1
|
Alves DO, Geens R, da Silva Arruda HR, Jennen L, Corthaut S, Wuyts E, de Andrade GC, Prosdocimi F, Cordeiro Y, Pires JR, Vieira LR, de Oliveira GAP, Sterckx YGJ, Salmon D. Biophysical analysis of the membrane-proximal Venus Flytrap domain of ESAG4 receptor-like adenylate cyclase from Trypanosoma brucei. Mol Biochem Parasitol 2024; 260:111653. [PMID: 39447762 DOI: 10.1016/j.molbiopara.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The protozoan parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases (RACs), primarily located to the flagellar surface and involved in sensing of the extracellular environment. RACs exhibit a conserved topology characterized by a large N-terminal extracellular moiety harbouring two Venus Flytrap (VFT) bilobate structures separated from an intracellular catalytic domain by a single transmembrane helix. RAC activation, which typically occurs under mild acid stress, requires the dimerization of the intracellular catalytic domain. The occurrence of VFT domains in the RAC's extracellular moiety suggests their potential responsiveness to extracellular ligands in the absence of stress, although no such ligands have been identified so far. Herein we report the biophysical characterization of the membrane-proximal VFT2 domain of a bloodstream form-specific RAC called ESAG4, whose ectodomain 3D structure is completely unknown. The paper describes an AlphaFold2-based optimisation of the expression construct, enabling facile and high-yield recombinant production and purification of the target protein. Through an interdisciplinary approach combining various biophysical methods, we demonstrate that the optimised VFT2 domain obtained by recombination is properly folded and behaves as a monomer in solution. The latter suggests a ligand-binding capacity independent of dimerization, unlike typical mammalian VFT receptors, as guanylate cyclase. In silico VFT2 genomic analyses shows divergence among cyclase isoforms, hinting at ligand specificity. Taken together this improved procedure enabling facile and high-yield recombinant production and purification of the target protein could benefit researchers studying trypanosomal RAC VFT domains but also any trypanosome domain with poorly defined boundaries. Additionally, our findings support the stable monomeric VFT2 domain as a useful tool for future structural investigations and ligand screening.
Collapse
Affiliation(s)
- Desirée O Alves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Hiam R da Silva Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Lisa Jennen
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ellen Wuyts
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Francisco Prosdocimi
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil
| | - José Ricardo Pires
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium.
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
2
|
Chiurillo MA, Carlson J, Bertolini MS, Raja A, Lander N. Dual localization of receptor-type adenylate cyclases and cAMP response protein 3 unveils the presence of two putative signaling microdomains in Trypanosoma cruzi. mBio 2023; 14:e0106423. [PMID: 37477489 PMCID: PMC10470820 DOI: 10.1128/mbio.01064-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, a leading cause of disability and premature death in the Americas. This parasite spends its life between a triatomine insect and a mammalian host, transitioning between developmental stages in response to microenvironmental changes. Among the second messengers driving differentiation in T. cruzi, cAMP has been shown to mediate metacyclogenesis and response to osmotic stress, but this signaling pathway remains largely unexplored in this parasite. Adenylate cyclases (ACs) catalyze the conversion of ATP to cAMP. They comprise a multigene family encoding putative receptor-type ACs in T. cruzi. Using protein sequence alignment, we classified them into five groups and chose a representative member from each group to study their localization (TcAC1-TcAC5). We expressed an HA-tagged version of each protein in T. cruzi and performed immunofluorescence analysis. A peculiar dual localization of TcAC1 and TcAC2 was observed in the flagellar distal domain and in the contractile vacuole complex (CVC), and their enzymatic activity was confirmed by gene complementation in yeast. Furthermore, TcAC1 overexpressing parasites showed an increased metacyclogenesis, a defect in host cell invasion, and a reduced intracellular replication, highlighting the importance of this protein throughout T. cruzi life cycle. These mutants were more tolerant to hypoosmotic stress and showed a higher adhesion capacity during in vitro metacyclogenesis, whereas the wild-type phenotype was restored after disrupting TcAC1 localization. Finally, TcAC1 was found to interact with cAMP response protein 3 (TcCARP3), co-localizing with this protein in the flagellar tip and CVC. IMPORTANCE We identified three components of the cAMP signaling pathway (TcAC1, TcAC2, and TcCARP3) with dual localization in Trypanosoma cruzi: the flagellar distal domain and the CVC, structures involved in cell adhesion and osmoregulation, respectively. We found evidence on the role of TcAC1 in both cellular processes, as well as in metacyclogenesis. Our data suggest that TcACs act as signal sensors and transducers through cAMP synthesis in membrane microdomains. We propose a model in which TcACs sense the harsh conditions in the triatomine hindgut (nutrient deprivation, acidic pH, osmotic stress, ionic composition, hydrophobic interactions) and become active. Synthesis of cAMP then triggers cell adhesion prior completion of metacyclogenesis, while mediating a response to osmotic stress in the parasite. These results shed light into the mechanisms driving cAMP-mediated cell differentiation in T. cruzi, while raising new questions on the activation of TcACs and the role of downstream components of this pathway.
Collapse
Affiliation(s)
- Miguel A. Chiurillo
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joshua Carlson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mayara S. Bertolini
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Aqsa Raja
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Noelia Lander
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Negrão NW, Crowe LP, Mantilla BS, Baptista RP, King-Keller S, Huang G, Docampo R. An X-Domain Phosphoinositide Phospholipase C (PI-PLC-like) of Trypanosoma brucei Has a Surface Localization and Is Essential for Proliferation. Pathogens 2023; 12:386. [PMID: 36986308 PMCID: PMC10051276 DOI: 10.3390/pathogens12030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Trypanosoma brucei is the causative agent of African trypanosomiasis, a deadly disease that affects humans and cattle. There are very few drugs to treat it, and there is evidence of mounting resistance, raising the need for new drug development. Here, we report the presence of a phosphoinositide phospholipase C (TbPI-PLC-like), containing an X and a PDZ domain, that is similar to the previously characterized TbPI-PLC1. TbPI-PLC-like only possesses the X catalytic domain and does not have the EF-hand, Y, and C2 domains, having instead a PDZ domain. Recombinant TbPI-PLC-like does not hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) and does not modulate TbPI-PLC1 activity in vitro. TbPI-PLC-like shows a plasma membrane and intracellular localization in permeabilized cells and a surface localization in non-permeabilized cells. Surprisingly, knockdown of TbPI-PLC-like expression by RNAi significantly affected proliferation of both procyclic and bloodstream trypomastigotes. This is in contrast with the lack of effect of downregulation of expression of TbPI-PLC1.
Collapse
Affiliation(s)
- Núria W. Negrão
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Logan P. Crowe
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Brian S. Mantilla
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Biosciences, Durham University, Durham DHI 3LE, UK
| | - Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Sharon King-Keller
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- School of Science of Technology (Biology), Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Shaw S, DeMarco SF, Rehmann R, Wenzler T, Florini F, Roditi I, Hill KL. Flagellar cAMP signaling controls trypanosome progression through host tissues. Nat Commun 2019; 10:803. [PMID: 30778051 PMCID: PMC6379439 DOI: 10.1038/s41467-019-08696-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
The unicellular parasite Trypanosoma brucei is transmitted between mammals by tsetse flies. Following the discovery that flagellar phosphodiesterase PDEB1 is required for trypanosomes to move in response to signals in vitro (social motility), we investigated its role in tsetse flies. Here we show that PDEB1 knockout parasites exhibit subtle changes in movement, reminiscent of bacterial chemotaxis mutants. Infecting flies with the knockout, followed by live confocal microscopy of fluorescent parasites within dual-labelled insect tissues, shows that PDEB1 is important for traversal of the peritrophic matrix, which separates the midgut lumen from the ectoperitrophic space. Without PDEB1, parasites are trapped in the lumen and cannot progress through the cycle. This demonstrates that the peritrophic matrix is a barrier that must be actively overcome and that the parasite’s flagellar cAMP signaling pathway facilitates this. Migration may depend on perception of chemotactic cues, which could stem from co-infecting parasites and/or the insect host. Trypanosoma brucei probably relies on chemotactic signals for movement through tsetse fly tissues, but the molecular basis is unknown. Here, the authors show that flagellar cAMP signaling is required for traversal of the peritrophic matrix and that, without it, parasites are trapped in the midgut lumen.
Collapse
Affiliation(s)
- Sebastian Shaw
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Stephanie F DeMarco
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | - Tanja Wenzler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | - Francesca Florini
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.
| | - Kent L Hill
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response. Pathogens 2018; 7:pathogens7020048. [PMID: 29693583 PMCID: PMC6027212 DOI: 10.3390/pathogens7020048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.
Collapse
|
6
|
Rijo-Ferreira F, Carvalho T, Afonso C, Sanches-Vaz M, Costa RM, Figueiredo LM, Takahashi JS. Sleeping sickness is a circadian disorder. Nat Commun 2018; 9:62. [PMID: 29302035 PMCID: PMC5754353 DOI: 10.1038/s41467-017-02484-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Sleeping sickness is a fatal disease caused by Trypanosoma brucei, a unicellular parasite that lives in the bloodstream and interstitial spaces of peripheral tissues and the brain. Patients have altered sleep/wake cycles, body temperature, and endocrine profiles, but the underlying causes are unknown. Here, we show that the robust circadian rhythms of mice become phase advanced upon infection, with abnormal activity occurring during the rest phase. This advanced phase is caused by shortening of the circadian period both at the behavioral level as well as at the tissue and cell level. Period shortening is T. brucei specific and independent of the host immune response, as co-culturing parasites with explants or fibroblasts also shortens the clock period, whereas malaria infection does not. We propose that T. brucei causes an advanced circadian rhythm disorder, previously associated only with mutations in clock genes, which leads to changes in the timing of sleep. African sleeping sickness is well known for the alterations of sleeping patterns, but it is not known how circadian biology is altered by the causative pathogen Trypanosoma brucei. Here the authors show T. brucei causes a disorder of the cellular circadian clock that is unrelated to the immune response to the parasite.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002, Porto, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA
| | - Tânia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Cristina Afonso
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Rui M Costa
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Luísa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA.
| |
Collapse
|
7
|
Stijlemans B, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S, De Trez C. Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity. Front Immunol 2016; 7:233. [PMID: 27446070 PMCID: PMC4919330 DOI: 10.3389/fimmu.2016.00233] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/26/2022] Open
Abstract
The diseases caused by African trypanosomes (AT) are of both medical and veterinary importance and have adversely influenced the economic development of sub-Saharan Africa. Moreover, so far not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. These strictly extracellular protozoan parasites are confronted with different arms of the host's immune response (cellular as well as humoral) and via an elaborate and efficient (vector)-parasite-host interplay they have evolved efficient immune escape mechanisms to evade/manipulate the entire host immune response. This is of importance, since these parasites need to survive sufficiently long in their mammalian/vector host in order to complete their life cycle/transmission. Here, we will give an overview of the different mechanisms AT (i.e. T. brucei as a model organism) employ, comprising both tsetse fly saliva and parasite-derived components to modulate host innate immune responses thereby sculpturing an environment that allows survival and development within the mammalian host.
Collapse
Affiliation(s)
- Benoît Stijlemans
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium; Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM) , Antwerp , Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| |
Collapse
|
8
|
Hamedi A, Botelho L, Britto C, Fragoso SP, Umaki ACS, Goldenberg S, Bottu G, Salmon D. In vitro metacyclogenesis of Trypanosoma cruzi induced by starvation correlates with a transient adenylyl cyclase stimulation as well as with a constitutive upregulation of adenylyl cyclase expression. Mol Biochem Parasitol 2015; 200:9-18. [PMID: 25912925 DOI: 10.1016/j.molbiopara.2015.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
The Trypanosoma cruzi adenylyl cyclase (AC) multigene family encodes different isoforms (around 15) sharing a variable large N-terminal domain, which is extracellular and receptor-like, followed by a transmembrane helix and a conserved C-terminal catalytic domain. It was proposed that these key enzymes in the cAMP signalling pathway allow the parasite to sense its changing extracellular milieu in order to rapidly adapt to its new environment, which is generally achieved through a differentiation process. One of the critical differentiation events the parasitic protozoan T. cruzi undergoes during its life cycle, known as metacyclogenesis, occurs in the digestive tract of the insect and corresponds to the differentiation from noninfective epimastigotes to infective metacyclic trypomastigote forms. By in vitro monitoring the activity of AC during metacyclogenesis, we showed that both the activity of AC and the intracellular cAMP content follow a similar pattern of transient stimulation in a two-step process, with a first activation peak occurring during the first hours of nutritional stress and a second peak between 6 and 48 h, corresponding to the cellular adhesion. During this differentiation process, a general mechanism of upregulation of AC expression of both mRNA and protein is triggered and in particular for a major subclass of these enzymes that are present in various gene copies commonly associated to the THT gene clusters. Although the scattered genome distribution of these gene copies is rather unusual in trypanosomatids and seems to be a recent acquisition in the evolution of the T. cruzi clade, their encoded product redistributed on the flagellum of the parasite upon differentiation could be important to sense the extracellular milieu.
Collapse
Affiliation(s)
- Afsaneh Hamedi
- Fiocruz, Instituto Oswaldo Cruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Larisse Botelho
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
| | - Stenio Perdigão Fragoso
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil
| | | | - Samuel Goldenberg
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil
| | - Guy Bottu
- Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
9
|
Beschin A, Van Den Abbeele J, De Baetselier P, Pays E. African trypanosome control in the insect vector and mammalian host. Trends Parasitol 2014; 30:538-47. [DOI: 10.1016/j.pt.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
|
10
|
Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei Flagellar membrane. EUKARYOTIC CELL 2014; 13:1064-76. [PMID: 24879126 DOI: 10.1128/ec.00019-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.
Collapse
|
11
|
Rico E, Rojas F, Mony BM, Szoor B, Macgregor P, Matthews KR. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Front Cell Infect Microbiol 2013; 3:78. [PMID: 24294594 PMCID: PMC3827541 DOI: 10.3389/fcimb.2013.00078] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/24/2013] [Indexed: 12/04/2022] Open
Abstract
African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimize transmission and to prevent uncontrolled parasite multiplication overwhelming the host. In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signaling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed.
Collapse
Affiliation(s)
- Eva Rico
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
12
|
Szöőr B, Dyer NA, Ruberto I, Acosta-Serrano A, Matthews KR. Independent pathways can transduce the life-cycle differentiation signal in Trypanosoma brucei. PLoS Pathog 2013; 9:e1003689. [PMID: 24146622 PMCID: PMC3798605 DOI: 10.1371/journal.ppat.1003689] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/22/2013] [Indexed: 01/23/2023] Open
Abstract
African trypanosomes cause disease in humans and livestock, generating significant health and welfare problems throughout sub-Saharan Africa. When ingested in a tsetse fly bloodmeal, trypanosomes must detect their new environment and initiate the developmental responses that ensure transmission. The best-established environmental signal is citrate/cis aconitate (CCA), this being transmitted through a protein phosphorylation cascade involving two phosphatases: one that inhibits differentiation (TbPTP1) and one that activates differentiation (TbPIP39). Other cues have been also proposed (mild acid, trypsin exposure, glucose depletion) but their physiological relevance and relationship to TbPTP1/TbPIP39 signalling is unknown. Here we demonstrate that mild acid and CCA operate through TbPIP39 phosphorylation, whereas trypsin attack of the parasite surface uses an alternative pathway that is dispensable in tsetse flies. Surprisingly, glucose depletion is not an important signal. Mechanistic analysis through biophysical methods suggests that citrate promotes differentiation by causing TbPTP1 and TbPIP39 to interact. African trypanosomes are important pathogens transmitted by tsetse flies in sub-Saharan Africa. Upon transmission, trypanosomes detect citrate and cis-aconitate in the bloodmeal, this inactivating a negative regulator of differentiation, the tyrosine phosphatase TbPTP1. One TbPTP1 substrate is another phosphatase, TbPIP39, which is more active when phosphorylated (after TbPTP1 inhibition) and promotes differentiation. These differentiation regulators have provided tools to monitor whether one or more environmental signals are used to initiate trypanosome development and their relevance in vivo. This is important because different studies over the last 30 years have disputed the physiological importance of different signals. Here we have, firstly, compared the efficacy of the different reported differentiation signals, establishing their relative importance. We then monitored TbPIP39 phosphorylation to show that two signalling pathways operate: one signalled by citrate or mild acid, the other stimulated by external protease activity. Thereafter, we showed that, of these different signals, protease activity is dispensable for differentiation in tsetse flies. Finally, we used biophysical methods to investigate how citrate causes TbPIP39 and TbPTP1 to interact, enabling their regulatory cross-talk. These studies have established the importance of different developmental signals in trypanosomes, providing molecular insight into how the development signal is transduced within the pathogen.
Collapse
Affiliation(s)
- Balazs Szöőr
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (BS); (KRM)
| | - Naomi A. Dyer
- Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Irene Ruberto
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alvaro Acosta-Serrano
- Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (BS); (KRM)
| |
Collapse
|
13
|
Pays É. Les trypanosomes africains ont le sens du sacrifice. Med Sci (Paris) 2012; 28:817-9. [DOI: 10.1051/medsci/20122810006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C, Lhommé F, Bachmaier S, Kador M, Gossmann J, Dias FBS, De Muylder G, Uzureau P, Magez S, Moser M, De Baetselier P, Van Den Abbeele J, Beschin A, Boshart M, Pays E. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 2012; 337:463-6. [PMID: 22700656 DOI: 10.1126/science.1222753] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases. Activation of these enzymes requires the dimerization of the catalytic domain and typically occurs under stress. Using a dominant-negative strategy, we found that reducing adenylate cyclase activity by about 50% allowed trypanosome growth but reduced the parasite's ability to control the early innate immune defense of the host. Specifically, activation of trypanosome adenylate cyclase resulting from parasite phagocytosis by liver myeloid cells inhibited the synthesis of the trypanosome-controlling cytokine tumor necrosis factor-α through activation of protein kinase A in these cells. Thus, adenylate cyclase activity of lyzed trypanosomes favors early host colonization by live parasites. The role of adenylate cyclases at the host-parasite interface could explain the expansion and polymorphism of this gene family.
Collapse
Affiliation(s)
- Didier Salmon
- Laboratory of Molecular Parasitology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, B6041 Gosselies, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
La Greca F, Magez S. Vaccination against trypanosomiasis: can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist? HUMAN VACCINES 2012; 7:1225-33. [PMID: 22205439 PMCID: PMC3323498 DOI: 10.4161/hv.7.11.18203] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To date, human African trypanosomiasis (HAT) still threatens millions of people throughout sub-Sahara Africa, and new approaches to disease prevention and treatment remain a priority. It is commonly accepted that HAT is fatal unless treatment is provided. However, despite the well-described general symptoms of disease progression during distinct stages of the infection, leading to encephalitic complications, coma and death, a substantial body of evidence has been reported suggesting that natural acquired immunity could occur. Hence, if under favorable conditions natural infections can lead to correct immune activation and immune protection against HAT, the development of an effective anti-HAT vaccine should remain a central goal in the fight against this disease.<br />
In this review, we will (1) discuss the vaccine candidates that have been proposed over the past years, (2) highlight the main obstacles that an efficient anti-trypanosomiasis vaccine needs to overcome and (3) critically reflect on the validity of the widely used murine model for HAT.
Collapse
Affiliation(s)
- Florencia La Greca
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
16
|
Salmon D, Bachmaier S, Krumbholz C, Kador M, Gossmann JA, Uzureau P, Pays E, Boshart M. Cytokinesis of Trypanosoma brucei bloodstream forms depends on expression of adenylyl cyclases of the ESAG4 or ESAG4-like subfamily. Mol Microbiol 2012; 84:225-42. [PMID: 22340731 DOI: 10.1111/j.1365-2958.2012.08013.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antigenic variation of the parasite Trypanosoma brucei operates by monoallelic expression of a variant surface glycoprotein (VSG) from a collection of multiple telomeric expression sites (ESs). Each of these ESs harbours a long polycistronic transcription unit containing several expression site-associated genes (ESAGs). ESAG4 copies encode bloodstream stage-specific adenylyl cyclases (AC) and belong to a larger gene family of around 80 members, the majority of which, termed genes related to ESAG4 (GRESAG4s), are not encoded in ESs and are expressed constitutively in the life cycle. Here we report that ablation of ESAG4 from the active ES did not affect parasite growth, neither in culture nor upon rodent infection, and did not significantly change total AC activity. In contrast, inducible RNAi-mediated knock-down of an AC subfamily that includes ESAG4 and two ESAG4-like GRESAG4 (ESAG4L) genes, decreased total AC activity and induced a lethal phenotype linked to impaired cytokinesis. In the Δesag4 line compensatory upregulation of apparently functionally redundant ESAG4L genes was observed, suggesting that the ESAG4/ESAG4L-subfamily ACs are involved in the control of cell division. How deregulated adenylyl cyclases or cAMP might impair cytokinesis is discussed.
Collapse
Affiliation(s)
- Didier Salmon
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Compared with the impressive progress in understanding signal transduction pathways and mechanisms in mammalian systems, advances in protozoan signalling processes, including cyclic nucleotide metabolism, have been very slow. This is in large part connected to the fact that the components of these pathways are very different in the protozoan parasites, as confirmed by the recently completed genome. For instance, kinetoplastids have no equivalents to the mammalian Class I adenylyl cyclases (ACs) in their genomes nor any of the subunits of the associated G-proteins. The cyclases in kinetoplastid parasites contain a single transmembrane domain, a conserved intracellular catalytic domain and a highly variable extracellular domain - consistent with the expression of multiple receptor-activated cyclases - but no receptor ligands, agonists or antagonists have been identified. Apicomplexan AC and guanylyl cyclase (GC) are even more unusual, potentially being bifunctional, harbouring either a putative ion channel (AC) or a P-type ATPase-like domain (GC) alongside the catalytic region. Phosphodiesterases (PDEs) and cyclic-nucleotide-activated protein kinases are essentially conserved in protozoa, although mostly insensitive to inhibitors of the mammalian proteins. Some of the PDEs have now been validated as promising drug targets. In the following manuscript, we will summarize the existing literature on cAMP and cGMP in protozoa: cyclases, PDEs and cyclic-nucleotide-dependent kinases.
Collapse
Affiliation(s)
- Matthew K Gould
- Biomedical Research Centre, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
18
|
Immunobiology of African trypanosomes: need of alternative interventions. J Biomed Biotechnol 2010; 2010:389153. [PMID: 20182644 PMCID: PMC2826769 DOI: 10.1155/2010/389153] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/29/2009] [Accepted: 12/23/2009] [Indexed: 02/08/2023] Open
Abstract
Trypanosomiasis is one of the major parasitic diseases for which control is still far from reality. The vaccination approaches by using dominant surface proteins have not been successful, mainly due to antigenic variation of the parasite surface coat. On the other hand, the chemotherapeutic drugs in current use for the treatment of this disease are toxic and problems of resistance are increasing (see Kennedy (2004) and Legros et al. (2002)). Therefore, alternative approaches in both treatment and vaccination against trypanosomiasis are needed at this time. To be able to design and develop such alternatives, the biology of this parasite and the host response against the pathogen need to be studied. These two aspects of this disease with few examples of alternative approaches are discussed here.
Collapse
|
19
|
Hanrahan O, Webb H, O'Byrne R, Brabazon E, Treumann A, Sunter JD, Carrington M, Voorheis HP. The glycosylphosphatidylinositol-PLC in Trypanosoma brucei forms a linear array on the exterior of the flagellar membrane before and after activation. PLoS Pathog 2009; 5:e1000468. [PMID: 19503825 PMCID: PMC2685982 DOI: 10.1371/journal.ppat.1000468] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 05/11/2009] [Indexed: 11/30/2022] Open
Abstract
Bloodstream forms of Trypanosoma brucei contain a glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) that cleaves the GPI-anchor of the variable surface glycoprotein (VSG). Its location in trypanosomes has been controversial. Here, using confocal microscopy and surface labelling techniques, we show that the GPI-PLC is located exclusively in a linear array on the outside of the flagellar membrane, close to the flagellar attachment zone, but does not co-localize with the flagellar attachment zone protein, FAZ1. Consequently, the GPI-PLC and the VSG occupy the same plasma membrane leaflet, which resolves the topological problem associated with the cleavage reaction if the VSG and the GPI-PLC were on opposite sides of the membrane. The exterior location requires the enzyme to be tightly regulated to prevent VSG release under basal conditions. During stimulated VSG release in intact cells, the GPI-PLC did not change location, suggesting that the release mechanism involves lateral diffusion of the VSG in the plane of the membrane to the fixed position of the GPI-PLC. African trypanosomes cause sleeping sickness, for which current therapy is inadequate. The parasite protects its surface from the host immune system by regularly switching its surface coat. The glycosylphosphatidylinositol-PLC only occurs in the bloodstream form, where it removes the surface coat after it enters the tsetse fly vector. Activation of the enzyme in the bloodstream would be fatal for the parasite and it is, therefore, a potential drug target. However, therapeutic strategies have been hampered by confusion over the location of the GPI-PLC despite great effort by many labs. We have used a wide variety of techniques, including one completely novel method, that exploits the dependence of detection for partially buried surface proteins on the temperature of fixation, to identify the location of the GPI-PLC in relation to other markers unequivocally. All approaches consistently show that the GPI-PLC is located exclusively in the outer leaflet of the plasma membrane covering the flagellum, where it is confined to a narrow linear array adjacent to the flagellar attachment zone. Our data have resolved the question of how enzyme and substrate meet and also suggest that chemotherapeutic agents would be able to target the GPI-PLC in its exterior location.
Collapse
Affiliation(s)
- Orla Hanrahan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Robert O'Byrne
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Elaine Brabazon
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Jack D. Sunter
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - H. Paul Voorheis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
20
|
Mallick B, Ghosh Z, Chakrabarti J. MicroRNA switches in Trypanosoma brucei. Biochem Biophys Res Commun 2008; 372:459-63. [DOI: 10.1016/j.bbrc.2008.05.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/12/2008] [Indexed: 01/01/2023]
|
21
|
Denninger V, Figarella K, Schönfeld C, Brems S, Busold C, Lang F, Hoheisel J, Duszenko M. Troglitazone induces differentiation in Trypanosoma brucei. Exp Cell Res 2007; 313:1805-19. [PMID: 17428467 DOI: 10.1016/j.yexcr.2007.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 11/25/2022]
Abstract
Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor gamma. Our studies focus on the effects of troglitazone on bloodstream form trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator.
Collapse
Affiliation(s)
- Viola Denninger
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Laxman S, Riechers A, Sadilek M, Schwede F, Beavo JA. Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proc Natl Acad Sci U S A 2006; 103:19194-9. [PMID: 17142316 PMCID: PMC1748198 DOI: 10.1073/pnas.0608971103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
African sleeping sickness is a disease caused by Trypanosoma brucei. T. brucei proliferate rapidly in the mammalian bloodstream as long, slender forms, but at higher population densities they transform into nondividing, short, stumpy forms. This is thought to be a mechanism adopted by T. brucei to establish a stable host-parasite relationship and to allow a transition into the insect stage of its life cycle. Earlier studies have suggested a role for cAMP in mediating this transformation. In this study, using membrane-permeable nucleotide analogs, we show that it is not the cAMP analogs themselves but rather the hydrolyzed products of membrane-permeable cAMP analogs that prevent proliferation of T. brucei. The metabolic products are more potent than the cAMP analogs, and hydrolysis-resistant cAMP analogs are not antiproliferative. We further show that the antiproliferative effect of these membrane-permeable adenosine analogs is caused by transformation into forms resembling short, stumpy bloodstream forms. These data suggest that the slender-to-stumpy transformation of T. brucei may not be mediated directly by cAMP and also raise the possibility of using such adenosine analogs as antitrypanosomal drugs.
Collapse
Affiliation(s)
| | | | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA 98195; and
| | - Frank Schwede
- BIOLOG Life Science Institute, Flughafendamm 9A, D-28199 Bremen, Germany
| | - Joseph A. Beavo
- *Department of Pharmacology
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Abstract
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| | | |
Collapse
|
24
|
Drennan MB, Stijlemans B, Van den Abbeele J, Quesniaux VJ, Barkhuizen M, Brombacher F, De Baetselier P, Ryffel B, Magez S. The Induction of a Type 1 Immune Response following aTrypanosoma bruceiInfection Is MyD88 Dependent. THE JOURNAL OF IMMUNOLOGY 2005; 175:2501-9. [PMID: 16081822 DOI: 10.4049/jimmunol.175.4.2501] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The initial host response toward the extracellular parasite Trypanosoma brucei is characterized by the early release of inflammatory mediators associated with a type 1 immune response. In this study, we show that this inflammatory response is dependent on activation of the innate immune system mediated by the adaptor molecule MyD88. In the present study, MyD88-deficient macrophages are nonresponsive toward both soluble variant-specific surface glycoprotein (VSG), as well as membrane-bound VSG purified from T. brucei. Infection of MyD88-deficient mice with either clonal or nonclonal stocks of T. brucei resulted in elevated levels of parasitemia. This was accompanied by reduced plasma IFN-gamma and TNF levels during the initial stage of infection, followed by moderately lower VSG-specific IgG2a Ab titers during the chronic stages of infection. Analysis of several TLR-deficient mice revealed a partial requirement for TLR9 in the production of IFN-gamma and VSG-specific IgG2a Ab levels during T. brucei infections. These results implicate the mammalian TLR family and MyD88 signaling in the innate immune recognition of T. brucei.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/physiology
- Cell Membrane/immunology
- Cell Membrane/parasitology
- Cells, Cultured
- DNA, Protozoan/physiology
- Immunity, Innate/genetics
- Macrophage Activation/genetics
- Macrophage Activation/immunology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/parasitology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Parasitemia/genetics
- Parasitemia/immunology
- Parasitemia/prevention & control
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Solubility
- Toll-Like Receptor 9/deficiency
- Toll-Like Receptor 9/genetics
- Toll-Like Receptor 9/physiology
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/immunology
- Trypanosomiasis, African/genetics
- Trypanosomiasis, African/immunology
- Trypanosomiasis, African/parasitology
- Trypanosomiasis, African/prevention & control
- Variant Surface Glycoproteins, Trypanosoma/immunology
Collapse
Affiliation(s)
- Michael B Drennan
- Immunology of Infectious Disease Medical Research Council/University of Cape Town Unit, Institute of Infectious Disease and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gruszynski AE, DeMaster A, Hooper NM, Bangs JD. Surface coat remodeling during differentiation of Trypanosoma brucei. J Biol Chem 2003; 278:24665-72. [PMID: 12716904 DOI: 10.1074/jbc.m301497200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
African trypanosomes (Trypanosoma brucei) are digenetic parasites whose lifecycle alternates between the mammalian bloodstream and the midgut of the tsetse fly vector. In mammals, proliferating long slender parasites transform into non-diving short stumpy forms, which differentiate into procyclic forms when ingested by the tsetse fly. A hallmark of differentiation is the replacement of the bloodstream stage surface coat composed of variant surface glycoprotein (VSG) with a new coat composed of procylin. An undefined endoprotease and endogenous glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) have been implicated in releasing the old VSG coat. However, GPI hydrolysis has been considered unimportant because (i) GPI-PLC null mutants are fully viable and (ii) cytosolic GPI-PLC is localized away from cell surface VSG. Utilizing an in vitro differentiation assay with pleomorphic strains we have investigated these modes of VSG release. Shedding is initially by GPI hydrolysis, which ultimately accounts for a substantial portion of total release. Surface biotinylation assays indicate that GPI-PLC does gain access to extracellular VSG, suggesting that this mode is primed in the starting short stumpy population. Proteolytic release is up-regulated during differentiation and is stereoselectively inhibited by peptidomimetic collagenase inhibitors, implicating a zinc metalloprotease. This protease may be related to TbMSP-B, a trypanosomal homologue of Leishmania major surface protease (MSP) described in the accompanying paper (LaCount, D. J., Gruszynski, A. E., Grandgenett, P. M., Bangs, J. D., and Donelson, J. E. (2003) J. Biol. Chem. 278, 24658-24664). Overall, our results demonstrate that surface coat remodeling during differentiation has multiple mechanisms and that GPI-PLC plays a more significant role in VSG release than previously thought.
Collapse
Affiliation(s)
- Amy E Gruszynski
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | |
Collapse
|
26
|
Magez S, Stijlemans B, Baral T, De Baetselier P. VSG-GPI anchors of African trypanosomes: their role in macrophage activation and induction of infection-associated immunopathology. Microbes Infect 2002; 4:999-1006. [PMID: 12106794 DOI: 10.1016/s1286-4579(02)01617-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
African trypanosomes express a glycosylphosphatidyl inositol (GPI)-anchored variant-specific surface glycoprotein (VSG) as a protective coat. During infection, large amounts of VSG molecules are released into the circulation. Their interaction with various cells of the immune system underlies the severe infection-associated pathology. Recent results have shown that anti-GPI vaccination can prevent the occurrence of this pathology.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory of Cellular Immunology, Free University of Brussels/Flemish Interuniversity, Institute for Biotechnology, Paardenstraat 65, Sint Genesius Rode, Belgium.
| | | | | | | |
Collapse
|
27
|
McGwire BS, O'Connell WA, Chang KP, Engman DM. Extracellular release of the glycosylphosphatidylinositol (GPI)-linked Leishmania surface metalloprotease, gp63, is independent of GPI phospholipolysis: implications for parasite virulence. J Biol Chem 2002; 277:8802-9. [PMID: 11777912 DOI: 10.1074/jbc.m109072200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major zinc metalloprotease of Leishmania (gp63), an important determinant of parasite virulence, is attached to the parasite surface via a glycosylphosphatidylinositol anchor. Here we report the spontaneous release of proteolytically active gp63 from a number of Leishmania isolates, causing cutaneous and visceral disease. To investigate the mechanism(s) of gp63 release, we transfected a gp63-deficient variant of Leishmania amazonensis with constructs expressing gp63 and various mutants thereof. Surprisingly, approximately half of wild type gp63 was found in the culture supernatant 12 h post-synthesis. Biochemical analysis of the extracellular gp63 revealed two forms of the protein, one that is released from the cell surface, and another, that apparently is directly secreted. Release of cell surface gp63 was significantly reduced when the proteolytic activity of the protein was inactivated by site-specific mutagenesis or inhibited by zinc chelation, suggesting that release involves autoproteolysis. The extracellular gp63 does not contain a glycosylphosphatidylinositol moiety or ethanolamine, indicating that phospholipolysis is not involved in the release process. Release of gp63 is also independent of glycosylation. The finding of proteolytically active, extracellular gp63 produced by multiple Leishmania isolates suggests a potential role of the extracellular enzyme in substrate degradation relevant to their survival in both the mammalian host and the insect vector.
Collapse
Affiliation(s)
- Bradford S McGwire
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Leishmania and Trypanosoma are two genera of the protozoal Order Kinetoplastida that cause widespread diseases of humans and their livestock. The production of reactive oxygen and nitrogen intermediates by the host plays an important role in the control of infections by these organisms. Signal transduction and its redox regulation have not been studied in any depth in trypanosomatids, but homologs of the redox-sensitive signal transduction machinery of other eukaryotes have been recognized. These include homologs of activator protein-1, human apurinic endonuclease 1 (Ref-1) endonuclease, iron-responsive protein, protein kinases, and phosphatases. The detoxification of peroxide is catalyzed by a trypanothione-dependent system that has no counterpart in mammals, and thus ranks as one of the biochemical peculiarities of trypanosomatids. There is substantial evidence that trypanothione is essential for the survival of Trypanosoma brucei and for the virulence of Leishmania spp. Apart from trypanothione and its precursors, trypanosomatids also possess significant amounts of N(1)-methyl-4-mercaptohistidine or ovothiol A, but its function in the trypanosomatids is not presently understood. The biosynthesis of ovothiol A in Crithidia fasciculata proceeds by addition of sulfur from cysteine to histidine to form 4-mercaptohistidine. S-(4'-L-Histidyl)-L-cysteine sulfoxide is the transsulfuration intermediate. 4-Mercaptohistidine is subsequently methylated with S-adenosylmethionine as the likely methyl donor.
Collapse
Affiliation(s)
- Daniel J Steenkamp
- Division of Chemical Pathology, Department of Laboratory Medicine, University of Cape Town Medical School, Observatory 7925, South Africa.
| |
Collapse
|
29
|
Baetselier PD, Namangala B, Noël W, Brys L, Pays E, Beschin A. Alternative versus classical macrophage activation during experimental African trypanosomosis. Int J Parasitol 2001; 31:575-87. [PMID: 11334945 DOI: 10.1016/s0020-7519(01)00170-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
African trypanosomes are extracellular parasites causing sleeping sickness to human or nagana to livestock in sub-Saharan Africa. To gain insight into factors governing resistance/susceptibility to these parasites, the immune responses in mice infected with a Trypanosoma brucei phospholipase C null mutant (PLC(-/-)) or its wild type counterpart (WT) were compared. We found that the T. b. brucei mutant inducing a chronic infection triggers the production of type I cytokines during the early stage of infection, followed by the secretion of type II cytokines in the late/chronic phase of the disease. In contrast, WT-infected mice are killed within 5 weeks and remain locked in a type I cytokine response. The type I/type II cytokine balance may influence the development of different subsets of suppressive macrophages, i.e. classically activated macrophages (type I) versus alternatively activated macrophages (type II) that are antagonistically regulated. Therefore, the phenotype and accessory cell function of macrophages elicited during WT and PLC(-/-) T. b. brucei infections were addressed. Results indicate that classically activated macrophages develop in a type I cytokine environment in the early phase of both WT and PLC(-/-) trypanosome infections. In the late stage of infection, only PLC(-/-)-infected mice resisting the infection develop type II cytokine-associated alternative macrophages. In parallel, we found that mice susceptible to Trypanosoma congolense infection, showing an exponential parasite growth until they die, have a higher level of type II cytokines in the early stage of infection than resistant animals controlling the first peak of parasitaemia. The levels of type I cytokines were comparable in both T. congolense-resistant and -susceptible mice. On the basis of these results, we propose that survival to African trypanosome infection requires a type I cytokine environment and classical macrophage activation in the early stage of infection, enabling mice to control the first peak of parasitaemia. Thereafter, a switch to type II cytokine environment triggering alternative macrophage activation is required to enable progression of the disease into the chronic phase. The possible role of the sequential activation of alternative macrophages in the late/chronic stage of infection in the increased resistance of mice to PLC(-/-) T. b. brucei will be discussed.
Collapse
Affiliation(s)
- P D Baetselier
- Department of Immunology, Parasitology and Ultrastructure, Flemish Interuniversity Institute for Biotechnology, Free University Brussels (VUB), Paardenstraat 65, B-1640 St-Genesius-Rode, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cyclic AMP was the first second messenger to be identified. After five decades of research, much is currently known about its biological functions and clinical implications. Several components of the cAMP signalling pathways, such as the G-protein coupled receptors and the phosphodiesterases, have become sensitive and specific drug targets for a host of clinical applications. Surprisingly, very little effort has been invested so far into the study of cAMP signalling in parasites, and its significance in host/parasite interaction. Our laboratory has embarked on a study of cAMP signalling in Trypanosoma brucei. A newly identified adenylyl cyclase, GRESAG4.4B, a member of a small family of closely related genes, is being used as a model molecule for investigating the mechanisms which control cyclase activity in the T. brucei cell. On the other hand, a number of genes for different families of cAMP-specific phosphodiesterases have been identified and characterised. One enzyme, TbPDE1, is coded for by a single-copy gene. Knock-outs of this gene display an almost normal phenotype in culture, indicating that TbPDE1 is not an essential enzyme under culture conditions. A second phosphodiesterase which is being studied in detail, TbPDE2A, is clearly different from TbPDE1, and it is coded for by a member of a small gene family containing about six similar, but non-identical genes. TbPDE2A, as TbPDE1, is specific for cAMP. In its N-terminal, it contains a GAF domain which may represent an allosteric cGMP-binding site. The other members of the TbPDE2 family all exhibit strongly conserved catalytic domains, but vary widely in their N-terminal regulatory domains. With regard to downstream signalling by the cAMP generated through the interplay of adenylyl cyclases and phosphodiesterases, we have recently identified a single-copy gene (TbRSU1) which codes for a putative regulatory subunit of the cAMP-regulated protein kinase A. This protein exhibits considerable similarity with its mammalian counterparts. Immunoprecipitation co-precipitates a protein kinase activity with the characteristics of protein kinase A.
Collapse
Affiliation(s)
- T Seebeck
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
31
|
Pays E, Lips S, Nolan D, Vanhamme L, Pérez-Morga D. The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Mol Biochem Parasitol 2001; 114:1-16. [PMID: 11356509 DOI: 10.1016/s0166-6851(01)00242-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The variant surface glycoprotein (VSG) genes of Trypanosoma brucei are transcribed in telomeric loci termed VSG expression sites (ESs). Despite permanent initiation of transcription in most if not all of these multiple loci, RNA elongation is abortive except in bloodstream forms where full transcription up to the VSG occurs only in a single ES at a time. The ESs active in bloodstream forms are polycistronic and contain several genes in addition to the VSG, named ES-associated genes (ESAGs). So far 12 ESAGs have been identified, some of which are present only in some ESs. Most of these genes encode surface proteins and this list includes different glycosyl phosphatidyl inositol (GPI)-anchored proteins such as the heterodimeric receptor for the host transferrin (ESAG7/6), integral membrane proteins such as the receptor-like transmembrane adenylyl cyclase (ESAG4) and a surface transporter (ESAG10). An interesting exception is ESAG8, which may encode a cell cycle regulator involved in the differentiation of long slender into short stumpy bloodstream forms. Several ESAGs belong to multigene families including pseudogenes and members transcribed out of the ESs, named genes related to ESAGs (GRESAGs). However, some ESAGs (7, 6 and 8) appear to be restricted to the ESs. Most of these genes can be deleted from the active ES without apparently affecting the phenotype of bloodstream form trypanosomes, probably either due to the expression of ESAGs from 'inactive' ESs (ESAG7/6) or due to the expression of GRESAGs (in particular, GRESAGs4 and GRESAGs1). At least three ESAGs (ESAG7, ESAG6 and SRA) share the evolutionary origin of VSGs. The presence of these latter genes in ESs may confer an increased capacity of the parasite for adaptation to various mammalian hosts, as suggested in the case of ESAG7/6 and proven for SRA, which allows T. brucei to infect humans. Similarly, the existence of a collection of slightly different ESAG4s in the multiple ESs might provide the parasite with adenylyl cyclase isoforms that may regulate growth in response to different environmental conditions. The high transcription rate and high recombination level that prevail in VSG ESs may have favored the generation and/or recruitment in these sites of genes whose hyper-evolution allows adaptation to a larger variety of hosts.
Collapse
Affiliation(s)
- E Pays
- Laboratory of Molecular Parasitology, IBMM, Department of Molecular Biology, Free University of Brussels, 12, rue des Professeurs Jeener et Brachet, B-6041, Gosselies, Belgium.
| | | | | | | | | |
Collapse
|
32
|
Namangala B, De Baetselier P, Noël W, Brys L, Beschin A. Alternative versus classical macrophage activation during experimental African trypanosomosis. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Boniface Namangala
- Department of Immunology, Parasitology and Ultrastructure, Flemish Interuniversity Institute for Biotechnology, Free University Brussels (VUB), Paardenstraat 65, B‐1640 St‐Genesius‐Rode, Belgium
| | - Patrick De Baetselier
- Department of Immunology, Parasitology and Ultrastructure, Flemish Interuniversity Institute for Biotechnology, Free University Brussels (VUB), Paardenstraat 65, B‐1640 St‐Genesius‐Rode, Belgium
| | - Wim Noël
- Department of Immunology, Parasitology and Ultrastructure, Flemish Interuniversity Institute for Biotechnology, Free University Brussels (VUB), Paardenstraat 65, B‐1640 St‐Genesius‐Rode, Belgium
| | - Lea Brys
- Department of Immunology, Parasitology and Ultrastructure, Flemish Interuniversity Institute for Biotechnology, Free University Brussels (VUB), Paardenstraat 65, B‐1640 St‐Genesius‐Rode, Belgium
| | - Alain Beschin
- Department of Immunology, Parasitology and Ultrastructure, Flemish Interuniversity Institute for Biotechnology, Free University Brussels (VUB), Paardenstraat 65, B‐1640 St‐Genesius‐Rode, Belgium
| |
Collapse
|
33
|
Berberof M, Pérez-Morga D, Pays E. A receptor-like flagellar pocket glycoprotein specific to Trypanosoma brucei gambiense. Mol Biochem Parasitol 2001; 113:127-38. [PMID: 11254961 DOI: 10.1016/s0166-6851(01)00208-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei gambiense and T. b. rhodesiense are protozoan parasites causing sleeping sickness in humans due to their resistance to lysis by normal human serum (NHS). Based on the observation that the resistance gene of T. b. rhodesiense encodes a truncated form of the variant specific glycoprotein (VSG), we cloned a similar gene in T. b. gambiense using reverse transcription-linked polymerase chain reaction with VSG-specific primers. This gene, termed TgsGP for T. gambiense-specific glycoprotein, was found to be specific to T. b. gambiense. It is located close to a telomere and is transcribed by a pol II RNA polymerase, only at the bloodstream stage of the parasite development. TgsGP encodes a 47-kDa protein consisting of a N-terminal VSG domain presumably provided with a glycosylphosphatidylinositol (GPI) anchor sequence, similar to the pESAG6 subunit of the trypanosomal transferrin receptor. TgsGP is located in the flagellar pocket, and contains the linear N-linked polyacetyllactosamine characteristic of the endocytotic machinery of T. brucei. These observations strongly suggest that TgsGP is a T. b. gambiense specific receptor. Since stable expression of this protein in T. b. brucei did not confer resistance to NHS, TgsGP may either need another factor to achieve this purpose or fulfils another function linked to adaptation of the parasite to man.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/isolation & purification
- Antigens, Protozoan/metabolism
- Blotting, Northern
- Drug Resistance/genetics
- Genes, Protozoan
- Glycosylphosphatidylinositols/metabolism
- Humans
- Molecular Sequence Data
- Molecular Weight
- Proteins
- Protozoan Proteins
- RNA Polymerase II/metabolism
- RNA, Messenger/analysis
- RNA, Protozoan/genetics
- Receptors, Transferrin/genetics
- Receptors, Transferrin/isolation & purification
- Receptors, Transferrin/metabolism
- Sensitivity and Specificity
- Sequence Alignment
- Sequence Homology, Amino Acid
- Telomere/genetics
- Trypanosoma brucei gambiense/cytology
- Trypanosoma brucei gambiense/drug effects
- Trypanosoma brucei gambiense/growth & development
- Trypanosoma brucei gambiense/immunology
- Variant Surface Glycoproteins, Trypanosoma/genetics
- Variant Surface Glycoproteins, Trypanosoma/isolation & purification
- Variant Surface Glycoproteins, Trypanosoma/metabolism
Collapse
Affiliation(s)
- M Berberof
- Laboratory of Molecular Parasitology, IBMM, Free University of Brussels, 12, rue des Profs. Jeener & Brachet, B-6041 Gosselies, Belgium
| | | | | |
Collapse
|
34
|
Bieger B, Essen LO. Structural analysis of adenylate cyclases from Trypanosoma brucei in their monomeric state. EMBO J 2001; 20:433-45. [PMID: 11157750 PMCID: PMC133460 DOI: 10.1093/emboj/20.3.433] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclic AMP is a major trigger of the differentiation process of Trypanosoma brucei, a bloodstream parasite causing sleeping sickness. Its generation in trypanosomes is accomplished by a unique battery of membrane-bound adenylate cyclases (ACs). We have determined the high-resolution X-ray structures of the catalytic domains of two trypanosomal ACs (tACs), GRESAG4.1 and GRESAG4.3. The tAC domains are structurally highly related to the AC domains of higher eukaryotes, but also comprise a highly conserved structural element near the active site, the Delta-subdomain. A cavity below the Delta-subdomain might correspond to an allosteric regulator site as indicated by the stereospecific binding of a single (2S,3S)-1,4- dimercapto-2,3-butanediol molecule. In three different crystal forms, the tAC domains are exclusively observed in a monomeric, catalytically inactive state. Biochemical analysis and the mutagenesis profile of GRESAG4.1 confirmed a common catalytic mechanism of tACs that involves transient dimerization of the AC domain. A low dimerization tendency might play a regulatory role in T. brucei if the activation of tACs is similarly driven by ligand-induced dimerization as in membrane-bound guanylate cyclases.
Collapse
Affiliation(s)
| | - Lars-Oliver Essen
- Max-Planck-Institute for Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried bei München, Germany
Corresponding author e-mail:
| |
Collapse
|
35
|
Naula C, Schaub R, Leech V, Melville S, Seebeck T. Spontaneous dimerization and leucine-zipper induced activation of the recombinant catalytic domain of a new adenylyl cyclase of Trypanosoma brucei, GRESAG4.4B. Mol Biochem Parasitol 2001; 112:19-28. [PMID: 11166383 DOI: 10.1016/s0166-6851(00)00338-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we describe the isolation and characterization of a new adenylyl cyclase from Trypanosoma brucei and its activation by dimerization of the catalytic domain. In agreement with the current nomenclature of trypanosomal adenylyl cyclases, this new gene is termed GRESAG4.4B. The complete ORF of the GRESAG4.4B gene encodes a protein of 1291 amino acids. Its predicted protein structure is consistent with the structure of other trypanosomal cyclases, and with the cyclases of L. donovani. GRESAG 4.4B is constitutively expressed during the life cycle of trypanosomes. GRESAG4.4B is a member of a gene family, which contains at least six members, which are all clustered on chromosome IV. The catalytic domain of GRESAG4.4B is able to dimerize spontaneously. However, these spontaneously formed, stable dimers only show minimal enzymatic activity. The addition of a leucine zipper (LZ) derived from the S. cerevisiae GCN 4 gene to the N-terminus of the catalytic domain of GRESAG4.4B strongly activated its enzymatic activity. The LZ appears to enforce a distinct conformation of the dimer, which leads to an increased enzymatic activity, and thus may mimic the effect of ligand-induced dimerization of adenylyl cyclase in vivo.
Collapse
Affiliation(s)
- C Naula
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Tasker M, Wilson J, Sarkar M, Hendriks E, Matthews K. A novel selection regime for differentiation defects demonstrates an essential role for the stumpy form in the life cycle of the African trypanosome. Mol Biol Cell 2000; 11:1905-17. [PMID: 10793160 PMCID: PMC14892 DOI: 10.1091/mbc.11.5.1905] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A novel selection scheme has been developed to isolate bloodstream forms of Trypanosoma brucei, which are defective in their ability to differentiate to the procyclic stage. Detailed characterization of one selected cell line (defective in differentiation clone 1 [DiD-1]) has demonstrated that these cells are indistinguishable from the wild-type population in terms of their morphology, cell cycle progression, and biochemical characteristics but are defective in their ability to initiate differentiation to the procyclic form. Although a small proportion of DiD-1 cells remain able to transform, deletion of the genes for glycophosphatidyl inositol-phospholipase C demonstrated that this enzyme was not responsible for this inefficient differentiation. However, the attenuated growth of the Delta-glycophosphatidyl inositol-phospholipase C DiD-1 cells in mice permitted the expression of stumpy characteristics in this previously monomorphic cell line, and concomitantly their ability to differentiate efficiently was restored. Our results indicate that monomorphic cells retain expression of a characteristic of the stumpy form essential for differentiation, and that this is reduced in the defective cells. This approach provides a new route to dissection of the cytological and molecular basis of life cycle progression in the African trypanosome.
Collapse
Affiliation(s)
- M Tasker
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Paturiaux-Hanocq F, Hanocq-Quertier J, de Almeida ML, Nolan DP, Pays A, Vanhamme L, Van den Abbeele J, Wasunna CL, Carrington M, Pays E. A role for the dynamic acylation of a cluster of cysteine residues in regulating the activity of the glycosylphosphatidylinositol-specific phospholipase C of Trypanosoma brucei. J Biol Chem 2000; 275:12147-55. [PMID: 10766850 DOI: 10.1074/jbc.275.16.12147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycosylphosphatidylinositol-specific phospholipase C or VSG lipase is the enzyme responsible for the cleavage of the glycosylphosphatidylinositol anchor of the variant surface glycoprotein (VSG) and concomitant release of the surface coat in Trypanosoma brucei during osmotic shock or extracellular acidic stress. In Xenopus laevis oocytes the VSG lipase was expressed as a nonacylated and a thioacylated form. This thioacylation occurred within a cluster of three cysteine residues but was not essential for catalytic activity per se. These two forms were also detected in trypanosomes and appeared to be present at roughly equivalent amounts. A reversible shift to the acylated form occurred when cells were triggered to release the VSG by either nonlytic acid stress or osmotic lysis. A wild type VSG lipase or a gene mutated in the three codons for the acylated cysteines were reinserted in the genome of a trypanosome null mutant for this gene. A comparative analysis of these revertant trypanosomes indicated that thioacylation might be involved in regulating enzyme access to the VSG substrate.
Collapse
Affiliation(s)
- F Paturiaux-Hanocq
- Department of Molecular Biology, Université Libre de Bruxelles, 12 rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Curative interference with signal transduction pathways is a spectacularly successful concept in many domains of modern pharmacology; indeed, the 'wonder drug' Viagra is but a humble inhibitor of a cyclic GMP (cGMP)-specific phosphodiesterase and, thus, interferes with cGMP-signaling in a strategic organ. In fact, about half of the 100 most successful drugs currently on the market act through modulating cellular signal transduction. Despite these encouraging findings, signal transduction pathways as potential drug targets in trypanosomatids have remained largely unexplored. However, what little is known indicates that adenylyl cyclases of trypanosomatids, and probably other enzymes of the cyclic nucleotide signaling pathways, are significantly different from their mammalian counterparts. Here, Christina Naula and Thomas Seebeck summarize what is known about cAMP signal transduction in trypanosomatids.
Collapse
Affiliation(s)
- C Naula
- University of Bern, Institute of General Microbiology, Switzerland
| | | |
Collapse
|
39
|
Nolan DP, Rolin S, Rodriguez JR, Van Den Abbeele J, Pays E. Slender and stumpy bloodstream forms of Trypanosoma brucei display a differential response to extracellular acidic and proteolytic stress. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:18-27. [PMID: 10601846 DOI: 10.1046/j.1432-1327.2000.00935.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Natural infections of mammals with African trypanosomes, such as Trypanosoma brucei, are generally pleomorphic, the population consisting of different forms, termed slender and stumpy forms, that vary in number as the parasitaemia develops. We show that the differentiation of slender into stumpy forms is characterized by the acquisition by the parasite of the ability to regulate its internal pH, even in the face of a large, inwardly directed gradient of H+, as well as a tolerance towards external proteolytic stress. These adaptations effectively abbrogate cellular stress-activated signalling pathways involving adenylate cyclase and glycosylphosphoinositol-specific phospholipase-C mediated release of the surface coat. Although in metabolic terms stumpy forms of the parasite are considered to be preadapted to life in the arthropod vector, these data clearly demonstrate that these forms also possess additional cellular adaptations designed to deal with the immediate and potentially harmful changes in the extracellular environment that occur upon ingestion of a bloodmeal by the tsetse fly vector.
Collapse
Affiliation(s)
- D P Nolan
- Laboratory of Molecular Parasitology, ULB-IBMM, Gosselies, Belgium.
| | | | | | | | | |
Collapse
|
40
|
Cardoso De Almeida ML, Geuskens M, Pays E. Cell lysis induces redistribution of the GPI-anchored variant surface glycoprotein on both faces of the plasma membrane of Trypanosoma brucei. J Cell Sci 1999; 112 ( Pt 23):4461-73. [PMID: 10564663 DOI: 10.1242/jcs.112.23.4461] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African trypanosomes are coated by 10 million copies of a single variant specific glycoprotein (VSG) which are anchored in the plasma membrane by glycosylphosphatidylinositol (GPI). A GPI-specific phospholipase C (GPI-PLC) triggers fast VSG release upon cell lysis but in vivo it is safely controlled and topologically concealed from its substrate by being intracellular. One enigmatic aspect of GPI-PLC action therefore consists of how it could gain access to the VSG in the exoplasmic leaflet of the membrane. The data presented herewith disclose an unexpected possible solution for this puzzle: upon cell rupture the VSG invades the cytoplasmic face of the plasma membrane which thus becomes double coated. This unusual VSG rearrangement was stable in ruptured plasma membrane from GPI-PLC null mutant trypanosomes but transiently preceded VSG release in wild-type parasites. The formation of double coat membrane (DCM) was independent of the presence or activation of GPI-PLC, occurred both at 4 degrees C and 30 degrees C and was unaffected by the classical inhibitor of VSG release, p-choromercuryphenylsulfonic acid (PCM). DCMs conserved the same coat thickness and association with subpellicular microtubules as in intact cells and were prone to form vesicles following gradual detachment of the latter. Our data also demonstrate that: (i) GPI-PLC expressed by one trypanosome only targets its own plasma membrane, being unable to release VSG of another parasite; (ii) DCMs concomitantly formed from trypanosomes expressing different VSGs do not intermix, an indication that DCM might be refractory to membrane fusion.
Collapse
Affiliation(s)
- M L Cardoso De Almeida
- Laboratory of Molecular Parasitology, Free University of Brussels, rue des Chevaux, B-1640 Rhode-St-Genèse, Belgium. mlcalmei@alize. ulb.ac.be
| | | | | |
Collapse
|
41
|
Field MC, Ali BR, Field H. GTPases in protozoan parasites: tools for cell biology and chemotherapy. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:365-71. [PMID: 10461165 DOI: 10.1016/s0169-4758(99)01499-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small G proteins belong to a superfamily of GTPases related to the protooncogene ras, and function as master control elements for a range of cellular functions. This ability is related to their low rate of substrate turnover; GTPases catalyse the conversion of GTP to GDP, but with a rate in the order of one substrate per second, orders of magnitude slower than 'good' enzyme catalysis, but placing the reaction into the temporal frame of many cellular processes including signal transduction, cytoskeletal reorganization and vesicle trafficking. In this article, Mark Field, Bassam Ali and Helen Field describe some recent advances in G-protein studies in the parasite field, concentrating on the protozoan parasites. Because of their numerous roles in cell biology, understanding parasite G proteins has great potential for increasing our knowledge of parasite cellular physiology, as well as providing important inroads into vital processes for potential therapeutic exploitation.
Collapse
Affiliation(s)
- M C Field
- Wellcome Trust Laboratories for Molecular Parasitology, Department of Biochemistry, Imperial College of Science, Technology and Medicine, Exhibition Road, London, UK SW7 2AY.
| | | | | |
Collapse
|
42
|
Armah DA, Mensa-Wilmot K. S-myristoylation of a glycosylphosphatidylinositol-specific phospholipase C in Trypanosoma brucei. J Biol Chem 1999; 274:5931-8. [PMID: 10026218 DOI: 10.1074/jbc.274.9.5931] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Covalent modification with lipid can target cytosolic proteins to biological membranes. With intrinsic membrane proteins, the role of acylation can be elusive. Herein, we describe covalent lipid modification of an integral membrane glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) from the kinetoplastid Trypanosoma brucei. Myristic acid was detected on cysteine residue(s) (i.e. thiomyristoylation). Thiomyristoylation occurred both co- and post-translationally. Acylated GPI-PLC was active against variant surface glycoprotein (VSG). The half-life of fatty acid on GPI-PLC was 45 min, signifying the dynamic nature of the modification. Deacylation in vitro decreased activity of GPI-PLC 18-30-fold. Thioacylation, from kinetic analysis, activated GPI-PLC by accelerating the conversion of a GPI-PLC.VSG complex to product. Reversible thioacylation is a novel mechanism for regulating the activity of a phospholipase C.
Collapse
Affiliation(s)
- D A Armah
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
43
|
Rolin S, Hancocq-Quertier J, Paturiaux-Hanocq F, Nolan DP, Pays E. Mild acid stress as a differentiation trigger in Trypanosoma brucei. Mol Biochem Parasitol 1998; 93:251-62. [PMID: 9662709 DOI: 10.1016/s0166-6851(98)00046-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vitro differentiation of Trypanosoma brucei from the bloodstream to the procyclic form is efficiently induced by the combination of cold shock from 37 to 27 degrees C and the addition of citrate/cis-aconitate (CCA) to the incubation medium. Here it is reported that exposure of pleomorphic bloodstream trypanosomes to mild acidic conditions (pH 5.5 for 2 h at 37 degrees C) not only accelerated the process of morphological transformation from long slender and intermediate to short stumpy bloodstream forms but also allowed their subsequent differentiation into procyclic forms even in the absence of CCA. This process appeared to involve the glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC), since null GPI-PLC mutants (PLC-) appeared to be largely refractory to acid stress-induced differentiation. However, an effective response was restored upon reintegration of the GPI-PLC gene in the genome (PLC+).
Collapse
Affiliation(s)
- S Rolin
- Department of Molecular Biology, Free University of Brussels, Rhode St Genèse, Belgium
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- E Pays
- Department of Molecular Biology, University of Brussels 67, Rhode St Genèse, Belgium.
| | | |
Collapse
|
45
|
Magez S, Stijlemans B, Radwanska M, Pays E, Ferguson MAJ, De Baetselier P. The Glycosyl-Inositol-Phosphate and Dimyristoylglycerol Moieties of the Glycosylphosphatidylinositol Anchor of the Trypanosome Variant-Specific Surface Glycoprotein Are Distinct Macrophage-Activating Factors. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.4.1949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The TNF-α-inducing capacity of different trypanosome components was analyzed in vitro, using as indicator cells a macrophage cell line (2C11/12) or peritoneal exudate cells from LPS-resistant C3H/HeJ mice and LPS-sensitive C3H/HeN mice. The variant-specific surface glycoprotein (VSG) was identified as the major TNF-α-inducing component present in trypanosome-soluble extracts. Both soluble (sVSG) and membrane-bound VSG (mfVSG) were shown to manifest similar TNF-α-inducing capacities, indicating that the dimyristoylglycerol (DMG) compound of the mfVSG anchor was not required for TNF-α triggering. Detailed analysis indicated that the glycosyl-inositol-phosphate (GIP) moiety was responsible for the TNF-α-inducing activity of VSG and that the presence of the GIP-associated galactose side chain was essential for optimal TNF-α production. Furthermore, the results showed that the responsiveness of macrophages toward the TNF-α-inducing activity of VSG was strictly dependent on the activation state of the macrophages, since resident macrophages required IFN-γ preactivation to become responsive. Comparative analysis of the ability of both forms of VSG to activate macrophages revealed that mfVSG but not sVSG stimulates macrophages toward IL-1α secretion and acquisition of LPS responsiveness. The priming activity of mfVSG toward LPS responsiveness was also demonstrated in vivo and may be relevant during trypanosome infections, since Trypanosoma brucei-infected mice became gradually LPS-hypersensitive during the course of infection. Collectively, the VSG of trypanosomes encompasses two distinct macrophage-activating components: while the GIP moiety of sVSG mediates TNF-α induction, the DMG compound of the mfVSG anchor contributes to IL-1α induction and LPS sensitization.
Collapse
Affiliation(s)
- Stefan Magez
- *Laboratory of Cellular Immunology, Flanders Interuniversity Institute for Biotechnology, Free University of Brussels (Vrije Universiteit Brussel), and
| | - Benoı̂t Stijlemans
- *Laboratory of Cellular Immunology, Flanders Interuniversity Institute for Biotechnology, Free University of Brussels (Vrije Universiteit Brussel), and
| | - Magdalena Radwanska
- †Department of Molecular Biology, Free University of Brussels (Université Libre de Bruxelles), Brussels, Belgium; and
| | - Etienne Pays
- †Department of Molecular Biology, Free University of Brussels (Université Libre de Bruxelles), Brussels, Belgium; and
| | | | - Patrick De Baetselier
- *Laboratory of Cellular Immunology, Flanders Interuniversity Institute for Biotechnology, Free University of Brussels (Vrije Universiteit Brussel), and
| |
Collapse
|
46
|
Thiam K, Loing E, Gilles F, Verwaerde C, Quatannens B, Auriault C, Gras-Masse H. Induction of apoptosis by protein kinase C pseudosubstrate lipopeptides in several human cells. ACTA ACUST UNITED AC 1997. [DOI: 10.1007/bf02442906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Webb H, Carnall N, Vanhamme L, Rolin S, Van Den Abbeele J, Welburn S, Pays E, Carrington M. The GPI-phospholipase C of Trypanosoma brucei is nonessential but influences parasitemia in mice. J Cell Biol 1997; 139:103-14. [PMID: 9314532 PMCID: PMC2139819 DOI: 10.1083/jcb.139.1.103] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/1996] [Revised: 07/17/1997] [Indexed: 02/05/2023] Open
Abstract
In the mammalian host, the cell surface of Trypanosoma brucei is protected by a variant surface glycoprotein that is anchored in the plasma membrane through covalent attachment of the COOH terminus to a glycosylphosphatidylinositol. The trypanosome also contains a phospholipase C (GPI-PLC) that cleaves this anchor and could thus potentially enable the trypanosome to shed the surface coat of VSG. Indeed, release of the surface VSG can be observed within a few minutes on lysis of trypanosomes in vitro. To investigate whether the ability to cleave the membrane anchor of the VSG is an essential function of the enzyme in vivo, a GPI-PLC null mutant trypanosome has been generated by targeted gene deletion. The mutant trypanosomes are fully viable; they can go through an entire life cycle and maintain a persistent infection in mice. Thus the GPI-PLC is not an essential activity and is not necessary for antigenic variation. However, mice infected with the mutant trypanosomes have a reduced parasitemia and survive longer than those infected with control trypanosomes. This phenotype is partially alleviated when the null mutant is modified to express low levels of GPI-PLC.
Collapse
Affiliation(s)
- H Webb
- Department of Biochemistry, Cambridge University, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|