1
|
Rollet-Cohen V, Bourderioux M, Lipecka J, Chhuon C, Jung VA, Mesbahi M, Nguyen-Khoa T, Guérin-Pfyffer S, Schmitt A, Edelman A, Sermet-Gaudelus I, Guerrera IC. Comparative proteomics of respiratory exosomes in cystic fibrosis, primary ciliary dyskinesia and asthma. J Proteomics 2018; 185:1-7. [PMID: 30032860 DOI: 10.1016/j.jprot.2018.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/18/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023]
Abstract
Cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) are pulmonary genetic disorders associated with inflammation and heterogeneous progression of the lung disease. We hypothesized that respiratory exosomes, nanovesicles circulating in the respiratory tract, may be involved in the progression of inflammation-related lung damage. We compared proteomic content of respiratory exosomes isolated from bronchoalveolar lavage fluid in CF and PCD to asthma (A), a condition also associated with inflammation but with less severe lung damage. BALF were obtained from 3 CF, 3 PCD and 6 A patients. Exosomes were isolated from BALF by ultracentrifugations and characterized using immunoelectron microscopy and western-blot. Exosomal protein analysis was performed by high-resolution mass spectrometry using label-free quantification. Exosome enrichment was validated by electron microscopy and immunodetection of CD9, CD63 and ALIX. Mass spectrometry analysis allowed the quantification of 665 proteins, of which 14 were statistically differential according to the disease. PCD and CF exosomes contained higher levels of antioxidant proteins (Superoxide-dismutase, Glutathione peroxidase-3, Peroxiredoxin-5) and proteins involved in leukocyte chemotaxis. All these proteins are known activators of the NF-KappaB pathway. Our results suggest that respiratory exosomes are involved in the pro-inflammatory propagation during the extension of CF or PCD lung diseases. SIGNIFICANCE The mechanism of local propagation of lung disease in cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) is not clearly understood. Differential Proteomic profiles of exosomes isolated from BAL from CF, PCD and asthmatic patients suggest that they carry pro-inflammatory proteins that may be involved in the progression of lung damage.
Collapse
Affiliation(s)
- Virginie Rollet-Cohen
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Cystic Fibrosis Center, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Matthieu Bourderioux
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Joanna Lipecka
- Inserm U894, Center of Psychiatry and Neurosciences, Paris, France
| | - Cerina Chhuon
- Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent A Jung
- Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Myriam Mesbahi
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Thao Nguyen-Khoa
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Laboratory of General Biochemistry, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Sophie Guérin-Pfyffer
- Cystic Fibrosis Center, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Alain Schmitt
- Electron Microscopy Platform, Inserm U1016, Institut Cochin, CNRS UMR 81044, Université Paris Descartes, Paris, France
| | - Aleksander Edelman
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Sermet-Gaudelus
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Cystic Fibrosis Center, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France.
| |
Collapse
|
2
|
Goulas T, Ksiazek M, Garcia-Ferrer I, Sochaj-Gregorczyk AM, Waligorska I, Wasylewski M, Potempa J, Gomis-Rüth FX. A structure-derived snap-trap mechanism of a multispecific serpin from the dysbiotic human oral microbiome. J Biol Chem 2017; 292:10883-10898. [PMID: 28512127 PMCID: PMC5491774 DOI: 10.1074/jbc.m117.786533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/04/2017] [Indexed: 10/19/2022] Open
Abstract
Enduring host-microbiome relationships are based on adaptive strategies within a particular ecological niche. Tannerella forsythia is a dysbiotic member of the human oral microbiome that inhabits periodontal pockets and contributes to chronic periodontitis. To counteract endopeptidases from the host or microbial competitors, T. forsythia possesses a serpin-type proteinase inhibitor called miropin. Although serpins from animals, plants, and viruses have been widely studied, those from prokaryotes have received only limited attention. Here we show that miropin uses the serpin-type suicidal mechanism. We found that, similar to a snap trap, the protein transits from a metastable native form to a relaxed triggered or induced form after cleavage of a reactive-site target bond in an exposed reactive-center loop. The prey peptidase becomes covalently attached to the inhibitor, is dragged 75 Å apart, and is irreversibly inhibited. This coincides with a large conformational rearrangement of miropin, which inserts the segment upstream of the cleavage site as an extra β-strand in a central β-sheet. Standard serpins possess a single target bond and inhibit selected endopeptidases of particular specificity and class. In contrast, miropin uniquely blocked many serine and cysteine endopeptidases of disparate architecture and substrate specificity owing to several potential target bonds within the reactive-center loop and to plasticity in accommodating extra β-strands of variable length. Phylogenetic studies revealed a patchy distribution of bacterial serpins incompatible with a vertical descent model. This finding suggests that miropin was acquired from the host through horizontal gene transfer, perhaps facilitated by the long and intimate association of T. forsythia with the human gingiva.
Collapse
Affiliation(s)
- Theodoros Goulas
- From the Proteolysis Lab, Structural Biology Unit, María de Maeztu Unit of Excellence, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - Miroslaw Ksiazek
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology and
- the Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Irene Garcia-Ferrer
- From the Proteolysis Lab, Structural Biology Unit, María de Maeztu Unit of Excellence, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - Alicja M Sochaj-Gregorczyk
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology and
- the Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland, and
| | - Irena Waligorska
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology and
| | - Marcin Wasylewski
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology and
| | - Jan Potempa
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology and
- the Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - F Xavier Gomis-Rüth
- From the Proteolysis Lab, Structural Biology Unit, María de Maeztu Unit of Excellence, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain,
| |
Collapse
|
3
|
Ksiazek M, Mizgalska D, Enghild JJ, Scavenius C, Thogersen IB, Potempa J. Miropin, a novel bacterial serpin from the periodontopathogen Tannerella forsythia, inhibits a broad range of proteases by using different peptide bonds within the reactive center loop. J Biol Chem 2014; 290:658-70. [PMID: 25389290 DOI: 10.1074/jbc.m114.601716] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
All prokaryotic genes encoding putative serpins identified to date are found in environmental and commensal microorganisms, and only very few prokaryotic serpins have been investigated from a mechanistic standpoint. Herein, we characterized a novel serpin (miropin) from the human pathogen Tannerella forsythia, a bacterium implicated in initiation and progression of human periodontitis. In contrast to other serpins, miropin efficiently inhibited a broad range of proteases (neutrophil and pancreatic elastases, cathepsin G, subtilisin, and trypsin) with a stoichiometry of inhibition of around 3 and second-order association rate constants that ranged from 2.7 × 10(4) (cathepsin G) to 7.1 × 10(5) m(-1)s(-1) (subtilisin). Inhibition was associated with the formation of complexes that were stable during SDS-PAGE. The unusually broad specificity of miropin for target proteases is achieved through different active sites within the reactive center loop upstream of the P1-P1' site, which was predicted from an alignment of the primary structure of miropin with those of well studied human and prokaryotic serpins. Thus, miropin is unique among inhibitory serpins, and it has apparently evolved the ability to inhibit a multitude of proteases at the expense of a high stoichiometry of inhibition and a low association rate constant. These characteristics suggest that miropin arose as an adaptation to the highly proteolytic environment of subgingival plaque, which is exposed continually to an array of host proteases in the inflammatory exudate. In such an environment, miropin may function as an important virulence factor by protecting bacterium from the destructive activity of neutrophil serine proteases. Alternatively, it may act as a housekeeping protein that regulates the activity of endogenous T. forsythia serine proteases.
Collapse
Affiliation(s)
- Miroslaw Ksiazek
- From the Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland,
| | - Danuta Mizgalska
- From the Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jan J Enghild
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO) at the Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark, and
| | - Carsten Scavenius
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO) at the Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark, and
| | - Ida B Thogersen
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO) at the Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark, and
| | - Jan Potempa
- From the Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland, Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| |
Collapse
|
4
|
Merckelbach A, Ruppel A. Biochemical properties of an intracellular serpin from Echinococcus multilocularis. Mol Biochem Parasitol 2007; 156:84-8. [PMID: 17727977 DOI: 10.1016/j.molbiopara.2007.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/26/2022]
Abstract
A serpin of the intracellular type from the tapeworm Echinococcus multilocularis was expressed in Escherichia coli, purified by ion exchange chromatography and tested for inhibitory activity against several proteinases. The recombinant protein, which after transcriptional induction, represents about 20 % of total cellular protein, is biochemically active and inhibits trypsin and the trypsin-like plasmin as well as pig pancreatic and human neutrophil elastase. Implications regarding its biochemistry and biological function are discussed.
Collapse
Affiliation(s)
- Armin Merckelbach
- Department of Tropical Hygiene and Public Health, University Clinic Heidelberg, Im Neuenheimer Feld 324, 69 120, Heidelberg, Germany.
| | | |
Collapse
|
5
|
Strik MCM, Wolbink A, Wouters D, Bladergroen BA, Verlaan AR, van Houdt IS, Hijlkema S, Hack CE, Kummer JA. Intracellular serpin SERPINB6 (PI6) is abundantly expressed by human mast cells and forms complexes with beta-tryptase monomers. Blood 2003; 103:2710-7. [PMID: 14670919 DOI: 10.1182/blood-2003-08-2981] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SERPINB6 (PI6) is a member of the intracellular serine protease inhibitors (serpins). Previous studies showed that SERPINB6 is localized mainly in the cytoplasm of endothelial cells, some epithelial cells, monocytes, and neutrophils. In these cells SERPINB6 is thought to prevent cellular damage by scavenging leaking lysosomal proteases. We show here, using novel, well-defined monoclonal antibodies, that SERPINB6 is abundantly expressed by mast cells in all organs and by the human mast cell line HMC-1. Gel filtration experiments revealed that the latter cells contain a high-molecular-weight form of SERPINB6, which consists of sodium dodecyl sulfate (SDS)-stable complexes of this inhibitor with monomeric beta-tryptase. Expression of SERPINB6 by mast cells was compared with those of tryptase and CD117 (c-kit) in biopsies from patients with different forms of mast cell disease. In all cases the lesional mast cells expressed SERPINB6, and, in diffuse cutaneous mastocytosis and mastocytoma, SERPINB6 was expressed by a substantially higher number of mast cells when compared with tryptase. In conclusion, SERPINB6 is abundantly expressed by normal mast cells and by mast cells in mastocytoma lesions. We suggest that in mast cells, SERPINB6 serves to regulate the activity of endogenous beta-tryptase in the cytoplasm.
Collapse
Affiliation(s)
- Merel C M Strik
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Plotnick MI, Rubin H, Schechter NM. The effects of reactive site location on the inhibitory properties of the serpin alpha(1)-antichymotrypsin. J Biol Chem 2002; 277:29927-35. [PMID: 12055188 DOI: 10.1074/jbc.m202374200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large size of the serpin reactive site loop (RSL) suggests that the role of the RSL in protease inhibition is more complex than that of presenting the reactive site (P1 residue) to the protease. This study examines the effect on inhibition of relocating the reactive site (Leu-358) of the serpin alpha(1)-antichymotrypsin either one residue closer (P2) or further (P1') from the base of the RSL (Glu-342). alpha(1)-Antichymotrypsin variants were produced by mutation within the P4-P2' region; the sequence ITLLSA was changed to ITLSSA to relocate the reactive site to P2 (Leu-357) and to ITITLS to relocate it to P1' (Leu-359). Inhibition of the chymotrypsin-like proteases human chymase and chymotrypsin and the non-target protease human neutrophil elastase (HNE) were analyzed. The P2 variant inhibited chymase and chymotrypsin but not HNE. Relative to P1, interaction at P2 was characterized by greater complex stability, lower inhibition rate constants, and increased stoichiometry of inhibition values. In contrast, the P1' variant inhibited HNE (stoichiometry of inhibition = 4) but not chymase or chymotrypsin. However, inhibition of HNE was by interaction with Ile-357, the P2 residue. The P1' site was recognized by all proteases as a cleavage site. Covalent-complexes resistant to SDS-PAGE were observed in all inhibitory reactions, consistent with the trapping of the protease as a serpin-acyl protease complex. The complete loss in inhibitory activity associated with lengthening the Glu-342-reactive site distance by a single residue and the enhanced stability of complexes associated with shortening this distance by a single residue are compatible with the distorted-protease model of inhibition requiring full insertion of the RSL into the body of the serpin and translocation of the linked protease to the pole opposite from that of encounter.
Collapse
Affiliation(s)
- Michael I Plotnick
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania and Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
7
|
Chipuk JE, Stewart LV, Ranieri A, Song K, Danielpour D. Identification and characterization of a novel rat ov-serpin family member, trespin. J Biol Chem 2002; 277:26412-21. [PMID: 11986314 DOI: 10.1074/jbc.m201244200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serpins are responsible for regulating a variety of proteolytic processes through a unique irreversible suicide substrate mechanism. To discover novel genes regulated by transforming growth factor-beta1 (TGF-beta 1), we performed differential display reverse transcriptase-PCR analysis of NRP-152 rat prostatic epithelial cells and cloned a novel rat serpin that is transcriptionally down-regulated by TGF-beta and hence named trespin (TGF-beta-repressible serine proteinase inhibitor (trespin). Trespin is a 397-amino acid member of the ov-serpin clade with a calculated molecular mass of 45.2 kDa and 72% amino acid sequence homology to human bomapin; however, trespin exhibits different tissue expression, cellular localization, and proteinase specificity compared with bomapin. Trespin mRNA is expressed in many tissues, including brain, heart, kidney, liver, lung, prostate, skin, spleen, and stomach. FLAG-trespin expressed in HEK293 cells is localized predominantly in the cytoplasm and is not constitutively secreted. The presence of an arginine at the P1 position of trespin's reactive site loop suggests that trespin inhibits trypsin-like proteinases. Accordingly, in vitro transcribed and translated trespin forms detergent-stable and thermostable complexes with plasmin and elastase but not subtilisin A, trypsin, chymotrypsin, thrombin, or papain. Trespin interacts with plasmin at a near 1:1 stoichiometry, and immunopurified mammal-expressed trespin inhibits plasmin in a dose-dependent manner. These data suggest that trespin is a novel and functional member of the rat ov-serpin family.
Collapse
Affiliation(s)
- Jerry E Chipuk
- Ireland Cancer Center Research Laboratories and Department of Pharmacology, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
8
|
Morris EC, Carrell RW, Coughlin PB. Intracellular serpins in haemopoietic and peripheral blood cells. Br J Haematol 2001; 115:758-66. [PMID: 11843806 DOI: 10.1046/j.1365-2141.2001.03157.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- E C Morris
- Department of Haematology, University College Hospital, London, UK
| | | | | |
Collapse
|
9
|
Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001; 276:33293-6. [PMID: 11435447 DOI: 10.1074/jbc.r100016200] [Citation(s) in RCA: 894] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- G A Silverman
- Department of Pediatrics, Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sun J, Whisstock JC, Harriott P, Walker B, Novak A, Thompson PE, Smith AI, Bird PI. Importance of the P4' residue in human granzyme B inhibitors and substrates revealed by scanning mutagenesis of the proteinase inhibitor 9 reactive center loop. J Biol Chem 2001; 276:15177-84. [PMID: 11278311 DOI: 10.1074/jbc.m006645200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytotoxic lymphocyte serine proteinase granzyme B induces apoptosis of abnormal cells by cleaving intracellular proteins at sites similar to those cleaved by caspases. Understanding the substrate specificity of granzyme B will help to identify natural targets and develop better inhibitors or substrates. Here we have used the interaction of human granzyme B with a cognate serpin, proteinase inhibitor 9 (PI-9), to examine its substrate sequence requirements. Cleavage and sequencing experiments demonstrated that Glu(340) is the P1 residue in the PI-9 RCL, consistent with the preference of granzyme B for acidic P1 residues. Ala-scanning mutagenesis demonstrated that the P4-P4' region of the PI-9 RCL is important for interaction with granzyme B, and that the P4' residue (Glu(344)) is required for efficient serpin-proteinase binding. Peptide substrates based on the P4-P4' PI-9 RCL sequence and containing either P1 Glu or P1 Asp were cleaved by granzyme B (k(cat)/K(m) 9.5 x 10(3) and 1.2 x 10(5) s(-1) M(-1), respectively) but were not recognized by caspases. A substrate containing P1 Asp but lacking P4' Glu was cleaved less efficiently (k(cat)/K(m) 5.3 x 10(4) s(-1) M(-1)). An idealized substrate comprising the previously described optimal P4-P1 sequence (Ile-Glu-Pro-Asp) fused to the PI-9 P1'-P4' sequence was efficiently cleaved by granzyme B (k(cat)/K(m) 7.5 x 10(5) s(-1) M(-1)) and was also recognized by caspases. This contrasts with the literature value for a tetrapeptide comprising the same P4-P1 sequence (k(cat)/K(m) 6.7 x 10(4) s(-1) M(-1)) and confirms that P' residues promote efficient interaction of granzyme B with substrates. Finally, molecular modeling predicted that PI-9 Glu(344) forms a salt bridge with Lys(27) of granzyme B, and we showed that a K27A mutant of granzyme B binds less efficiently to PI-9 and to substrates containing a P4' Glu. We conclude that granzyme B requires an extended substrate sequence for specific and efficient binding and propose that an acidic P4' substrate residue allows discrimination between early (high affinity) and late (lower affinity) targets during the induction of apoptosis.
Collapse
Affiliation(s)
- J Sun
- Department of Biochemistry and Molecular Biology, Monash University, 3800, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schleef RR, Chuang TL. Protease inhibitor 10 inhibits tumor necrosis factor alpha -induced cell death. Evidence for the formation of intracellular high M(r) protease inhibitor 10-containing complexes. J Biol Chem 2000; 275:26385-9. [PMID: 10871600 DOI: 10.1074/jbc.c000389200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protease inhibitor 10 (PI10) is a member of the ovalbumin family of serine protease inhibitors (ov-serpin) that is expressed at elevated levels in patients with acute myeloid leukemia and chronic myelomonocytic leukemia. Based upon the ability of the related serpin plasminogen activator inhibitor 2 (PAI-2) to protect cells against tumor necrosis factor alpha (TNFalpha)-induced cell death, this study was initiated to investigate the potential cytoprotective activity of PI10. Two different expression systems (i.e. plasmids encoding either PI10 alone or PI10 fused to the tag: enhanced green fluorescent protein, EGFP) were utilized to stably transfect an eukaryotic model cell system (i.e. HeLa cells) that neither expresses PAI-2 nor PI10. The level of PI10 expression in the stable transfectants was found to correlate with their resistance to TNFalpha-induced cell death. Immunoprecipitation/immunoblotting experiments demonstrated that PI10 is able to form SDS-stable complexes (i.e. M(r) >100,000) with a cytosolic protein(s). Increased levels of the PI10-containing complexes can be detected by TNFalpha treatment by preventing intracellular degradative activities with the proteasome inhibitor N-carbobenzyloxy-leucine-leucine-norvalinal. PI10-containing complexes are dissociated with conditions known to separate classical protease-serpin complexes (i.e., 1.5 m ammonium hydroxide in the presence of SDS). These data support a role for the regulation of intracellular protease activities by ov-serpins.
Collapse
Affiliation(s)
- R R Schleef
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
12
|
Dahlen JR, Foster DC, Kisiel W. Inhibition of neutrophil elastase by recombinant human proteinase inhibitor 9. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:233-41. [PMID: 10556578 DOI: 10.1016/s0167-4889(99)00095-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteinase inhibitor PI9 (PI9) is an intracellular 42-kDa member of the ovalbumin family of serpins that is found primarily in placenta, lung and lymphocytes. PI9 has been shown to be a fast-acting inhibitor of granzyme B in vitro, presumably through the utilization of Glu(340) as the P(1) inhibitory residue in its reactive site loop. In this report, we describe the inhibition of human neutrophil elastase by recombinant human PI9. Inhibition occurred with an overall K(i)' of 221 pM and a second-order association rate constant of 1.5 x 10(5) M(-1) s(-1), indicating that PI9 is a potent inhibitor of this serine proteinase in vitro. In addition, incubation of recombinant PI9 with native neutrophil elastase resulted in the formation of an SDS-resistant 62-kDa complex. Amino-terminal sequence analyses provided evidence that inhibition of elastase occurred through the use of Cys(342) as the reactive P(1) amino acid residue in the PI9 reactive site loop. Thus, PI9 joins its close relatives PI6 and PI8 as having the ability to utilize multiple reactive site loop residues as the inhibitory P(1) residue to expand its inhibitory spectrum.
Collapse
Affiliation(s)
- J R Dahlen
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
13
|
The Intracellular Serpin Proteinase Inhibitor 6 Is Expressed in Monocytes and Granulocytes and Is a Potent Inhibitor of the Azurophilic Granule Protease, Cathepsin G. Blood 1999. [DOI: 10.1182/blood.v93.6.2089.406k10_2089_2097] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The monocyte and granulocyte azurophilic granule proteinases elastase, proteinase 3, and cathepsin G are implicated in acute and chronic diseases thought to result from an imbalance between the secreted proteinase(s) and circulating serpins such as 1-proteinase inhibitor and 1-antichymotrypsin. We show here that the intracellular serpin, proteinase inhibitor 6 (PI-6), is present in monocytes, granulocytes, and myelomonocytic cell lines. In extracts from these cells, PI-6 bound an endogenous membrane-associated serine proteinase to form an sodium dodecyl sulfate (SDS)-stable complex. Using antibodies to urokinase, elastase, proteinase 3, or cathepsin G, we demonstrated that the complex contains cathepsin G. Native cathepsin G and recombinant PI-6 formed an SDS-stable complex in vitro similar in size to that observed in the extracts. Further kinetic analysis demonstrated that cathepsin G and PI-6 rapidly form a tight 1:1 complex (ka = 6.8 ± 0.2 × 106mol/L−1s−1 at 17°C;Ki = 9.2 ± 0.04 × 10−10 mol/L). We propose that PI-6 complements 1-proteinase inhibitor and 1-antichymotrypsin (which control extracellular proteolysis) by neutralizing cathepsin G that leaks into the cytoplasm of monocytes or granulocytes during biosynthesis or phagocytosis. Control of intracellular cathepsin G may be particularly important, because it has recently been shown to activate the proapoptotic proteinase, caspase-7.
Collapse
|
14
|
Abstract
Caspase activation and apoptosis can be initiated by the introduction of serine proteinases into the cytoplasm of a cell. Cytotoxic lymphocytes have evolved at least one serine proteinase with specific pro-apoptotic activity (granzyme B), as well as the mechanisms to deliver it into a target cell, and recent evidence suggests that other leucocyte granule proteinases may also have the capacity to kill if released into the interior of cells. For example, the monocyte/granulocyte proteinase cathepsin G can activate caspases in vitro, and will induce apoptosis if its entry into cells is mediated by a bacterial pore-forming protein. The potent pro-apoptotic activity of granzyme B and cathepsin G suggests that cells producing these (or other) proteinases would be at risk from self-induced death if the systems involved in packaging, degranulation or targeting fail and allow proteinases to enter the host cell cytoplasm. The purpose of the present review is to describe recent work on a group of intracellular serine proteinase inhibitors (serpins) which may function in leucocytes to prevent autolysis induced by the granule serine proteinases.
Collapse
Affiliation(s)
- P I Bird
- Department of Medicine, Monash Medical School, Box Hill Hospital, Victoria, Australia.
| |
Collapse
|
15
|
Scott FL, Paddle-Ledinek JE, Cerruti L, Coughlin PB, Salem HH, Bird PI. Proteinase inhibitor 6 (PI-6) expression in human skin: induction of PI-6 and a PI-6/proteinase complex during keratinocyte differentiation. Exp Cell Res 1998; 245:263-71. [PMID: 9851866 DOI: 10.1006/excr.1998.4241] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteinase inhibitor 6 (PI-6) is a 42-kDa intracellular protein present in epithelial cells and endothelial cells. It is capable of inhibiting a number of serine proteinases, including trypsin and chymotrypsin. In this study we examined PI-6 expression in human skin and its primary cell type, the keratinocyte. By immunohistochemical analysis, PI-6 staining is absent from the basal cells, weak in the spinous layer, and strongest in the granulosa layer of human epidermis. Immunoblotting of cultured primary keratinocytes revealed that PI-6 production increases 24-fold on differentiation. Analysis of an immortalized keratinocyte cell line, HaCat, showed a 5-fold increase in PI-6 mRNA and a 7-fold increase in PI-6 protein upon differentiation, and indirect immunofluorescence revealed that this is due to an increase in the number of differentiated cells expressing high levels of PI-6. Of particular interest is the appearance of a preformed complex between PI-6 and an endogenous serine proteinase in differentiating HaCat cells, which was detected by a monoclonal antibody demonstrated to preferentially recognize PI-6 in complex with a proteinase. This identification of a PI-6/proteinase complex is the first example of a serpin bound to a proteinase in keratinocytes. We postulate that a physiological role of PI-6 is to regulate a serine proteinase associated with keratinocyte differentiation.
Collapse
Affiliation(s)
- F L Scott
- Department of Medicine, Monash University, Box Hill Hospital 3128, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Zeng W, Silverman GA, Remold-O'Donnell E. Structure and sequence of human M/NEI (monocyte/neutrophil elastase inhibitor), an Ov-serpin family gene. Gene X 1998; 213:179-87. [PMID: 9630619 DOI: 10.1016/s0378-1119(98)00189-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human monocyte/neutrophil Elastase Inhibitor (M/NEI) is a proteinase inhibitor that regulates the activity of the neutrophil proteases: elastase, cathepsin G and proteinase-3. Evidence indicates that M/NEI belongs to the Ov-serpin family (ovalbumin-related serpins), functionally diverse proteins with shared structural features. Recombinant lambda phage clones were isolated that encompass the full-length M/NEI gene plus upstream and downstream regions. The gene, 9.5kb long, consists of 7 exons and 6 introns. The 5' transcription start site identified by primer extension corresponds to a 60bp exon 1; the translation start site is in exon 2. Southern blots established a gene copy number of one. The 3' untranslated region (UTR) contains three AATAAA/AATTAA sites; these were shown to function as alternative polyadenylation signals. A 14-nucleotide upstream motif including the atypical TATA box TATAAGAG otherwise occurs only twice in GenBank, in the genes encoding neutrophil elastase and proteinase-3, target proteases inhibited by M/NEI. Comparison of M/NEI and previously characterized related genes strongly suggests that all Ov-serpins, despite a difference in chromosomal localization and exon number, nonetheless, share a common basic gene structure.
Collapse
Affiliation(s)
- W Zeng
- The Center for Blood Research, 800 Huntington Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
17
|
Dahlen JR, Foster DC, Kisiel W. The inhibitory specificity of human proteinase inhibitor 8 is expanded through the use of multiple reactive site residues. Biochem Biophys Res Commun 1998; 244:172-7. [PMID: 9514892 DOI: 10.1006/bbrc.1998.8225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serine proteinase inhibitors function as regulators of serine proteinase activity in a variety of physiological processes. Proteinase inhibitor 8 (PI8) is a 45 kDa member of the ovalbumin family of serpins that is an inhibitor of trypsin-like proteinases through the use of Arg339 as the inhibitory P1 amino acid residue in its reactive site loop. In this study, we have described the inhibitory mechanism of recombinant human PI8 towards chymotrypsin. PI8 formed an SDS-stable complex with and inhibited the amidolytic activity of chymotrypsin via a two-step mechanism with an overall equilibrium inhibition constant of 1.7 nM and an overall second-order association rate constant of 1.0 x 10(4) M-1s-1, utilizing Ser341 as the P1 residue. The use of separate reactive site loop residues by PI8 to inhibit distinctly different classes of proteinases not only supports the hypothesis of the existence of the serpin reactive site as a highly mobile and flexible loop, but also suggests an evolved function in which separate amino acid residues can be used to broaden the inhibitory specificity of PI8.
Collapse
Affiliation(s)
- J R Dahlen
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque 87131, USA
| | | | | |
Collapse
|
18
|
Expression of Bomapin, a Novel Human Serpin, in Normal/Malignant Hematopoiesis and in the Monocytic Cell Lines THP-1 and AML-193. Blood 1998. [DOI: 10.1182/blood.v91.4.1256] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractOur group recently cloned the cDNA-encoding bomapin, a member of the serine protease inhibitor (serpin) superfamily, from a human bone marrow cDNA library (J Biol Chem 270:2675, 1995). To understand its expression within the hematopoietic compartment, RNA extracted from bone marrow or peripheral blood from normal donors and patients with leukemia was reverse transcribed and analyzed by polymerase chain reaction (PCR). Bomapin PCR products were readily detected in normal bone marrow, which was designated as a medium mRNA level. In peripheral blood, bomapin expression was low or undetectable in normal donors (n = 6) and patients with chronic lymphocytic leukemia (n = 6). Blood from patients with chronic myeloid leukemia (n = 6), chronic myelomonocytic leukemia (n = 6), acute myeloid leukemia (n = 5), and acute lymphocytic leukemia (n = 5) exhibited low to medium levels of bomapin expression. Furthermore, a high level of bomapin expression was detected in one individual with acute monocytic leukemia. These data suggest that bomapin expression may be elevated in hematopoietic cells of monocytic lineage. Therefore, we analyzed the expression of bomapin within cell lines that exhibited characteristics of the monocytic lineage. Bomapin PCR products were detected in the monocytic THP-1 and AML-193 cell lines but not in CRL 7607, CRL 7541, KG-1, or K562 cells. Induction of bomapin transcripts was not detected in the latter series of cell lines following a 24-hour treatment with phorbol myristate acetate (PMA, 10−8mol/L) or tumor necrosis factor-α (TNF-α, 30 U/mL), whereas treatment of THP-1 or AML-193 cells with these agents reduced the intensity of the bomapin PCR products. Northern blotting confirmed these results and showed that the expression of bomapin in THP-1 cells was downregulated over a 4-day period by PMA and, to a lesser extent, TNF-α. Immunoblotting was used to show the presence of a 40-kD protein in THP-1 cytosol preparations. Bomapin antigen levels were correspondingly reduced after treatment with PMA. Because PMA and TNF-α induce monocytic differentiation in THP-1 and AML-193 cells, these data increase the possibility that bomapin may play a role in the regulation of protease activities specifically in early stages of cellular differentiation.
Collapse
|