1
|
Computational analysis of the structure, glycosylation and CMP binding of human ST3GAL sialyltransferases. Carbohydr Res 2019; 486:107823. [PMID: 31557542 DOI: 10.1016/j.carres.2019.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022]
Abstract
Sialyltransferases (STs) are the fundamental enzymes which are related to many biological processes such as cell signalling, cellular recognition, cell-cell and host-pathogen interactions and metastasis of cancer. All STs catalyse the terminal sialic acid addition from CMP donor to the glycan units. ST3GAL family is one of the most important STs and divided into the six subfamily in mouse and humans which are ST3Gal I, ST3Gal II, ST3Gal III, ST3Gal IV, ST3Gal V, and ST3Gal VI. The members of the ST3GAL family transfer sialic acid to the terminal galactose residues of glycochains through an α2,3-linkage. There are many reports on the ST3GAL function in mammals but, there is a paucity of information about structure of human ST3GAL family. Herein, we investigated the structure, glycosylation and CMP binding site of human ST3GAL family using computational methods. We found for the first time N-glycosylation positions in ST3Gal IV and VI, mucin type glycosylation in ST3Gal III and O-GlcNAcylation in ST3Gal V and their relation with sialylmotifs. In addition, we predicted CMP binding positions of human ST3GAL enzyme family on three-dimensional structure using molecular docking and first demonstrated the sialylmotifs relation with the CMP binding positions in ST3Gal III-VI subfamilies.
Collapse
|
2
|
Pothukuchi P, Agliarulo I, Russo D, Rizzo R, Russo F, Parashuraman S. Translation of genome to glycome: role of the Golgi apparatus. FEBS Lett 2019; 593:2390-2411. [PMID: 31330561 DOI: 10.1002/1873-3468.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.) While information to produce cell type-specific glycans is encoded in the genome, how this information is translated into cell type-specific glycome (Glycome refers to the quantitative distribution of all glycan structures present in a given cell type.) is not completely understood. We summarize here the factors that are known to influence the fidelity of glycan biosynthesis and integrate them into known glycosylation pathways so as to rationalize the translation of genetic information to cell type-specific glycome.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Seetharaman Parashuraman
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
3
|
Hassinen A, Khoder-Agha F, Khosrowabadi E, Mennerich D, Harrus D, Noel M, Dimova EY, Glumoff T, Harduin-Lepers A, Kietzmann T, Kellokumpu S. A Golgi-associated redox switch regulates catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I. Redox Biol 2019; 24:101182. [PMID: 30959459 PMCID: PMC6454061 DOI: 10.1016/j.redox.2019.101182] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylation, a common modification of cellular proteins and lipids, is often altered in diseases and pathophysiological states such as hypoxia, yet the underlying molecular causes remain poorly understood. By utilizing lectin microarray glycan profiling, Golgi pH and redox screens, we show here that hypoxia inhibits terminal sialylation of N- and O-linked glycans in a HIF- independent manner by lowering Golgi oxidative potential. This redox state change was accompanied by loss of two surface-exposed disulfide bonds in the catalytic domain of the α-2,6-sialyltransferase (ST6Gal-I) and its ability to functionally interact with B4GalT-I, an enzyme adding the preceding galactose to complex N-glycans. Mutagenesis of selected cysteine residues in ST6Gal-I mimicked these effects, and also rendered the enzyme inactive. Cells expressing the inactive mutant, but not those expressing the wild type ST6Gal-I, were able to proliferate and migrate normally, supporting the view that inactivation of the ST6Gal-I help cells to adapt to hypoxic environment. Structure comparisons revealed similar disulfide bonds also in ST3Gal-I, suggesting that this O-glycan and glycolipid modifying sialyltransferase is also sensitive to hypoxia and thereby contribute to attenuated sialylation of O-linked glycans in hypoxic cells. Collectively, these findings unveil a previously unknown redox switch in the Golgi apparatus that is responsible for the catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I.
Collapse
Affiliation(s)
- Antti Hassinen
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Fawzi Khoder-Agha
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Elham Khosrowabadi
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Daniela Mennerich
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Deborah Harrus
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Maxence Noel
- Université de Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Elitsa Y Dimova
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Tuomo Glumoff
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Sakari Kellokumpu
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland.
| |
Collapse
|
4
|
Jones MB. IgG and leukocytes: Targets of immunomodulatory α2,6 sialic acids. Cell Immunol 2018; 333:58-64. [PMID: 29685495 DOI: 10.1016/j.cellimm.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/30/2018] [Indexed: 12/27/2022]
Abstract
ST6Gal1 is a critical sialyltransferase enzyme that controls the addition of α2,6-linked sialic acids to the termini of glycans. Attachment of sialic acids to glycoproteins as a posttranslational modification influences cellular responses, and is a well-known modifier of immune cell behavior. ST6Gal1 activity impacts processes such as: effector functions of immunoglobulin G via Fc sialylation, hematopoietic capacity by hematopoietic stem and progenitor cell surface sialylation, and lymphocyte activation thresholds though CD22 engagement and inhibition of galectins. This review summarizes recent studies that suggest α2,6 sialylation by ST6Gal1 has an immunoregulatory effect on immune reactions.
Collapse
Affiliation(s)
- Mark B Jones
- Case Western Reserve University, School of Medicine, Department of Pathology, Cleveland, OH 44106, United States.
| |
Collapse
|
5
|
Kroes RA, Moskal JR. The role of DNA methylation in ST6Gal1 expression in gliomas. Glycobiology 2016; 26:1271-1283. [PMID: 27510958 DOI: 10.1093/glycob/cww058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanism of transcriptional silencing of ST6Gal1 in gliomas has not yet been elucidated. Multiple independent promoters govern the expression of the ST6Gal I gene. Here, we investigated whether epigenetic abnormalities involving DNA methylation affect ST6Gal1 expression. Transcript-specific qRT-PCR following exposure of glioma cell lines to 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, resulted in the re-expression of the normally quiescent ST6Gal1 mRNA driven exclusively by the P3 promoter sequence. The P3 promoter-specific transcription start site (TSS) was delineated by primer extension and core promoter sequences and associated functional transcription elements identified by deletion analysis utilizing chloramphenicol acetyltransferase reporter constructs. Minimal promoter activity was found to reside within the first 100 bp of the TSS and maximal activity was controlled by functional AP2 binding sites residing between 400 and 500 bp upstream of the initiation site. As altered AP2 binding was not directly associated with AP2 availability, these analyses demonstrate that ST6Gal1 transcription is regulated by DNA methylation within core promoter regions, ultimately by determining critical transcription factor accessibility within these regions. Transcriptional reactivation of ST6Gal1 expression by 5-aza-dC resulted in increased cell surface α2,6 sialoglycoconjugate expression, increased α2,6 sialylation of β1 integrin, and decreased adhesion to fibronectin substrate: functional correlates of decreased invasivity. The effects of global hypomethylation are not glycome-wide. Focused glycotranscriptomic analyses of three invasive glioma cell lines following 5-aza-dC treatment demonstrated the modulation of select glycogene transcripts. Taken together, these results demonstrate that epigenetic modulation of ST6Gal1 expression plays a key role in the glioma phenotype in vitro and that that therapeutic approaches targeting elements of the epigenetic machinery for the treatment of human glioblastoma are warranted.
Collapse
Affiliation(s)
- Roger A Kroes
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Joseph R Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
6
|
Kellokumpu S, Hassinen A, Glumoff T. Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cell Mol Life Sci 2016; 73:305-25. [PMID: 26474840 PMCID: PMC7079781 DOI: 10.1007/s00018-015-2066-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 01/08/2023]
Abstract
Glycosylation is the most common and complex cellular modification of proteins and lipids. It is critical for multicellular life and its abrogation often leads to a devastating disease. Yet, the underlying mechanistic details of glycosylation in both health and disease remain unclear. Partly, this is due to the complexity and dynamicity of glycan modifications, and the fact that not all the players are taken into account. Since late 1960s, a vast number of studies have demonstrated that glycosyltransferases typically form homomeric and heteromeric complexes with each other in yeast, plant and animal cells. To propagate their acceptance, we will summarize here accumulated data for their prevalence and potential functional importance for glycosylation focusing mainly on their mutual interactions, the protein domains mediating these interactions, and enzymatic activity changes that occur upon complex formation. Finally, we will highlight the few existing 3D structures of these enzyme complexes to pinpoint their individual nature and to emphasize that their lack is the main obstacle for more detailed understanding of how these enzyme complexes interact and function in a eukaryotic cell.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| |
Collapse
|
7
|
Schoberer J, Liebminger E, Botchway SW, Strasser R, Hawes C. Time-resolved fluorescence imaging reveals differential interactions of N-glycan processing enzymes across the Golgi stack in planta. PLANT PHYSIOLOGY 2013; 161:1737-54. [PMID: 23400704 PMCID: PMC3613452 DOI: 10.1104/pp.112.210757] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/10/2013] [Indexed: 05/18/2023]
Abstract
N-Glycan processing is one of the most important cellular protein modifications in plants and as such is essential for plant development and defense mechanisms. The accuracy of Golgi-located processing steps is governed by the strict intra-Golgi localization of sequentially acting glycosidases and glycosyltransferases. Their differential distribution goes hand in hand with the compartmentalization of the Golgi stack into cis-, medial-, and trans-cisternae, which separate early from late processing steps. The mechanisms that direct differential enzyme concentration are still unknown, but the formation of multienzyme complexes is considered a feasible Golgi protein localization strategy. In this study, we used two-photon excitation-Förster resonance energy transfer-fluorescence lifetime imaging microscopy to determine the interaction of N-glycan processing enzymes with differential intra-Golgi locations. Following the coexpression of fluorescent protein-tagged amino-terminal Golgi-targeting sequences (cytoplasmic-transmembrane-stem [CTS] region) of enzyme pairs in leaves of tobacco (Nicotiana spp.), we observed that all tested cis- and medial-Golgi enzymes, namely Arabidopsis (Arabidopsis thaliana) Golgi α-mannosidase I, Nicotiana tabacum β1,2-N-acetylglucosaminyltransferase I, Arabidopsis Golgi α-mannosidase II (GMII), and Arabidopsis β1,2-xylosyltransferase, form homodimers and heterodimers, whereas among the late-acting enzymes Arabidopsis β1,3-galactosyltransferase1 (GALT1), Arabidopsis α1,4-fucosyltransferase, and Rattus norvegicus α2,6-sialyltransferase (a nonplant Golgi marker), only GALT1 and medial-Golgi GMII were found to form a heterodimer. Furthermore, the efficiency of energy transfer indicating the formation of interactions decreased considerably in a cis-to-trans fashion. The comparative fluorescence lifetime imaging of several full-length cis- and medial-Golgi enzymes and their respective catalytic domain-deleted CTS clones further suggested that the formation of protein-protein interactions can occur through their amino-terminal CTS region.
Collapse
Affiliation(s)
| | - Eva Liebminger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria (J.S., E.L., R.S.)
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom (J.S., C.H.); and
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot OX11 0QX, United Kingdom (S.W.B.)
| | - Stanley W. Botchway
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria (J.S., E.L., R.S.)
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom (J.S., C.H.); and
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot OX11 0QX, United Kingdom (S.W.B.)
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria (J.S., E.L., R.S.)
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom (J.S., C.H.); and
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot OX11 0QX, United Kingdom (S.W.B.)
| | - Chris Hawes
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria (J.S., E.L., R.S.)
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom (J.S., C.H.); and
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot OX11 0QX, United Kingdom (S.W.B.)
| |
Collapse
|
8
|
Chalat M, Menon I, Turan Z, Menon AK. Reconstitution of glucosylceramide flip-flop across endoplasmic reticulum: implications for mechanism of glycosphingolipid biosynthesis. J Biol Chem 2012; 287:15523-32. [PMID: 22427661 DOI: 10.1074/jbc.m112.343038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most glycosphingolipids are synthesized by the sequential addition of monosaccharides to glucosylceramide (GlcCer) in the lumen of the Golgi apparatus. Because GlcCer is synthesized on the cytoplasmic face of Golgi membranes, it must be flipped to the non-cytoplasmic face by a lipid flippase in order to nucleate glycosphingolipid synthesis. Halter et al. (Halter, D., Neumann, S., van Dijk, S. M., Wolthoorn, J., de Mazière, A. M., Vieira, O. V., Mattjus, P., Klumperman, J., van Meer, G., and Sprong, H. (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J. Cell Biol. 179, 101-115) proposed that this essential flipping step is accomplished via a complex trafficking itinerary; GlcCer is moved from the cytoplasmic face of the Golgi to the endoplasmic reticulum (ER) by FAPP2, a cytoplasmic lipid transfer protein, flipped across the ER membrane, then delivered to the lumen of the Golgi complex by vesicular transport. We now report biochemical reconstitution studies to analyze GlcCer flipping at the ER. Using proteoliposomes reconstituted from Triton X-100-solubilized rat liver ER membrane proteins, we demonstrate rapid (t(½) < 20 s), ATP-independent flip-flop of N-(6-((7-nitro-2-1,3-benzoxadiazol-4-yl)amino)hexanoyl)-D-glucosyl-β1-1'-sphingosine, a fluorescent GlcCer analog. Further studies involving protein modification, biochemical fractionation, and analyses of flip-flop in proteoliposomes reconstituted with ER membrane proteins from yeast indicate that GlcCer translocation is facilitated by well characterized ER phospholipid flippases that remain to be identified at the molecular level. By reason of their abundance and membrane bending activity, we considered that the ER reticulons and the related Yop1 protein could function as phospholipid-GlcCer flippases. Direct tests showed that these proteins have no flippase activity.
Collapse
Affiliation(s)
- Madhavan Chalat
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | |
Collapse
|
9
|
Hassinen A, Rivinoja A, Kauppila A, Kellokumpu S. Golgi N-glycosyltransferases form both homo- and heterodimeric enzyme complexes in live cells. J Biol Chem 2010; 285:17771-7. [PMID: 20378551 DOI: 10.1074/jbc.m110.103184] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycans (i.e. oligosaccharide chains attached to cellular proteins and lipids) are crucial for nearly all aspects of life, including the development of multicellular organisms. They come in multiple forms, and much of this diversity between molecules, cells, and tissues is generated by Golgi-resident glycosidases and glycosyltransferases. However, their exact mode of functioning in glycan processing is currently unclear. Here we investigate the supramolecular organization of the N-glycosylation pathway in live cells by utilizing the bimolecular fluorescence complementation approach. We show that all four N-glycosylation enzymes tested (beta-1,2-N-acetylglucosaminyltransferase I, beta-1,2-N-acetylglucosaminyltransferase II, 1,4-galactosyltransferase I, and alpha-2,6-sialyltransferase I) form Golgi-localized homodimers. Intriguingly, the same enzymes also formed two distinct and functionally relevant heterodimers between the medial Golgi enzymes beta-1,2-N-acetylglucosaminyltransferase I and beta-1,2-N-acetylglucosaminyltransferase II and the trans-Golgi enzymes 1,4-galactosyltransferase I and alpha-2,6-sialyltransferase I. Given their strict Golgi localization and sequential order of function, the two heterodimeric complexes are probably responsible for the processing and maturation of N-glycans in live cells.
Collapse
Affiliation(s)
- Antti Hassinen
- Department of Biochemistry, University of Oulu and the Glycoscience Graduate School Finland, PO Box 3000, Linnanmaa, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
10
|
Seko A, Kataoka F, Aoki D, Sakamoto M, Nakamura T, Hatae M, Yonezawa S, Yamashita K. N-Acetylglucosamine 6-O-sulfotransferase-2 as a tumor marker for uterine cervical and corpus cancer. Glycoconj J 2009; 26:1065-73. [PMID: 19156517 DOI: 10.1007/s10719-008-9227-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 12/15/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
Abstract
N-Acetylglucosamine 6-O-sulfotransferase-2 (GlcNAc6ST2) is ectopically expressed in ovarian mucinous and clear cell adenocarcinoma [Kanoh et al., Glycoconj J 23:453-460, 2006]. Here we studied whether GlcNAc6ST2 protein can be detected in sera from patients with gynecological cancers and could serve as a tumor marker. First, we created a monoclonal antibody and polyclonal antiserum against GlcNAc6ST2. These antibodies were specific for GlcNAc6ST2, as shown by Western blot analysis and immunoprecipitation. Using these antibodies, we constructed a sandwich ELISA method for detecting GlcNAc6ST2 in the serum. GlcNAc6ST2 provided lower positive rates for ovarian cancer than CA125, but higher positive rates for uterine cervical and corpus cancer than SCC antigens and CA125, respectively. A significantly higher percentage of stage I uterine cervical and corpus cancers were positive for GlcNAc6ST2 than for SCC antigens and CA125, respectively. GlcNAc6ST2 could therefore be a good serological marker for detecting early-stage uterine cervical and corpus cancers.
Collapse
Affiliation(s)
- Akira Seko
- Innovative Research Initiatives, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 2009; 220:144-54. [PMID: 19277980 DOI: 10.1002/jcp.21744] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acidic pH of the Golgi lumen is known to be crucial for correct glycosylation, transport and sorting of proteins and lipids during their transit through the organelle. To better understand why Golgi acidity is important for these processes, we have examined here the most pH sensitive events in N-glycosylation by sequentially raising Golgi luminal pH with chloroquine (CQ), a weak base. We show that only a 0.2 pH unit increase (20 microM CQ) is sufficient to markedly impair terminal alpha(2,3)-sialylation of an N-glycosylated reporter protein (CEA), and to induce selective mislocalization of the corresponding alpha(2,3)-sialyltransferase (ST3) into the endosomal compartments. Much higher pH increase was required to impair alpha(2,6)-sialylation, or the proximal glycosylation steps such as beta(1,4)-galactosylation or acquisition of Endo H resistance, and the steady-state localization of the key enzymes responsible for these modifications (ST6, GalT I, MANII). The overall Golgi morphology also remained unaltered, except when Golgi pH was raised close to neutral. By using transmembrane domain chimeras between the ST6 and ST3, we also show that the luminal domain of the ST6 is mainly responsible for its less pH sensitive localization in the Golgi. Collectively, these results emphasize that moderate Golgi pH alterations such as those detected in cancer cells can impair N-glycosylation by inducing selective mislocalization of only certain Golgi glycosyltransferases.
Collapse
Affiliation(s)
- Antti Rivinoja
- Department of Biochemistry and The Finnish Glycoscience Graduate School, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
12
|
Woodard-Grice AV, McBrayer AC, Wakefield JK, Zhuo Y, Bellis SL. Proteolytic shedding of ST6Gal-I by BACE1 regulates the glycosylation and function of alpha4beta1 integrins. J Biol Chem 2008; 283:26364-73. [PMID: 18650447 PMCID: PMC2546544 DOI: 10.1074/jbc.m800836200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/21/2008] [Indexed: 12/11/2022] Open
Abstract
Differentiation of monocytes into macrophages is accompanied by increased cell adhesiveness, due in part to the activation of alpha4beta1 integrins. Here we report that the sustained alpha4beta1 activation associated with macrophage differentiation results from expression of beta1 integrin subunits that lack alpha2-6-linked sialic acids, a carbohydrate modification added by the ST6Gal-I sialyltransferase. During differentiation of U937 monocytic cells and primary human CD14(+) monocytes, ST6Gal-I is down-regulated, leading to beta1 hyposialylation and enhanced alpha4beta1-dependent VCAM-1 binding. Importantly, ST6Gal-I down-regulation results from cleavage by the BACE1 secretase, which we show is dramatically up-regulated during macrophage differentiation. BACE1 up-regulation, ST6Gal-I shedding, beta1 hyposialylation, and alpha4beta1-dependent VCAM-1 binding are all temporally correlated and share the same signaling mechanism (protein kinase C/Ras/ERK). Preventing ST6Gal-I down-regulation (and therefore integrin hyposialylation), through BACE1 inhibition or ST6Gal-I constitutive overexpression, eliminates VCAM-1 binding. Similarly, preventing integrin hyposialylation inhibits a differentiation-induced increase in the expression of an activation-dependent conformational epitope on the beta1 subunit. Collectively, these results describe a novel mechanism for alpha4beta1 regulation and further suggest an unanticipated role for BACE1 in macrophage function.
Collapse
Affiliation(s)
- Alencia V. Woodard-Grice
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - Alexis C. McBrayer
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - John K. Wakefield
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - Ya Zhuo
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - Susan L. Bellis
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| |
Collapse
|
13
|
The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex. J Virol 2008; 82:9477-91. [PMID: 18632859 DOI: 10.1128/jvi.00784-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) ORF7b (also called 7b) protein is an integral membrane protein that is translated from a bicistronic open reading frame encoded within subgenomic RNA 7. When expressed independently or during virus infection, ORF7b accumulates in the Golgi compartment, colocalizing with both cis- and trans-Golgi markers. To identify the domains of this protein that are responsible for Golgi localization, we have generated a set of mutant proteins and analyzed their subcellular localizations by indirect immunofluorescence confocal microscopy. The N- and C-terminal sequences are dispensable, but the ORF7b transmembrane domain (TMD) is essential for Golgi compartment localization. When the TMD of human CD4 was replaced with the ORF7b TMD, the resulting chimeric protein localized to the Golgi complex. Scanning alanine mutagenesis identified two regions in the carboxy-terminal portion of the TMD that eliminated the Golgi complex localization of the chimeric CD4 proteins or ORF7b protein. Collectively, these data demonstrate that the Golgi complex retention signal of the ORF7b protein resides solely within the TMD.
Collapse
|
14
|
Goettsch S, Badea RA, Mueller JW, Wotzlaw C, Schoelermann B, Schulz L, Rabiller M, Bayer P, Hartmann-Fatu C. Human TPST1 Transmembrane Domain Triggers Enzyme Dimerisation and Localisation to the Golgi Compartment. J Mol Biol 2006; 361:436-49. [PMID: 16859706 DOI: 10.1016/j.jmb.2006.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
TPST1 is a human tyrosylprotein sulfotransferase that uses 3'phosphoadenosine-5'phosphosulfate (PAPS) to transfer the sulfate moiety to proteins predominantly designated for secretion. To achieve a general understanding of the cellular role of human tyrosine-directed sulfotransferases, we investigated targeting, structure and posttranslational modification of TPST1. Golgi localisation of the enzyme in COS-7 and HeLa cells was visualised by fluorescence imaging techniques. PNGase treatment and mutational studies determined that TPST1 bears N-linked glycosyl residues exclusively at position Asn60 and Asn262. By alanine mutation of these asparagine residues, we could determine that the N-linked oligosaccharides do not have an influence on Golgi retention of TPST1. In concert with N and C-terminal flanking residues, the transmembrane domain of TPST1 was determined to act in targeting and retention of the enzyme to the trans-Golgi compartment. This domain exhibits a pronounced secondary structure in a lipid environment. Further in vivo FRET studies using the transmembrane domain suggest that the human tyrosylprotein sulfotransferase may be functional as homodimer/oligomer in the trans-Golgi compartment.
Collapse
Affiliation(s)
- Sandra Goettsch
- Department of Structural and Medicinal Biochemistry, University of Duisburg-Essen and Centre for Medicinal Biotechnology, Universitätsstr. 2-5, 45117 Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Münster J, Ziegelmüller P, Spillner E, Bredehorst R. High level expression of monomeric and dimeric human α1,3-fucosyltransferase V. J Biotechnol 2006; 121:448-57. [PMID: 16290306 DOI: 10.1016/j.jbiotec.2005.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 08/15/2005] [Accepted: 08/24/2005] [Indexed: 11/22/2022]
Abstract
alpha3/4-Fucosyltransferases play a crucial role in inflammatory processes and tumor metastasis. While several human fucosyltransferases (FucTs) with different acceptor substrate specificities have been identified, the design of specific inhibitors for therapeutic approaches is hampered by the lack of structural information. In this study, we evaluated the expression of different constructs of human fucosyltransferase V to generate the large amounts required for structural studies. The truncated constructs lacking the transmembrane region and the cytosolic N-terminus, were expressed in baculovirus-infected Trichoplusia ni (Tn) insect cells and in two non-lytic expression systems, stably transfected human HEK 293 and T. ni cells. Since secretion of some glycosyltransferases is controlled by formation of dimeric molecules via disulfide bonds, one of the fucosyltransferase V constructs contained the N-terminal cysteine residue 64 for dimerization, whereas this residue was replaced in the other construct by serine. In both human and insect cells dimerization did not prove to be essential for efficient expression and secretion. On the basis of enzymatic activity, the yield of secreted fucosyltransferase V was approximately 10-fold higher in stably transfected insect cells than in HEK 293 cells. In particular the monomeric form of the enzyme provides a valuable tool for structural analyses to elucidate the fine specifity of fucosyltransferase V-mediated fucosylation of Lewis type glycans.
Collapse
Affiliation(s)
- Jan Münster
- Institut für Biochemie und Lebensmittelchemie, Abteilung für Biochemie und Molekularbiologie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | | | |
Collapse
|
16
|
Chen TLL, Stevens JW, Cole WG, Hecht JT, Vertel BM. Cell-type specific trafficking of expressed mutant COMP in a cell culture model for PSACH. Matrix Biol 2005; 23:433-44. [PMID: 15579310 DOI: 10.1016/j.matbio.2004.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/23/2004] [Accepted: 09/23/2004] [Indexed: 11/26/2022]
Abstract
Pseudoachondroplasia (PSACH) is an autosomal dominant disease that mainly affects cartilage, resulting in skeletal dysplasias and early onset osteoarthritis. PSACH is caused by mutations in the cartilage oligomeric matrix protein (COMP) gene. PSACH chondrocytes accumulate unique COMP-containing lamellar structures in an expanded rough endoplasmic reticulum (rER). Although COMP is also present in tendon extracellular matrix (ECM), it does not accumulate in PSACH tendon cells, suggesting the disease involves a chondrocyte-specific trafficking problem. To investigate putative cell-specific trafficking differences, we generated a cell culture model utilizing expression of the common DeltaD469 COMP mutation. In rat chondrosarcoma (RCS) cells, we find delayed secretion and ER accumulation of DeltaD469 COMP, paralleling the altered trafficking defect in PSACH chondrocytes. Non-chondrocytic COS-1 cells, in contrast, efficiently trafficked and secreted both mutant and wild-type COMP. In chondrocytic cells, expression of DeltaD469 COMP led to ER accumulation of type IX collagen, but did not affect aggrecan trafficking. Endogenous rat COMP accumulated in the ER along with expressed DeltaD469 COMP in a stably expressing RCS clone, consistent with the dominant negative effect of PSACH. When these stably expressing cells were cultured to promote ECM deposition, the small amount of secreted mutant COMP disrupted assembly of the normal fibrillar meshwork and caused irregular aggregates of COMP and type IX collagen to form. Thus, in a new model that reflects the cellular pathology of PSACH, we establish trafficking differences for mutant COMP in chondrocytic and non-chondrocytic cells and demonstrate that mutant COMP interferes with assembly of a normal ECM.
Collapse
Affiliation(s)
- Tung-Ling L Chen
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | |
Collapse
|
17
|
Vainauskas S, Menon AK. Endoplasmic Reticulum Localization of Gaa1 and PIG-T, Subunits of the Glycosylphosphatidylinositol Transamidase Complex. J Biol Chem 2005; 280:16402-9. [PMID: 15713669 DOI: 10.1074/jbc.m414253200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After integration into the endoplasmic reticulum (ER) membrane, ER-resident membrane proteins must be segregated from proteins that are exported to post-ER compartments. Here we analyze how human Gaa1 and PIG-T, two of the five subunits of the ER-localized glycosylphosphatidylinositol transamidase complex, are retained in the ER. Neither protein contains a known ER localization signal. Gaa1 is a polytopic membrane glycoprotein with a cytoplasmic N terminus and a large luminal loop between its first two transmembrane spans; PIG-T is a type I membrane glycoprotein. To simplify our analyses, we studied Gaa1 and PIG-T constructs that could not interact with other subunits of the transamidase. We now show that Gaa1(282), a truncated protein consisting of the first TM domain and luminal loop of Gaa1, is correctly oriented, N-glycosylated, and ER-localized. Removal of a potential ER localization signal in the form of a triple arginine cluster near the N terminus of Gaa1 or Gaa1(282) had no effect on ER localization. Fusion proteins consisting of different elements of Gaa1(282) appended to alpha2,6-sialyltransferase or transferrin receptor could exit the ER, indicating that Gaa1(282), and by implication Gaa1, does not contain any dominant ER-sorting determinants. The data suggest that Gaa1 is passively retained in the ER by a signalless mechanism. In contrast, similar analyses of PIG-T revealed that it is ER-localized because of information in its transmembrane span; fusion of the PIG-T transmembrane span to Tac antigen, a plasma membrane-localized protein, caused the fusion protein to remain in the ER. These data are discussed in the context of models that have been proposed to account for retention of ER membrane proteins.
Collapse
Affiliation(s)
- Saulius Vainauskas
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.
| | | |
Collapse
|
18
|
Müller S, Schöttler M, Schön S, Prante C, Brinkmann T, Kuhn J, Götting C, Kleesiek K. Human xylosyltransferase I: functional and biochemical characterization of cysteine residues required for enzymic activity. Biochem J 2005; 386:227-36. [PMID: 15461586 PMCID: PMC1134786 DOI: 10.1042/bj20041206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/08/2004] [Accepted: 10/04/2004] [Indexed: 11/17/2022]
Abstract
XT-I (xylosyltransferase I) is the initial enzyme in the post-translational biosynthesis of glycosaminoglycan chains in proteoglycans. To gain insight into the structure-function relationship of the enzyme, a soluble active form of human XT-I was expressed in High Five insect cells with an apparent molecular mass of 90 kDa. Analysis of the electrophoretic mobility of the protein under non-reducing and reducing conditions indicated that soluble XT-I does not form homodimers through disulphide bridges. In addition, the role of the cysteine residues was investigated by site-directed mutagenesis combined with chemical modifications of XT-I by N-phenylmaleimide. Replacement of Cys471 or Cys574 with alanine led to a complete loss of catalytic activity, indicating the necessity of these residues for maintaining an active conformation of soluble recombinant XT-I by forming disulphide bonds. On the other hand, N-phenylmaleimide treatment showed no effect on wild-type XT-I but strongly inactivated the cysteine mutants in a dose-dependant manner, indicating that seven intramolecular disulphide bridges are formed in wild-type XT-I. The inhibitory effect of UDP on the XT-I activity of C561A (Cys561-->Ala) mutant enzyme was significantly reduced compared with all other tested cysteine mutants. In addition, we tested for binding to UDP-agarose beads. The inactive mutants revealed no significantly different nucleotide-binding properties. Our study demonstrates that recombinant XT-I is organized as a monomer with no free thiol groups and strongly suggests that the catalytic activity does not depend on the presence of free thiol groups, furthermore, we identified five cysteine residues which are critical for enzyme activity.
Collapse
Affiliation(s)
- Sandra Müller
- Institut für Laboratoriums und Transfusionsmedizin, Herz und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Manuela Schöttler
- Institut für Laboratoriums und Transfusionsmedizin, Herz und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Sylvia Schön
- Institut für Laboratoriums und Transfusionsmedizin, Herz und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Christian Prante
- Institut für Laboratoriums und Transfusionsmedizin, Herz und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Thomas Brinkmann
- Institut für Laboratoriums und Transfusionsmedizin, Herz und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums und Transfusionsmedizin, Herz und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Christian Götting
- Institut für Laboratoriums und Transfusionsmedizin, Herz und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Knut Kleesiek
- Institut für Laboratoriums und Transfusionsmedizin, Herz und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
19
|
Fenteany FH, Colley KJ. Multiple signals are required for alpha2,6-sialyltransferase (ST6Gal I) oligomerization and Golgi localization. J Biol Chem 2004; 280:5423-9. [PMID: 15582997 DOI: 10.1074/jbc.m412396200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A single amino acid difference in the catalytic domain of two isoforms of the alpha2,6-sialyltransferase (ST6Gal I) leads to differences in their trafficking, processing, and oligomerization. The STtyr isoform is transiently localized in the Golgi and is ultimately cleaved and secreted, whereas the STcys isoform is stably localized in the Golgi and is not cleaved and secreted. The stable localization of STcys is correlated with its enhanced ability to oligomerize. To test the hypothesis that multiple signals can mediate Golgi localization and further evaluate the role of oligomerization in the localization process, we evaluated the effects of individually and simultaneously altering the cytosolic tail and transmembrane region of the STcys isoform. We found that the localization, processing, and oligomerization of STcys were not substantially changed when either the core amino acids of the cytosolic tail were deleted or the sequence and length of the transmembrane region were altered. In contrast, when these changes were made simultaneously, the STcys isoform was converted into a form that was processed, secreted, and weakly oligomerized like STtyr. We propose that STcys oligomerization is a secondary event resulting from its concentration in the Golgi via mechanisms independently mediated by its cytosolic tail and transmembrane region.
Collapse
Affiliation(s)
- Fiona H Fenteany
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607, USA
| | | |
Collapse
|
20
|
Affiliation(s)
- W W Young
- Department of Molecular, Cellular, and Craniofacial Biology, School of Dentistry, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
21
|
Jeanneau C, Chazalet V, Augé C, Soumpasis DM, Harduin-Lepers A, Delannoy P, Imberty A, Breton C. Structure-Function Analysis of the Human Sialyltransferase ST3Gal I. J Biol Chem 2004; 279:13461-8. [PMID: 14722111 DOI: 10.1074/jbc.m311764200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All eukaryotic sialyltransferases have in common the presence in their catalytic domain of several conserved peptide regions (sialylmotifs L, S, and VS). Functional analysis of sialylmotifs L and S previously demonstrated their involvement in the binding of donor and acceptor substrates. The region comprised between the sialylmotifs S and VS contains a stretch of four highly conserved residues, with the following consensus sequence (H/y)Y(Y/F/W/h)(E/D/q/g). (Capital letters and lowercase letters indicate a strong or low occurrence of the amino acid, respectively.) The functional importance of these residues and of the conserved residues of motif VS (HX(4)E) was assessed using as a template the human ST3Gal I. Mutational analysis showed that residues His(299) and Tyr(300) of the new motif, and His(316) of the VS motif, are essential for activity since their substitution by alanine yielded inactive enzymes. Our results suggest that the invariant Tyr residue (Tyr(300)) plays an important conformational role mainly attributable to the aromatic ring. In contrast, the mutants W301F, E302Q, and E321Q retained significant enzyme activity (25-80% of the wild type). Kinetic analyses and CDP binding assays showed that none of the mutants tested had any significant effect in nucleotide donor binding. Instead the mutant proteins were affected in their binding to the acceptor and/or demonstrated lower catalytic efficiency. Although the human ST3Gal I has four N-glycan attachment sites in its catalytic domain that are potentially glycosylated, none of them was shown to be necessary for enzyme activity. However, N-glycosylation appears to contribute to the proper folding and trafficking of the enzyme.
Collapse
Affiliation(s)
- Charlotte Jeanneau
- Centre de Recherches sur les Macromolécules Végétales (affiliated to Joseph Fourier University), GDR CNRS n degrees 2590, F-38041 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Képès F, Rambourg A, Satiat-Jeunemaître B. Morphodynamics of the secretory pathway. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 242:55-120. [PMID: 15598467 DOI: 10.1016/s0074-7696(04)42002-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A careful scrutiny of the dynamics of secretory compartments in the entire eukaryotic world reveals many common themes. The most fundamental theme is that the Golgi apparatus and related structures appear as compartments formed by the act of transporting cargo. The second common theme is the pivotal importance for endomembrane dynamics of shifting back and forth the equilibrium between full and perforated cisternae along the pathway. The third theme is the role of a continuous membrane flow in anterograde transfer of molecules from the endoplasmic reticulum through the Golgi apparatus. The last common theme is the self-regulatory balance between anatomical continuities and discontinuities of the endomembrane system. As this balance depends on secretory activity, it provides a source of morphological variability among cell types or, for a given cell type, according to environmental conditions. Beyond this first source of variability, it appears that divergent strategies pave the evolutionary routes in different eukaryotic kingdoms. These divergent strategies primarily affect the levels of stacking, of stabilization, and of clustering of the Golgi apparatus. They presumably underscore a trade-off between versatility and stability to adapt the secretory function to the degree of environmental variability. Nonequilibrium secretory structures would provide yeasts, and plants to a lesser extent, with the required versatility to cope with ever changing environments, by contrast to the stabler milieu intérieur of homeothermic animals.
Collapse
Affiliation(s)
- François Képès
- ATelier de Génomique Cognitive, CNRS UMR 8071/Genopole and Epigenomics Project, Genopole, Evry, France
| | | | | |
Collapse
|
23
|
Yen TY, Macher BA, Bryson S, Chang X, Tvaroska I, Tse R, Takeshita S, Lew AM, Datti A. Highly conserved cysteines of mouse core 2 beta1,6-N-acetylglucosaminyltransferase I form a network of disulfide bonds and include a thiol that affects enzyme activity. J Biol Chem 2003; 278:45864-81. [PMID: 12954635 DOI: 10.1074/jbc.m303851200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Core 2 beta1,6-N-acetylglucosaminyltransferase I (C2GnT-I) plays a pivotal role in the biosynthesis of mucin-type O-glycans that serve as ligands in cell adhesion. To elucidate the three-dimensional structure of the enzyme for use in computer-aided design of therapeutically relevant enzyme inhibitors, we investigated the participation of cysteine residues in disulfide linkages in a purified murine recombinant enzyme. The pattern of free and disulfide-bonded Cys residues was determined by liquid chromatography/electrospray ionization tandem mass spectrometry in the absence and presence of dithiothreitol. Of nine highly conserved Cys residues, under both conditions, one (Cys217) is a free thiol, and eight are engaged in disulfide bonds, with pairs formed between Cys59-Cys413, Cys100-Cys172, Cys151-Cys199, and Cys372-Cys381. The only non-conserved residue within the beta1,6-N-acetylglucosaminyltransferase family, Cys235, is also a free thiol in the presence of dithiothreitol; however, in the absence of reductant, Cys235 forms an intermolecular disulfide linkage. Biochemical studies performed with thiolreactive agents demonstrated that at least one free cysteine affects enzyme activity and is proximal to the UDP-GlcNAc binding site. A Cys217 --> Ser mutant enzyme was insensitive to thiol reactants and displayed kinetic properties virtually identical to those of the wild-type enzyme, thereby showing that Cys217, although not required for activity per se, represents the only thiol that causes enzyme inactivation when modified. Based on the pattern of free and disulfide-linked Cys residues, and a method of fold recognition/threading and homology modeling, we have computed a three-dimensional model for this enzyme that was refined using the T4 bacteriophage beta-glucosyltransferase fold.
Collapse
Affiliation(s)
- Ten-Yang Yen
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yang X, Qin W, Lehotay M, Toki D, Dennis P, Schutzbach JS, Brockhausen I. Soluble human core 2 beta6-N-acetylglucosaminyltransferase C2GnT1 requires its conserved cysteine residues for full activity. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1648:62-74. [PMID: 12758148 DOI: 10.1016/s1570-9639(03)00105-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human UDP-GlcNAc: Galbeta1-3GalNAc- (GlcNAc to GalNAc) beta1,6-GlcNAc-transferase (C2GnT1) is a member of a group of beta6-GlcNAc-transferases that belongs to CAZy family 14. One of the striking features of these beta6-GlcNAc-transferases is the occurrence of nine completely conserved cysteine residues that are located throughout the catalytic domain. We have expressed the soluble catalytic domain of human C2GnT1 in insect cells, and isolated active enzyme as a secreted protein. beta-Mercaptoethanol (beta-ME) and dithiothreitol (DTT) were found to stimulate the enzyme activity up to 20-fold, indicating a requirement for a reduced sulfhydryl for activity. When the enzyme was subjected to nonreducing PAGE, the migration of the protein was identical to the migration in reducing gels, demonstrating the absence of intermolecular disulfide bonds. This suggested that the monomer is the active form of the enzyme. Sulfhydryl reagents such as 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) and N-ethylmaleimide (NEM) inactivated the enzyme, and the inactivation was partially prevented by prior addition of donor or acceptor substrate and by sulfhydryl reducing agents. We therefore investigated the role of all nine conserved cysteine residues in enzyme stability and activity by site-directed mutagenesis where individual cysteine residues were changed to serine. All of the mutants were expressed as soluble proteins. Seven of the Cys mutants were found to be inactive, while C100S and C217S mutants had 10% and 41% activity, respectively, when compared to the wild-type enzyme. Wild-type and C217S enzymes had similar K(M) and V(max) values for acceptor substrate Galbeta1-3GalNAcalpha-p-nitrophenyl (GGApnp), but the K(M) value for UDP-GlcNAc was higher for C217S than for the wild-type enzyme. In contrast to wild-type enzyme, C217S was not stimulated by reducing agents and was not inhibited by sulfhydryl specific reagents. These results suggest that Cys-217 is a free sulfhydryl in active wild-type enzyme and that Cys-217, although not required for activity, is in or near the active site of the protein. Since seven of the mutations were totally inactive, it is likely that these seven Cys residues play a role in maintaining an active conformation of soluble C2GnT1 by forming disulfide bonds. These bonds are only broken at high concentrations of disulfide reducing agents.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Medicine, Human Mobility Research Center, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Krzewinski-Recchi MA, Julien S, Juliant S, Teintenier-Lelièvre M, Samyn-Petit B, Montiel MD, Mir AM, Cerutti M, Harduin-Lepers A, Delannoy P. Identification and functional expression of a second human beta-galactoside alpha2,6-sialyltransferase, ST6Gal II. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:950-61. [PMID: 12603328 DOI: 10.1046/j.1432-1033.2003.03458.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BLAST analysis of the human and mouse genome sequence databases using the sequence of the human CMP-sialic acid:beta-galactoside alpha-2,6-sialyltransferase cDNA (hST6Gal I, EC2.4.99.1) as a probe allowed us to identify a putative sialyltransferase gene on chromosome 2. The sequence of the corresponding cDNA was also found as an expressed sequence tag of human brain. This gene contained a 1590 bp open reading frame divided in five exons and the deduced amino-acid sequence didn't correspond to any sialyltransferase already known in other species. Multiple sequence alignment and subsequent phylogenic analysis showed that this new enzyme belonged to the ST6Gal subfamily and shared 48% identity with hST6Gal-I. Consequently, we named this new sialyltransferase ST6Gal II. A construction in pFlag vector transfected in COS-7 cells gave raise to a soluble active form of ST6Gal II. Enzymatic assays indicate that the best acceptor substrate of ST6Gal II was the free disaccharide Galbeta1-4GlcNAc structure whereas ST6Gal I preferred Galbeta1-4GlcNAc-R disaccharide sequence linked to a protein. The alpha2,6-linkage was confirmed by the increase of Sambucus nigra agglutinin-lectin binding to the cell surface of CHO transfected with the cDNA encoding ST6Gal II and by specific sialidases treatment. In addition, the ST6Gal II gene showed a very tissue specific pattern of expression because it was found essentially in brain whereas ST6Gal I gene is ubiquitously expressed.
Collapse
Affiliation(s)
- Marie-Ange Krzewinski-Recchi
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS-USTL 8576, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Todeschini AR, Girard MF, Wieruszeski JM, Nunes MP, DosReis GA, Mendonca-Previato L, Previato JO. trans-Sialidase from Trypanosoma cruzi binds host T-lymphocytes in a lectin manner. J Biol Chem 2002; 277:45962-8. [PMID: 12237289 DOI: 10.1074/jbc.m203185200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, expresses on its surface an uncommon membrane-bound sialidase, known as trans-sialidase. trans-Sialidase is the product of a multigene family encoding both active and inactive proteins. We report here that an inactive mutant of trans-sialidase physically interacts with CD4(+) T cells. Using a combination of flow cytometry and immunoprecipitation techniques, we identified the sialomucin CD43 as a counterreceptor for trans-sialidase on CD4(+) T cells. Using biochemical, immunological, and spectroscopic approaches, we demonstrated that the inactive trans-sialidase is a sialic acid-binding protein displaying the same specificity required by active trans-sialidase. Taken together, these results suggest that inactive members of the trans-sialidase family can physically interact with sialic acid-containing molecules on host cells and could play a role in host cell/T. cruzi interaction.
Collapse
Affiliation(s)
- Adriane R Todeschini
- Departamento de Bioquimica, Instituto de Biologia, 20551-013 Universidade do Estado do Rio de Janeiro, Brasil
| | | | | | | | | | | | | |
Collapse
|
27
|
Rodrigues ML, Dobroff ASS, Couceiro JNDSS, Alviano CS, Schauer R, Travassos LR. Sialylglycoconjugates and sialyltransferase activity in the fungus Cryptococcus neoformans. Glycoconj J 2002; 19:165-73. [PMID: 12815227 DOI: 10.1023/a:1024245606607] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen associated with systemic mycoses in up to 10% of AIDS patients. C. neoformans yeasts express sialic acids on the cell wall, where they play an anti-phagocytic role, and may represent a virulence factor at the initial phase of infection. Since the nature of the sialic acid-carrying components is undefined in C. neoformans, our aim in the present work was to identify sialylated molecules in this fungus and study the sialylation process. C. neoformans yeast forms were cultivated in a chemically defined medium free of sialic acids, to search for autologous sialylglycoconjugates. Sialylated glycolipids were not detected. Two glycoproteins with molecular masses of 38 and 67 kDa were recognized by Sambucus nigra agglutinin, an alpha2,6-sialic acid-specific lectin. The 67 kDa glycoprotein also interacted with Influenza C virus, but not with Limax flavus agglutinin, suggesting the presence of the 9-O-acetylated sialic acid derivative as a constituent of the oligosaccharide chains. A partially purified protein fraction from cryptococcal yeast forms was able to transfer sialic acid from CMP-Neu5Ac to both N-(acetyl-1-(14)C)-lactosamine and asialofetuin. Additional evidence for a sialyltransferase in C. neoformans was obtained through the reactivity of fungal proteins with rabbit anti-rat alpha2,6 sialyltransferase polyclonal antibody. Our results indicate that sialic acids in C. neoformans are linked to glycoproteins, which are sialylated by the action of a fungal sialyltransferase. This is the first demonstration of this biosynthetic step in pathogenic fungi.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Glycosyltransferases involved in N- and O-glycan chain elongation and termination are localized in the Golgi apparatus. Early evidence in support of this rule was based on fractionation techniques and was corroborated by numerous immunocytochemical studies. Usually these studies were confined to cultured cell lines exhibiting little differentiation features, such as HeLa cells. However, localization studies conducted in primary cell cultures (e.g., human umbilical vein endothelial cells), cells obtained ex vivo (e.g., sperm cells), and tissue sections (e.g., intestinal, renal, or hepatic tissue) often reveal ectopic localizations of glycosyltransferases usually at post-Golgi sites, including the plasma membrane. Hence, extracellular cues resulting from specific adhesion sites may influence post-Golgi trafficking routes, which may be reflected by ectopic localization of Golgi enzymes.
Collapse
Affiliation(s)
- Eric G Berger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
29
|
Ju T, Cummings RD, Canfield WM. Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J Biol Chem 2002; 277:169-77. [PMID: 11673471 DOI: 10.1074/jbc.m109056200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The O-linked oligosaccharides (O-glycans) in mammalian glycoproteins are classified according to their core structures. Among the most common is the core 1 disaccharide structure consisting of Galbeta1-->3GalNAcalpha1-->Ser/Thr, which is also the precursor for many extended O-glycan structures. The key enzyme for biosynthesis of core 1 O-glycan from the precursor GalNAc-alpha-Ser/Thr is UDP-Gal:GalNAc-alpha-Ser/Thr beta3-galactosyltransferase (core1 beta3-Gal-T). Core 1 beta3-Gal-T activity, which requires Mn2+, was solubilized from rat liver membranes and purified 71,034-fold to apparent homogeneity (>90% purity) in 5.7% yield by ion exchange chromatography on SP-Sepharose, affinity chromatography on immobilized asialo-bovine submaxillary mucin, and gel filtration chromatography on Superose 12. The purified enzyme is free of contaminating glycosyltransferases. Two peaks of core 1 beta3-Gal-T activity were identified in the final step on Superose 12. One peak of activity contained protein bands on non-reducing SDS-PAGE of approximately 84- and approximately 86-kDa disulfide-linked dimers, whereas the second peak of activity contained monomers of approximately 43 kDa. Reducing SDS-PAGE of these proteins gave approximately 42- and approximately 43-kDa monomers. Both the 84/86-kDa dimers and the 42/43-kDa monomers have the same novel N-terminal sequence. The purified enzyme, which is remarkably stable, has an apparent Km for UDP-Gal of 630 microm and an apparent Vmax of 206 micromol/mg/h protein using GalNAcalpha1-O-phenyl as the acceptor. The reaction product was generated using asialo-bovine submaxillary mucin as an acceptor; treatment with O-glycosidase generated the expected disaccharide Galbeta1-->3GalNAc. These studies demonstrate that activity of the core 1 beta1,3-Gal-T from rat liver is contained within a single, novel, disulfide-bonded, dimeric enzyme.
Collapse
Affiliation(s)
- Tongzhong Ju
- W. K. Warren Medical Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
30
|
Wang F, Goto M, Kim YS, Higashi M, Imai K, Sato E, Yonezawa S. Altered GalNAc-alpha-2,6-sialylation compartments for mucin-associated sialyl-Tn antigen in colorectal adenoma and adenocarcinoma. J Histochem Cytochem 2001; 49:1581-92. [PMID: 11724906 DOI: 10.1177/002215540104901212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sialyl-Tn (STn), a mucin-associated disaccharide antigen carried by apomucins such as MUC2, plays an important role in tumor biology. However, little is known about the subcellular localization and compartments involved in STn synthesis. In this study we used immunoelectron microscopy to localize STn and MUC2 apomucin in human colorectal tissues. MUC2 apomucin was localized predominantly in the rough endoplasmic reticulum (RER) in normal colorectal mucosa (n=6), colorectal adenoma (n=8), and colorectal adenocarcinoma (n=10). STn, recognized by monoclonal antibody TKH2, was not readily detectable in normal colorectal mucosa but becomes manifest in both trans-Golgi apparatus and mucin droplets in colorectal adenoma. In colorectal adenocarcinoma, STn was localized not only in late but also in early Golgi compartments, and particularly in some RER lumens. Furthermore, electron microscopic in situ hybridization revealed that gold particles representing MUC2 mRNA are primarily localized over the RER. Our findings indicate that in colorectal adenoma STn sialylation takes place in the trans-Golgi apparatus, whereas in colorectal cancer STn sialylation occurs in all the Golgi compartments and in the RER.
Collapse
Affiliation(s)
- F Wang
- Department of Pathology, Kagoshima University Faculty of Medicine, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Dall'Olio F, Chiricolo M, Mariani E, Facchini A. Biosynthesis of the cancer-related sialyl-alpha 2,6-lactosaminyl epitope in colon cancer cell lines expressing beta-galactoside alpha 2,6-sialyltransferase under a constitutive promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5876-84. [PMID: 11722575 DOI: 10.1046/j.0014-2956.2001.02536.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An elevation of beta-galactoside alpha 2,6-sialyltransferase (ST6Gal.I) enzyme activity and an increased alpha 2,6-sialylation of cell membranes are among the most prominent glycosylation changes associated with colon cancer; both modifications correlate with a worse prognosis. In our previous studies, we have frequently observed a discrepancy between the ST6Gal.I level within a colon cancer sample or cell line and the respective level of reactivity with the alpha 2,6-sialyl-specific lectin from Sambucus nigra (SNA). In this study, we have investigated quantitatively the biosynthesis of the sialyl-alpha 2,6-lactosaminyl epitope in two colon cancer cell types expressing the ST6Gal.I cDNA under the control of a constitutive promoter. By measuring the amount of ST6Gal.I mRNA using competitive RT-PCR, the expression of alpha 2,6-sialylated lactosaminic structures with SNA and anti-CDw75 Ig, and the presence of unsubstituted lactosaminic termini by Erythrina cristagalli lectin, we reached the following conclusions: (a) a high proportion of the cell surface lactosaminic termini remains unsubstituted, even in the presence of a very high ST6Gal.I activity. This proportion is strongly dependent on the cell type; (b) ST6Gal.I-transfected colon cancer cells do not express the CDw75 epitope; (c) the level of ST6Gal.I enzyme activity only partially correlates with the mRNA level; (d) despite the control by a constitutive promoter, the ST6Gal.I mRNA is not constantly expressed over time; and (e) a very large portion of the enzyme molecules is secreted in the extracellular milieu. These results indicate that post-transcriptional and post-translational mechanisms play a pivotal role in the control of alpha 2,6-sialylation in colon cancer cells.
Collapse
Affiliation(s)
- F Dall'Olio
- Dipartimento di Patologia Sperimentale, Università di Bologna, Italy.
| | | | | | | |
Collapse
|
32
|
Seo NS, Hollister JR, Jarvis DL. Mammalian glycosyltransferase expression allows sialoglycoprotein production by baculovirus-infected insect cells. Protein Expr Purif 2001; 22:234-41. [PMID: 11437599 DOI: 10.1006/prep.2001.1432] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The baculovirus-insect cell expression system is widely used to produce recombinant mammalian glycoproteins, but the glycosylated end products are rarely authentic. This is because insect cells are typically unable to produce glycoprotein glycans containing terminal sialic acid residues. In this study, we examined the influence of two mammalian glycosyltransferases on N-glycoprotein sialylation by the baculovirus-insect cell system. This was accomplished by using a novel baculovirus vector designed to express a mammalian alpha2,6-sialyltransferase early in infection and a new insect cell line stably transformed to constitutively express a mammalian beta1,4-galactosyltransferase. Various biochemical assays showed that a foreign glycoprotein was sialylated by this virus-host combination, but not by a control virus-host combination, which lacked the mammalian glycosyltransferase genes. Thus, this study demonstrates that the baculovirus-insect cell expression system can be metabolically engineered for N-glycoprotein sialylation by the addition of two mammalian glycosyltransferase genes.
Collapse
Affiliation(s)
- N S Seo
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, 82071-3944, USA
| | | | | |
Collapse
|
33
|
Qian R, Chen C, Colley KJ. Location and mechanism of alpha 2,6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing. J Biol Chem 2001; 276:28641-9. [PMID: 11356854 DOI: 10.1074/jbc.m103664200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A significant proportion of the alpha2,6-sialyltransferase of protein Asn-linked glycosylation (ST6Gal I) forms disulfide-bonded dimers that exhibit decreased activity, but retain the ability to bind asialoglycoprotein substrates. Here, we have investigated the subcellular location and mechanism of ST6Gal I dimer formation, as well as the role of Cys residues in the enzyme's trafficking, localization, and catalytic activity. Pulse-chase analysis demonstrated that the ST6Gal I disulfide-bonded dimer forms in the endoplasmic reticulum. Mutagenesis experiments showed that Cys-24 in the transmembrane region is required for dimerization, while catalytic domain Cys residues are required for trafficking and catalytic activity. Replacement of Cys-181 and Cys-332 generated proteins that are largely retained in the endoplasmic reticulum and minimally active or inactive, respectively. Replacement of Cys-350 or Cys-361 inactivated the enzyme without compromising its localization or processing, suggesting that these amino acids are part of the enzyme's active site. Replacement of Cys-139 or Cys-403 generated proteins that are catalytically active and appear to be more stably localized in the Golgi, since they exhibited decreased cleavage and secretion. The Cys-139 mutant also exhibited increased dimer formation suggesting that ST6Gal I dimers may be critical in the oligomerization process involved in stable ST6Gal I Golgi localization.
Collapse
Affiliation(s)
- R Qian
- Department of Biochemistry and Molecular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
34
|
Kitazume-Kawaguchi S, Kabata S, Arita M. Differential biosynthesis of polysialic or disialic acid Structure by ST8Sia II and ST8Sia IV. J Biol Chem 2001; 276:15696-703. [PMID: 11278664 DOI: 10.1074/jbc.m010371200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ST8Sia II (STX) and ST8Sia IV (PST) are polysialic acid (polySia) synthases that catalyze polySia formation of neural cell adhesion molecule (NCAM) in vivo and in vitro. It still remains unclear how these structurally similar enzymes act differently in vivo. In the present study, we performed the enzymatic characterization of ST8Sia II and IV; both ST8Sia II and IV have pH optima of 5.8-6.1 and have no requirement of metal ions. Because the pH dependence of ST8Sia II and IV enzyme activities and the pK profile of His residues are similar, we hypothesized that a histidine residue would be involved in their catalytic activity. There is a conserved His residue (cf. His(348) in ST8Sia II and His(331) in ST8Sia IV, respectively) within the sialyl motif VS in all sialyltransferase genes cloned to date. Mutant ST8Sia II and IV enzymes in which this His residue was changed to Lys showed no detectable enzyme activity, even though they were folded correctly and could bind to CDP-hexanolamine, suggesting the importance of the His residue for their catalytic activity. Next, the degrees of polymerization of polySia in NCAM catalyzed by ST8Sia II and IV were compared. ST8Sia IV catalyzed larger polySia formation of NCAM than ST8Sia II. We also analyzed the (auto)polysialylated enzymes themselves. Interestingly, when ST8Sia II or IV itself was sialylated under conditions for polysialylation, the disialylated compound was the major product, even though polysialylated compounds were also observed. These results suggested that both ST8Sia II and IV catalyze polySia synthesis toward preferred acceptor substrates such as NCAM, whereas they mainly catalyze disialylation, similarly to ST8Sia III, toward unfavorable substrates such as enzyme themselves.
Collapse
Affiliation(s)
- S Kitazume-Kawaguchi
- Glycobiology Research Group, Frontier Research Program, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
35
|
Datta AK, Chammas R, Paulson JC. Conserved cysteines in the sialyltransferase sialylmotifs form an essential disulfide bond. J Biol Chem 2001; 276:15200-7. [PMID: 11278697 DOI: 10.1074/jbc.m010542200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sialyltransferase gene family is comprised of 16 cloned enzymes. All members contain two conserved protein domains, termed the S- and L-sialylmotifs, that participate in substrate binding. Of only six invariant amino acids, two are cysteines, with one found in each sialylmotif. Although the recombinant soluble form of ST6Gal I has six cysteines, quantitative analysis indicated the presence of only one disulfide linkage, and thiol reducing agents dithiothreitol and beta-mercaptoethanol inactivated the enzyme. Analysis of site-directed mutants showed that alanine or serine mutants of invariant Cys(181) or Cys(332) exhibit no detectable activity, either by direct assay or by staining of the transfected cells with Sambucus nigra agglutinin, which recognizes the product NeuAcalpha2,6Galbeta1,4GlcNAc on glycoproteins. In contrast, alanine mutations of charged residues adjacent to either cysteine showed little or no effect on enzyme activity. Immunofluorescence microscopy showed that although the wild type sialyltransferase is properly localized in the Golgi apparatus, the inactive cysteine mutants are retained in the endoplasmic reticulum. The results suggest that the invariant cysteine residues in the L- and S-sialylmotifs participate in the formation of an intradisulfide linkage that is essential for proper conformation and activity of ST6Gal I.
Collapse
Affiliation(s)
- A K Datta
- Department of Molecular Biology and Molecular and Experimental Medicine, Scripps Research Institute, San Diego, California 92037, USA
| | | | | |
Collapse
|
36
|
Abstract
To investigate the tissue distribution and subcellular localization of ST3GalV (CMP-NeuAc:lactosylceramide alpha2,3 sialyltransferase/GM3 synthase) in the adult mouse, we generated two antisera against mouse ST3GalV that were designated CS2 (directed against amino acids K227-I272) and CS14 (directed against amino acids D308-H359). We previously reported that CS2 antiserum stains medial and trans-Golgi cisternae in all cell types investigated. In neural tissue, however, CS14 antiserum reveals a subpopulation of ST3GalV with a subcellular distribution complementary to CS2 antiserum. CS14 antiserum strongly stains axons in cortical, cerebellar, brainstem, and spinal cord tissue sections. The subcellular localization of neuronal ST3GalV is maintained in primary cultures of rat hippocampal neurons and in PC12 cells. In PC12 cells, ST3GalV localization evolves during NGF-induced differentiation such that a pool of enzyme leaves the Golgi for a distal compartment in conjunction with neurite outgrowth. In PC12 cells transfected with an epitope-tagged form of ST3GalV, staining for the epitope tag coincides with expression of endogenous enzyme. The non-Golgi pool of ST3GalV does not colocalize with markers for the trans-Golgi network, endosome, or synaptic vesicles, nor is it detected on the cell surface. Distinct subpopulations of ST3GalV imply that ganglioside synthesis can occur outside of the Golgi or, alternatively, that a portion of the total ST3GalV pool subserves a nonenzymatic function. Significantly fewer transfected cells were found in PC12 cultures treated with plasmid encoding ST3GalV than in cultures treated with control plasmid, indicating that the expression of ST3GalV in excess of endogenous levels results in either cell death or a decreased rate of cell division.
Collapse
|
37
|
Chen TL, Wang PY, Luo W, Gwon SS, Flay NW, Zheng J, Guo C, Tanzer ML, Vertel BM. Aggrecan domains expected to traffic through the exocytic pathway are misdirected to the nucleus. Exp Cell Res 2001; 263:224-35. [PMID: 11161721 DOI: 10.1006/excr.2000.5093] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this article, we report the misdirected targeting of expressed aggrecan domains. Aggrecan, the chondroitin sulfate (CS) proteoglycan of cartilage, normally progresses through the exocytic pathway. Proteins expressed from constructs containing the putative aggrecan signal sequence (i.e., the first 23 N-terminal amino acids), specified globular (G) domains G1 and/or G3, and a segment of the CS domain were detected in the endoplasmic reticulum (ER) and Golgi complex. Although proteins expressed from constructs containing the putative signal and G3, but lacking G1, were detected to a limited extent in the secretory pathway, they primarily accumulated in nuclei. Discrete nuclear inclusions were seen when G3 was expressed. Immunoelectron microscopic characterization of the inclusions suggested the association of nuclear G3 with other proteins. When signal-free G3 constructs and those with G3 immediately following the N-terminal signal were expressed, abundant dispersed accumulations filled the nucleoplasm. The data suggest first, that signal-free and signal-containing G3 proteins enter the nucleus from the cytosol, and second, that the entry of signal-containing G3 proteins into the ER lumen is inefficient. Hsp25, Hsp70, and ubiquitin were colocalized with nuclear G3, indicating the involvement of chaperones and the degradative machinery in the formation and/or attempted disposal of the abnormal nuclear inclusions. Overall, the results focus attention on (1) intracellular protein trafficking at the ER membrane and the nuclear envelope and (2) chaperone interactions and mechanisms leading to abnormal protein deposition in the nucleus.
Collapse
Affiliation(s)
- T L Chen
- Department of Cell Biology & Anatomy, FUHS/The Chicago Medical School, North Chicago, Illinois, 60064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li J, Yen TY, Allende ML, Joshi RK, Cai J, Pierce WM, Jaskiewicz E, Darling DS, Macher BA, Young WW. Disulfide bonds of GM2 synthase homodimers. Antiparallel orientation of the catalytic domains. J Biol Chem 2000; 275:41476-86. [PMID: 11018043 DOI: 10.1074/jbc.m007480200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GM2 synthase is a homodimer in which the subunits are joined by lumenal domain disulfide bond(s). To define the disulfide bond pattern of this enzyme, we analyzed a soluble form by chemical fragmentation, enzymatic digestion, and mass spectrometry and a full-length form by site-directed mutagenesis. All Cys residues of the lumenal domain of GM2 synthase are disulfide bonded with Cys(429) and Cys(476) forming a disulfide-bonded pair while Cys(80) and Cys(82) are disulfide bonded in combination with Cys(412) and Cys(529). Partial reduction to produce monomers converted Cys(80) and Cys(82) to free thiols while the Cys(429) to Cys(476) disulfide remained intact. CNBr cleavage at amino acid 330 produced a monomer-sized band under nonreducing conditions which was converted upon reduction to a 40-kDa fragment and a 24-kDa myc-positive fragment. Double mutation of Cys(80) and Cys(82) to Ser produced monomers but not dimers. In summary these results demonstrate that Cys(429) and Cys(476) form an intrasubunit disulfide while the intersubunit disulfides formed by both Cys(80) and Cys(82) with Cys(412) and Cys(529) are responsible for formation of the homodimer. This disulfide bond arrangement results in an antiparallel orientation of the catalytic domains of the GM2 synthase homodimer.
Collapse
Affiliation(s)
- J Li
- Department of Molecular, Cellular, and Craniofacial Biology, School of Dentistry, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Baldwin TA, Gogela-Spehar M, Ostergaard HL. Specific isoforms of the resident endoplasmic reticulum protein glucosidase II associate with the CD45 protein-tyrosine phosphatase via a lectin-like interaction. J Biol Chem 2000; 275:32071-6. [PMID: 10921916 DOI: 10.1074/jbc.m003088200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that CD45 physically associates with the endoplasmic reticulum processing enzyme glucosidase II (GII). GII consists of the catalytic alpha-chain and an associated beta-chain. To gain insight into the basis of the association between CD45 and GII, we examined the biochemical requirements for the interaction. We show that the alpha-subunit is essential for the interaction. Interestingly, only a higher molecular weight form of GIIalpha is capable of associating with CD45 in a competitive situation where multiple GIIalpha isoforms are expressed. Further, transfection studies demonstrate that only isoforms containing the alternatively spliced sequence Box A1 are capable of binding CD45, although all isoforms are catalytically active. The interaction between CD45 and GII is dependent on the active site of GII, is mediated through the carbohydrate on CD45, and can be inhibited with mannose. Taken together, these results suggest that GIIalpha acts as a lectin and binds to CD45 in an exon-dependent manner. This lectin activity of GII may be a novel mechanism for the regulation of CD45 biology and play a role in immune function, possibly by regulating CD45 glycosylation.
Collapse
Affiliation(s)
- T A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2S2 Alberta, Canada
| | | | | |
Collapse
|
40
|
Abstract
Sialylation represents one of the most frequently occurring terminations of the oligosaccharide chains of glycoproteins and glycolipids. Sialic acid is commonly found alpha2,3- or alpha2,6-linked to galactose (Gal), alpha2,6-linked to N-acetylgalactosamine (GalNAc) or alpha2,8-linked to another sialic acid. The biosynthesis of the various linkages is mediated by the different members of the sialyltransferase family. The addition of sialic acid in alpha2,6-linkage to the galactose residue of lactosamine (type 2 chains) is catalyzed by beta-galactoside alpha2,6-sialyltransferase (ST6Gal.I). Although expressed by a single gene, this enzyme shows a complex pattern of regulation which allows its tissue- and stage-specific modulation. The cognate oligosaccharide structure, NeuAcalpha2,6Galbeta1,4GlcNAc, is widely distributed among tissues and is involved in biological processes such as the regulation of the immune response and the progression of colon cancer. This review summarizes the current knowledge on the biochemistry of ST6Gal.I and on the functional role of the sialyl-alpha2,6-lactosaminyl structure.
Collapse
Affiliation(s)
- F Dall'Olio
- Dipartimento di Patologia Sperimentale, Università di Bologna, Italy
| |
Collapse
|
41
|
Schnyder-Candrian S, Borsig L, Moser R, Berger EG. Localization of alpha 1,3-fucosyltransferase VI in Weibel-Palade bodies of human endothelial cells. Proc Natl Acad Sci U S A 2000; 97:8369-74. [PMID: 10900002 PMCID: PMC26954 DOI: 10.1073/pnas.97.15.8369] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1999] [Accepted: 05/15/2000] [Indexed: 12/16/2022] Open
Abstract
Surface glycosylation of endothelial cells is relevant to various processes including coagulation, inflammation, metastasis, and lymphocyte homing. One of the essential sugars involved in these processes is fucose linked alpha1-->3 to N-acetylglucosamine. A family of alpha1,3-fucosyltransferases (FucTs) called FucT-III, IV, V, VI, VII, and IX is able to catalyze such fucosylations. Reverse transcription-PCR analysis revealed that human umbilical vein endothelial cells express all of the FucTs except FucT-IX. The predominant activity, as inferred by acceptor specificity of enzyme activity in cell lysates, is compatible with the presence of FucT-VI. By using an antibody to recombinant soluble FucT-VI, the enzyme colocalized with beta4-galactosyltransferase-1 to the Golgi apparatus. By using a polyclonal antiserum raised against a 17-aa peptide of the variable (stem) region of the FucT-VI, immunocytochemical staining of FucT-VI was restricted to Weibel-Palade bodies, as determined by colocalization with P-selectin and von Willebrand factor. SDS/PAGE immunoblotting and amino acid sequencing of internal peptides confirmed the identity of the antigen isolated by the peptide-specific antibody as FucT-VI. Storage of a fucosyltransferase in Weibel-Palade bodies suggests a function independent of Golgi-associated glycosylation.
Collapse
Affiliation(s)
- S Schnyder-Candrian
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
42
|
Chen C, Ma J, Lazic A, Backovic M, Colley KJ. Formation of insoluble oligomers correlates with ST6Gal I stable localization in the golgi. J Biol Chem 2000; 275:13819-26. [PMID: 10788504 DOI: 10.1074/jbc.275.18.13819] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ST6Gal I is a sialyltransferase that functions in the late Golgi to modify the N-linked oligosaccharides of glycoproteins. The ST6Gal I is expressed as two isoforms with a single amino acid difference in their catalytic domains. The STcys isoform is stably retained in the cell and is predominantly found in the Golgi, whereas the STtyr isoform is only transiently localized in the Golgi and is cleaved and secreted from a post-Golgi compartment. These two ST6Gal I isoforms were used to explore the role of the bilayer thickness mechanism and oligomerization in Golgi localization. Analysis of STcys and STtyr proteins with longer transmembrane regions suggested that the bilayer thickness mechanism is not the predominant mechanism used for ST6Gal I Golgi localization. In contrast, the formation and quantity of Triton X-100-insoluble oligomers was correlated with the stable or transient localization of the ST6Gal I isoforms in the Golgi. Nearly 100% of the STcys and only 13% of the STtyr were found as Triton-insoluble oligomers when Golgi membranes of COS-1 cells expressing these proteins were solubilized at pH 6.3, the pH of the late Golgi. In contrast, both proteins were found in the soluble fraction when these membranes were solubilized at pH 8.0. Analysis of other mutants suggested that a conformational change in the catalytic domain rather than increased disulfide bond-based cross-linking is the basis for the increased ability of STcys protein to form oligomers and the stable localization of STcys protein in the Golgi.
Collapse
Affiliation(s)
- C Chen
- Department of Biochemistry, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
43
|
Daniotti JL, Martina JA, Giraudo CG, Zurita AR, Maccioni HJ. GM3 alpha2,8-sialyltransferase (GD3 synthase): protein characterization and sub-golgi location in CHO-K1 cells. J Neurochem 2000; 74:1711-20. [PMID: 10737630 DOI: 10.1046/j.1471-4159.2000.0741711.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GD3 synthase (Sial-T2) is a key enzyme of ganglioside synthesis that, in concert with GM2 synthase (GalNAc-T), regulates the ratio of a- and b-pathway gangliosides. In this work, we study the sub-Golgi location of an epitope-tagged version of chicken Sial-T2 transfected to CHO-K1 cells. The expressed protein was enzymatically active both in vitro and in vivo and showed a molecular mass of approximately 47 or approximately 95 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence or absence of, respectively, beta-mercaptoethanol. The 95-kDa form of Sial-T2 was also detected if the protein was retained in the endoplasmic reticulum (ER) due to impaired glycosylation, indicating that it was formed in the ER. Confocal immunofluorescence microscopy showed Sial-T2 localized to the Golgi complex and, within the organelle, partially co-localizing with the mannose-6-phosphate receptor, a marker of the trans-Golgi network (TGN). In cells treated with brefeldin A, a major fraction of Sial-T2 redistributed to the ER, even under controlled expression to control for mislocalization due to protein overloading. In experiments of incorporation of sugars into endogenous acceptors of Golgi membranes in vitro, GD3 molecules formed by incubation with CMP-NeuAc were converted to GD2 upon incubation with UDP-GalNAc. These results indicate that Sial-T2 localizes mainly to the proximal Golgi, although a fraction is located in the TGN functionally coupled to GalNAc-T. Consistent with this, most of the enzyme was in an endoglycosidase H (Endo-H)-sensitive, neuraminidase (NANase)-insensitive form. A minor secreted form lacking approximately 40 amino acids was Endo-H-resistant and NANase-sensitive, indicating that the cells were able to process N-glycans to Endo-H-resistant forms. Taken together, the results of these biochemical and immunocytochemical experiments indicate that in CHO-K1 cells, most Sial-T2 localizes in the proximal Golgi and that a functional fraction is also present in the TGN.
Collapse
Affiliation(s)
- J L Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Argentina
| | | | | | | | | |
Collapse
|
44
|
Menon AK, Hrafnsdóttir S. Specific proteins are required to translocate phosphatidylcholine bidirectionally across the endoplasmic reticulum. Curr Biol 2000; 10:241-52. [PMID: 10712902 DOI: 10.1016/s0960-9822(00)00356-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND A long-standing problem in understanding the mechanism by which the phospholipid bilayer of biological membranes is assembled concerns how phospholipids flip back and forth between the two leaflets of the bilayer. This question is important because phospholipid biosynthetic enzymes typically face the cytosol and deposit newly synthesized phospholipids in the cytosolic leaflet of biogenic membranes such as the endoplasmic reticulum (ER). These lipids must be transported across the bilayer to populate the exoplasmic leaflet for membrane growth. Transport does not occur spontaneously and it is presumed that specific membrane proteins, flippases, are responsible for phospholipid flip-flop. No biogenic membrane flippases have been identified and there is controversy as to whether proteins are involved at all, whether any membrane protein is sufficient, or whether non-bilayer arrangements of lipids support flip-flop. RESULTS To test the hypothesis that specific proteins facilitate phospholipid flip-flop in the ER, we reconstituted transport-active proteoliposomes from detergent-solubilized ER vesicles under conditions in which protein-free liposomes containing ER lipids were inactive. Transport was measured using a synthetic, water-soluble phosphatidylcholine and was found to be sensitive to proteolysis and associated with proteins or protein-containing complexes that sedimented operationally at 3.8S. Chromatographic analyses indicated the feasibility of identifying the transporter(s) by protein purification approaches, and raised the possibility that at least two different proteins are able to facilitate transport. Calculations based on a simple reconstitution scenario suggested that the transporters represent approximately 0.2% of ER membrane proteins. CONCLUSIONS Our results clearly show that specific proteins are required to translocate a phosphatidylcholine analogue across the ER membrane. These proteins are likely to be the flippases, which are required to translocate natural phosphatidylcholine and other phospholipids across the ER membrane. The methodology that we describe paves the way for identification of a flippase.
Collapse
Affiliation(s)
- A K Menon
- Department of Biochemistry, University of Wisconsin-Madison, Madison, 53706-1569, USA.
| | | |
Collapse
|
45
|
Yamashita K, Hara-Kuge S, Ohkura T. Intracellular lectins associated with N-linked glycoprotein traffic. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:147-60. [PMID: 10580135 DOI: 10.1016/s0304-4165(99)00175-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The vectorial intracellular transport of N-glycan-linked glycoproteins is indispensable for biological functions. In order to sort these glycoproteins to the correct destination, animal intracellular lectins play important roles as sorting receptors. The roles of such lectins in the biosynthetic pathway from the endoplasmic reticulum (ER) to the cell surface are addressed in this review. Calnexin and calreticulin function via specific carbohydrates in quality control of newly synthesized glycoproteins in the ER, and ERGIC-53 seems to function in the transport of glycoproteins from ER to the Golgi complex. In addition to the well-understood role of mannose 6-phosphate receptor in lysosomal protein sorting, the vesicular integral protein of 36 kDa (VIP36) functions as a sorting receptor by recognizing high-mannose type glycans containing alpha1-->2Man residues for transport from Golgi to the cell surface in polarized epithelial cells.
Collapse
Affiliation(s)
- K Yamashita
- Department of Biochemistry, Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, and CREST (Core Research for Evolutional Science and Technology) of the Japan Science and Technology Corporation (JST), Tokyo, Japan.
| | | | | |
Collapse
|
46
|
Kitazume-Kawaguchi S, Dohmae N, Takio K, Tsuji S, Colley KJ. The relationship between ST6Gal I Golgi retention and its cleavage-secretion. Glycobiology 1999; 9:1397-406. [PMID: 10561465 DOI: 10.1093/oxfordjournals.glycob.a018856] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ST6Gal I is a sialyltransferase that modifies N-linked oligosaccharides of glycoproteins. Previous results suggested a role for luminal stem and active domain sequences in the efficiency of ST6Gal I Golgi retention. Characterization of a series of STtyr isoform deletion mutants demonstrated that the stem is sensitive to proteases and that preventing cleavage in this region leads to increased cell surface expression. A mutant lacking amino acids 32-104 (STDelta4) is not active or cleaved and secreted like the wild type STtyr, but does exhibit increased cell surface expression. It is probable that the STDelta4 mutant lacks the stem region and some amino acids of the active domain because the STDelta5 mutant lacking amino acids 86-104 is also not active but is cleaved and secreted. In contrast, deletion of stem amino acids between residues 32 and 86 in the STDelta1, STDelta2, and STDelta3 mutants does not inactive these enzyme forms, eliminate their cleavage and secretion, or increase their cell surface expression. Surprisingly, cleavage occurs even though the previously identified Asn63-Ser 64 cleavage site is missing. Further evaluation demonstrated that a cleavage site between Lys 40 and Glu 41 is used in COS cells. Mutagenesis of Lys 40 significantly decreased, but did not eliminate cleavage, suggesting that there are additional secondary sites of cleavage in the ST6Gal I stem.
Collapse
Affiliation(s)
- S Kitazume-Kawaguchi
- Department of Biochemistry and Molecular Biology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
47
|
Mercier D, Wierinckx A, Oulmouden A, Gallet PF, Palcic MM, Harduin-Lepers A, Delannoy P, Petit JM, Levéziel H, Julien R. Molecular cloning, expression and exon/intron organization of the bovine beta-galactoside alpha2,6-sialyltransferase gene. Glycobiology 1999; 9:851-63. [PMID: 10460827 DOI: 10.1093/glycob/9.9.851] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we report the first isolation and characterization of a bovine sialyltransferase gene. Bovine cDNAs prepared from different tissues contain an open-reading frame encoding a 405 amino acid sequence showing 83%, 75%, and 60% identity with human, murine, and chicken ST6Gal I (beta-galactoside alpha2,6-sialyltransferase) sequences, respectively. When transfected into COS-7 cells, a recombinant enzyme was obtained which catalyzed the in vitro alpha2, 6-sialylation of LacNAc (NeuAcalpha2-6Galbeta1-4GlcNAc) and LacdiNAc (NeuAcalpha2-6GalNAcbeta1-4GlcNAc) acceptor substrates. The K (m) values were 2.8 and 6.9 mM, respectively. Different relative efficiencies (Vmax/Km) for the two precursors (36 for LacNAc and 4.3 for LacdiNAc) were observed. Bovine ST6Gal I gene consists of four 5'-untranslated exons E(-2) to E(1), and five coding exons from E(2) to E(6). This later carries a 3'-untranslated region of 2. 7 kb. Gene sequence spans at least 80 kb of genomic DNA. Two processed pseudogenes have been identified. They are 94.3 and 95.6% similar to the bovine cDNA, respectively. Three families of mRNA isoforms were isolated. They differed by their 5'-untranslated regions and could be generated by three tissue-specific promoters. Family 1 is made up of exons E(-2) and E(1) to E(6), family 2 of exons E(-1) to E(6), and family 3 of exons E(1) to E(6). Tissular distribution of transcript families appears noticeably different than those described in human and rat.
Collapse
Affiliation(s)
- D Mercier
- Institut de Biotechnologie, Faculté des Sciences, Université de Limoges, 87060 Limoges, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Eckhardt M, Gotza B, Gerardy-Schahn R. Membrane topology of the mammalian CMP-sialic acid transporter. J Biol Chem 1999; 274:8779-87. [PMID: 10085119 DOI: 10.1074/jbc.274.13.8779] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide sugar transporters form a family of distantly related membrane proteins of the Golgi apparatus and the endoplasmic reticulum. The first transporter sequences have been identified within the last 2 years. However, information about the secondary and tertiary structure for these molecules has been limited to theoretical considerations. In the present study, an epitope-insertion approach was used to investigate the membrane topology of the CMP-sialic acid transporter. Immunofluorescence studies were carried out to analyze the orientation of the introduced epitopes in semipermeabilized cells. Both an amino-terminally introduced FLAG sequence and a carboxyl-terminal hemagglutinin tag were found to be oriented toward the cytosol. Results obtained with CMP-sialic acid transporter variants that contained the hemagglutinin epitope in potential intermembrane loop structures were in good correlation with the presence of 10 transmembrane regions. This building concept seems to be preserved also in other mammalian and nonmammalian nucleotide sugar transporters. Moreover, the functional analysis of the generated mutants demonstrated that insertions in or very close to membrane-spanning regions inactivate the transport process, whereas those in hydrophilic loop structures have no detectable effect on the activity. This study points the way toward understanding structure-function relationships of nucleotide sugar transporters.
Collapse
Affiliation(s)
- M Eckhardt
- Institut für Medizinische Mikrobiologie, Medizinische Hochschule, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
49
|
Bhatia PK, Mukhopadhyay A. Protein glycosylation: implications for in vivo functions and therapeutic applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 64:155-201. [PMID: 9933978 DOI: 10.1007/3-540-49811-7_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The glycosylation machinery in eukaryotic cells is available to all proteins that enter the secretory pathway. There is a growing interest in diseases caused by defective glycosylation, and in therapeutic glycoproteins produced through recombinant DNA technology route. The choice of a bioprocess for commercial production of recombinant glycoprotein is determined by a variety of factors, such as intrinsic biological properties of the protein being expressed and the purpose for which it is intended, and also the economic target. This review summarizes recent development and understanding related to synthesis of glycans, their functions, diseases, and various expression systems and characterization of glycans. The second section covers processing of N- and O-glycans and the factors that regulate protein glycosylation. The third section deals with in vivo functions of protein glycosylation, which includes protein folding and stability, receptor functioning, cell adhesion and signal transduction. Malfunctioning of glycosylation machinery and the resultant diseases are the subject of the fourth section. The next section covers the various expression systems exploited for the glycoproteins: it includes yeasts, mammalian cells, insect cells, plants and an amoeboid organism. Biopharmaceutical properties of therapeutic proteins are discussed in the sixth section. In vitro protein glycosylation and the characterization of glycan structures are the subject matters for the last two sections, respectively.
Collapse
Affiliation(s)
- P K Bhatia
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
50
|
Keusch J, Lydyard PM, Delves PJ. The effect on IgG glycosylation of altering beta1, 4-galactosyltransferase-1 activity in B cells. Glycobiology 1998; 8:1215-20. [PMID: 9858643 DOI: 10.1093/glycob/8.12.1215] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An absence of galactose on the N-linked oligosaccharides of immunoglobulin G (IgG) has been shown to affect the functional activity of the antibody molecule. In patients with rheumatoid arthritis there is an increased proportion of IgG which lacks galactose and correspondingly lower levels of beta1, 4-galactosyltransferase (beta4Gal-T) activity. The recent demonstration of several expressed beta4Gal-T genes in man raises the possibility that the enzyme responsible for the decreased IgG galactose is not the "classical" beta4Gal-T (beta4Gal-T1). To directly address the question of whether reduced beta4Gal-T1 would lead to reduced IgG galactose, the level of beta4Gal-T1 in a human IgG-secreting B cell line was specifically altered using stable transfection with sense (SpcDNA3-Gal-T1) or antisense (ASpcDNA3-Gal-T1) human beta4Gal-T1 cDNA. SpcDNA3-Gal-T1 B cell transfectants expressed up to a 2.5-fold higher level of beta4Gal-T enzyme activity for the exogenous neoglycoconjugate acceptor GlcNAc-pITC-BSA than did ASpcDNA3-Gal-T1 transfectants. Flow cytometric analysis with Ricinus communis agglutinin I (RCAI) revealed an overall greater number of Galbeta1,4GlcNAc structures in the fixed and permeabilized SpcDNA3-Gal-T1 B cell transfectants compared with the ASpcDNA3-Gal-T1 transfectants. Moreover, there was increased galactosylation of IgG secreted from the SpcDNA3-Gal-T1 transfectants relative to the ASpcDNA3-Gal-T1 B cell transfectants. Alteration of the level of the "classical" beta4Gal-T (beta4Gal-T1) in B cells therefore affects IgG glycosylation.
Collapse
Affiliation(s)
- J Keusch
- Department of Immunology, University College London, Windeyer Building, 46 Cleveland Street, London W1P 6DB, UK
| | | | | |
Collapse
|