1
|
Roider E, Lakatos AIT, McConnell AM, Wang P, Mueller A, Kawakami A, Tsoi J, Szabolcs BL, Ascsillán AA, Suita Y, Igras V, Lo JA, Hsiao JJ, Lapides R, Pál DMP, Lengyel AS, Navarini A, Okazaki A, Iliopoulos O, Németh I, Graeber TG, Zon L, Giese RW, Kemeny LV, Fisher DE. MITF regulates IDH1, NNT, and a transcriptional program protecting melanoma from reactive oxygen species. Sci Rep 2024; 14:21527. [PMID: 39277608 PMCID: PMC11401838 DOI: 10.1038/s41598-024-72031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte function, development and plays a significant role in melanoma pathogenesis. MITF genomic amplification promotes melanoma development, and it can facilitate resistance to multiple therapies. Here, we show that MITF regulates a global antioxidant program that increases survival of melanoma cell lines by protecting the cells from reactive oxygen species (ROS)-induced damage. In addition, this redox program is correlated with MITF expression in human melanoma cell lines and patient-derived melanoma samples. Using a zebrafish melanoma model, we show that MITF decreases ROS-mediated DNA damage in vivo. Some of the MITF target genes involved, such as IDH1 and NNT, are regulated through direct MITF binding to canonical enhancer box (E-BOX) sequences proximal to their promoters. Utilizing functional experiments, we demonstrate the role of MITF and its target genes in reducing cytosolic and mitochondrial ROS. Collectively, our data identify MITF as a significant driver of the cellular antioxidant state.
Collapse
Affiliation(s)
- Elisabeth Roider
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA.
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland.
| | - Alexandra I T Lakatos
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Alicia M McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Massachusetts and the Howard Hughes Medical Institute, Boston, USA
| | - Poguang Wang
- Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, and Barnett Institute, Bouve College, Northeastern University, Boston, MA, 02115, USA
| | - Alina Mueller
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Jennifer Tsoi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- UCLA Metabolomics Center, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Botond L Szabolcs
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Anna A Ascsillán
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Yusuke Suita
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Vivien Igras
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Jennifer A Lo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Jennifer J Hsiao
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Rebecca Lapides
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Robert Larner, College of Medicine at the University of Vermont, Burlington, USA
| | - Dorottya M P Pál
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Anna S Lengyel
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Alexander Navarini
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Arimichi Okazaki
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Othon Iliopoulos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - István Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- UCLA Metabolomics Center, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - Leonard Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Massachusetts and the Howard Hughes Medical Institute, Boston, USA
| | - Roger W Giese
- Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, and Barnett Institute, Bouve College, Northeastern University, Boston, MA, 02115, USA
| | - Lajos V Kemeny
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA.
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary.
- Department of Physiology, Semmelweis University, Budapest, Hungary.
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary.
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA.
- Lancer Professorship of Dermatology, Harvard Medical School, Boston, USA.
| |
Collapse
|
2
|
Roider E, Lakatos AIT, McConnell AM, Wang P, Mueller A, Kawakami A, Tsoi J, Szabolcs BL, Ascsillán AA, Suita Y, Igras V, Lo JA, Hsiao JJ, Lapides R, Pál DMP, Lengyel AS, Navarini A, Okazaki A, Iliopoulos O, Németh I, Graeber TG, Zon L, Giese RW, Kemeny LV, Fisher DE. MITF regulates IDH1 and NNT and drives a transcriptional program protecting cutaneous melanoma from reactive oxygen species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.564582. [PMID: 38014031 PMCID: PMC10680652 DOI: 10.1101/2023.11.10.564582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) plays pivotal roles in melanocyte development, function, and melanoma pathogenesis. MITF amplification occurs in melanoma and has been associated with resistance to targeted therapies. Here, we show that MITF regulates a global antioxidant program that increases survival of melanoma cell lines by protecting the cells from reactive oxygen species (ROS)-induced damage. In addition, this redox program is correlated with MITF expression in human melanoma cell lines and patient-derived melanoma samples. Using a zebrafish melanoma model, we show that MITF decreases ROS-mediated DNA damage in vivo . Some of the MITF target genes involved, such as IDH1 and NNT , are regulated through direct MITF binding to canonical enhancer box (E-BOX) sequences proximal to their promoters. Utilizing functional experiments, we demonstrate the role of MITF and its target genes in reducing cytosolic and mitochondrial ROS. Collectively, our data identify MITF as a significant driver of the cellular antioxidant state. One Sentence Summary MITF promote melanoma survival via increasing ROS tolerance.
Collapse
|
3
|
Allouche J, Rachmin I, Adhikari K, Pardo LM, Lee JH, McConnell AM, Kato S, Fan S, Kawakami A, Suita Y, Wakamatsu K, Igras V, Zhang J, Navarro PP, Lugo CM, Noonan HR, Christie KA, Itin K, Mujahid N, Lo JA, Won CH, Evans CL, Weng QY, Wang H, Osseiran S, Lovas A, Németh I, Cozzio A, Navarini AA, Hsiao JJ, Nguyen N, Kemény LV, Iliopoulos O, Berking C, Ruzicka T, Gonzalez-José R, Bortolini MC, Canizales-Quinteros S, Acuna-Alonso V, Gallo C, Poletti G, Bedoya G, Rothhammer F, Ito S, Schiaffino MV, Chao LH, Kleinstiver BP, Tishkoff S, Zon LI, Nijsten T, Ruiz-Linares A, Fisher DE, Roider E. NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism. Cell 2021; 184:4268-4283.e20. [PMID: 34233163 PMCID: PMC8349839 DOI: 10.1016/j.cell.2021.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/09/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.
Collapse
Affiliation(s)
- Jennifer Allouche
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, The Open University, Milton Keynes, MK7 6AA, UK; Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Luba M Pardo
- Department of Dermatology, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, 03722 Seoul, Korea
| | - Alicia M McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and the Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Shinichiro Kato
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Immunology, Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yusuke Suita
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Vivien Igras
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jianming Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Paula P Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Camila Makhlouta Lugo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Haley R Noonan
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and the Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Kathleen A Christie
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Kaspar Itin
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Nisma Mujahid
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Boston University School of Medicine, Boston, MA 02118, USA; University of Utah, Department of Dermatology, Salt Lake City, UT 84132, USA
| | - Jennifer A Lo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, Ulsan University College of Medicine, 05505 Seoul, Korea
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Qing Yu Weng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hequn Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sam Osseiran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alyssa Lovas
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - István Németh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
| | - Antonio Cozzio
- Department of Dermatology, Venerology, and Allergology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Alexander A Navarini
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Jennifer J Hsiao
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nhu Nguyen
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Othon Iliopoulos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Thomas Ruzicka
- Department of Dermatology and Allergy, University Hospital Munich, Ludwig Maximilian University, 80337 Munich, Germany
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas-Centro Nacional Patagónico, CONICET, Puerto Madryn U912OACD, Argentina
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México e Instituto Nacional de Medicina Genómica, Mexico City 04510, Mexico
| | | | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Gabriel Bedoya
- Genética Molecular (GENMOL), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000009, Chile; Programa de Genetica Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 1027, Chile
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Maria Vittoria Schiaffino
- Internal Medicine, Diabetes and Endocrinology Unit, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Tishkoff
- Departments of Genetics and Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and the Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Tamar Nijsten
- Department of Dermatology, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; UMR 7268, CNRS-EFS-ADES, Aix-Marseille University, Marseille 13005, France
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Elisabeth Roider
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland; Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
4
|
Zhang B, Li B, Chen D, Zong J, Sun F, Qu H, Liang C. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation. PLoS One 2016; 11:e0161502. [PMID: 27537181 PMCID: PMC4990298 DOI: 10.1371/journal.pone.0161502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/05/2016] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Baizhi Li
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Dai Chen
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai 200000, P.R. China
| | - Jie Zong
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai 200000, P.R. China
| | - Fei Sun
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Huixin Qu
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
- * E-mail:
| |
Collapse
|
5
|
Williams GSB, Boyman L, Lederer WJ. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 2014; 78:35-45. [PMID: 25450609 DOI: 10.1016/j.yjmcc.2014.10.019] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/28/2023]
Abstract
Consumption of adenosine triphosphate (ATP) by the heart can change dramatically as the energetic demands increase from a period of rest to strenuous activity. Mitochondrial ATP production is central to this metabolic response since the heart relies largely on oxidative phosphorylation as its source of intracellular ATP. Significant evidence has been acquired indicating that Ca(2+) plays a critical role in regulating ATP production by the mitochondria. Here the evidence that the Ca(2+) concentration in the mitochondrial matrix ([Ca(2+)]m) plays a pivotal role in regulating ATP production by the mitochondria is critically reviewed and aspects of this process that are under current active investigation are highlighted. Importantly, current quantitative information on the bidirectional Ca(2+) movement across the inner mitochondrial membrane (IMM) is examined in two parts. First, we review how Ca(2+) influx into the mitochondrial matrix depends on the mitochondrial Ca(2+) channel (i.e., the mitochondrial calcium uniporter or MCU). This discussion includes how the MCU open probability (PO) depends on the cytosolic Ca(2+) concentration ([Ca(2+)]i) and on the mitochondrial membrane potential (ΔΨm). Second, we discuss how steady-state [Ca(2+)]m is determined by the dynamic balance between this MCU-based Ca(2+) influx and mitochondrial Na(+)/Ca(2+) exchanger (NCLX) based Ca(2+) efflux. These steady-state [Ca(2+)]m levels are suggested to regulate the metabolic energy supply due to Ca(2+)-dependent regulation of mitochondrial enzymes of the tricarboxylic acid cycle (TCA), the proteins of the electron transport chain (ETC), and the F1F0 ATP synthase itself. We conclude by discussing the roles played by [Ca(2+)]m in influencing mitochondrial responses under pathological conditions. This article is part of a Special Issue entitled "Mitochondria: From BasicMitochondrial Biology to Cardiovascular Disease."
Collapse
Affiliation(s)
- George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Duncan O, Taylor NL, Carrie C, Eubel H, Kubiszewski-Jakubiak S, Zhang B, Narsai R, Millar AH, Whelan J. Multiple lines of evidence localize signaling, morphology, and lipid biosynthesis machinery to the mitochondrial outer membrane of Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1093-113. [PMID: 21896887 PMCID: PMC3252152 DOI: 10.1104/pp.111.183160] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 08/31/2011] [Indexed: 05/18/2023]
Abstract
The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction.
Collapse
|
7
|
Yu M, Wang X, Du Y, Chen H, Guo X, Xia L, Chen J. Comparative analysis of renal protein expression in spontaneously hypertensive rat. Clin Exp Hypertens 2008; 30:315-25. [PMID: 18633755 DOI: 10.1080/10641960802269935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Molecular mechanisms of nephrosclerosis caused by hypertension are not well known. Understanding changes in renal protein expression in hypertension may provide further information on how hypertension caused renal injury. METHODS AND RESULTS In the present study, we showed the protein expression profiles of the kidney in spontaneously hypertensive rats and Wistar-Kyoto rats using two-dimensional gel electrophoresis (2-DE). Differentially expressed protein spots were excised, underwent in-gel tryptic digestion, and were analyzed by MALDI-TOF MS. Eleven spots were identified. Of these identified spots, four spots were newly appeared, five spots up-regulated, and two spots down-regulated. The identified spots were mainly involved in energy metabolism, lipid transferring between membranes, and cell proliferation. CONCLUSIONS The expression of many proteins have changed significantly in the kidney of spontaneously hypertensive rat. NADP(+)-dependent isocitrate dehydrogenase may be a candidate for further investigation of pathophysiological mechanisms of renal injury in hypertension.
Collapse
Affiliation(s)
- Min Yu
- Department of Cardiovascular Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Hippocampal metabolic proteins are modulated in voluntary and treadmill exercise rats. Exp Neurol 2008; 212:145-51. [DOI: 10.1016/j.expneurol.2008.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/03/2008] [Accepted: 03/15/2008] [Indexed: 01/15/2023]
|
9
|
A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity. Extremophiles 2008; 12:451-9. [DOI: 10.1007/s00792-008-0150-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
10
|
Lin WY, Chang JY, Hish CH, Pan TM. Proteome response of Monascus pilosus during rice starch limitation with suppression of monascorubramine production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9226-9234. [PMID: 17924709 DOI: 10.1021/jf071109u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
For centuries, red mold rice has been made by fermentation of cooked rice with Monascus species. However, the influence of different carbon sources on the metabolism of Monascus cells remains unclear. We compared the proteome response of Monascus pilosus to replacement of the rice starch fraction with lactose during cultivation, using two-dimensional gel electrophoresis, matrix-assisted laser desorption-ionization time-of-flight/time-of-flight mass spectrometry, and tandem mass spectrometry to identify the proteins expressed. The results showed that cell growth and monascorubramine pigment formation of M. pilosus were sensitive to rice starch limitation during cultivation. A total of 12 proteins were identified with statistically altered expression in the cells cultivated with lactose. These deregulated proteins were involved in glycolysis, TCA cycle, energy generation, protein folding, and peptide biosynthesis. The possible metabolic flux shifts induced by rice starch limitation were discussed. The results suggested that the suppression of monascorubramine formation could be related to the necessary energy-requiring adaptations executed in response to carbon depletion during rice starch limitation.
Collapse
Affiliation(s)
- Wun-Yuan Lin
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taiwan, Republic of China
| | | | | | | |
Collapse
|
11
|
Hu G, Lin AP, McAlister-Henn L. Physiological consequences of loss of allosteric activation of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 2006; 281:16935-16942. [PMID: 16621803 DOI: 10.1074/jbc.m512281200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on allosteric regulatory properties, NAD+-specific isocitrate dehydrogenase (IDH) is believed to control flux through the tricarboxylic acid cycle in vivo. To distinguish growth phenotypes associated with regulatory dysfunction of this enzyme in Saccharomyces cerevisiae, we analyzed strains expressing well defined mutant forms of IDH or a non-allosteric bacterial NAD+-specific isocitrate dehydrogenase (IDHa). As previously reported, expression of mutant forms of IDH with severe catalytic defects but intact regulatory properties produced an inability to grow with acetate as the carbon source and a dramatic increase in the frequency of generation of petite colonies, phenotypes also exhibited by a strain (idh1Deltaidh2Delta) lacking IDH. Reduced growth rates on acetate medium were also observed with expression of enzymes with severe regulatory defects or of the bacterial IDHa enzyme, suggesting that allosteric regulation is also important for optimal growth on this carbon source. However, expression of IDHa produced no effect on petite frequency, suggesting that the intermediate petite frequencies observed for strains expressing regulatory mutant forms of IDH are likely to correlate with the slight reductions in catalytic efficiency observed for these enzymes. Finally, rates of increase in oxygen consumption were measured during culture shifts from medium with glucose to medium with ethanol as the carbon source. Strains expressing wild-type or catalytically deficient mutant forms of IDH exhibited rapid respiratory transitions, whereas strains expressing regulatory mutant forms of IDH or the bacterial IDHa enzyme exhibited much slower respiratory transitions. This suggests an important physiological role for allosteric activation of IDH during changes in environmental conditions.
Collapse
Affiliation(s)
- Gang Hu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - An-Ping Lin
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Lee McAlister-Henn
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900.
| |
Collapse
|
12
|
Wrenger C, Müller S. Isocitrate dehydrogenase of Plasmodium falciparum. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1775-83. [PMID: 12694190 DOI: 10.1046/j.1432-1033.2003.03536.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erythrocytic stages of the malaria parasite Plasmodium falciparum rely on glycolysis for their energy supply and it is unclear whether they obtain energy via mitochondrial respiration albeit enzymes of the tricarboxylic acid (TCA) cycle appear to be expressed in these parasite stages. Isocitrate dehydrogenase (ICDH) is either an integral part of the mitochondrial TCA cycle or is involved in providing NADPH for reductive reactions in the cell. The gene encoding P. falciparum ICDH was cloned and analysis of the deduced amino-acid sequence revealed that it possesses a putative mitochondrial targeting sequence. The protein is very similar to NADP+-dependent mitochondrial counterparts of higher eukaryotes but not Escherichia coli. Expression of full-length ICDH generated recombinant protein exclusively expressed in inclusion bodies but the removal of 27 N-terminal amino acids yielded appreciable amounts of soluble ICDH consistent with the prediction that these residues confer targeting of the native protein to the parasites' mitochondrion. Recombinant ICDH forms homodimers of 90 kDa and its activity is dependent on the bivalent metal ions Mg2+ or Mn2+ with apparent Km values of 13 micro m and 22 micro m, respectively. Plasmodium ICDH requires NADP+ as cofactor and no activity with NAD+ was detectable; the for NADP+ was found to be 90 micro m and that of d-isocitrate was determined to be 40 micro m. Incubation of P. falciparum under exogenous oxidative stress resulted in an up-regulation of ICDH mRNA and protein levels indicating that the enzyme is involved in mitochondrial redox control rather than energy metabolism of the parasites.
Collapse
Affiliation(s)
- Carsten Wrenger
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, UK
| | | |
Collapse
|
13
|
Przybyla-Zawislak B, Gadde DM, Ducharme K, McCammon MT. Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. Genetics 1999; 152:153-66. [PMID: 10224250 PMCID: PMC1460613 DOI: 10.1093/genetics/152.1.153] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The eight enzymes of the tricarboxylic acid (TCA) cycle are encoded by at least 15 different nuclear genes in Saccharomyces cerevisiae. We have constructed a set of yeast strains defective in these genes as part of a comprehensive analysis of the interactions among the TCA cycle proteins. The 15 major TCA cycle genes can be sorted into five phenotypic categories on the basis of their growth on nonfermentable carbon sources. We have previously reported a novel phenotype associated with mutants defective in the IDH2 gene encoding the Idh2p subunit of the NAD+-dependent isocitrate dehydrogenase (NAD-IDH). Null and nonsense idh2 mutants grow poorly on glycerol, but growth can be enhanced by extragenic mutations, termed glycerol suppressors, in the CIT1 gene encoding the TCA cycle citrate synthase and in other genes of oxidative metabolism. The TCA cycle mutant collection was utilized to search for other genes that can suppress idh2 mutants and to identify TCA cycle genes that display a similar suppressible growth phenotype on glycerol. Mutations in 7 TCA cycle genes were capable of functioning as suppressors for growth of idh2 mutants on glycerol. The only other TCA cycle gene to display the glycerol-suppressor-accumulation phenotype was IDH1, which encodes the companion Idh1p subunit of NAD-IDH. These results provide genetic evidence that NAD-IDH plays a unique role in TCA cycle function.
Collapse
Affiliation(s)
- B Przybyla-Zawislak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
14
|
Lancien M, Gadal P, Hodges M. Molecular characterization of higher plant NAD-dependent isocitrate dehydrogenase: evidence for a heteromeric structure by the complementation of yeast mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:325-33. [PMID: 9881153 DOI: 10.1046/j.1365-313x.1998.00305.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
NAD-dependent isocitrate dehydrogenase (IDH) is a key enzyme controlling the activity of the citric acid cycle. Despite more than 30 years of work, the plant enzyme remains poorly characterized. In this paper, a molecular characterization of the plant IDH is presented. Starting from probes defined according to sequence comparisons, three full-length cDNAs named Ntidha, Ntidhb and Ntidhc encoding different IDH subunits have been isolated from a Nicotiana tabacum cell suspension library. Sequence comparisons of the tobacco IDH subunits with the E. coli NADP-dependent enzyme, and the yeast IDH1 and IDH2 subunits suggested that only IDHa had the capacity to be catalytic as IDHb and IDHc were lacking certain residues implied in catalysis. The ability of antibodies raised against the recombinant IDHa protein to preferentially cross-react with IDH2 indicated that IDHa was more closely related to IDH2 than to IDH1. Complementation of yeast single IDH mutants showed that IDHb and IDHc could replace the function of the yeast regulatory IDH1 subunit. Although IDHa was unable to complement the IDH2 mutant, its catalytic function was revealed by the ability of two heteromeric enzymes, composed of either IDHa with IDHb or IDHa with IDHc, to replace IDH function in a yeast double mutant lacking both subunits. Expression studies at the protein and mRNA levels show that each subunit is present in both root and leaf tissues and that the three IDH genes respond in the same way to nitrate addition. Taken together, such observations suggest that the physiologically active enzyme is composed of the three different subunits. These results show for the first time that the plant IDH is heteromeric and that IDH subunit composition appears to be conserved between plant and animal kingdoms.
Collapse
Affiliation(s)
- M Lancien
- Institut de Biotechnologie des Plantes (CNRS ERS569), Université Paris XI, Orsay, France
| | | | | |
Collapse
|
15
|
Bermúdez O, Padilla P, Huitrón C, Flores ME. Influence of carbon and nitrogen source on synthesis of NADP +-isocitrate dehydrogenase, methylmalonyl-coenzyme A mutase, and methylmalonyl-coenzyme A decarboxylase in Saccharopolyspora erythraeaCA340. FEMS Microbiol Lett 1998. [DOI: 10.1111/j.1574-6968.1998.tb13070.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Gadde DM, Yang E, McCammon MT. An unassembled subunit of NAD(+)-dependent isocitrate dehydrogenase is insoluble and covalently modified. Arch Biochem Biophys 1998; 354:102-10. [PMID: 9633603 DOI: 10.1006/abbi.1998.0677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The NAD(+)-dependent isocitrate dehydrogenase of Saccharomyces cerevisiae is an octamer composed of four Idh1p subunits and four Idh2p subunits. Isocitrate dehydrogenase functions in the tricarboxylic acid cycle and has also been reported to bind to the 5' nontranslated region of mitochondrially encoded mRNAs. Mutants defective in either or both of these subunits are unable to grow on the nonfermentable carbon source, acetate, but will utilize glycerol or ethanol. Mutant strains lacking Idh2p maintain normal if not elevated levels of mitochondrial Idh1p. In addition to the mature unassembled Idh1p subunit, a complex of bands in the 85- to 170-kDa range (Idh1p-Cpx) is observed using NAD-IDH antiserum. Both Idh1p and Idh1p-Cpx are insoluble within the mitochondrion and are associated with the mitochondrial inner membrane. A histidine-tagged form of Idh1p was expressed in yeast strains. Chemical amounts of the Idh1p-Cpx could be purified from strains lacking Idh2p but not from strains containing normal levels of Idh2p. The data indicate that Idh1p-Cpx is an aggregated and cross-linked form of Idh1p that may be oxidized within the mitochondrion as a consequence of its aborted assembly.
Collapse
Affiliation(s)
- D M Gadde
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | |
Collapse
|
17
|
Zhao WN, McAlister-Henn L. Affinity purification and kinetic analysis of mutant forms of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 1997; 272:21811-7. [PMID: 9268311 DOI: 10.1074/jbc.272.35.21811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polyhistidine tags were added to the carboxyl termini of the two homologous subunits of yeast NAD+-specific isocitrate dehydrogenase (IDH). The tag in either the IDH1 or IDH2 subunit permits one-step affinity purification from yeast cellular extracts of catalytically active and allosterically responsive holoenzyme. This expression system was used to investigate subunit-specific contributions of residues with putative functions in adenine nucleotide binding. The primary effect of simultaneous replacement of the adjacent Asp-279 and Ile-280 residues in IDH1 with alanines is a dramatic loss of activation by AMP. In contrast, alanine replacement of the homologous Asp-286 and Ile-287 residues in IDH2 does not alter the allosteric response to AMP, but produces a 160-fold reduction in Vmax due to a 70-fold increase in the S0.5 value for NAD+. These results suggest that the targeted aspartate/isoleucine residues may contribute to regulator binding in IDH1 and to cofactor binding in IDH2, i.e. that these homologous residues are located in regions that have evolved for binding the adenine nucleotide components of different ligands. In other mutant enzymes, an alanine replacement of Asp-191 in IDH1 eliminates measurable catalytic activity, and a similar substitution of the homologous Asp-197 in IDH2 produces pleiotropic catalytic effects. A model is presented for the primary function of IDH2 in catalysis and of IDH1 in regulation, with crucial roles for these single aspartate residues in the communication and functional interdependence of the two subunits.
Collapse
Affiliation(s)
- W N Zhao
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78284-7760, USA
| | | |
Collapse
|
18
|
McAlister-Henn L, Small WC. Molecular genetics of yeast TCA cycle isozymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:317-39. [PMID: 9175438 DOI: 10.1016/s0079-6603(08)60285-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L McAlister-Henn
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284, USA
| | | |
Collapse
|