1
|
Pečar Fonović U, Kos J, Mitrović A. Compensational role between cathepsins. Biochimie 2024; 226:62-76. [PMID: 38663456 DOI: 10.1016/j.biochi.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Cathepsins, a family of lysosomal peptidases, play a crucial role in maintaining cellular homeostasis by regulating protein turnover and degradation as well as many specific regulatory actions that are important for proper cell function and human health. Alterations in the activity and expression of cathepsins have been observed in many diseases such as cancer, inflammation, neurodegenerative disorders, bone remodelling-related conditions and others. These changes are not exclusively harmful, but rather appear to be a compensatory response on the lack of one cathepsin in order to maintain tissue integrity. The upregulation of specific cathepsins in response to the inhibition or dysfunction of other cathepsins suggests a fine-tuned system of proteolytic balance and understanding the compensatory role of cathepsins may improve therapeutic potential of cathepsin's inhibitors. Selectively targeting one cathepsin or modulating their activity could offer new treatment strategies for a number of diseases. This review emphasises the need for comprehensive research into cathepsin biology in the context of disease. The identification of the specific cathepsins involved in compensatory responses, the elucidation of the underlying molecular mechanisms and the development of targeted interventions could lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Urša Pečar Fonović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
3
|
Garishah FM, Boahen CK, Vadaq N, Pramudo SG, Tunjungputri RN, Riswari SF, van Rij RP, Alisjahbana B, Gasem MH, van der Ven AJAM, de Mast Q. Longitudinal proteomic profiling of the inflammatory response in dengue patients. PLoS Negl Trop Dis 2023; 17:e0011041. [PMID: 36595532 PMCID: PMC9838874 DOI: 10.1371/journal.pntd.0011041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/13/2023] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The immunopathogenesis of dengue virus (DENV) infection remains incompletely understood. To increase our understanding of inflammatory response in non-severe dengue, we assessed longitudinal changes in the inflammatory proteome in patients with an acute DENV infection. METHODS Using a multiplex proximity extension assay (PEA), we measured relative levels of 368 inflammatory markers in plasma samples from hospitalized patients with non-severe DENV infection in the acute (n = 43) and convalescence (n = 35) phase of the infection and samples of healthy controls (n = 10). RESULTS We identified 203 upregulated and 39 downregulated proteins in acute versus convalescent plasma samples. The upregulated proteins had a strong representation of interferon (IFN) and IFN-inducible effector proteins, cytokines (e.g. IL-10, IL-33) and cytokine receptors, chemokines, pro-apoptotic proteins (e.g. granzymes) and endothelial markers. A number of differentially expressed proteins (DEPs) have not been reported in previous studies. Functional network analysis highlighted a central role for IFNγ, IL-10, IL-33 and chemokines. We identified different novel associations between inflammatory proteins and circulating concentrations of the endothelial glycocalyx disruption surrogate marker syndecan-1. Conclusion: This unbiased proteome analysis provides a comprehensive insight in the inflammatory response in DENV infection and its association with glycocalyx disruption.
Collapse
Affiliation(s)
- Fadel Muhammad Garishah
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Collins K. Boahen
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Setyo G. Pramudo
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Department of Internal Medicine, William Booth Hospital, Semarang, Indonesia
| | - Rahajeng N. Tunjungputri
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Silvita Fitri Riswari
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Muhammad Hussein Gasem
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - André J. A. M. van der Ven
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Cleavage of the APE1 N-Terminal Domain in Acute Myeloid Leukemia Cells Is Associated with Proteasomal Activity. Biomolecules 2020; 10:biom10040531. [PMID: 32244430 PMCID: PMC7226146 DOI: 10.3390/biom10040531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/02/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1), the main mammalian AP-endonuclease for the resolution of DNA damages through the base excision repair (BER) pathway, acts as a multifunctional protein in different key cellular processes. The signals to ensure temporo-spatial regulation of APE1 towards a specific function are still a matter of debate. Several studies have suggested that post-translational modifications (PTMs) act as dynamic molecular mechanisms for controlling APE1 functionality. Interestingly, the N-terminal region of APE1 is a disordered portion functioning as an interface for protein binding, as an acceptor site for PTMs and as a target of proteolytic cleavage. We previously demonstrated a cytoplasmic accumulation of truncated APE1 in acute myeloid leukemia (AML) cells in association with a mutated form of nucleophosmin having aberrant cytoplasmic localization (NPM1c+). Here, we mapped the proteolytic sites of APE1 in AML cells at Lys31 and Lys32 and showed that substitution of Lys27, 31, 32 and 35 with alanine impairs proteolysis. We found that the loss of the APE1 N-terminal domain in AML cells is dependent on the proteasome, but not on granzyme A/K as described previously. The present work identified the proteasome as a contributing machinery involved in APE1 cleavage in AML cells, suggesting that acetylation can modulate this process.
Collapse
|
6
|
Sanchez MI, de Vries LE, Lehmann C, Lee JT, Ang KK, Wilson C, Chen S, Arkin MR, Bogyo M, Deu E. Identification of Plasmodium dipeptidyl aminopeptidase allosteric inhibitors by high throughput screening. PLoS One 2019; 14:e0226270. [PMID: 31851699 PMCID: PMC6919601 DOI: 10.1371/journal.pone.0226270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/22/2019] [Indexed: 12/04/2022] Open
Abstract
Dipeptidyl aminopeptidases (DPAPs) are cysteine proteases that cleave dipeptides from the N-terminus of protein substrates and have been shown to play important roles in many pathologies including parasitic diseases such as malaria, toxoplasmosis and Chagas's disease. Inhibitors of the mammalian homologue cathepsin C have been used in clinical trials as potential drugs to treat chronic inflammatory disorders, thus proving that these enzymes are druggable. In Plasmodium species, DPAPs play important functions at different stages of parasite development, thus making them potential antimalarial targets. Most DPAP inhibitors developed to date are peptide-based or peptidomimetic competitive inhibitors. Here, we used a high throughput screening approach to identify novel inhibitor scaffolds that block the activity of Plasmodium falciparum DPAP1. Most of the hits identified in this screen also inhibit Plasmodium falciparum DPAP3, cathepsin C, and to a lesser extent other malarial clan CA proteases, indicating that these might be general DPAP inhibitors. Interestingly, our mechanism of inhibition studies indicate that most hits are allosteric inhibitors, which opens a completely new strategy to inhibit these enzymes, study their biological function, and potentially develop new inhibitors as starting points for drug development.
Collapse
Affiliation(s)
- Mateo I. Sanchez
- Departments of Pathology and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, United States of America
| | - Laura E. de Vries
- Chemical Biology Approaches to Malaria Lab, The Francis Crick Institute, London, United Kingdom
| | - Christine Lehmann
- Chemical Biology Approaches to Malaria Lab, The Francis Crick Institute, London, United Kingdom
| | - Jeong T. Lee
- Departments of Pathology and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, United States of America
| | - Kenny K. Ang
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, United States of America
| | - Christopher Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, United States of America
| | - Steven Chen
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, United States of America
| | - Michelle R. Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, United States of America
| | - Matthew Bogyo
- Departments of Pathology and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, United States of America
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
7
|
de Vries LE, Sanchez MI, Groborz K, Kuppens L, Poreba M, Lehmann C, Nevins N, Withers-Martinez C, Hirst DJ, Yuan F, Arastu-Kapur S, Horn M, Mares M, Bogyo M, Drag M, Deu E. Characterization of P. falciparum dipeptidyl aminopeptidase 3 specificity identifies differences in amino acid preferences between peptide-based substrates and covalent inhibitors. FEBS J 2019; 286:3998-4023. [PMID: 31177613 PMCID: PMC6851853 DOI: 10.1111/febs.14953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/12/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
Abstract
Malarial dipeptidyl aminopeptidases (DPAPs) are cysteine proteases important for parasite development thus making them attractive drug targets. In order to develop inhibitors specific to the parasite enzymes, it is necessary to map the determinants of substrate specificity of the parasite enzymes and its mammalian homologue cathepsin C (CatC). Here, we screened peptide-based libraries of substrates and covalent inhibitors to characterize the differences in specificity between parasite DPAPs and CatC, and used this information to develop highly selective DPAP1 and DPAP3 inhibitors. Interestingly, while the primary amino acid specificity of a protease is often used to develop potent inhibitors, we show that equally potent and highly specific inhibitors can be developed based on the sequences of nonoptimal peptide substrates. Finally, our homology modelling and docking studies provide potential structural explanations of the differences in specificity between DPAP1, DPAP3, and CatC, and between substrates and inhibitors in the case of DPAP3. Overall, this study illustrates that focusing the development of protease inhibitors solely on substrate specificity might overlook important structural features that can be exploited to develop highly potent and selective compounds.
Collapse
Affiliation(s)
- Laura E de Vries
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mateo I Sanchez
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Katarzyna Groborz
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Laurie Kuppens
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| | - Marcin Poreba
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Christine Lehmann
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| | - Neysa Nevins
- Computational Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | | | - David J Hirst
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Stevenage, UK
| | - Fang Yuan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirin Arastu-Kapur
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mares
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcin Drag
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
8
|
Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol 2019; 105:1319-1329. [PMID: 31107565 DOI: 10.1002/jlb.mr0718-269r] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/22/2019] [Accepted: 04/14/2019] [Indexed: 12/29/2022] Open
Abstract
Cellular cytotoxicity, the ability to kill other cells, is an important effector mechanism of the immune system to combat viral infections and cancer. Cytotoxic T cells and natural killer (NK) cells are the major mediators of this activity. Here, we summarize the cytotoxic mechanisms of NK cells. NK cells can kill virally infected of transformed cells via the directed release of lytic granules or by inducing death receptor-mediated apoptosis via the expression of Fas ligand or TRAIL. The biogenesis of perforin and granzymes, the major components of lytic granules, is a highly regulated process to prevent damage during the synthesis of these cytotoxic molecules. Additionally, NK cells have developed several strategies to protect themselves from the cytotoxic activity of granular content upon degranulation. While granule-mediated apoptosis is a fast process, death receptor-mediated cytotoxicity requires more time. Current data suggest that these 2 cytotoxic mechanisms are regulated during the serial killing activity of NK cells. As many modern approaches of cancer immunotherapy rely on cellular cytotoxicity for their effectiveness, unraveling these pathways will be important to further progress these therapeutic strategies.
Collapse
Affiliation(s)
- Isabel Prager
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
9
|
Durose WW, Shimizu T, Li J, Abe M, Sakimura K, Chetsawang B, Tanaka KF, Suzumura A, Tohyama K, Ikenaka K. Cathepsin C modulates myelin oligodendrocyte glycoprotein‐induced experimental autoimmune encephalomyelitis. J Neurochem 2018; 148:413-425. [DOI: 10.1111/jnc.14581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Wilaiwan Wisessmith Durose
- Division of Neurobiology and Bioinformatics National Institute for Physiological Sciences OkazakiJapan
- Department of Physiological Sciences The Graduate University of Advance Studies (SOKENDAI) Okazaki Japan
- Research Center for Neuroscience Institute of Molecular Biosciences Mahidol University Nakhonpathom Thailand
| | - Takahiro Shimizu
- Division of Neurobiology and Bioinformatics National Institute for Physiological Sciences OkazakiJapan
- Department of Physiological Sciences The Graduate University of Advance Studies (SOKENDAI) Okazaki Japan
| | - JiaYi Li
- Division of Neurobiology and Bioinformatics National Institute for Physiological Sciences OkazakiJapan
- Department of Physiological Sciences The Graduate University of Advance Studies (SOKENDAI) Okazaki Japan
| | - Manabu Abe
- Brain Research Institute Niigata University Niigata Japan
| | - Kenji Sakimura
- Brain Research Institute Niigata University Niigata Japan
| | - Banthit Chetsawang
- Research Center for Neuroscience Institute of Molecular Biosciences Mahidol University Nakhonpathom Thailand
| | - Kenji F. Tanaka
- Division of Neurobiology and Bioinformatics National Institute for Physiological Sciences OkazakiJapan
- Department of Neuropsychiatry Keio University Tokyo Japan
| | - Akio Suzumura
- Department of Neuroimmunology Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| | - Koujiro Tohyama
- Department of Physiology School of Dentistry Iwate Medical University Morioka Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics National Institute for Physiological Sciences OkazakiJapan
- Department of Physiological Sciences The Graduate University of Advance Studies (SOKENDAI) Okazaki Japan
| |
Collapse
|
10
|
Zi M, Xu Y. Involvement of cystatin C in immunity and apoptosis. Immunol Lett 2018; 196:80-90. [PMID: 29355583 PMCID: PMC7112947 DOI: 10.1016/j.imlet.2018.01.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
As an abundantly expressed cysteine protease inhibitor widely distributed in the organisms, cystatin C is involved in various physiological processes. Due to its relatively small molecular weight and easy detection, cystatin C is commonly used as a measure for glomerular filtration rate. In pathological conditions, however, growing evidences suggest that cystatin C is associated with various immune responses against either exogenous or endogenous antigens, which ultimately result in inflammatory autoimmune diseases or tumor development if not properly controlled. Thus the fluctuation of cystatin C levels might have more clinical implications than a reflection of kidney functions. Here, we summarize the latest development of studies on the pathophysiological functions of cystatin C, with focus on its immune regulatory roles at both cellular and molecular levels including antigen presentation, secretion of cytokines, synthesis of nitric oxide, as well as apoptosis. Finally, we discuss the clinical implications and therapeutic potentials of what this predominantly expressed protease inhibitor can bring to us.
Collapse
Affiliation(s)
- Mengting Zi
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
11
|
Lysosomal cysteine peptidases – Molecules signaling tumor cell death and survival. Semin Cancer Biol 2015; 35:168-79. [DOI: 10.1016/j.semcancer.2015.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
|
12
|
Dotiwala F, Fellay I, Filgueira L, Martinvalet D, Lieberman J, Walch M. A High Yield and Cost-efficient Expression System of Human Granzymes in Mammalian Cells. J Vis Exp 2015:e52911. [PMID: 26132420 DOI: 10.3791/52911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
When cytotoxic T lymphocytes (CTL) or natural killer (NK) cells recognize tumor cells or cells infected with intracellular pathogens, they release their cytotoxic granule content to eliminate the target cells and the intracellular pathogen. Death of the host cells and intracellular pathogens is triggered by the granule serine proteases, granzymes (Gzms), delivered into the host cell cytosol by the pore forming protein perforin (PFN) and into bacterial pathogens by the prokaryotic membrane disrupting protein granulysin (GNLY). To investigate the molecular mechanisms of target cell death mediated by the Gzms in experimental in-vitro settings, protein expression and purification systems that produce high amounts of active enzymes are necessary. Mammalian secreted protein expression systems imply the potential to produce correctly folded, fully functional protein that bears posttranslational modification, such as glycosylation. Therefore, we used a cost-efficient calcium precipitation method for transient transfection of HEK293T cells with human Gzms cloned into the expression plasmid pHLsec. Gzm purification from the culture supernatant was achieved by immobilized nickel affinity chromatography using the C-terminal polyhistidine tag provided by the vector. The insertion of an enterokinase site at the N-terminus of the protein allowed the generation of active protease that was finally purified by cation exchange chromatography. The system was tested by producing high levels of cytotoxic human Gzm A, B and M and should be capable to produce virtually every enzyme in the human body in high yields.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Cellular and Molecular Medicine Program, Boston Children's Hospital and Harvard Medical School
| | | | | | | | - Judy Lieberman
- Cellular and Molecular Medicine Program, Boston Children's Hospital and Harvard Medical School
| | | |
Collapse
|
13
|
Granzyme M: behind enemy lines. Cell Death Differ 2014; 21:359-68. [PMID: 24413154 DOI: 10.1038/cdd.2013.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 11/08/2022] Open
Abstract
The granule-exocytosis pathway is the major mechanism via which cytotoxic lymphocytes eliminate virus-infected and tumor cells. In this pathway, cytotoxic lymphocytes release granules containing the pore-forming protein perforin and a family of serine proteases known as granzymes into the immunological synapse. Pore-formation by perforin facilitates entry of granzymes into the target cell, where they can activate various (death) pathways. Humans express five different granzymes, of which granzymes A and B have been most extensively characterized. However, much less is known about granzyme M (GrM). Recently, structural analysis and advanced proteomics approaches have determined the primary and extended specificity of GrM. GrM functions have expanded over the past few years: not only can GrM efficiently induce cell death in tumor cells, it can also inhibit cytomegalovirus replication in a noncytotoxic manner. Finally, a role for GrM in lipopolysaccharide-induced inflammatory responses has been proposed. In this review, we recapitulate the current status of GrM expression, substrate specificity, functions, and inhibitors.
Collapse
|
14
|
Le QT, Gomez G, Zhao W, Hu J, Xia HZ, Fukuoka Y, Katunuma N, Schwartz LB. Processing of human protryptase in mast cells involves cathepsins L, B, and C. THE JOURNAL OF IMMUNOLOGY 2011; 187:1912-8. [PMID: 21742978 DOI: 10.4049/jimmunol.1001806] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human β-tryptase is stored in secretory granules of human mast cells as a heparin-stabilized tetramer. β-Protryptase in solution can be directly processed to the mature enzyme by cathepsin (CTS) L and CTSB, and sequentially processed by autocatalysis at R(-3), followed by CTSC proteolysis. However, it is uncertain which CTS is involved in protryptase processing inside human mast cells, because murine bone marrow-derived mast cells from CTSC-deficient mice convert protryptase (pro-mouse mast cell protease-6) to mature mouse mast cell protease-6. This finding suggests that other proteases are important for processing human β-protryptase. In the current study, reduction of either CTSB or CTSL activity inside HMC-1 cells by short hairpin RNA silencing or CTS-specific pharmacologic inhibitors substantially reduced mature β-tryptase formation. Similar reductions of tryptase levels in primary skin-derived mast cells were observed with these pharmacologic inhibitors. In contrast, protryptase processing was minimally reduced by short hairpin RNA silencing of CTSC. A putative pharmacologic inhibitor of CTSC markedly reduced tryptase levels, suggesting an off-target effect. Skin mast cells contain substantially greater amounts of CTSL and CTSB than do HMC-1 cells, the opposite being found for CTSC. Both CTSL and CTSB colocalize to the secretory granule compartment of skin mast cells. Thus, CTSL and CTSB are central to the processing of protryptase(s) in human mast cells and are potential targets for attenuating production of mature tryptase in vivo.
Collapse
Affiliation(s)
- Quang T Le
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Le QT, Min HK, Xia HZ, Fukuoka Y, Katunuma N, Schwartz LB. Promiscuous processing of human alphabeta-protryptases by cathepsins L, B, and C. THE JOURNAL OF IMMUNOLOGY 2011; 186:7136-43. [PMID: 21562164 DOI: 10.4049/jimmunol.1001804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human α- and β-protryptase zymogens are abundantly and selectively produced by mast cells, but the mechanism(s) by which they are processed is uncertain. β-Protryptase is sequentially processed in vitro by autocatalysis at R(-3) followed by cathepsin (CTS) C proteolysis to the mature enzyme. However, mast cells from CTSC-deficient mice successfully convert protryptase (pro-murine mast cell protease-6) to mature murine mast cell protease-6. α-Protryptase processing cannot occur by trypsin-like enzymes due to an R(-3)Q substitution. Thus, biological mechanisms for processing these zymogens are uncertain. β-Tryptase processing activity(ies) distinct from CTSC were partially purified from human HMC-1 cells and identified by mass spectroscopy to include CTSB and CTSL. Importantly, CTSB and CTSL also directly process α-protryptase (Q(-3)) and mutated β-protryptase (R(-3)Q) as well as wild-type β-protryptase to maturity, indicating no need for autocatalysis, unlike the CTSC pathway. Heparin promoted tryptase tetramer formation and protected tryptase from degradation by CTSB and CTSL. Thus, CTSL and CTSB are capable of directly processing both α- and β-protryptases from human mast cells to their mature enzymatically active products.
Collapse
Affiliation(s)
- Quang T Le
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cytotoxic lymphocytes are armed with granules that are released in the granule-exocytosis pathway to kill tumor cells and virus-infected cells. Cytotoxic granules contain the pore-forming protein perforin and a family of structurally homologues serine proteases called granzymes. While perforin facilitates the entry of granzymes into a target cell, the latter initiate distinct apoptotic routes. Granzymes are also implicated in extracellular functions such as extracellular matrix degradation, immune regulation, and inflammation. The family of human granzymes consists of five members, of which granzyme A and B have been studied most extensively. Recently, elucidation of the specific characteristics of the other three human granzymes H, K, and M, also referred to as orphan granzymes, have started. In this review, we summarize and discuss what is currently known about the biology of the human orphan granzymes.
Collapse
Affiliation(s)
- Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | | |
Collapse
|
17
|
Serine proteases of the human immune system in health and disease. Mol Immunol 2010; 47:1943-55. [PMID: 20537709 DOI: 10.1016/j.molimm.2010.04.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 04/29/2010] [Indexed: 11/23/2022]
|
18
|
Abstract
Granzyme A (GzmA) is the most abundant serine protease in killer cell cytotoxic granules. GzmA activates a novel programed cell death pathway that begins in the mitochondrion, where cleavage of NDUFS3 in electron transport complex I disrupts mitochondrial metabolism and generates reactive oxygen species (ROS). ROS drives the endoplasmic reticulum-associated SET complex into the nucleus, where it activates single-stranded DNA damage. GzmA also targets other important nuclear proteins for degradation, including histones, the lamins that maintain the nuclear envelope, and several key DNA damage repair proteins (Ku70, PARP-1). Cells that are resistant to the caspases or GzmB by overexpressing bcl-2 family anti-apoptotic proteins or caspase or GzmB protease inhibitors are sensitive to GzmA. By activating multiple cell death pathways, killer cells provide better protection against a variety of intracellular pathogens and tumors. GzmA also has proinflammatory activity; it activates pro-interleukin-1beta and may also have other proinflammatory effects that remain to be elucidated.
Collapse
Affiliation(s)
- Judy Lieberman
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Expression and purification of active recombinant cathepsin C (dipeptidyl aminopeptidase I) of kuruma prawn Marsupenaeus japonicus in insect cells. J Biomed Biotechnol 2009; 2009:746289. [PMID: 19707514 PMCID: PMC2728897 DOI: 10.1155/2009/746289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/19/2009] [Indexed: 12/05/2022] Open
Abstract
Cathepsin C (CTSC)
is a lysosomal cysteine protease belonging to
the papain superfamily. Our previous study
showed that CTSC precursor (zymogen) is
localized exclusively in cortical rods (CRs) of
mature oocyte in the kuruma prawn
Marsupenaeus japonicus,
suggesting that CTSC might have roles on
regulating release and/or formation of a jelly
layer. In this study, enzymically active CTSC of
the kuruma prawn was prepared by recombinant
expression in the High Five insect cell line.
The recombinant enzyme with a polyhistidine tag
at its C-terminus was considered to be initially
secreted into the culture medium as an inactive
form of zymogen, because Western blot with
anti-CTSC antibody detected a 51 kDa
protein corresponding to CTSC precursor. After
purification by affinity chromatography on
nickel-iminodiacetic acid resin, the enzyme
displayed three forms of 51, 31, and
30 kDa polypeptides. All of the forms can
be recognized by antiserum raised against
C-terminal polyhistidine tag, indicating that
the 31 and 30 kDa forms were generated
from 51 kDa polypeptide by removal of a
portion of the N-terminus of propeptide.
Following activation at pH 5.5 and 37°C for 40 hours under native conditions, the recombinant CTSC (rCTSC) exhibited increased activity against the synthetic substrate Gly-Phe-β-naphthylamide and optimal pH at around 5. The purified rCTSC will be useful for further characterization of its exact physiological role on CRs release and/or formation of a jelly layer in kuruma prawn.
Collapse
|
20
|
Meade JL, Wilson EB, Holmes TD, de Wynter EA, Brett P, Straszynski L, Ballard PAS, Trapani JA, McDermott MF, Cook GP. Proteolytic activation of the cytotoxic phenotype during human NK cell development. THE JOURNAL OF IMMUNOLOGY 2009; 183:803-13. [PMID: 19570824 DOI: 10.4049/jimmunol.0713829] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells induce apoptosis in target cells via the perforin-mediated delivery of granzyme molecules. Cytotoxic human NK cells can be generated by IL-15-mediated differentiation of CD34(+) cells in vitro and these cultures have been used extensively to analyze the development of the NK cell surface phenotype. We have used NK cell differentiation in vitro together with protease-deficient human NK cells to analyze the acquisition of the cytotoxic phenotype. Granzymes are synthesized as inactive zymogens and are proteolytically activated by the cysteine protease cathepsin C. Cathepsin C is also synthesized as a zymogen and activated by proteolysis. We show that human NK cells generated in vitro undergo granule exocytosis and induce the caspase cascade in target cells. IL-15 and stem cell factor (IL-15 plus SCF) induced the expression of the granzyme B and perforin genes and the activation of cathepsin C and granzyme B zymogens. Perforin activation is also mediated by a cysteine protease and IL-15 plus SCF-mediated differentiation was accompanied by perforin processing. However, cathepsin C-deficient human NK cells revealed that perforin processing could occur in the absence of cathepsin C activity. The combination of IL-15 plus SCF is therefore sufficient to coordinate the development of the NK cell surface phenotype with the expression and proteolytic activation of the cytotoxic machinery, reflecting the central role of IL-15 in NK cell development.
Collapse
Affiliation(s)
- Josephine L Meade
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li J, Petrassi HM, Tumanut C, Masick BT, Trussell C, Harris JL. Substrate optimization for monitoring cathepsin C activity in live cells. Bioorg Med Chem 2009; 17:1064-70. [DOI: 10.1016/j.bmc.2008.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/29/2008] [Accepted: 02/04/2008] [Indexed: 12/01/2022]
|
22
|
Abstract
The cytotoxic granzyme B (GrB)/perforin pathway has been traditionally viewed as a primary mechanism that is used by cytotoxic lymphocytes to eliminate allogeneic, virally infected and/or transformed cells. Although originally proposed to have intracellular and extracellular functions, upon the discovery that perforin, in combination with GrB, could induce apoptosis, other potential functions for this protease were, for the most part, disregarded. As there are 5 granzymes in humans and 11 granzymes in mice, many studies used perforin knockout mice as an initial screen to evaluate the role of granzymes in disease. However, in recent years, emerging clinical and biochemical evidence has shown that the latter approach may have overlooked a critical perforin-independent, pathogenic role for these proteases in disease. This review focuses on GrB, the most characterized of the granzyme family, in disease. Long known to be a pro-apoptotic protease expressed by cytotoxic lymphocytes and natural killer cells, it is now accepted that GrB can be expressed in other cell types of immune and nonimmune origin. To the latter, an emerging immune-independent role for GrB has been forwarded due to recent discoveries that GrB may be expressed in nonimmune cells such as smooth muscle cells, keratinocytes, and chondrocytes in certain disease states. Given that GrB retains its activity in the blood, can cleave extracellular matrix, and its levels are often elevated in chronic inflammatory diseases, this protease may be an important contributor to certain pathologies. The implications of sustained elevations of intracellular and extracellular GrB in chronic vascular, dermatological, and neurological diseases, among others, are developing. This review examines, for the first time, the multiple roles of GrB in disease pathogenesis.
Collapse
|
23
|
Getachew Y, Stout-Delgado H, Miller BC, Thiele DL. Granzyme C supports efficient CTL-mediated killing late in primary alloimmune responses. THE JOURNAL OF IMMUNOLOGY 2008; 181:7810-7. [PMID: 19017970 DOI: 10.4049/jimmunol.181.11.7810] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well established that granzymes A and B play a role in CTL killing of target cells by the perforin-dependent granule exocytosis pathway. The functions of multiple additional granzymes expressed in CTL are less well defined. In the present studies, CTL generated from mice deficient in dipeptidyl peptidase 1 (DPP1) were used to investigate the contribution of granzyme C to CTL killing of allogeneic target cells. DPP1 is required for activation of granzymes A and B by proteolytic removal of their N-terminal dipeptide prodomains while a significant portion of granzyme C is processed normally in the absence of DPP1. Cytotoxicity of DPP1(-/-) CTL generated in early (5-day) MLC in vitro and in peritoneal exudate cells 5 days after initial allogeneic sensitization in vivo was significantly impaired compared with wild-type CTL. Following 3 days of restimulation with fresh allogeneic stimulators however, cytotoxicity of these DPP1(-/-) effector cells was comparable to that of wild-type CTL. Killing mediated by DPP1(-/-) CTL following restimulation was rapid, perforin dependent, Fas independent and associated with early mitochondrial injury, phosphatidyl serine externalization, and DNA degradation, implicating a granzyme-dependent apoptotic pathway. The increased cytotoxicity of DPP1(-/-) CTL following restimulation coincided with increased expression of granzyme C. Moreover, small interfering RNA inhibition of granzyme C expression during restimulation significantly decreased cytotoxicity of DPP1(-/-) but not wild-type CTL. These results indicate that during late primary alloimmune responses, granzyme C can support CTL-mediated killing by the granule exocytosis pathway in the absence of functional granzymes A or B.
Collapse
Affiliation(s)
- Yonas Getachew
- Department of Internal Medicine, Division of Digestive and Liver Diseases, niversity of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
24
|
Chowdhury D, Lieberman J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol 2008; 26:389-420. [PMID: 18304003 DOI: 10.1146/annurev.immunol.26.021607.090404] [Citation(s) in RCA: 476] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The granzymes are cell death-inducing enzymes, stored in the cytotoxic granules of cytotoxic T lymphocytes and natural killer cells, that are released during granule exocytosis when a specific virus-infected or transformed target cell is marked for elimination. Recent work suggests that this homologous family of serine esterases can activate at least three distinct pathways of cell death. This redundancy likely evolved to provide protection against pathogens and tumors with diverse strategies for evading cell death. This review discusses what is known about granzyme-mediated pathways of cell death as well as recent studies that implicate granzymes in immune regulation and extracellular proteolytic functions in inflammation.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Dana Farber Cancer Institute and Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
25
|
Sutton VR, Waterhouse NJ, Browne KA, Sedelies K, Ciccone A, Anthony D, Koskinen A, Mullbacher A, Trapani JA. Residual active granzyme B in cathepsin C-null lymphocytes is sufficient for perforin-dependent target cell apoptosis. ACTA ACUST UNITED AC 2007; 176:425-33. [PMID: 17283185 PMCID: PMC2063978 DOI: 10.1083/jcb.200609077] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cathepsin C activates serine proteases expressed in hematopoietic cells by cleaving an N-terminal dipeptide from the proenzyme upon granule packaging. The lymphocytes of cathepsin C–null mice are therefore proposed to totally lack granzyme B activity and perforin-dependent cytotoxicity. Surprisingly, we show, using live cell microscopy and other methodologies, that cells targeted by allogenic CD8+ cytotoxic T lymphocyte (CTL) raised in cathepsin C–null mice die through perforin-dependent apoptosis indistinguishable from that induced by wild-type CTL. The cathepsin C–null CTL expressed reduced but still appreciable granzyme B activity, but minimal granzyme A activity. Also, in contrast to mice with inactivation of both their granzyme A/B genes, cathepsin C deficiency did not confer susceptibility to ectromelia virus infection in vivo. Overall, our results indicate that although cathepsin C clearly generates the majority of granzyme B activity, some is still generated in its absence, pointing to alternative mechanisms for granzyme B processing and activation. Cathepsin C deficiency also results in considerably milder immune deficiency than perforin or granzyme A/B deficiency.
Collapse
Affiliation(s)
- Vivien R Sutton
- Cancer Immunology Program, Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Praveen K, Leary JH, Evans DL, Jaso-Friedmann L. Nonspecific cytotoxic cells of teleosts are armed with multiple granzymes and other components of the granule exocytosis pathway. Mol Immunol 2006; 43:1152-62. [PMID: 16137766 DOI: 10.1016/j.molimm.2005.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Indexed: 11/29/2022]
Abstract
Granzymes are members of the serine protease family and major components of cytotoxic granules of professional killer cells. Multiple granzymes have been identified from human and rodents with different substrate specificities. Although the significance of granzymes A and B in cell-mediated cytotoxicity has been extensively investigated, recent reports suggest that other granzymes may have either equal or greater importance in mediating cell death. Studies on the evolution of these closely related proteases were hindered by the lack of sequence and biochemical information of granzymes from "lower vertebrates." Here we report the generation of a catalytically active recombinant granzyme identified in the cytotoxic cells of an ectothermic vertebrate. Fully active, soluble recombinant catfish granzyme-1 (CFGR-1) was generated using a yeast-based expression system. In vitro enzyme kinetic assays using various thiobenzyl ester substrates verified its tryptase activity in full agreement with previous observations by sequence comparison and molecular modeling. The tryptase activity that was secreted from catfish NCC during an in vitro cytotoxicity assay strongly correlated with the cytotoxicity induced by these cells. Evidence for additional granzymes with different substrate specificities in NCC was obtained by analysis of the protease activity of supernatants collected from in vitro cytotoxicity assays. Searches of the catfish EST database further confirmed the presence of teleost granzymes with different substrate specificities. Granzyme activity measurements suggested a predominance of chymase and tryptase activities in NCC. Further proof that the granule exocytosis pathway is one of the cytotoxic mechanisms in NCC was provided by the expression of granule components perforin, granulysin and serglycin detected by RT-PCR analysis. These results demonstrate the evidence for a parallel evolution of effector molecules of cell-mediated cytotoxicity in teleosts.
Collapse
Affiliation(s)
- Kesavannair Praveen
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Agriculture Drive, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
27
|
Praveen K, Leary JH, Evans DL, Jaso-Friedmann L. Molecular characterization and expression of a granzyme of an ectothermic vertebrate with chymase-like activity expressed in the cytotoxic cells of Nile tilapia (Oreochromis niloticus). Immunogenetics 2006; 58:41-55. [PMID: 16467988 DOI: 10.1007/s00251-005-0063-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 11/06/2005] [Indexed: 11/24/2022]
Abstract
We have identified the gene coding for a novel serine protease with close similarities to mammalian granzymes from nonspecific cytotoxic cells of a teleost fish Oreochromis niloticus. The genomic organization of tilapia granzyme-1 (TLGR-1) has the signature five-exon-four-intron structure shared by all granzymes and similar hematopoietic Ser proteases. Molecular modeling studies suggested a granzyme-like structure for this protein with four disulfide linkages and two additional Cys residues. The expression of this gene is found to be restricted to cytotoxic cell populations with a low level of constitutive expression when compared to similar granzymes in other teleost species. High levels of transcriptional activation of TLGR-1 with different stimuli suggested that this gene is highly induced during immune reactions. Triplet residues around the active site Ser of TLGR, which determines the primary substrate specificity of granzymes, differ significantly from that of other granzymes. Recombinant TLGR-1 was expressed in the mature and proenzyme forms using pPICZ-alpha vector in the Pichia pastoris expression system. Recombinant TLGR-1 was used to determine the primary substrate specificity of this protease using various synthetic thiobenzyl ester substrates. In vitro enzyme kinetics assays suggested a preference for residues with bulky side chains at the P1 site, indicating a chymase-like activity for this protease. These results indicate the presence of novel granzymes in cytotoxic cells from ectothermic vertebrates.
Collapse
Affiliation(s)
- Kesavannair Praveen
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Agriculture Drive, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
28
|
Tardy C, Codogno P, Autefage H, Levade T, Andrieu-Abadie N. Lysosomes and lysosomal proteins in cancer cell death (new players of an old struggle). Biochim Biophys Acta Rev Cancer 2005; 1765:101-25. [PMID: 16412578 DOI: 10.1016/j.bbcan.2005.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 11/21/2005] [Accepted: 11/28/2005] [Indexed: 12/19/2022]
Abstract
Death of cancer cells influences tumor development and progression, as well as the response to anticancer therapies. This can occur through different cell death programmes which have recently been shown to implicate components of the acidic organelles, lysosomes. The role of lysosomes and lysosomal enzymes, including cathepsins and some lipid hydrolases, in programmed cell death associated with apoptotic or autophagic phenotypes is presented, as evidenced from observations on cultured cells and living animals. The possible molecular mechanisms that underlie the action of lysosomes during cell death are also described. Finally, the contribution of lysosomal proteins and lysosomes to tumor initiation and progression is discussed. Elucidation of this role and the underlying mechanisms will shed a new light on these 'old' organelles and hopefully pave the way for the development of novel anticancer strategies.
Collapse
Affiliation(s)
- Claudine Tardy
- INSERM U466, Laboratoire de Biochimie, Institut Louis Bugnard, Centre Hospitalier Universitaire de Rangueil, BP 84225, 31432 Toulouse, France
| | | | | | | | | |
Collapse
|
29
|
Lorentsen RH, Fynbo CH, Thøgersen HC, Etzerodt M, Holtet TL. Expression, refolding, and purification of recombinant human granzyme B. Protein Expr Purif 2005; 39:18-26. [PMID: 15596356 DOI: 10.1016/j.pep.2004.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 08/14/2004] [Indexed: 11/18/2022]
Abstract
Granzyme B (GrB) is a member of a family of serine proteases involved in cytotoxic T-lymphocyte-mediated killing of potentially harmful cells, where GrB induces apoptosis by cleavage of a limited number of substrates. To investigate the suitability of GrB as an enzyme for specific fusion protein cleavage, two derivatives of human GrB, one dependent on blood coagulation factor Xa (FXa) cleavage for activation and one engineered to be self-activating, were recombinantly expressed in Escherichia coli. Both derivatives contain a hexa-histidine affinity tag fused to the C-terminus and expressed as inclusion bodies. These were isolated and solubilized in guanidiniumHCl, immobilized on a Ni2+-NTA agarose column, and refolded by application of a cyclic refolding protocol. The refolded pro-rGrB-H6 could be converted to a fully active form by cleavage with FXa or, for pro(IEPD)-rGrB-H6, by autocatalytic processing during the final purification step. A self-activating derivative in which the unpaired cysteine of human GrB was substituted with phenylalanine was also prepared. Both rGrB-H6 and the C228F mutant were found to be highly specific and efficient processing enzymes for the cleavage of fusion proteins, as demonstrated by cleavage of fusion proteins containing the IEPD recognition sequence of GrB.
Collapse
Affiliation(s)
- Rikke H Lorentsen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
30
|
Ishri RK, Menzies S, Hersey P, Halliday GM. Rapid downregulation of antigen processing enzymes in ex vivo generated human monocyte derived dendritic cells occur endogenously in extended cultures. Immunol Cell Biol 2004; 82:239-46. [PMID: 15186253 DOI: 10.1046/j.1440-1711.2004.01237.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dendritic cells, the most potent antigen presenting cells, have been shown in murine models to induce immune responses against many antigens. Their role in the initiation of antitumour immunity has received enormous attention. Their ability to process and present antigen is dependent on their state of maturation. This study examines the activity of human monocyte-derived dendritic cells at two different time points and the corresponding changes in the proteolytic enzyme activity. Dendritic cells were produced from peripheral blood mononuclear cells of normal volunteers. Plastic adherent cells were cultured for 5 or 7 days with recombinant human (rh)GM-CSF and rhIL-4. Flow cytometry showed that day 5 dendritic cells (DC) were less mature than day 7 DC as indicated by the expression of CD1a, CD11c, CD14, CD80, CD83, CD86 and MHC-II. Proteolytic activity of the enzymes cathepsin C and cathepsin G and phagocytosis of particulate antigens also showed significant differences between d5 dendritic cells and d7 dendritic cells. Allogeneic costimulatory activity of d7 dendritic cells was also significantly increased. Induction of immunity requires active presentation of antigens by antigen processing cells on their MHC-I and/or MHC-II molecules. Study of peptide carriers and peptide precursor molecules showed a significant decrease in CLIP levels in the day 7 DC, suggesting their decreased ability to process antigens but no difference in their ability to load MHC-II molecules. These findings indicate that the length of time in culture, in the absence of exogenous maturation - inducing stimuli affects dendritic cell maturation. Intracellular enzymatic activities of dendritic cells also changed rapidly with small changes in phenotype.
Collapse
Affiliation(s)
- R K Ishri
- Dermatology Laboratories, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
31
|
van Eijk M, van Noorden CJF, de Groot C. Proteinases and their inhibitors in the immune system. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:197-236. [PMID: 12503850 DOI: 10.1016/s0074-7696(02)22015-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The most important roles of proteinases in the immune system are found in apoptosis and major histocompatibility complex (MHC) class II-mediated antigen presentation. A variety of cysteine proteinases, serine proteinases, and aspartic proteinases as well as their inhibitors are involved in the regulation of apoptosis in neutrophils, monocytes, and dendritic cells, in selection of specific B and T lymphocytes, and in killing of target cells by cytotoxic T cells and natural killer cells. In antigen presentation, endocytosed antigens are digested into antigenic peptides by both aspartic and cysteine proteinases. In parallel, MHC class II molecules are processed by aspartic and cysteine proteinases to degrade the invariant chain that occupies the peptide-binding site. Proteinase activity in these processes is highly regulated, particularly by posttranslational activation and the balance between active proteinases and specific endogenous inhibitors such as cystatins, thyropins, and serpins. This article discusses the regulation of proteolytic processes in apoptosis and antigen presentation in immune cells and the consequences of therapeutic interference in the balance of proteinases and their inhibitors.
Collapse
Affiliation(s)
- Marco van Eijk
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
32
|
Bidère N, Briet M, Dürrbach A, Dumont C, Feldmann J, Charpentier B, de Saint-Basile G, Senik A. Selective inhibition of dipeptidyl peptidase I, not caspases, prevents the partial processing of procaspase-3 in CD3-activated human CD8(+) T lymphocytes. J Biol Chem 2002; 277:32339-47. [PMID: 12080079 DOI: 10.1074/jbc.m205153200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of primary human T cells by anti-CD3 and interleukin-2 resulted in partial processing of procaspase-3 in activated nonapoptotic (Delta Psi(m)high) CD8(+) T cells but not in CD4(+) T cells. Apical caspases-8 and -9 were not activated, and Bid was not processed to truncated Bid. Boc-D.fmk, a broad spectrum caspase inhibitor, did not prevent this process, whereas GF.dmk, a selective inhibitor of dipeptidyl peptidase I, was effective. Dipeptidyl peptidase I is required for the activation of granule-associated serine proteases. It is enriched in the cytolytic granules of cytotoxic lymphocytes, where it promotes the proteolytic activation of progranzymes A and B. Inhibition of granzyme B (GrB)-like serine proteases by Z-AAD.cmk prevented partial processing of procapase-3, whereas inhibition of GrA activity by D-FPR.cmk had no effect. Specific inhibitors of other lysosomal proteases such as cathepsins B, L, and D did not interfere in this event. Patients with Chediak-Higashi syndrome or with perforin deficiency also displayed partial processing of procaspase-3, excluding the involvement of granule exocytosis for the delivery of the serine protease in cause. The p20/p12 processing pattern of procaspase-3 in our model points to GrB, the sole serine protease with caspase activity. Small amounts of GrB were indeed exported from cytolytic granules to the cytosol of a significant fraction of GrB-positive cells.
Collapse
Affiliation(s)
- Nicolas Bidère
- Laboratoire de Greffes d'Epithéliums et Régulation de l'Activation Lymphocytaire, Unité INSERM 542, Hôpital Paul Brousse, 94807 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsui K, Yuyama N, Akaiwa M, Yoshida NL, Maeda M, Sugita Y, Izuhara K. Identification of an alternative splicing variant of cathepsin C/dipeptidyl-peptidase I. Gene 2002; 293:1-7. [PMID: 12137938 DOI: 10.1016/s0378-1119(02)00761-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cathepsin C/dipeptidyl-peptidase I is a papain-like lysosomal cysteine proteinase implicated in the processing of various proenzymes to their active forms. In this study, we identified an alternative splicing variant of cathepsin C in both human and mouse species for the first time. The variant messenger RNA (mRNA) encodes 137 amino acids corresponding to the first and second exons, followed by additional 31 amino acids. The two newly recognized exons are located in the former intron 2. The variant mRNA is distributed ubiquitously, but predominantly in kidney, placenta, and lymph nodes. Furthermore, both interleukin 4 (IL-4) and IL-13, but not a range of cytokines induce expression of the variant in bronchial epithelial cells. These results indicate that the variant may play a role in regulating the biological activities of cathepsin C, involved in the pathogenesis of bronchial asthma.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cathepsin C/genetics
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Genes/genetics
- Humans
- Interleukin-13/pharmacology
- Interleukin-4/pharmacology
- Isoenzymes/genetics
- Mice
- Molecular Sequence Data
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
|
34
|
Horn M, Baudys M, Voburka Z, Kluh I, Vondrásek J, Mares M. Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I). Protein Sci 2002; 11:933-43. [PMID: 11910036 PMCID: PMC2384168 DOI: 10.1110/ps.2910102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The mature bovine cathepsin C (CC) molecule is composed of four identical monomers, each proteolytically processed into three chains. Five intrachain disulfides and three nonpaired cysteine residues per monomer were identified. Beside catalytic Cys234 in the active site, free-thiol Cys331 and Cys424 were characterized. Cys424 can be classified as inaccessible buried residue. Selective modification of Cys331 results in dissociation of native CC tetramer into dimers. The 3D homology-based model of the CC catalytic core suggests that Cys331 becomes exposed as the activation peptide is removed during procathepsin C activation. The model further shows that exposed Cys331 is surrounded by a surface hydrophobic cluster, unique to CC, forming a dimer-dimer interaction interface. Substrate/inhibitor recognition of the active site in the CC dimer differs significantly from that in the native tetramer. Taken together, a mechanism is proposed that assumes that the CC tetramer formation results in a site-specific occlusion of endopeptidase-like active site cleft of each CC monomeric unit. Thus, tetramerization provides for the structural basis of the dipeptidyl peptidase activity of CC through a substrate access-limiting mechanism different from those found in homologous monomeric exopeptidases cathepsin H and B. In conclusion, the mechanism of tetramer formation as well as specific posttranslational processing segregates CC in the family of papain proteases.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Praha, Czech Republic.
| | | | | | | | | | | |
Collapse
|
35
|
Wolters PJ, Pham CT, Muilenburg DJ, Ley TJ, Caughey GH. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem 2001; 276:18551-6. [PMID: 11279033 DOI: 10.1074/jbc.m100223200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dipeptidyl peptidase I (DPPI) is the sole activator in vivo of several granule-associated serine proteases of cytotoxic lymphocytes. In vitro, DPPI also activates mast cell chymases and tryptases. To determine whether DPPI is essential for their activation in vivo, we used enzyme histochemical and immunohistochemical approaches and solution-based activity assays to study these enzymes in tissues and bone marrow-derived mast cells (BMMCs) from DPPI +/+ and DPPI -/- mice. We find that DPPI -/- mast cells contain normal amounts of immunoreactive chymases but no chymase activity, indicating that DPPI is essential for chymase activation and suggesting that DPPI -/- mice are functional chymase knockouts. The absence of DPPI and chymase activity does not affect the growth, granularity, or staining characteristics of BMMCs and, despite prior predictions, does not alter IgE-mediated exocytosis of histamine. In contrast, the level of active tryptase (mMCP-6) in DPPI -/- BMMCs is 25% that of DPPI +/- BMMCs. These findings indicate that DPPI is not essential for mMCP-6 activation but does influence the total amount of active mMCP-6 in mast cells and therefore may be an important, but not exclusive mechanism for tryptase activation.
Collapse
Affiliation(s)
- P J Wolters
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, California 94143-0911, USA.
| | | | | | | | | |
Collapse
|
36
|
Dahl SW, Halkier T, Lauritzen C, Dolenc I, Pedersen J, Turk V, Turk B. Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 2001; 40:1671-8. [PMID: 11327826 DOI: 10.1021/bi001693z] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human dipeptidyl peptidase I was expressed in the insect cell/baculovirus system and purified in its active (rhDPPI) and precursor (pro-rhDPPI) forms. RhDPPI was very similar to the purified enzyme (hDPPI) with respect to glycosylation, enzymatic processing, oligomeric structure, CD spectra, and catalytic activity. The precursor, which was a dimer, could be activated approximately 2000-fold with papain. Cathepsin L efficiently activated pro-rhDPPI in vitro at pH 4.5 (k(app) approximately 2 x 10(3) min(-)(1) M(-)(1)), and two cleavage pathways were characterized. The initial cleavage was within the pro region between the residual pro part and the activation peptide. Subsequently, the activation peptide was cleaved from the catalytic region, and the latter was cleaved into the heavy and light chains. Alternatively, the pro region was first separated from the catalytic region. Cathepsin S was a less efficient activating enzyme. Cathepsin B and rhDPPI did not activate pro-rhDPPI, and the proenzyme was incapable of autoactivation. Incubation of both pro-rhDPPI and rhDPPI with cathepsin D resulted in degradation. Cystatin C and stefins A and B inhibited rhDPPI with K(i) values in the nanomolar range (K(i) = 0.5-1.1 nM). The results suggest that cathepsin L could be an important activator of DPPI in vivo and that cathepsin D and possibly the cystatins may contribute to DPPI downregulation.
Collapse
Affiliation(s)
- S W Dahl
- Prozymex A/S, Dr. Neergaards Vej 17, DK-2970 Hørsholm, Denmark.
| | | | | | | | | | | | | |
Collapse
|
37
|
KIKUTA HIROKAZU, KANO KENJIRO, HONDA HIROYUKI, KOBAYASHI TAKESHI. Optimization of Bovine Cathepsin C Production by Cultivation of Recombinant Methylotrophic Yeast Candida boidinii. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2001. [DOI: 10.1252/jcej.34.848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- HIROKAZU KIKUTA
- Department of Biotechnology, Graduate School of Engineering, Nagoya University
| | - KENJIRO KANO
- Pharmaceutical Development Laboratory, Kirin Brewery Co. Ltd
| | - HIROYUKI HONDA
- Department of Biotechnology, Graduate School of Engineering, Nagoya University
| | - TAKESHI KOBAYASHI
- Department of Biotechnology, Graduate School of Engineering, Nagoya University
| |
Collapse
|
38
|
Sturrock A, Franklin KF, Wu S, Hoidal JR. Characterization and localization of the genes for mouse proteinase-3 (Prtn3) and neutrophil elastase (Ela2). CYTOGENETICS AND CELL GENETICS 2000; 83:104-8. [PMID: 9925946 DOI: 10.1159/000015144] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proteinase-3 (PR-3) and neutrophil elastase (NE) are polymorphonuclear leukocyte serine proteinases that degrade extracellular matrix proteins including elastin and appear to be involved in the pathogenesis of several diseases characterized by tissue destruction most notably emphysema and Wegener's granulomatosis. In this report we characterize and compare the mouse PR-3 and NE genes and establish by FISH analysis a common location on mouse chromosome 10C2. Each gene consists of five exons and four introns conserving the typical granule-associated serine proteinase gene structure. The mouse PR-3 gene (Prtn3) is approximately 3.7 kb and is within 2.2 kb of the smaller (1.7 kb) NE gene (Ela2). The larger size of Prtn3 is accounted for by differences in intron sizes. A comparison between the mouse and human PR-3 cDNA reveals 73% homology, however, this drops to 60% when the amino acid sequences are compared. Homology between the mouse and human NE cDNA is 77% for both the cDNA and amino acid sequences. The catalytic triad and its placement are conserved among the four genes. The proximal promoter of mouse Prtn3 contains a TATA box, c-myb and an ets transcriptional site. As these are functional elements in the mouse Ela2 promoter they may also be important in the expression of Prtn3.
Collapse
Affiliation(s)
- A Sturrock
- Department of Internal Medicine, Division of Respiratory, Critical Care and Occupational Medicine, Salt Lake City Veterans Administration Medical Center and the University of Utah, Salt Lake City, Utah, (USA)
| | | | | | | |
Collapse
|
39
|
Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:98-111. [PMID: 10708852 DOI: 10.1016/s0167-4838(99)00263-0] [Citation(s) in RCA: 568] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal cysteine proteases were believed to be mainly involved in intracellular protein degradation. Under special conditions they have been found outside lysosomes resulting in pathological conditions. With the discovery of a series of new cathepsins with restricted tissue distributions, it has become evident that these enzymes must be involved in a range of specific cellular tasks much broader than as simple housekeeping enzymes. It is therefore timely to review and discuss the various physiological roles of mammalian lysosomal papain-like cysteine proteases as well as their mechanisms of action and the regulation of their activity.
Collapse
Affiliation(s)
- B Turk
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | | | | |
Collapse
|
40
|
Abstract
Granzyme A (GrA) and B (GrB) together with perforin are the main constituents of cytotoxic granules of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. The cytotoxic proteins are released to deliver a lethal hit during contact between the CTL or NK cell and target cell. With the use of an enzyme-linked immunosorbent assay for antigenic levels, we showed in a recent study that plasma of patients with activated CTLs and NK cells contain elevated levels of extracellular GrA. In this study, we determined the form and proteolytic capacity of this extracellular GrA detected in plasma. With the use of various assays, we show that part of the extracellular GrA circulates in the mature conformation and is bound to proteoglycans that protect it against inactivation by protease inhibitors, such as antithrombin III and -2-macroglobulin, whereas another part of GrA circulates as a complex with antithrombin III. Finally, with the use of a novel assay for active GrA, we demonstrate that some plasma samples with high levels of extracellular GrA contain active GrA. These results suggest that various forms of extracellular GrA occur in vivo and that the regulation of GrA activity may be modified by proteoglycans. These data support the notion that granzymes may exert extracellular functions distant from the site of CTL or NK cell interaction with their target cells.
Collapse
|
41
|
|
42
|
Wilharm E, Parry MA, Friebel R, Tschesche H, Matschiner G, Sommerhoff CP, Jenne DE. Generation of catalytically active granzyme K from Escherichia coli inclusion bodies and identification of efficient granzyme K inhibitors in human plasma. J Biol Chem 1999; 274:27331-7. [PMID: 10480954 DOI: 10.1074/jbc.274.38.27331] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granzymes are granule-stored lymphocyte serine proteases that are implicated in T- and natural killer cell-mediated cytotoxic defense reactions after target cell recognition. A fifth human granzyme (granzyme 3, lymphocyte tryptase-2), renamed as granzyme K (gene name GZMK), has recently been cloned from lymphocyte tissue. For its further characterization we successfully generated catalytically active enzyme in milligram quantities per liter of Escherichia coli culture. The natural proform of granzyme K with the amino-terminal propeptide Met-Glu was expressed as inclusion bodies and converted to its active enzyme by cathepsin C after refolding of precursor molecules. Recombinant granzyme K cleaves synthetic thiobenzyl ester substrates after Lys and Arg with k(cat)/K(m) values of 3.7 x 10(4) and 4.4 x 10(4) M(-1) s(-1), respectively. Granzyme K activity was shown to be inhibited by the synthetic compounds Phe-Pro-Arg-chloromethyl ketone, phenylmethylsulfonyl fluoride, PefablocSC, and benzamidine, by the Kunitz-type inhibitor aprotinin and by human blood plasma. The plasma-derived inter-alpha-trypsin inhibitor complex, its bikunin subunit, and the second carboxyl-terminal Kunitz-type domain of bikunin were identified as genuine physiologic inhibitors with K(i) values of 64, 50, and 22 nM, respectively. Inter-alpha-trypsin inhibitor and free bikunin have the potential to neutralize extracellular granzyme K activity after T cell degranulation and may thus control unspecific damage of bystander cells at sites of inflammatory reactions.
Collapse
Affiliation(s)
- E Wilharm
- Max-Planck-Institute of Neurobiology, Department of Neuroimmunology, Department of Structural Biology, Am Klopferspitz 18A, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Pham CT, Ley TJ. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci U S A 1999; 96:8627-32. [PMID: 10411926 PMCID: PMC17567 DOI: 10.1073/pnas.96.15.8627] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dipeptidyl peptidase I (DPPI) is a lysosomal cysteine protease that has been implicated in the processing of granzymes, which are neutral serine proteases exclusively expressed in the granules of activated cytotoxic lymphocytes. In this report, we show that cytotoxic lymphocytes derived from DPPI-/- mice contain normal amounts of granzymes A and B, but these molecules retain their prodipeptide domains and are inactive. Cytotoxic assays with DPPI-/- effector cells reveal severe defects in the induction of target cell apoptosis (as measured by [(125)I]UdR release) at both early and late time points; this defect is comparable to that detected in perforin-/- or granzyme A-/- x B-/- cytotoxic lymphocytes. DPPI therefore plays an essential role in the in vivo processing and activation of granzymes A and B, which are required for cytotoxic lymphocyte granule-mediated apoptosis.
Collapse
Affiliation(s)
- C T Pham
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- A J Darmon
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, UK
| | | | | |
Collapse
|
45
|
Lauritzen C, Pedersen J, Madsen MT, Justesen J, Martensen PM, Dahl SW. Active recombinant rat dipeptidyl aminopeptidase I (cathepsin C) produced using the baculovirus expression system. Protein Expr Purif 1998; 14:434-42. [PMID: 9882579 DOI: 10.1006/prep.1998.0976] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An active form of rat dipeptidyl aminopeptidase I (DPPI, cathepsin C) was obtained by heterologous expression in insect cells. Baculoviruses carrying a cDNA sequence encoding the entire rat DPPI precursor was used to infect High Five cells in a serum-free medium. Recombinant DPPI (rDPPI) was secreted into the medium from which it was purified by a combination of ammonium sulfate fractionation, hydrophobic interaction chromatography (HIC), and ion-exchange chromatography. A polyhistidine-tagged form of the enzyme (HT-rDPPI) was purified from the medium by immobilized metal affinity chromatography (IMAC). In vivo activation of native rat DPPI involves at least three chain cleavages per subunit and the ability of the expression system to imitate this processing was investigated. Both rDPPI and HT-rDPPI were secreted into the medium as unprocessed and inactive proenzymes and gradually converted into their active forms in the medium. This process was not completed at the time of harvest but mature enzyme processed similarly to native rat and human DPPI could be obtained by incubating the eluates from the HIC and IMAC columns at pH 4.5 and 5 degrees C for 18-40 h. The yield of purified and matured enzyme was approximately 50 mg/liter, and it was shown that rDPPI and HT-rDPPI were active against both a dipeptide-p-nitroanilide substrate and human growth hormone N-terminally extended with an Ala-Glu dipeptide.
Collapse
Affiliation(s)
- C Lauritzen
- UNIZYME Laboratories, Dr. Neergaards Vej 17, Horsholm, DK-2970, Denmark.
| | | | | | | | | | | |
Collapse
|
46
|
On the Role of the Proform-Conformation for Processing and Intracellular Sorting of Human Cathepsin G. Blood 1998. [DOI: 10.1182/blood.v92.4.1415] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe serine protease cathepsin G is synthesized during the promyelomonocytic stage of neutrophil and monocyte differentiation. After processing, including removal of an amino-terminal propeptide from the catalytically inactive proform, the active protease acquires a mature conformation and is stored in azurophil granules. To investigate the importance of the proform-conformation for targeting to granules, a cDNA encoding a double-mutant form of human preprocathepsin G lacking functional catalytic site and amino-terminal prodipeptide (CatG/Gly201/▵Gly19Glu20) was constructed, because we were not able to stably express a mutant lacking only the propeptide. Transfection of the cDNA to the rat basophilic leukemia RBL-1 and the murine myeloblast-like 32D cl3 cell lines resulted in stable, protein-expressing clones. In contrast to wild-type proenzyme, CatG/Gly201/▵Gly19Glu20 adopted a mature conformation cotranslationally, as judged by the early acquisition of affinity to the serine protease inhibitor aprotinin, appearing before the carboxyl-terminal processing and also in the presence of the Golgi-disrupting agent brefeldin A. The presence of a mature amino-terminus was confirmed by amino-terminal radiosequencing. As with wild-type proenzyme, CatG/Gly201/▵Gly19Glu20 was proteolytically processed carboxyl-terminally and glycosylated with asparagine-linked carbohydrates that were converted into complex forms. Furthermore, it was targeted to granules, as determined by subcellular fractionation. Our results show that the initial proform-conformation is not critical for intracellular sorting of human cathepsin G. Moreover, we demonstrate that double-mutant cathepsin G can achieve a mature conformation before carboxyl-terminal processing of the proform.© 1998 by The American Society of Hematology.
Collapse
|
47
|
Abstract
The serine protease cathepsin G is synthesized during the promyelomonocytic stage of neutrophil and monocyte differentiation. After processing, including removal of an amino-terminal propeptide from the catalytically inactive proform, the active protease acquires a mature conformation and is stored in azurophil granules. To investigate the importance of the proform-conformation for targeting to granules, a cDNA encoding a double-mutant form of human preprocathepsin G lacking functional catalytic site and amino-terminal prodipeptide (CatG/Gly201/▵Gly19Glu20) was constructed, because we were not able to stably express a mutant lacking only the propeptide. Transfection of the cDNA to the rat basophilic leukemia RBL-1 and the murine myeloblast-like 32D cl3 cell lines resulted in stable, protein-expressing clones. In contrast to wild-type proenzyme, CatG/Gly201/▵Gly19Glu20 adopted a mature conformation cotranslationally, as judged by the early acquisition of affinity to the serine protease inhibitor aprotinin, appearing before the carboxyl-terminal processing and also in the presence of the Golgi-disrupting agent brefeldin A. The presence of a mature amino-terminus was confirmed by amino-terminal radiosequencing. As with wild-type proenzyme, CatG/Gly201/▵Gly19Glu20 was proteolytically processed carboxyl-terminally and glycosylated with asparagine-linked carbohydrates that were converted into complex forms. Furthermore, it was targeted to granules, as determined by subcellular fractionation. Our results show that the initial proform-conformation is not critical for intracellular sorting of human cathepsin G. Moreover, we demonstrate that double-mutant cathepsin G can achieve a mature conformation before carboxyl-terminal processing of the proform.© 1998 by The American Society of Hematology.
Collapse
|
48
|
Beresford PJ, Jaju M, Friedman RS, Yoon MJ, Lieberman J. A Role for Heat Shock Protein 27 in CTL-Mediated Cell Death. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
CTL exocytosis of granules containing perforin and granzyme proteases induces apoptotic cell death. Either granzyme A or B can act with perforin to trigger apoptosis. Granzyme B activates a ubiquitous apoptotic cascade induced by caspase cleavage, but the granzyme A pathway is largely unknown. Using affinity chromatography with recombinant mutant inactive granzyme A, we previously isolated two granzyme A-binding proteins, PHAP (putative HLA-associated protein) I and II. PHAP II, a substrate of granzyme A, is degraded within minutes of CTL attack. Two additional cytoplasmic proteins of 27 and 53 kDa bind strongly to the mutant granzyme A column, requiring 6 M urea to elute. Sequencing identified these as the monomer and dimer of hsp27, a small heat shock protein up-regulated by stress and cellular activation. Hsp27 coprecipitates with granzyme A from cytoplasmic lysates and is not a substrate of the enzyme. Hsp27 translocates to the detergent-insoluble fraction of target cells and relocalizes from diffuse cytoplasmic staining to long filamentous fibers, especially concentrated in a perinuclear region, within minutes of CTL attack. Hsp27 may participate in morphologic changes during granule-mediated lysis. Low or absent levels of hsp27 expression in T lymphocytes, even after heat shock, may play a role in CTL resistance to granule-mediated lysis.
Collapse
Affiliation(s)
- Paul J. Beresford
- The Center for Blood Research, Harvard Medical School, Boston, MA 02115
| | - Madhuri Jaju
- The Center for Blood Research, Harvard Medical School, Boston, MA 02115
| | | | - Margaret J. Yoon
- The Center for Blood Research, Harvard Medical School, Boston, MA 02115
| | - Judy Lieberman
- The Center for Blood Research, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
49
|
Pham CT, Thomas DA, Mercer JD, Ley TJ. Production of fully active recombinant murine granzyme B in yeast. J Biol Chem 1998; 273:1629-33. [PMID: 9430705 DOI: 10.1074/jbc.273.3.1629] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Granzyme B (GzmB) is a neutral serine protease found in cytotoxic lymphocytes; this enzyme is critically involved in delivering the rapid apoptotic signal to susceptible target cells. GzmB has been difficult to study and has not yet been produced in non-mammalian systems because of the complex processing events that are thought to be required for its activation. In this report, we have successfully produced fully active, soluble recombinant GzmB (rGzmB) in a yeast-based system by fusing GzmB cDNA in frame with yeast alpha-factor cDNA, using the yeast KEX2 signal peptidase to release the processed enzyme into the supernatant of yeast cultures. We expressed the proenzyme form of GzmB as well and determined that pro-GzmB is efficiently converted to its active form by the cysteine proteinase dipeptidyl peptidase I. The fully processed enzyme was able to hydrolyze the synthetic substrate N-t-butyloxycarbonyl-L-alanyl-L-alanyl-L-aspartyl (Boc-Ala-Ala-Asp) thiobenzyl ester with a kcat of 17 s-1 and catalytic efficiency kcat/Km of 181,237 M-1 S-1; the recombinant enzyme is therefore at least twice as active as purified native GzmB. In addition, the recombinant enzyme hydrolyzes Boc-Ala-Ala-Met thiobenzyl ester with a kcat of 3.2 S-1 and a catalytic efficiency kcat/Km of 65,306 M-1 S-1. Purified rGzmB can also cleave the putative substrate caspase-3 into its signature p20/p10 forms. Unlike caspases, rGzmB is not sensitive to inhibition by several peptide-based inhibitors, including Ac-DEVD-CHO, Ac-YVAD-CMK, and ZIETD-FMK, as well as Zn2+ (a known inhibitor of caspase-3). Structural studies of rGzmB may allow us to better understand the substrate specificity of this enzyme and to design better inhibitors.
Collapse
Affiliation(s)
- C T Pham
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
50
|
Ogasawara W, Kobayashi G, Ishimaru S, Okada H, Morikawa Y. The gene encoding dipeptidyl aminopeptidase BI from Pseudomonas sp. WO24: cloning, sequencing and expression in Escherichia coli. Gene 1998; 206:229-36. [PMID: 9469937 DOI: 10.1016/s0378-1119(97)00590-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have isolated the dipeptidyl aminopeptidase BI (DAP BI) gene from the plasmid library of Pseudomonas sp. WO24 chromosomal DNA by the enzymatic plate assay using a chromogenic substrate. The DAP BI gene, designated dap b1, was further subcloned and sequenced. Sequence analysis of an approx. 3-kb fragment revealed an open reading frame of 2169 nucleotides, which was assigned to the dap b1 gene by N-terminal and internal amino acid sequences. The predicted amino acid sequence of DAP BI containing a serine protease Gly-X-Ser-X-Gly consensus motif displays extensive homologies to the several proteases belonging to the prolyl oligopeptidase family, a novel serine protease family possessing the catalytic triad with a specific array of Ser, Asp and His in this order, which is the hallmark of the member of this family including DAP IV. The dap b1 gene was expressed in Escherichia coli and the expressed enzyme was purified about 230-fold with 2.6% recovery from the cell-free extracts. The enzymatic properties such as molecular mass, substrate specificity and effect of inhibitor were similar to the native enzyme from Pseudomonas sp. WO24.
Collapse
Affiliation(s)
- W Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-21, Japan
| | | | | | | | | |
Collapse
|