing the Importance of the G-Quadruplex Grooves for the Activity of the Anti-HIV-Integrase Aptamer T30923. Int J Mol Sci 2020; 21:ijms21165637. [PMID: 32781637 PMCID: PMC7460552 DOI: 10.3390/ijms21165637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
In this paper, we report studies concerning four variants of the G-quadruplex forming anti-HIV-integrase aptamer T30923, in which specific 2′-deoxyguanosines have been singly replaced by 8-methyl-2′-deoxyguanosine residues, with the aim to exploit the methyl group positioned in the G-quadruplex grooves as a steric probe to investigate the interaction aptamer/target. Although, the various modified aptamers differ in the localization of the methyl group, NMR, circular dichroism (CD), electrophoretic and molecular modeling data suggest that all of them preserve the ability to fold in a stable dimeric parallel G-quadruplex complex resembling that of their natural counterpart T30923. However, the biological data have shown that the T30923 variants are characterized by different efficiencies in inhibiting the HIV-integrase, thus suggesting the involvement of the G-quadruplex grooves in the aptamer/target interaction.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Antonietta Pepe
- Department of Science, University of Basilicata, 85100 Potenza, Italy;
| | - Isabel Gomez Monterrey
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Luciano Mayol
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| |
Collapse
|
6
|
Liu Y, Le C, Tyrrell DL, Le XC, Li XF. Aptamer Binding Assay for the E Antigen of Hepatitis B Using Modified Aptamers with G-Quadruplex Structures. Anal Chem 2020; 92:6495-6501. [PMID: 32250595 DOI: 10.1021/acs.analchem.9b05740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The e antigen of hepatitis B (HBeAg) is positively associated with an increased risk of developing liver cancer and cirrhosis in chronic hepatitis B (CHB) patients. Clinical monitoring of HBeAg provides guidance to the treatment of CHB and the assessment of disease progression. We describe here an affinity binding assay for HBeAg, which takes advantage of G-quadruplex aptamers for enhanced binding and stability. We demonstrate a strategy to improve the binding affinity of aptamers by modifying their sequences upon their G-quadruplex and secondary structures. On the basis of predicting a stable G-quadruplex and a secondary structure, we truncated 19 nucleotides (nt) from the primer regions of an 80-nt aptamer, and the resulting 61-nt aptamer enhanced binding affinity by 19 times (Kd = 1.2 nM). We mutated a second aptamer (40 nt) in one loop region and incorporated pyrrolo-deoxycytidine to replace deoxycytidine in another loop. The modified 40-nt aptamer, with a stable G-quadruplex and two modified loops, exhibited a 100 times higher binding affinity for HBeAg (Kd = 0.4 nM) than the unmodified original aptamer. Using the two newly modified aptamers, one serving as the capture and the other as the reporter, we have developed an improved sandwich binding assay for HBeAg. Analyses of HBeAg in serum samples (concentration ranging from 0.1 to 60 ng/mL) of 10 hepatitis B patients, showing consistent results with clinical tests, demonstrate a successful application of the aptamer modification strategy and the associated aptamer binding assay.
Collapse
Affiliation(s)
- Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Connie Le
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - D Lorne Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| |
Collapse
|
7
|
Targeting STAT3 in Cancer with Nucleotide Therapeutics. Cancers (Basel) 2019; 11:cancers11111681. [PMID: 31671769 PMCID: PMC6896109 DOI: 10.3390/cancers11111681] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in promoting the proliferation and survival of tumor cells. As a ubiquitously-expressed transcription factor, STAT3 has commonly been considered an "undruggable" target for therapy; thus, much research has focused on targeting upstream pathways to reduce the expression or phosphorylation/activation of STAT3 in tumor cells. Recently, however, novel approaches have been developed to directly inhibit STAT3 in human cancers, in the hope of reducing the survival and proliferation of tumor cells. Several of these agents are nucleic acid-based, including the antisense molecule AZD9150, CpG-coupled STAT3 siRNA, G-quartet oligodeoxynucleotides (GQ-ODNs), and STAT3 decoys. While the AZD9150 and CpG-STAT3 siRNA interfere with STAT3 expression, STAT3 decoys and GQ-ODNs target constitutively activated STAT3 and modulate its ability to bind to target genes. Both STAT3 decoy and AZD9150 have advanced to clinical testing in humans. Here we will review the current understanding of the structures, mechanisms, and potential clinical utilities of the nucleic acid-based STAT3 inhibitors.
Collapse
|
8
|
Santos T, Pereira P, Campello MPC, Paulo A, Queiroz JA, Cabrita E, Cruz C. RNA G-quadruplex as supramolecular carrier for cancer-selective delivery. Eur J Pharm Biopharm 2019; 142:473-479. [PMID: 31325486 DOI: 10.1016/j.ejpb.2019.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 01/21/2023]
Abstract
Nucleic acid aptamers have emerged as an attractive class of carrier molecules due to their ability to bind with high affinity to specific ligands; their high chemical flexibility; as well as tissue penetration capability. RNA G-quadruplex (rG4) sequences have been described as structures with high stability and selectivity towards cancer cells. Recently, precursor microRNAs (pre-miRNAs) have been described as new G4 forming molecules. Surface nucleolin (NCL) is a known target of aptamer G4 AS1411 and is overexpressed on prostate cancer cells when compared with normal cells. We have shown that the sequence 5' GGGAGGGAGGGACGGG 3' found in pre-miR-149 forms a rG4 parallel structure, which can bind NCL. Also, another rG4 sequence with a longer loop was evaluated in terms of G4 formation, stabilization and binding affinity to NCL. Both rG4s sequences were studied as supramolecular carriers for the cancer-selective delivery of acridine ligand C8. The rG4s-C8 complexes showed high affinity (KD = 10-6 M) and stabilization (Tm > 30 °C). The affinity of the rG4s-C8 complexes against NCL was in the low nanomolar range, indicating that C8 did not affect NCL binding. Noteworthy, the short loop rG4-C8 complex showed selective antiproliferative effects in prostate cancer cells when compared with normal prostatic cells. The stability and nuclease resistance of rG4 and rG4-C8 complex were evaluated in biological conditions and revealed the maintenance of G4 structure and complex stability. Furthermore, confocal microscopy studies confirmed the potential of rG4s-C8 complexes in the targeting of prostate cancer cells. Overall, it is here demonstrated that the rG4 found in pre-miR-149 can be used as a cancer-selective delivery carrier of C8 to prostate cancer cells.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Patrícia Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras 2780-157, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), Bobadela LRS 2695-066, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), Bobadela LRS 2695-066, Portugal
| | - João A Queiroz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Eurico Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal.
| |
Collapse
|
9
|
Hoshi K, Yamazaki T, Sugiyama Y, Tsukakoshi K, Tsugawa W, Sode K, Ikebukuro K. G-Quadruplex Structure Improves the Immunostimulatory Effects of CpG Oligonucleotides. Nucleic Acid Ther 2019; 29:224-229. [PMID: 30835633 DOI: 10.1089/nat.2018.0761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Single-strand oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine (CpG) are recognized by the toll-like receptor 9, a component of the innate immunity. Therefore, they could act as immunotherapeutic agents. Chemically modified CpG ODNs containing a phosphorothioate backbone instead of phosphodiester (PD) were developed as immunotherapeutic agents resistant to nuclease degradation. However, they cause adverse side effects, and so there is a necessity to generate novel CpG ODNs. In the present study, we designed a nuclease-resistant nonmodified CpG ODN that forms G-quadruplex structures. G-quadruplex formation in CpG ODNs increased nuclease resistance and cellular uptake. The CpG ODNs designed in this study induced interleukin-6 production in a human B lymphocyte cell line and human peripheral blood mononuclear cells. These results indicate that G-quadruplex formation can be used to increase the immunostimulatory activity of CpG ODNs having a natural PD backbone.
Collapse
Affiliation(s)
- Kazuaki Hoshi
- 1Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomohiko Yamazaki
- 2Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Yuuki Sugiyama
- 1Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kaori Tsukakoshi
- 1Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wakako Tsugawa
- 1Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Koji Sode
- 3Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Kazunori Ikebukuro
- 1Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
10
|
Park JY, Cho YL, Chae JR, Moon SH, Cho WG, Choi YJ, Lee SJ, Kang WJ. Gemcitabine-Incorporated G-Quadruplex Aptamer for Targeted Drug Delivery into Pancreas Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:543-553. [PMID: 30195790 PMCID: PMC6077122 DOI: 10.1016/j.omtn.2018.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023]
Abstract
Gemcitabine has been considered a first-line chemotherapy agent for the treatment of pancreatic cancer. However, the initial response rate of gemcitabine is low and chemoresistance occurs frequently. Aptamers can be effectively internalized into cancer cells via binding to target molecules with high affinity and specificity. In the current study, we constructed an aptamer-based gemcitabine delivery system, APTA-12, and assessed its therapeutic effects on pancreatic cancer cells in vitro and in vivo. APTA-12 was effective in vitro and in vivo in pancreatic cancer cells with high expression of nucleolin. The results of in vitro cytotoxicity assays indicated that APTA-12 inhibited the growth of pancreatic cancer cell lines. In vivo evaluation showed that APTA-12 effectively inhibited the growth of pancreatic cancer in Capan-1 tumor-bearing mice compared to mice that received gemcitabine alone or vehicle. These results suggest that the gemcitabine-incorporated APTA-12 aptamer may be a promising targeted therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ye Lim Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Ri Chae
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yun Jung Choi
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jin Lee
- Aptabio Therapeutics Inc., Gyeonggi-do, Korea.
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Li K, Deng J, Jin H, Yang X, Fan X, Li L, Zhao Y, Guan Z, Wu Y, Zhang L, Yang Z. Chemical modification improves the stability of the DNA aptamer GBI-10 and its affinity towards tenascin-C. Org Biomol Chem 2018; 15:1174-1182. [PMID: 28084479 DOI: 10.1039/c6ob02577c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aptamers are useful tools in molecular imaging due to their numerous attractive properties, such as excellent affinity and selectivity to diverse types of target molecules and biocompatibility. We carried out structure-activity relationship studies with the tenascin-C (TN-C) binding aptamer GBI-10, which is a promising candidate in tumor imaging. To increase the tumor targeting ability and nuclease resistance under physiological conditions, systematic modifications of GBI-10 with single and multiple 2'-deoxyinosine (2'-dI) or d-/l-isonucleoside (d-/l-isoNA) were performed. Results indicated that sector 3 of the proposed secondary structure is the most important region for specific binding with TN-C. By correlating the affinity of eighty-four GBI-10 derivatives with their predicted secondary structure by Zuker Mfold, we first validated the preferred secondary structure at 37 °C. We found that d-/l-isoNA modified GBI-10 derivatives exhibited improved affinity to the target as well as plasma stability. Affinity measurement and confocal imaging analysis highlighted one potent compound: 4AL/26TL/32TL, which possessed a significantly increased targeting ability to tumor cells. These results revealed the types of modified nucleotides, and the position and number of substituents in GBI-10 that were critical to the TN-C binding ability. Stabilized TN-C-binding DNA aptamers were prepared and they could be further developed for tumor imaging. Our strategy to introduce 2'-dI and d-/l-isoNA modifications after the selection process is likely to be generally applicable to improve the in vivo stability of aptamers without compromising their binding ability.
Collapse
Affiliation(s)
- Kunfeng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Jiali Deng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Xiantao Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Xinmeng Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Liyu Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Yi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. # #
| |
Collapse
|
12
|
Nahar S, Sehgal P, Azhar M, Rai M, Singh A, Sivasubbu S, Chakraborty D, Maiti S. A G-quadruplex motif at the 3' end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency. Chem Commun (Camb) 2018; 54:2377-2380. [PMID: 29450416 DOI: 10.1039/c7cc08893k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Originating as a component of prokaryotic adaptive immunity, the type II CRISPR/Cas9 system has been repurposed for targeted genome editing in various organisms. Although Cas9 can bind and cleave DNA efficiently under in vitro conditions, its activity inside a cell can vary dramatically between targets owing to the differences between genomic loci and the availability of enough Cas9/sgRNA (single guide RNA) complex molecules for cleavage. Most methods have so far relied on Cas9 protein engineering or base modifications in the sgRNA sequence to improve CRISPR/Cas9 activity. Here we demonstrate that a structure based rational design of sgRNAs can enhance the efficiency of Cas9 cleavage in vivo. By appending a naturally forming RNA G-quadruplex motif to the 3' end of sgRNAs we can improve its stability and target cleavage efficiency in zebrafish embryos without inducing off-target activity, thereby underscoring its value in the design of better and optimized genome editing triggers.
Collapse
Affiliation(s)
- Smita Nahar
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Paras Sehgal
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Mohd Azhar
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Manish Rai
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Amrita Singh
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Sridhar Sivasubbu
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Debojyoti Chakraborty
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Souvik Maiti
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India and CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
13
|
van Wietmarschen N, Merzouk S, Halsema N, Spierings DCJ, Guryev V, Lansdorp PM. BLM helicase suppresses recombination at G-quadruplex motifs in transcribed genes. Nat Commun 2018; 9:271. [PMID: 29348659 PMCID: PMC5773480 DOI: 10.1038/s41467-017-02760-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022] Open
Abstract
Bloom syndrome is a cancer predisposition disorder caused by mutations in the BLM helicase gene. Cells from persons with Bloom syndrome exhibit striking genomic instability characterized by excessive sister chromatid exchange events (SCEs). We applied single-cell DNA template strand sequencing (Strand-seq) to map the genomic locations of SCEs. Our results show that in the absence of BLM, SCEs in human and murine cells do not occur randomly throughout the genome but are strikingly enriched at coding regions, specifically at sites of guanine quadruplex (G4) motifs in transcribed genes. We propose that BLM protects against genome instability by suppressing recombination at sites of G4 structures, particularly in transcribed regions of the genome. Bloom syndrome is characterized by high levels of sister chromatid exchanges (SCEs). Here, the authors use single-cell DNA template strand-sequencing to map SCEs in patient cells, and propose that the BLM helicase protects the genome against unwanted recombination at sites of G-quadruplex structures.
Collapse
Affiliation(s)
- Niek van Wietmarschen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sarra Merzouk
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Nancy Halsema
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, V5Z 1L3, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
14
|
Kratschmer C, Levy M. Effect of Chemical Modifications on Aptamer Stability in Serum. Nucleic Acid Ther 2017; 27:335-344. [PMID: 28945147 DOI: 10.1089/nat.2017.0680] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
There is increasing interest in the use of aptamers for the development of therapeutics. However, as oligonucleotides, aptamers are susceptible to nuclease degradation; poor serum stability is likely to negatively affect in vivo function. Modified nucleotides have been used to thwart nuclease degradation. However, few studies report the serum stability of selected aptamers. In this study, we examined the effect of various chemical modifications (2'-deoxy, 2'-hydroxyl, 2'-fluoro, and 2'-O-methyl) on the stability of a control oligonucleotide sequence following incubation in frozen human, fresh mouse, and fresh human serum. We also assessed the effect of the 3' inverted dT cap on stability. Surprisingly, we found that fYrR (2'-fluoro RNA) is only roughly as stable as DNA (2'-deoxy). Interestingly, the inclusion of a 3' inverted dT cap had only a modest effect on serum stability, if any. In one instance, the addition of a 3' inverted dT cap rendered a molecule composed of DNA more stable than its fYrR counterpart. By far, fully modified oligonucleotides (100% 2-O-Methyl or 2'-O-methyl A, C, and U in combination with 2'-fluoro G, termed fGmH) had the longest half-lives. These compositions demonstrated little degradation in human serum even after prolonged incubation. Together these results support the need for using fully modified aptamers for in vivo applications and should encourage those in the field to exploit newer polymerase variants capable of directly generating such polymers.
Collapse
Affiliation(s)
- Christina Kratschmer
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York
| |
Collapse
|
15
|
Xiao H, Chen Y, Yuan E, Li W, Jiang Z, Wei L, Su H, Zeng W, Gan Y, Wang Z, Yuan B, Qin S, Leng X, Zhou X, Liu S, Zhou X. Obtaining More Accurate Signals: Spatiotemporal Imaging of Cancer Sites Enabled by a Photoactivatable Aptamer-Based Strategy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23542-23548. [PMID: 27550088 DOI: 10.1021/acsami.6b07450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Early cancer diagnosis is of great significance to relative cancer prevention and clinical therapy, and it is crucial to efficiently recognize cancerous tumor sites at the molecular level. Herein, we proposed a versatile and efficient strategy based on aptamer recognition and photoactivation imaging for cancer diagnosis. This is the first time that a visible light-controlled photoactivatable aptamer-based platform has been applied for cancer diagnosis. The photoactivatable aptamer-based strategy can accurately detect nucleolin-overexpressed tumor cells and can be used for highly selective cancer cell screening and tissue imaging. This strategy is available for both formalin-fixed paraffin-embedded tissue specimens and frozen sections. Moreover, the photoactivation techniques showed great progress in more accurate and persistent imaging to the use of traditional fluorophores. Significantly, the application of this strategy can produce the same accurate results in tissue specimen analysis as with classical hematoxylin-eosin staining and immunohistochemical technology.
Collapse
Affiliation(s)
- Heng Xiao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gijs M, Penner G, Blackler GB, Impens NREN, Baatout S, Luxen A, Aerts AM. Improved Aptamers for the Diagnosis and Potential Treatment of HER2-Positive Cancer. Pharmaceuticals (Basel) 2016; 9:E29. [PMID: 27213406 PMCID: PMC4932547 DOI: 10.3390/ph9020029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Aptamers provide a potential source of alternative targeting molecules for existing antibody diagnostics and therapeutics. In this work, we selected novel DNA aptamers targeting the HER2 receptor by an adherent whole-cell SELEX approach. Individual aptamers were identified by next generation sequencing and bioinformatics analysis. Two aptamers, HeA2_1 and HeA2_3, were shown to bind the HER2 protein with affinities in the nanomolar range. In addition, both aptamers were able to bind with high specificity to HER2-overexpressing cells and HER2-positive tumor tissue samples. Furthermore, we demonstrated that aptamer HeA2_3 is being internalized into cancer cells and has an inhibitory effect on cancer cell growth and viability. In the end, we selected novel DNA aptamers with great potential for the diagnosis and possible treatment of HER2-positive cancer.
Collapse
Affiliation(s)
- Marlies Gijs
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
- Cyclotron Research Centre, University of Liège, 4000 Liège, Belgium.
| | - Gregory Penner
- NeoVentures Biotechnology Inc., London, N6A 1A1 ON, Canada.
| | | | | | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| | - André Luxen
- Cyclotron Research Centre, University of Liège, 4000 Liège, Belgium.
| | - An M Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| |
Collapse
|
17
|
Yamada H, Nagase S, Takahashi K, Sakoda Y, Kida H, Okamoto S. Toll-like receptor 9 ligand D-type oligodeoxynucleotide D35 as a broad inhibitor for influenza A virus replication that is associated with suppression of neuraminidase activity. Antiviral Res 2016; 129:81-92. [PMID: 26923882 PMCID: PMC7113795 DOI: 10.1016/j.antiviral.2016.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
The most effective drugs available to treat influenza are neuraminidase (NA) inhibitors, which provide important additional measures for the control of influenza virus infections. However, since the emergence of NA inhibitor-resistant viruses may compromise the clinical utility of this class of anti-influenza agents, it is very important to develop new anti-influenza agents which target a different region in NA responsible for its sensitivity from that for NA inhibitors and could be used to treat NA inhibitors-resistant isolates. The oligodeoxynucleotide D35, multimerized and aggregated, suppressed replication of influenza A viruses except A/WSN/33 (WSN). The suppressive viral replication by D35 depended on G-terad and multimer formation. The range of the suppressive viral replication at the late stage, including virus assembly and release from infected cells, was much larger than that at the initial stage, viral attachment and entry. D35 suppressed NA activity of influenza A viruses. Furthermore, replacing the NA gene of A/Puerto Rico/8/34 (PR8), in which viral replication was inhibited by D35 at the late stage, with the NA gene from WSN, in which viral replication was not inhibited, eliminated the D35-dependent suppression. D35 showed an additive anti-influenza effect with oseltamivir. It was also effective in vivo. These results suggest that the influenza virus NA mainly contributse to the D35-suppressible virus release from infected cells at the late stage. In addition, because administration of D35 into the virus-infected mice suppressed viral replication and weight loss, clinical application of D35 could be considered. The oligodeoxynucleotide D35 suppressed replication of some influenza A viruses. D35 inhibits viral replication at the late step which is dependent on NA activity. Antiviral mechanism by D35 is different from that by oseltamivir.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Laboratory of Virology and Vaccinology, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Satoshi Nagase
- Department of Laboratory Sciences, Division of Health Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuo Takahashi
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shigefumi Okamoto
- Department of Laboratory Sciences, Division of Health Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| |
Collapse
|
18
|
Russo Krauss I, Spiridonova V, Pica A, Napolitano V, Sica F. Different duplex/quadruplex junctions determine the properties of anti-thrombin aptamers with mixed folding. Nucleic Acids Res 2015; 44:983-91. [PMID: 26673709 PMCID: PMC4737158 DOI: 10.1093/nar/gkv1384] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022] Open
Abstract
Mixed duplex/quadruplex oligonucleotides have attracted great interest as therapeutic targets as well as effective biomedical aptamers. In the case of thrombin-binding aptamer (TBA), the addition of a duplex motif to the G-quadruplex module improves the aptamer resistance to biodegradation and the affinity for thrombin. In particular, the mixed oligonucleotide RE31 is significantly more effective than TBA in anticoagulation experiments and shows a slower disappearance rate in human plasma and blood. In the crystal structure of the complex with thrombin, RE31 adopts an elongated structure in which the duplex and quadruplex regions are perfectly stacked on top of each other, firmly connected by a well-structured junction. The lock-and-key shape complementarity between the TT loops of the G-quadruplex and the protein exosite I gives rise to the basic interaction that stabilizes the complex. However, our data suggest that the duplex motif may have an active role in determining the greater anti-thrombin activity in biological fluids with respect to TBA. This work gives new information on mixed oligonucleotides and highlights the importance of structural data on duplex/quadruplex junctions, which appear to be varied, unpredictable, and fundamental in determining the aptamer functional properties.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| | - Vera Spiridonova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrea Pica
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| | - Valeria Napolitano
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| |
Collapse
|
19
|
Ng TB, Cheung RCF, Wong JH, Chan WY. Proteins, peptides, polysaccharides, and nucleotides with inhibitory activity on human immunodeficiency virus and its enzymes. Appl Microbiol Biotechnol 2015; 99:10399-414. [PMID: 26411457 DOI: 10.1007/s00253-015-6997-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome, has claimed innumerable lives in the past. Many biomolecules which suppress HIV replication and also other biomolecules that inhibit enzymes essential to HIV replication have been reported. Proteins including a variety of milk proteins, ribosome-inactivating proteins, ribonucleases, antifungal proteins, and trypsin inhibitors; peptides comprising cathelicidins, defensins, synthetic peptides, and others; polysaccharides and polysaccharopeptides; nucleosides, nucleotides, and ribozymes, demonstrated anti-HIV activity. In many cases, the mechanism of anti-HIV action has been elucidated. Strategies have been devised to augment the anti-HIV potency of these compounds.
Collapse
Affiliation(s)
- Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China.
| |
Collapse
|
20
|
Ezzat K, Aoki Y, Koo T, McClorey G, Benner L, Coenen-Stass A, O'Donovan L, Lehto T, Garcia-Guerra A, Nordin J, Saleh AF, Behlke M, Morris J, Goyenvalle A, Dugovic B, Leumann C, Gordon S, Gait MJ, El-Andaloussi S, Wood MJA. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides. NANO LETTERS 2015; 15:4364-73. [PMID: 26042553 PMCID: PMC6415796 DOI: 10.1021/acs.nanolett.5b00490] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- Exons
- Genetic Therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Micelles
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/therapy
- Nanoparticles/chemistry
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacokinetics
- Oligonucleotides, Antisense/therapeutic use
- Scavenger Receptors, Class A/genetics
- Scavenger Receptors, Class A/metabolism
Collapse
Affiliation(s)
- Kariem Ezzat
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Yoshitsugu Aoki
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
- ●Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan
| | - Taeyoung Koo
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
- ‡Center for Genome Engineering, Institute for Basic Science, Seoul 151-747, South Korea
- §Functional Genomics, University of Science and Technology, Daejeon 305-338, South Korea
| | - Graham McClorey
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Leif Benner
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Anna Coenen-Stass
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Liz O'Donovan
- ∥Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Taavi Lehto
- ⊥Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Antonio Garcia-Guerra
- #Clarendon Laboratory, Department of Physics, University of Oxford, OX13PU, Oxford, United Kingdom
| | - Joel Nordin
- ⊥Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Amer F Saleh
- ∥Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Mark Behlke
- ∇Integrated DNA Technologies (IDT), Coralville, Iowa 55241, United States
| | - John Morris
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Aurelie Goyenvalle
- ○Université de Versailles Saint Quentin, Montigny le Bretonneux 78180, France
| | - Branislav Dugovic
- ◆Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Christian Leumann
- ◆Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Siamon Gordon
- ¶Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, United Kingdom
| | - Michael J Gait
- ∥Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Samir El-Andaloussi
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
- ⊥Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Matthew J A Wood
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| |
Collapse
|
21
|
Zhang N, Bing T, Liu X, Qi C, Shen L, Wang L, Shangguan D. Cytotoxicity of guanine-based degradation products contributes to the antiproliferative activity of guanine-rich oligonucleotides. Chem Sci 2015; 6:3831-3838. [PMID: 29218153 PMCID: PMC5707456 DOI: 10.1039/c4sc03949a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/04/2015] [Indexed: 01/03/2023] Open
Abstract
Guanine-rich oligonucleotides with lower nuclease resistance exhibited higher antiproliferative activity; guanine-based compounds showed highly concentration-dependent cytotoxicity.
Guanine-rich oligonucleotides (GROs) have attracted considerable attention as anticancer agents, because they exhibit cancer-selective antiproliferative activity and can form G-quadruplex structures with higher nuclease resistance and cellular uptake. Recently, a GRO, AS1411 has reached phase II clinical trials for acute myeloid leukemia and renal cell carcinoma. The antiproliferative activity of GROs has been associated with various protein targets; however the real mechanisms of action remain unclear. In this study, we showed evidence that antiproliferative activity of GROs (including AS1411) is mainly contributed by the cytotoxicity of their guanine-based degradation products, such as monophosphate deoxyguanosine (dGMP), deoxyguanosine (dG) and guanine. The GROs with lower nuclease resistance exhibited higher antiproliferative activity. Among nucleotides, nucleosides and nucleobases, only guanine-based compounds showed highly concentration-dependent cytotoxicity. Our results suggest that it is necessary to reconsider the cancer-selective antiproliferative activity of GROs. Since guanine-based compounds are endogenous substances in living organisms, systematic studies of the cytotoxicity of these compounds will provide new information for the understanding of certain diseases and offer useful information for drug design.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509
| | - Cui Qi
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509
| | - Luyao Shen
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Linlin Wang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China . ; ; Tel: +86-10-62528509
| |
Collapse
|
22
|
Noaparast Z, Hosseinimehr SJ, Piramoon M, Abedi SM. Tumor targeting with a (99m)Tc-labeled AS1411 aptamer in prostate tumor cells. J Drug Target 2015; 23:497-505. [PMID: 25673264 DOI: 10.3109/1061186x.2015.1009075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AS1411, a 26-base guanine-rich oligonucleotide aptamer, has high affinity to nucleolin, mainly on tumor cell surfaces. In this study, a modified AS1411 was labeled with (99m)Tc and evaluated as a potential tumor-targeting agent for imaging. The AS1411 aptamer was conjugated with HYNIC and labeled with (99m)Tc in the presence a co-ligand. Radiochemical purity and stability testing of the (99m)Tc-HYNIC-AS1411 aptamer were carried out with thin layer chromatography and a size-exclusion column in normal saline and human serum. Cellular nucleolin-specific binding, cellular internalization in DU-145 cells, as high levels of nucleolin expression, were performed. Additionally, biodistribution in normal mice and DU-145 tumour-bearing mice was assessed. Radiolabeling of the aptamer resulted in a reasonable yield and radiochemical purity after purification. The aptamer was stable in normal saline and human serum, and cellular experiments demonstrated specific binding of the AS1411 aptamer to the nucleolin protein. Based on biodistribution assessment of (99m)Tc-HYNIC-AS1411, rapid blood clearance was seen after injection and it appears that the excretion route was via the urinary system at 1 h post-injection. Tumours also showed a higher accumulation of radioactivity with this labeled aptamer. (99m)Tc-AS1411 can be a potential tool for the molecular imaging of nucleolin-overexpressing cancers.
Collapse
Affiliation(s)
- Zohreh Noaparast
- Department of Radiopharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences , Sari , Iran and
| | | | | | | |
Collapse
|
23
|
Khan ME, Borde C, Rocha EP, Mériaux V, Maréchal V, Escoll P, Goyard S, Cavaillon JM, Manoury B, Doyen N. TLR9 activation is triggered by the excess of stimulatory versus inhibitory motifs present in Trypanosomatidae DNA. PLoS Negl Trop Dis 2014; 8:e3308. [PMID: 25392997 PMCID: PMC4230925 DOI: 10.1371/journal.pntd.0003308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
DNA sequences purified from distinct organisms, e.g. non vertebrate versus vertebrate ones, were shown to differ in their TLR9 signalling properties especially when either mouse bone marrow-derived- or human dendritic cells (DCs) are probed as target cells. Here we found that the DC-targeting immunostimulatory property of Leishmania major DNA is shared by other Trypanosomatidae DNA, suggesting that this is a general trait of these eukaryotic single-celled parasites. We first documented, in vitro, that the low level of immunostimulatory activity by vertebrate DNA is not due to its limited access to DCs' TLR9. In addition, vertebrate DNA inhibits the activation induced by the parasite DNA. This inhibition could result from the presence of competing elements for TLR9 activation and suggests that DNA from different species can be discriminated by mouse and human DCs. Second, using computational analysis of genomic DNA sequences, it was possible to detect the presence of over-represented inhibitory and under-represented stimulatory sequences in the vertebrate genomes, whereas L. major genome displays the opposite trend. Interestingly, this contrasting features between L. major and vertebrate genomes in the frequency of these motifs are shared by other Trypanosomatidae genomes (Trypanosoma cruzi, brucei and vivax). We also addressed the possibility that proteins expressed in DCs could interact with DNA and promote TLR9 activation. We found that TLR9 is specifically activated with L. major HMGB1-bound DNA and that HMGB1 preferentially binds to L. major compared to mouse DNA. Our results highlight that both DNA sequence and vertebrate DNA-binding proteins, such as the mouse HMGB1, allow the TLR9-signaling to be initiated and achieved by Trypanosomatidae DNA.
Collapse
Affiliation(s)
- Mélissa Erin Khan
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Chloé Borde
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Eduardo P.C. Rocha
- Institut Pasteur, Département Génomes et Génétique, Unité de Génomique Evolutive des Microbes, Paris, France
- CNRS UMR3525, Paris, France
| | - Véronique Mériaux
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Vincent Maréchal
- Sorbonne Universités, UPMC Université Paris 6, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI), Persistent Viral Infections (PVI) Team, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Département Génomes et Génétique, Unité de Biologie des Bactéries intracellulaires, Paris, France
| | - Sophie Goyard
- Institut Pasteur, Département Infection et Epidémiologie, Laboratoire des Processus Infectieux à Trypanosomatidés, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | | | - Noëlle Doyen
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Nucleic acid sensing by T cells initiates Th2 cell differentiation. Nat Commun 2014; 5:3566. [PMID: 24717539 DOI: 10.1038/ncomms4566] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/04/2014] [Indexed: 02/07/2023] Open
Abstract
While T-cell responses are directly modulated by Toll-like receptor (TLR) ligands, the mechanism and physiological function of nucleic acids (NAs)-mediated T cell costimulation remains unclear. Here we show that unlike in innate cells, T-cell costimulation is induced even by non-CpG DNA and by self-DNA, which is released from dead cells and complexes with antimicrobial peptides or histones. Such NA complexes are internalized by T cells and induce costimulatory responses independently of known NA sensors, including TLRs, RIG-I-like receptors (RLRs), inflammasomes and STING-dependent cytosolic DNA sensors. Such NA-mediated costimulation crucially induces Th2 differentiation by suppressing T-bet expression, followed by the induction of GATA-3 and Th2 cytokines. These findings unveil the function of NA sensing by T cells to trigger and amplify allergic inflammation.
Collapse
|
25
|
Li Z, Lech CJ, Phan AT. Sugar-modified G-quadruplexes: effects of LNA-, 2'F-RNA- and 2'F-ANA-guanosine chemistries on G-quadruplex structure and stability. Nucleic Acids Res 2013; 42:4068-79. [PMID: 24371274 PMCID: PMC3973314 DOI: 10.1093/nar/gkt1312] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G-quadruplex-forming oligonucleotides containing modified nucleotide chemistries have demonstrated promising pharmaceutical potential. In this work, we systematically investigate the effects of sugar-modified guanosines on the structure and stability of a (4+0) parallel and a (3+1) hybrid G-quadruplex using over 60 modified sequences containing a single-position substitution of 2′-O-4′-C-methylene-guanosine (LNAG), 2′-deoxy-2′-fluoro-riboguanosine (FG) or 2′-deoxy-2′-fluoro-arabinoguanosine (FANAG). Our results are summarized in two parts: (I) Generally, LNAG substitutions into ‘anti’ position guanines within a guanine-tetrad lead to a more stable G-quadruplex, while substitutions into ‘syn’ positions disrupt the native G-quadruplex conformation. However, some interesting exceptions to this trend are observed. We discover that a LNAG modification upstream of a short propeller loop hinders G-quadruplex formation. (II) A single substitution of either FG or FANAG into a ‘syn’ position is powerful enough to perturb the (3+1) G-quadruplex. Substitution of either FG or FANAG into any ‘anti’ position is well tolerated in the two G-quadruplex scaffolds. FANAG substitutions to ‘anti’ positions are better tolerated than their FG counterparts. In both scaffolds, FANAG substitutions to the central tetrad layer are observed to be the most stabilizing. The observations reported herein on the effects of LNAG, FG and FANAG modifications on G-quadruplex structure and stability will enable the future design of pharmaceutically relevant oligonucleotides.
Collapse
Affiliation(s)
- Zhe Li
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | | | | |
Collapse
|
26
|
Villalobos X, Rodríguez L, Prévot J, Oleaga C, Ciudad CJ, Noé V. Stability and immunogenicity properties of the gene-silencing polypurine reverse Hoogsteen hairpins. Mol Pharm 2013; 11:254-64. [PMID: 24251728 DOI: 10.1021/mp400431f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gene silencing by either small-interference RNAs (siRNA) or antisense oligodeoxynucleotides (aODN) is widely used in biomedical research. However, their use as therapeutic agents is hindered by two important limitations: their low stability and the activation of the innate immune response. Recently, we developed a new type of molecule to decrease gene expression named polypurine reverse Hoogsteen hairpins (PPRHs) that bind to polypyrimidine targets in the DNA. Herein, stability experiments performed in mouse, human, and fetal calf serum and in PC3 cells revealed that the half-life of PPRHs is much longer than that of siRNAs in all cases. Usage of PPRHs with a nicked-circular structure increased the binding affinity to their target sequence and their half-life in FCS when bound to the target. Regarding the innate immune response, we determined that the levels of the transcription factors IRF3 and its phosphorylated form, as well as NF-κB were increased by siRNAs and not by PPRHs; that the expression levels of several proinflammatory cytokines including IL-6, TNF-α, IFN-α, IFN-ß, IL-1ß, and IL-18 were not significantly increased by PPRHs; and that the cleavage and activation of the proteolytic enzyme caspase-1 was not triggered by PPRHs. These determinations indicated that PPRHs, unlike siRNAs, do not activate the innate inflammatory response.
Collapse
Affiliation(s)
- Xenia Villalobos
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , Av. Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Chang T, Qi C, Meng J, Zhang N, Bing T, Yang X, Cao Z, Shangguan D. General cell-binding activity of intramolecular G-quadruplexes with parallel structure. PLoS One 2013; 8:e62348. [PMID: 23638046 PMCID: PMC3637168 DOI: 10.1371/journal.pone.0062348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/20/2013] [Indexed: 01/19/2023] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures adopted by some repetitive guanine-rich sequences. Putative G-quadruplex-forming sequences (PQSs) are highly prevalent in human genome. Recently some G4s have been reported to have cancer-selective antiproliferative activity. A G4 DNA, AS1411, is currently in phase II clinical trials as an anticancer agent, which is reported to bind tumor cells by targeting surface nucleolin. AS1411 also has been extensively investigated as a target-recognition element for cancer cell specific drug delivery or cancer cell imaging. Here we show that, in addition to AS1411, intramolecular G4s with parallel structure (including PQSs in genes) have general binding activity to many cell lines with different affinity. The binding of these G4s compete with each other, and their targets are certain cellular surface proteins. The tested G4s exhibit enhanced cellular uptake than non-G4 sequences. This uptake may be through the endosome/lysosome pathway, but it is independent of cellular binding of the G4s. The tested G4s also show selective antiproliferative activity that is independent of their cellular binding. Our findings provide new insight into the molecular recognition of G4s by cells; offer new clues for understanding the functions of G4s in vivo, and may extend the potential applications of G4s.
Collapse
Affiliation(s)
- Tianjun Chang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Cui Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jie Meng
- National Center for Nanoscience and Technology, Beijing, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xianda Yang
- National Center for Nanoscience and Technology, Beijing, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zehui Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Selective isolation of G-quadruplexes by affinity chromatography. J Chromatogr A 2012; 1246:62-8. [PMID: 22398385 DOI: 10.1016/j.chroma.2012.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 01/13/2023]
Abstract
G-quadruplex (G4) is a characteristic secondary structure of nucleic acids containing repetitive tandem guanines. G4-forming sequences are found prevalent in the human genome by bioinformatics analysis. Accumulating evidence has suggested that G4s are involved in many biological processes. Selective isolation of G4s would be an effective tool in the study of G4s. In this paper, we prepared four affinity matrixes using hemin or a perylene derivative (N,N'-Bis-(2-(amino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide, Pery01) as ligand, and investigated the retention behaviors of different G4s on these matrixes. Our experimental results suggest that the π-π stacking interaction between ligand and G-tetrad plays a key role in the selective isolation of G4s, whereas the electrostatic interaction between DNA and matrix causes the nonspecific binding. One matrix prepared by immobilizing Pery01 on polyglycidylmethacrylate (PGMA) beads through an aminocaproic acid spacer exhibits good selectivity for parallel structure G4s and has been successfully used to directly isolate a spiked parallel G4 from plasma.
Collapse
|
29
|
Li Y, Berke IC, Modis Y. DNA binding to proteolytically activated TLR9 is sequence-independent and enhanced by DNA curvature. EMBO J 2011; 31:919-31. [PMID: 22258621 DOI: 10.1038/emboj.2011.441] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/09/2011] [Indexed: 01/14/2023] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes microbial DNA in endolysosomal compartments. The ectodomain of TLR9 must be proteolytically cleaved by endosomal proteases to produce the active receptor capable of inducing an innate immune signal. We show that the cleaved TLR9 ectodomain is a monomer in solution and that DNA ligands with phosphodiester backbones induce TLR9 dimerization in a sequence-independent manner. Ligands with phosphorothioate (PS) backbones induce the formation of large TLR9-DNA aggregates, possibly due to the propensity of PS ligands to self-associate. DNA curvature-inducing proteins including high-mobility group box 1 and histones H2A and H2B significantly enhance TLR9 binding, suggesting that TLR9 preferentially recognizes curved DNA backbones. Our work sheds light on the molecular mechanism of TLR9 activation by endogenous protein-nucleic acid complexes, which are associated with autoimmune diseases including systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yue Li
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
30
|
Miller MC, Trent JO. Resolution of quadruplex polymorphism by size-exclusion chromatography. ACTA ACUST UNITED AC 2011; Chapter 17:Unit17.3. [PMID: 21638270 DOI: 10.1002/0471142700.nc1703s45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This unit describes a method for separation of quadruplex species formed from the same sequence via size-exclusion chromatography (SEC). Polymorphism is inherent to quadruplex formation, and even relatively simple quadruplex-forming sequences, such as the human telomere sequence d(GGG(TTAGGG)(3)), can form a myriad of possible configurations. HPLC, especially using reversed-phase and anion-exchange methods, has been a mainstay of nucleic acids research and purification for many decades. These methods have been applied for separation of individual quadruplex species formed in a mixture from the same parent sequence.
Collapse
Affiliation(s)
- M Clarke Miller
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | | |
Collapse
|
31
|
Agarwal T, Kumar S, Maiti S. Unlocking G-quadruplex: Effect of unlocked nucleic acid on G-quadruplex stability. Biochimie 2011; 93:1694-700. [PMID: 21718749 DOI: 10.1016/j.biochi.2011.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/31/2011] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are common structural motifs in aptamers. UNA or unlocked nucleic acid is the latest nucleic acid modification. We have attempted to evaluate the impact of UNA modification on the structure and stability of G-quadruplex oligonucleotides for application in aptamer design. We show using CD spectroscopy that UNA modifications can cause structural transitions in some cases although they retain the inherent G-quadruplex signature. From UV melting studies we showed a position dependent effect of UNA modifications such that quadruplexes with UNA modified loops are further stabilized whereas UNA modifications in stem of the G-quadruplex significantly destabilize the structure. The impact of UNA modification on different nucleobases is also investigated. From the analysis of UV melting results, thermodynamic profile was computed and it was concluded that all the sequences are stable at 37 °C. Finally, a greater serum stability of the modified oligonucleotides in comparison with unmodified ones is also demonstrated. Overall, the position dependent effect of single UNA substitutions was observed and analysed.
Collapse
Affiliation(s)
- Tani Agarwal
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, New Delhi 110 007, India
| | | | | |
Collapse
|
32
|
Elazar V, Adwan H, Rohekar K, Zepp M, Lifshitz-Shovali R, Berger MR, Golomb G. Biodistribution of antisense nanoparticles in mammary carcinoma rat model. Drug Deliv 2010; 17:408-18. [PMID: 20429847 DOI: 10.3109/10717541003777225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Efficient and specific delivery of antisenses (ASs) and protection of the sequences from degradation are critical factors for effective therapy. Sustained release nanoparticles (NP) offer increased resistance to nuclease degradation, increased amounts of AS uptake, and the possibility of control in dosing and sustained duration of AS administration. The biodegradable and biocompatible poly(D,L-lactic-co-glycolic acid) copolymer (PLGA) was utilized to encapsulate AS directed against osteopontin (OPN), which is a promising therapeutic target in mammary carcinoma. Whole body biodistribution of OPN AS NP was evaluated in comparison to naked AS, in intact and mammary carcinoma metastasis model bearing rats. Naked and NP encapsulated AS exhibited different biodistribution profiles. AS NP, in contrast to naked AS, tended to accumulate mostly in the spleen, liver, and at the tumor inoculation site. Drug levels in intact organs were negligible. The elimination of naked AS was faster, due to rapid degradation of the unprotected sequence. It is concluded that AS NP protect the AS from degradation, provide efficient AS delivery to the tumor tissue, and minimize AS accumulation in intact organs due to the AS sustained release profile as well as the favorable NP physicochemical properties.
Collapse
Affiliation(s)
- Victoria Elazar
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
33
|
Dailey MM, Miller MC, Bates PJ, Lane AN, Trent JO. Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence. Nucleic Acids Res 2010; 38:4877-88. [PMID: 20348136 PMCID: PMC2919704 DOI: 10.1093/nar/gkq166] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The remarkable structural polymorphism of quadruplex-forming sequences has been a considerable impediment in the elucidation of quadruplex folds. Sequence modifications have commonly been used to perturb and purportedly select a particular form out of the ensemble of folds for nuclear magnetic resonance (NMR) or X-ray crystallographic analysis. Here we report a simple chromatographic technique that separates the individual folds without need for sequence modification. The sequence d(GGTGGTGGTGGTTGTGGTGGTGGTGG) forms a compact quadruplex according to a variety of common biophysical techniques. However, NMR and chromatography showed that this oligonucleotide produces at least eight monomeric quadruplex species that interconvert very slowly at room temperature. We have used a combination of spectroscopic, hydrodynamic and thermodynamic techniques to evaluate the physicochemical properties of the mixture and the individual species. These species have almost identical thermodynamic, hydrodynamic and electrophoretic properties, but significantly different NMR and circular dichroism (CD) spectra, as well as kinetic stability. These results demonstrate that simple standard low-resolution techniques cannot always be used for quadruplex fold determination or quality control purposes, and that simple thermodynamic analysis does not directly provide interpretable thermodynamic parameters.
Collapse
Affiliation(s)
- Magdalena M Dailey
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
34
|
Yang X, Liu D, Lu P, Zhang Y, Yu C. Nucleic acid G-quadruplex based label-free fluorescence turn-on potassium selective sensing. Analyst 2010; 135:2074-8. [DOI: 10.1039/c0an00106f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Chang YS, Kim YK, Kwon HS, Park HW, Min KU, Kim YY, Cho SH. The effect of CpG-oligodeoxynucleotides with different backbone structures and 3' hexameric deoxyriboguanosine run conjugation on the treatment of asthma in mice. J Korean Med Sci 2009; 24:860-6. [PMID: 19794984 PMCID: PMC2752769 DOI: 10.3346/jkms.2009.24.5.860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 11/11/2008] [Indexed: 12/02/2022] Open
Abstract
CpG-Oligodeoxynucleotide (ODN) has two backbones. Phosphorothioate backbone (PS) shows a strong immunostimulating effect while phosphodiester (PE) shows little in vivo. 3' hexameric deoxyriboguanosine-run (3' dG(6)-run) conjugation to PE CpG-ODN has been reported to enhance immunostimulation and to protect against asthma when injected at the time of sensitization in mice. We evaluated the treatment effects of PE and PS CpG-ODN with or without 3' dG(6)-run on asthma in presensitized mice. BALB/c mice sensitized with ovalbumin and alum were challenged with 1% ovalbumin on three days. CpG-ODNs (100 microg) or PBS were injected 4 times; 27 hr before challenge and 3 hr before each challenge (CpG-dG(6): CpG-ODN with 3' dG(6)-run, PE*-CpG-dG(6): PE-CpG-dG(6) with two PS backbones at the 5' terminus). PE-CpG showed no treatment effect. PE-CpG-dG(6) only increased ovalbumin-specific IgG2a. PE*-CpG-dG(6) increased ovalbumin-specific IgG2a but also reduced BAL fluid eosinophils and airway hyperresponsiveness. PS-CpG increased ovalbumin-specific IgG2a, reduced airway inflammation and airway hyperresponsiveness. PS-CpG-dG(6) was less effective than PS-CpG on airway inflammation and airway hyperresponsiveness. In pre-sensitized mice, PE-CpG required not only 3' dG(6)-run but also the modification of two PS linkages at 5' terminus to inhibit features of asthma. PS-CpG was strong enough to inhibit asthma but PS-CpG-dG(6) was less effective.
Collapse
Affiliation(s)
- Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoon-Keun Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyouk-Soo Kwon
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Heung-Woo Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyung-Up Min
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - You-Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
36
|
Chiron D, Pellat-Deceunynck C, Maillasson M, Bataille R, Jego G. Phosphorothioate-modified TLR9 ligands protect cancer cells against TRAIL-induced apoptosis. THE JOURNAL OF IMMUNOLOGY 2009; 183:4371-7. [PMID: 19734228 DOI: 10.4049/jimmunol.0901436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypomethylated CpG oligodeoxynucleotides (CpG ODNs) target TLR9 expressed by immune cells and are currently being evaluated as adjuvants in clinical trials. However, TLR signaling can promote some tumor growth and immune evasion, such as in multiple myeloma (MM). Therefore, deciphering the effects of CpG ODNs on cancer cells will help in preventing these adverse effects and in designing future clinical trials. TLR activation induces multiple signaling pathways, notably NF-kappaB that has been involved in the resistance to TRAIL. Thus, we wondered if CpG ODNs could modulate TRAIL-induced apoptosis in different models of tumors. Here, we show that TLR9+ (NCI-H929, NAN6, KMM1) and TLR9- MM cells (MM1S) were protected by CpG ODNs against recombinant TRAIL-induced apoptosis. By using two fully human, agonist mAbs directed against TRAIL receptors DR4 and DR5 (mapatumumab and lexatumumab, respectively), we show that the protection was restricted to DR5-induced apoptosis. Similar results were observed for two colon cancer (C45 and Colo205) and two breast cancer cell lines (HCC1569 and Cal51). The protection of CpG ODNs was mediated by its nuclease-resistant phosphorothioate backbone independent of TLR9. We next demonstrated by surface plasmon resonance that phosphorothioate-modified CpG ODNs directly bound to either TRAIL or lexatumumab and then decreased their binding to DR5. Finally, NK cell lysis of a DR5-sensitive MM cell line (NCI-H929) through TRAIL was partially inhibited by phosphorothioate-modified CpG ODNs. In conclusion, our results suggest that the phosphorothioate modification of CpG ODNs could dampen the clinical efficacy of CpG ODN-based adjuvants by altering TRAIL/TRAIL receptor interaction.
Collapse
Affiliation(s)
- David Chiron
- Institut de Recherche Thérapeutique de l'Université de Nantes, Institut National de la Santé et dela Recherche Médicale, Unité 892, Centre de Recherches en Cancérologie Nantes Angers, 8, Quai Moncousu, BP 70721, 44007 Nantes Cedex 01, France.
| | | | | | | | | |
Collapse
|
37
|
Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 2009; 86:151-64. [PMID: 19454272 PMCID: PMC2716701 DOI: 10.1016/j.yexmp.2009.01.004] [Citation(s) in RCA: 602] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Indexed: 02/07/2023]
Abstract
Certain guanine-rich (G-rich) DNA and RNA molecules can associate intermolecularly or intramolecularly to form four stranded or "quadruplex" structures, which have unusual biophysical and biological properties. Several synthetic G-rich quadruplex-forming oligodeoxynucleotides have recently been investigated as therapeutic agents for various human diseases. We refer to these biologically active G-rich oligonucleotides as aptamers because their activities arise from binding to protein targets via shape-specific recognition (analogous to antibody-antigen binding). As therapeutic agents, the G-rich aptamers may have some advantages over monoclonal antibodies and other oligonucleotide-based approaches. For example, quadruplex oligonucleotides are non-immunogenic, heat stable and they have increased resistance to serum nucleases and enhanced cellular uptake compared to unstructured sequences. In this review, we describe the characteristics and activities of G-rich oligonucleotides. We also give a personal perspective on the discovery and development of AS1411, an antiproliferative G-rich phosphodiester oligonucleotide that is currently being tested as an anticancer agent in Phase II clinical trials. This molecule functions as an aptamer to nucleolin, a multifunctional protein that is highly expressed by cancer cells, both intracellularly and on the cell surface. Thus, the serendipitous discovery of the G-rich oligonucleotides also led to the identification of nucleolin as a new molecular target for cancer therapy.
Collapse
Affiliation(s)
- Paula J Bates
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | | | | | |
Collapse
|
38
|
Dailey MM, Hait C, Holt PA, Maguire JM, Meier JB, Miller MC, Petraccone L, Trent JO. Structure-based drug design: from nucleic acid to membrane protein targets. Exp Mol Pathol 2009; 86:141-50. [PMID: 19454265 PMCID: PMC3143464 DOI: 10.1016/j.yexmp.2009.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Indexed: 01/08/2023]
Abstract
The in silico methods for drug discovery are becoming increasingly powerful and useful. That, in combination with increasing computer processor power, in our case using a novel distributed computing grid, has enabled us to greatly enhance our virtual screening efforts. Herein we review some of these efforts using both receptor and ligand-based virtual screening, with the goal of finding new anti-cancer agents. In particular, nucleic acids are a neglected set of targets, especially the different morphologies of duplex, triplex, and quadruplex DNA, many of which have increasing biological relevance. We also review examples of molecular modeling to understand receptors and using virtual screening against G-protein coupled receptor membrane proteins.
Collapse
Affiliation(s)
- Magdalena M Dailey
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Haas T, Schmitz F, Heit A, Wagner H. Sequence independent interferon-alpha induction by multimerized phosphodiester DNA depends on spatial regulation of Toll-like receptor-9 activation in plasmacytoid dendritic cells. Immunology 2008; 126:290-8. [PMID: 19019086 DOI: 10.1111/j.1365-2567.2008.02897.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Single-stranded versus multimeric phosphorothioate-modified CpG oligodeoxynucleotides (ODNs) undergo differential endosomal trafficking upon uptake into plasmacytoid dendritic cells (pDCs), correlating with Toll-like receptor-9-dependent pDC maturation/activation (single-stranded B-type CpG ODN) or interferon-alpha (IFN-alpha) induction (multimeric A-type CpG ODN), respectively. As was recently shown, IFN-alpha production, other than by CpG ODNs, can also be induced in a sequence-independent manner by phosphodiester (PD) ODNs multimerized by 3' poly-guanosine (poly-G) tails. We investigate here the type of endosomal trafficking responsible for IFN-alpha induction by natural PD ODN ligands. We show that 3' extension with poly-G tails leads to multimerization of single-stranded PD ODNs and to enhanced cellular uptake into pDCs. While monomeric PD ODNs, which induce CpG-dependent Toll-like receptor-9 stimulation and pDC maturation/activation, localized to late endosomal/lysosomal compartments, the poly-G multimerized PD ODNs, which induce CpG-independent IFN-alpha production, located to vesicles with a distinct, 'early' endosomal phenotype. We conclude that poly-G-mediated multimerization of natural PD ODNs allows for sequence-independent, Toll-like receptor-9-dependent IFN-alpha induction in pDCs by combining three distinct effects: relative protection of sensitive PD ODNs from extracellular and intracellular DNase degradation, enhanced cellular uptake and preferential early endosomal compartmentation.
Collapse
Affiliation(s)
- Tobias Haas
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Trogerstrasse, Munich, Germany
| | | | | | | |
Collapse
|
40
|
Weerasinghe P, Li Y, Guan Y, Zhang R, Tweardy DJ, Jing N. T40214/PEI complex: a potent therapeutics for prostate cancer that targets STAT3 signaling. Prostate 2008; 68:1430-42. [PMID: 18615483 PMCID: PMC2574665 DOI: 10.1002/pros.20807] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Prostate cancer (PC) is the most common cancer among men in American and the second leading cause of cancer death. The treatment options employed for patients with advanced and metastatic PC are limited. As a critical mediator of oncogenic signaling, STAT3 is active in 82% of patients with PC. STAT3 has become a very important molecular target for PC therapy since it upregulates the oncogenes encoding apoptosis inhibitors, cell cycle regulators, and inducers of angiogenesis. However, no anti-tumor drug whose primary mode of action is to target STAT3 has yet reached the clinic. To this end, we have laid the initial groundwork to develop the STAT3-inhibiting G-quartet oligodeoxynucleotide (GQ-ODN), T40214, for treatment of PCs. METHODS We employed in vitro and in vivo assays, including Western blots, EMSA, cell cycle analysis, TUNEL and xenograft models, to determine the drug efficacy and mechanism of T40214/PEI complex. RESULTS The results demonstrated that (i) T40214 significantly inhibited STAT3 activation and induced apoptosis in both androgen-dependent and androgen-independent PC cells; (ii) T40214 delivered by ployethylenimine (PEI) significantly suppressed prostate tumor growth in tumor-bearing nude mice due to that T40214 inhibited STAT3 activation and then greatly promoted apoptosis, reduced angiogenesis and cell proliferation in prostate tumors. CONCLUSION Our studies suggested that STAT3 is a critical oncogenic signal, which strongly influences the progression of PCs and that T40214/PEI complex is a promising candidate for treatment of patients with prostate tumors and represents a novel strategy for PC therapy.
Collapse
Affiliation(s)
- Priya Weerasinghe
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yifei Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yongli Guan
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Ruiwen Zhang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, AL
| | - David J. Tweardy
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Naijie Jing
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Corresponding Author: Naijie Jing, Ph.D.*, Department of Medicine and Cancer, Center Baylor College of Medicine, One Baylor Plaza - N520, Houston, Texas 77030 USA, Tel: 713-798-3685, Fax 713-798-8948,
| |
Collapse
|
41
|
Wagner H. The sweetness of the DNA backbone drives Toll-like receptor 9. Curr Opin Immunol 2008; 20:396-400. [PMID: 18656540 DOI: 10.1016/j.coi.2008.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/27/2008] [Accepted: 06/28/2008] [Indexed: 11/19/2022]
Abstract
The prevailing paradigm ascribes activation of Toll-like receptor 9 (TLR9) to the detection of CpG-motifs within pathogen derived DNA. However, new work ties natural phospho-diester (PD) DNA recognition by TLR9 to the detection of the DNA sugar backbone 2' deoxyribose. PD 2' deoxyribose homopolymers lacking DNA bases (abasic) are shown to act as TLR9 agonist while abasic phospho-thioate (PS) 2' deoxyribose functions as TLR9 antagonist. Alignment of bases to PD 2' deoxyribose enhanced its TLR9 agonistic function, while only CpG-motifs introduced to inhibitory PS 2' deoxyribose converted the antagonistic activity into powerful agonistic function. These new data thus restrict the CpG-motif dependency of TLR9 activation to the promising group of immunopharmacons that are based on PS modified synthetic DNA. They also show that natural PD DNA drives TLR9 activation sequence-independently as is the case for ds RNA recognizing TLR3 and ss RNA recognizing TLR7 and TLR8. Thus evolutionary pressure might have exiled nucleic acid recognizing TLRs such as TLR9 to endosomes in order to avoid activation by host (self) derived nucleic acids.
Collapse
Affiliation(s)
- Hermann Wagner
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Trogerstr. 30, München, Germany.
| |
Collapse
|
42
|
Haas T, Metzger J, Schmitz F, Heit A, Müller T, Latz E, Wagner H. The DNA sugar backbone 2' deoxyribose determines toll-like receptor 9 activation. Immunity 2008; 28:315-23. [PMID: 18342006 DOI: 10.1016/j.immuni.2008.01.013] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/17/2007] [Accepted: 01/15/2008] [Indexed: 11/16/2022]
Abstract
CpG motifs within phosphorothioate (PS)-modified DNA drive Toll-like receptor 9 (TLR9) activation, but the rules governing recognition of natural phosphodiester (PD) DNA are less understood. Here, we showed that the sugar backbone determined DNA recognition by TLR9. Homopolymeric, base-free PD 2' deoxyribose acted as a basal TLR9 agonist as it bound to and activated TLR9. This effect was enhanced by DNA bases, even short of CpG motifs. In contrast, PS-modified 2' deoxyribose homopolymers acted as TLR9 and TLR7 antagonists. They displayed high affinity to both TLRs and did not activate on their own, but they competitively inhibited ligand-TLR interaction and activation. Although addition of random DNA bases to the PS 2' deoxyribose backbone did not alter these effects, CpG motifs transformed TLR9-inhibitory to robust TLR9-stimulatory activity. Our results identified the PD 2' deoxyribose backbone as an important determinant of TLR9 activation by natural DNA, restrict CpG-motif dependency of TLR9 activation to synthetic PS-modified ligands, and define PS-modified 2' deoxyribose as a prime effector of TLR9 and TLR7 inhibition.
Collapse
Affiliation(s)
- Tobias Haas
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Trogerstrasse 30, 81675 München, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Cao Z, Huang CC, Tan W. Nuclease resistance of telomere-like oligonucleotides monitored in live cells by fluorescence anisotropy imaging. Anal Chem 2007; 78:1478-84. [PMID: 16503597 DOI: 10.1021/ac0517601] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Telomeres carry important biological functions such as the protection of chromosomes. In this paper, we have developed a fluorescence anisotropy imaging system for monitoring DNA digestion inside live cells. The nuclease-resistant capability of telomere-like ssDNAs in nuclei of human breast cancer cells is studied. We found that those oligonucleotides were clearly more stable than regular DNA sequences during the time course of the experiments. We conclude that the G-quadruplex structure of the telomere-like ssDNA makes it inherently more stable in intracellular environments than non-G-quadruplex structures. This will help us understand why the G-quadruplex forming telomere sequences were adopted by almost all eukaryotic cells to protect the ends of chromosomes. This is the first time such a phenomenon was observed in live cells. Our fluorescence anisotropy imaging provides an efficient way to directly monitor DNA digestion in any region of live cells in real time, providing insights into many important and related intracellular processes.
Collapse
Affiliation(s)
- Zehui Cao
- Center for Research at Bio/nano Interface, Department of Chemistry and Shands Cancer Center, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | |
Collapse
|
44
|
Yanze MF, Ho EA, Macgregor RB, Piquette-Miller M. In vivo disposition and stability of DNA frayed wires in mice. Int J Biol Macromol 2006; 39:310-6. [PMID: 16777215 DOI: 10.1016/j.ijbiomac.2006.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/04/2006] [Accepted: 05/08/2006] [Indexed: 11/21/2022]
Abstract
DNA frayed wires (DNA(FW)) are an alternate form of DNA organization formed by the self-association of several strands of guanine-rich oligonucleotides. The purpose of this study was to define for the first time the blood clearance kinetics, tissue distribution, and stability of DNA(FW) in vivo in mice. Single bolus doses (1200 pmol/mouse) of (32)P-DNA(FW) and (32)P-random DNA were administered intravenously (IV) and intraperitoneally (IP) followed by scheduled blood, urine, fecal and tissue samplings. Blood clearance kinetics was described well by a first order two-compartment open model. The overall half-lives of elimination from the central compartment (T(1/2))(K10) were 3.57+/-0.1h for IV and 2.38+/-0.11 h for IP. In contrast, random DNA was completely degraded after 15 min regardless of the route of administration. Tissue distribution results demonstrated that DNA(FW) were primarily distributed and retained in the liver, intestines, kidneys, and heart. Low levels could also be detected in brain. Autoradiographs of blood, tissues, feces and urine extracts established that DNA(FW) remained intact after administration as no measurable levels of metabolites or degradation products were found after 24h. (32)P-DNA(FW) was primarily eliminated via hepato-biliary excretion into feces after either IV or IP administration (51.8+/-4.53% and 36.2+/-3.4%, respectively). The improved stability and longer half-life of DNA(FW), previously shown in vitro, is also seen in vivo, indicating that DNA(FW) may provide a stable delivery system for DNA gene therapies. In conclusion, this is the first study demonstrating the in vivo stability, pharmacokinetics, and disposition of DNA superstructures.
Collapse
Affiliation(s)
- Maximum F Yanze
- Department of Pharmaceutical Sciences, University of Toronto, 19 Russell Street, Toronto, Ont, Canada
| | | | | | | |
Collapse
|
45
|
Jing N, Zhu Q, Yuan P, Li Y, Mao L, Tweardy DJ. Targeting signal transducer and activator of transcription 3 with G-quartet oligonucleotides: a potential novel therapy for head and neck cancer. Mol Cancer Ther 2006; 5:279-86. [PMID: 16505101 DOI: 10.1158/1535-7163.mct-05-0302] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signal transducer and activator of transcription 3 (Stat3) is a critical mediator of oncogenic signaling activated frequently in many types of human cancer where it contributes to tumor cell growth and resistance to apoptosis. Stat3 has been proposed as a promising target for anticancer drug discovery. Recently, we developed a series of G-quartet oligodeoxynucleotides (GQ-ODN) as novel and potent Stat3 inhibitors, which significantly suppressed the growth of prostate and breast tumors in nude mice. In the present study, we showed that GQ-ODN specifically inhibited DNA-binding activity of Stat3 as opposed to Stat1. Computer-based docking analysis revealed that GQ-ODN predominantly interacts with the SH2 domains of Stat3 homodimers to destabilize dimer formation and disrupt DNA-binding activity. We employed five regimens in the treatment of nude mice with tumors of head and neck squamous cell carcinoma (HNSCC): placebo, paclitaxel, GQ-ODN T40214, GQ-ODN T40231, and T40214 plus paclitaxel. The mean size of HNSCC tumors over 21 days only increased by 1.7-fold in T40214-treated mice and actually decreased by 35% in T40214 plus paclitaxel-treated mice whereas the mean size of HNSCC tumors increased 9.4-fold in placebo-treated mice in the same period. These findings show that GQ-ODN has potent activity against HNSCC tumor xenografts alone and in combination with paclitaxel.
Collapse
Affiliation(s)
- Naijie Jing
- Department of Medicine and Cancer Center, Baylor College of Medicine, One Baylor Plaza, N520, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Métifiot M, Leon O, Tarrago-Litvak L, Litvak S, Andréola ML. Targeting HIV-1 integrase with aptamers selected against the purified RNase H domain of HIV-1 RT. Biochimie 2005; 87:911-9. [PMID: 16164998 DOI: 10.1016/j.biochi.2005.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/10/2005] [Accepted: 03/18/2005] [Indexed: 11/17/2022]
Abstract
Several in vitro strategies have been developed to selectively screen for nucleic acid sequences that bind to specific proteins. We previously used the SELEX procedure to search for aptamers against HIV-1 RNase H activity associated with reverse transcriptase (RT) and human RNase H1. Aptamers containing G-rich sequences were selected in both cases. To investigate whether the interaction with G-rich oligonucleotides (ODNs) was a characteristic of these enzymes, a second in vitro selection was performed with an isolated RNase H domain of HIV-1 RT (p15) as a target and a new DNA library. In this work we found that the second SELEX led again to the isolation of G-rich aptamers. But in contrast to the first selection, these latter ODNs were not able to inhibit the RNase H activity of either the p15 domain or the RNase H embedded in the complete RT. On the other hand, the aptamers from the first SELEX that were inhibitors of the RT-associated RNase H did not inhibit the activity of the isolated p15 domain. This suggests that the active conformation of both RNase H domains is different according to the presence or absence of the DNA polymerase domain. HIV-1 RNase H and integrase both belong to the phosphotransferase family and share structural similarities. An interesting result was obtained when the DNA aptamers initially raised against p15 RNase H were assayed against HIV-1 integrase. In contrast to RNase H, the HIV-1 integrase was inhibited by these aptamers. Our results point out that prototype structures can be exploited to develop inhibitors of two related enzymes.
Collapse
Affiliation(s)
- Mathieu Métifiot
- UMR 5097 CNRS, Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
47
|
Inhibition of human T-cell leukemia virus type I by the short oligoguanylic acids in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2004. [DOI: 10.1016/j.msec.2004.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Jing N, Li Y, Xiong W, Sha W, Jing L, Tweardy DJ. G-quartet oligonucleotides: a new class of signal transducer and activator of transcription 3 inhibitors that suppresses growth of prostate and breast tumors through induction of apoptosis. Cancer Res 2004; 64:6603-9. [PMID: 15374974 DOI: 10.1158/0008-5472.can-03-4041] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stat3 is a signaling molecular and oncogene activated frequently in many human malignancies including the majority of prostate, breast, and head and neck cancers; yet, no current chemotherapeutic approach has been implemented clinically that specifically targets Stat3. We recently developed G-rich oligodeoxynucleotides, which form intramolecular G-quartet structures (GQ-ODN), as a new class of Stat3 inhibitor. GQ-ODN targeted Stat3 protein directly inhibiting its ability to bind DNA. When delivered into cells using polyethyleneimine as vehicle, GQ-ODN blocked ligand-induced Stat3 activation and Stat3-mediated transcription of antiapoptotic genes. To establish the effectiveness of GQ-ODN as a potential new chemotherapeutic agent, we systemically administered GQ-ODN (T40214 or T40231) plus polyethyleneimine or polyethyleneimine alone (placebo) by tail-vein injection into nude mice with prostate and breast tumor xenografts. Whereas the mean volume of breast tumor xenografts in placebo-treated mice increased >7-fold over 18 days, xenografts in the GQ-ODN-treated mice remained unchanged. Similarly, whereas the mean volume of prostate tumor xenografts in placebo-treated mice increased 9-fold over 10 days, xenografts in GQ-ODN-treated mice increased by only 2-fold. Biochemical examination of tumors from GQ-ODN-treated mice demonstrated a significant reduction in Stat3 activation, levels of the antiapoptotic proteins Bcl-2 and Bcl-xL, and an 8-fold increase in the number of apoptotic cells compared with the tumors of placebo-treated mice. Thus, GQ-ODN targeting Stat3 induces tumor cell apoptosis when delivered into tumor xenografts and represents a novel class of chemotherapeutic agents that holds promise for the systemic treatment of many forms of metastatic cancer.
Collapse
Affiliation(s)
- Naijie Jing
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Schmidt KS, Borkowski S, Kurreck J, Stephens AW, Bald R, Hecht M, Friebe M, Dinkelborg L, Erdmann VA. Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 2004; 32:5757-65. [PMID: 15509871 PMCID: PMC528785 DOI: 10.1093/nar/gkh862] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aptamers are powerful candidates for molecular imaging applications due to a number of attractive features, including rapid blood clearance and tumor penetration. We carried out structure-activity relationship (SAR) studies with the Tenascin-C binding aptamer TTA1, which is a promising candidate for application in tumor imaging with radioisotopes. The aim was to improve its in vivo stability and target binding. We investigated the effect of thermal stabilization of the presumed non-binding double-stranded stem region on binding affinity and resistance against nucleolytic degradation. To achieve maximal thermal stem stabilization melting experiments with model hexanucleotide duplexes consisting of unmodified RNA, 2'-O-methyl RNA (2'-OMe), 2'-Fluoro RNA (2'-F) or Locked Nucleic Acids (LNAs) were initially carried out. Extremely high melting temperatures have been found for an LNA/LNA duplex. TTA1 derivatives with LNA and 2'-OMe modifications within the non-binding stem have subsequently been synthesized. Especially, the LNA-modified TTA1 derivative exhibited significant stem stabilization and markedly improved plasma stability while maintaining its binding affinity to the target. In addition, higher tumor uptake and longer blood retention was found in tumor-bearing nude mice. Thus, our strategy to introduce LNA modifications after the selection procedure is likely to be generally applicable to improve the in vivo stability of aptamers without compromising their binding properties.
Collapse
Affiliation(s)
- Kathrin S Schmidt
- Institute of Chemistry (Biochemistry), Free University Berlin, Thielallee 63, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kaur H, Jaso-Friedmann L, Leary JH, Evans DL. Single-base oligodeoxyguanosine-binding proteins on nonspecific cytotoxic cells: identification of a new class of pattern-recognition receptors. Scand J Immunol 2004; 60:238-48. [PMID: 15320880 DOI: 10.1111/j.0300-9475.2004.01455.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present study was designed to identify a possible new class of pathogen-recognition proteins that bind single-base oligodeoxynucleotide (ODN) ligands. Binding by the teleost natural killer cell equivalent [referred to as nonspecific cytotoxic cells (NCC)] was compared with mammalian cells (mouse RAW264.7 cells and human THP-1 cells). The ODN analysed were composed of 20-mers of guanosine (dG20), adenosine (dA20), thymidine (dT20) or cytosine (dC20). Binding studies first determined the 50% saturation levels for NCC (1.25 microg/ml), RAW264.7 (0.2 microg/ml) and THP-1 (0.8 microg/ml). Binding by dG20 to all the three cell types was saturable. Ligand blots of NCC membrane lysates with biotinylated dG20 revealed two different major molecular weight species (16-18 and 29 kDa) of binding proteins. The 29-kDa protein was identified with the help of Western blot analysis using a polyclonal antibody specific to an NCC antimicrobial protein (ncamp-1). The membrane expression of the 29-kDa ncamp-1 was determined by the binding of surface-biotinylated NCC membrane proteins with digoxigenin dG20 followed by immunoprecipitation using anti-digoxigenin agarose beads. The 29 and 14-18 kDa NCC membrane proteins were cross-reactive using Western blot examination with a polyclonal anti-histone 1 antibody. Function studies revealed that dG20 activated a twofold upregulation of membrane binding by homologous dG20-biotin. dG20 also stimulated NCC-increased membrane expression of NCC receptor protein 1. Additional experiments were performed to determine the DNase sensitivity of the different ODN. dG20 appeared to be more resistant to DNase treatment, compared to dC20, dA20 and dT20. The single-base ODN-binding proteins may represent a new class of pattern-recognition receptors that are involved in innate anti-bacterial resistance mediated by NCC.
Collapse
Affiliation(s)
- H Kaur
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|