1
|
Amarillas L, Villicaña C, Lightbourn-Rojas L, González-Robles A, León-Félix J. The complete genome and comparative analysis of the phage phiC120 infecting multidrug-resistant Escherichia coli and Salmonella strains. G3-GENES GENOMES GENETICS 2021; 11:6114451. [PMID: 33598707 PMCID: PMC8022965 DOI: 10.1093/g3journal/jkab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
Phages infecting Salmonella and Escherichia coli are promising agents for therapeutics and biological control of these foodborne pathogens, in particular those strains with resistance to several antibiotics. In an effort to assess the potential of the phage phiC120, a virulent phage isolated from horse feces in Mexico, we characterized its morphology, host range and complete genome. Herein, we showed that phiC120 possesses strong lytic activity against several multidrug-resistant E. coli O157: H7 and Salmonella strains, and its morphology indicated that is a member of Myoviridae family. The phiC120 genome is double-stranded DNA and consists of 186,570 bp in length with a 37.6% G + C content. A total of 281 putative open reading frames (ORFs) and two tRNAs were found, where 150 ORFs encoded hypothetical proteins with unknown function. Comparative analysis showed that phiC120 shared high similarity at nucleotide and protein levels with coliphages RB69 and phiE142. Detailed phiC120 analysis revealed that ORF 94 encodes a putative depolymerase, meanwhile genes encoding factors associated with lysogeny, toxins, and antibiotic resistance were absent; however, ORF 95 encodes a putative protein with potential allergenic and pro-inflammatory properties, making needed further studies to guarantee the safety of phiC120 for human use. The characterization of phiC120 expands our knowledge about the biology of coliphages and provides novel insights supporting its potential for the development of phage-based applications to control unwanted bacteria.
Collapse
Affiliation(s)
- Luis Amarillas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, Sinaloa 80110, México.,Laboratorio de Genética, Instituto de Investigación Lightbourn, Chihuahua 33981, México
| | - Claudia Villicaña
- Laboratorio de Biología Molecular y Genómica Funcional, CONACYT-Centro de Investigación en Alimentación y Desarrollo, Sinaloa 80110, México
| | - Luis Lightbourn-Rojas
- Laboratorio de Genética, Instituto de Investigación Lightbourn, Chihuahua 33981, México
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Ciudad de México 07360, México
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, Sinaloa 80110, México
| |
Collapse
|
2
|
Jarocki P, Komoń-Janczara E, Podleśny M, Kholiavskyi O, Pytka M, Kordowska-Wiater M. Genomic and Proteomic Characterization of Bacteriophage BH1 Spontaneously Released from Probiotic Lactobacillus rhamnosus Pen. Viruses 2019; 11:E1163. [PMID: 31888239 PMCID: PMC6950654 DOI: 10.3390/v11121163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Lactobacillus rhamnosus Pen is a human endogenous strain used for the production of probiotic formula, which is effective in the prevention of antibiotic-associated diarrhoea. Our study showed that this probiotic strain releases bacteriophage BH1 without the addition of any inducing agent. Our research revealed that phage BH1 has a circular genome with a length of 40721 nt and a GC content of 44.8%. The genome of phage BH1 possesses 57 open reading frames which could be divided into functional modules associated with DNA packaging, morphogenesis, lysis, integration, genetic switch, and replication. In spite of similarity in morphology and genomic organization, comparative analysis revealed substantial genetic diversity and mosaic genomic architecture among phages described for the Lactobacillus casei group. Additionally, qPCR and ddPCR analysis confirmed earlier microscopic observations indicating that L. rhamnosus Pen liberates bacteriophage particles during growth. This occurs spontaneously, and is not a result of external inducing factors. For samples collected after 4 and 24 h of L. rhamnosus Pen culture, the number of attB and attP copies increased 2.5 and 12 times, respectively. This phenomenon, by introducing resistance to other phages or enhancing the biofilm-forming capabilities, may increase the survivability of microorganisms in their natural ecological niche. Conversely, spontaneous phage induction may be an important virulence factor for bacteria, posing a potential threat for the human host.
Collapse
Affiliation(s)
- Piotr Jarocki
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Elwira Komoń-Janczara
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Marcin Podleśny
- Process and Development Department, Al. Tysiąclecia Państwa Polskiego 13, Grupa Azoty Zakłady Azotowe “Puławy” S.A, 24-110 Puławy, Poland
| | - Oleksandr Kholiavskyi
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Monika Pytka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| |
Collapse
|
3
|
Newase S, Kapadnis BP, Shashidhar R. Isolation and Genome Sequence Characterization of Bacteriophage vB_SalM_PM10, a Cba120virus, Concurrently Infecting Salmonella enterica Serovars Typhimurium, Typhi, and Enteritidis. Curr Microbiol 2018; 76:86-94. [PMID: 30361843 DOI: 10.1007/s00284-018-1588-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/19/2018] [Indexed: 01/21/2023]
Abstract
The prevalence of multidrug-resistant Salmonella is ever increasing and calls for alternatives to antibiotics. The use of phages has been anticipated to reduce the multidrug-resistant human pathogens in food environment. Salmonella phage vB_SalM_PM10 (PM10) was isolated from sewage-polluted river in India. It shows an icosahedral head (94 ± 4 nm) along with a long contractile tail (106 ± 7 × 18 ± 2 nm), a morphotype of family Ackermannviridae. Additionally, the phage displayed the features resembling to existing Cba120viruses. Phage PM10 could infect S. enterica serovars Typhimurium, Typhi, and Enteritidis. The genome sequencing analysis of phage PM10 revealed circular 158.08 kb double-stranded DNA, with the GC content of 44.6%. Two hundred and nine ORFs, 171 putative promoters, 122 rho-independent terminators, and 5 transfer RNA encoding genes were found in the genome. The genome-wide comparisons and phylogenetic analyses showed that phage PM10 is closely related to Salmonella phage PhiSH19. Comparison of the tail-spike protein sequences encoded in PM10 and PhiSH19 genome showed the variation, which might have facilitated PM10's simultaneous infectivity to aforementioned S. enterica serovars. This is a varied host range than that of PhiSH19 or any other Cba120viruses.
Collapse
Affiliation(s)
- Sandeep Newase
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.,Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Balu P Kapadnis
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| | | |
Collapse
|
4
|
Heterocycles of Natural Origin as Non-Toxic Reagents for Cross-Linking of Proteins and Polysaccharides. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2016-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Zhou HW, Burger C, Wang H, Hsiao BS, Chu B, Graham L. The supramolecular structure of bone: X-ray scattering analysis and lateral structure modeling. Acta Crystallogr D Struct Biol 2016; 72:986-96. [PMID: 27599731 PMCID: PMC5013594 DOI: 10.1107/s2059798316011864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/20/2016] [Indexed: 11/10/2022] Open
Abstract
The evolution of vertebrates required a key development in supramolecular evolution: internally mineralized collagen fibrils. In bone, collagen molecules and mineral crystals form a nanocomposite material comparable to cast iron in tensile strength, but several times lighter and more flexible. Current understanding of the internal nanoscale structure of collagen fibrils, derived from studies of rat tail tendon (RTT), does not explain how nucleation and growth of mineral crystals can occur inside a collagen fibril. Experimental obstacles encountered in studying bone have prevented a solution to this problem for several decades. This report presents a lateral packing model for collagen molecules in bone fibrils, based on the unprecedented observation of multiple resolved equatorial reflections for bone tissue using synchrotron small-angle X-ray scattering (SAXS; ∼1 nm resolution). The deduced structure for pre-mineralized bone fibrils includes features that are not present in RTT: spatially discrete microfibrils. The data are consistent with bone microfibrils similar to pentagonal Smith microfibrils, but are not consistent with the (nondiscrete) quasi-hexagonal microfibrils reported for RTT. These results indicate that collagen fibrils in bone and tendon differ in their internal structure in a manner that allows bone fibrils, but not tendon fibrils, to internally mineralize. In addition, the unique pattern of collagen cross-link types and quantities in mineralized tissues can be can be accounted for, in structural/functional terms, based on a discrete microfibril model.
Collapse
Affiliation(s)
- Hong-Wen Zhou
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Christian Burger
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Hao Wang
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Children’s Hospital Boston, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin Chu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Lila Graham
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Children’s Hospital Boston, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Saito M, Marumo K. Effects of Collagen Crosslinking on Bone Material Properties in Health and Disease. Calcif Tissue Int 2015; 97:242-61. [PMID: 25791570 DOI: 10.1007/s00223-015-9985-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/09/2015] [Indexed: 12/18/2022]
Abstract
Data have accumulated to show that various types of collagen crosslinking are implicated in the health of individuals, as well as in a number of disease states, such as osteoporosis, diabetes mellitus, chronic kidney disease, inflammatory bowel disease, or in conditions of mild hyperhomocysteinemia, or when glucocorticoid use is indicated. Collagen crosslinking is a posttranslational modification of collagen molecules and plays important roles in tissue differentiation and in the mechanical properties of collagenous tissue. The crosslinking of collagen in the body can form via two mechanisms: one is enzymatic crosslinking and the other is nonenzymatic crosslinking. Lysyl hydroxylases and lysyl oxidases regulate tissue-specific crosslinking patterns and quantities. Enzymatic crosslinks initially form via immature divalent crosslinking, and a portion of them convert into mature trivalent forms such as pyridinoline and pyrrole crosslinks. Nonenzymatic crosslinks form as a result of reactions which create advanced glycation end products (AGEs), such as pentosidine and glucosepane. These types of crosslinks differ in terms of their mechanisms of formation and function. Impaired enzymatic crosslinking and/or an increase of AGEs have been proposed as a major cause of bone fragility associated with aging and numerous disease states. This review focuses on the effects of collagen crosslinking on bone material properties in health and disease.
Collapse
Affiliation(s)
- Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan,
| | | |
Collapse
|
7
|
Abstract
Diabetes increases risk of fracture, although type 2 diabetes is characterized by normal or high bone mineral density (BMD) compared with the patients without diabetes. The fracture risk of type 1 diabetes as well as type 2 diabetes increases beyond an explained by a decrease of BMD. Thus, diabetes may reduce bone strength without change in BMD. Whole bone strength is determined by bone density, structure, and quality, which encompass the micro-structural and tissue material properties. Recent literature showed that diabetes reduces bone material properties rather than BMD. Collagen intermolecular cross-linking plays an important role in the expression of bone strength. Collagen cross-links can be divided into beneficial enzymatic immature divalent and mature trivalent cross-links and disadvantageous nonenzymatic cross-links (Advanced glycation end products: AGEs) induced by glycation and oxidation. The formation pathway and biological function are quite different. Not only hyperglycemia, but also oxidative stress induces the reduction in enzymatic cross-links and the formation of AGEs. In this review, we describe the mechanism of low bone quality in diabetes and the usefulness of the measurement of plasma or urinary level of AGEs for estimation of fracture risk.
Collapse
Affiliation(s)
- Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan,
| | | | | | | |
Collapse
|
8
|
Zamani I, Bouzari M, Emtiazi G, Ghasemi SM, Chang HI. Complete genome sequence of a novel phage, vB_MoxS-ISF9, infecting methylotrophic Microbacterium: first report of a virulent Microbacterium phage. Arch Virol 2014; 159:2537-40. [PMID: 24777828 DOI: 10.1007/s00705-014-2092-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/17/2014] [Indexed: 11/24/2022]
Abstract
Here, we report the first genome sequence of a new virulent phage of Microbacterium oxydans, termed vB_MoxS-ISF9, which was isolated from sewage. Transmission electron microscopy showed that the isolated phage, which has a hexagonal head of about 80 nm in diameter and a long non-contractile tail of about 240 nm, belongs to the family Siphoviridae. The vB_MoxS-ISF9 DNA was completely sequenced and found to be 59,254 bp in length, with a G+C content of 62.76% and 120 putative open reading frames (ORFs). The predicted protein products of the ORFs were identified, and their sequences were analyzed. In a comparison with all available phage genomes, vB_MoxS-ISF9 did not show any significant similarity to other previously reported bacteriophages. To the beast of our knowledge, this is the first report of the isolation and complete genomic sequencing of a virulent phage against a member of the genus Microbacterium.
Collapse
Affiliation(s)
- Isaac Zamani
- Department of Biology, Faculty of Science, University of Isfahan, Hezar Jereeb Street, 81746-73441, Isfahan, Iran
| | | | | | | | | |
Collapse
|
9
|
Anastasia L, Rota P, Anastasia M, Allevi P. Chemical structure, biosynthesis and synthesis of free and glycosylated pyridinolines formed by cross-link of bone and synovium collagen. Org Biomol Chem 2014; 11:5747-71. [PMID: 23873348 DOI: 10.1039/c3ob40945g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review focuses on the chemical structure, biosynthesis and synthesis of free and glycosylated pyridinolines (Pyds), fluorescent collagen cross-links, with a pyridinium salt structure. Pyds derive from the degradation of bone collagen and have attracted attention for their use as biochemical markers of bone resorption and to assess fracture risk prediction in persons suffering from osteoporosis, bone cancer and other bone or collagen diseases. We consider and critically discuss all reported syntheses of free and glycosylated Pyds evidencing an unrevised chemistry, original and of general utility, analysis of which allows us to also support a previously suggested non-enzymatic formation of Pyds in collagen better rationalizing and justifying the chemical events.
Collapse
Affiliation(s)
- Luigi Anastasia
- Department of Biomedical Sciences for Health, University of Milan, via F.lli Cervi 93, 20090 Segrate (Milan), Italy.
| | | | | | | |
Collapse
|
10
|
Gressner AM, Arndt T. A. LEXIKON DER MEDIZINISCHEN LABORATORIUMSDIAGNOSTIK 2013. [PMCID: PMC7123472 DOI: 10.1007/978-3-642-12921-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
An overview on bone protein extract as the new generation of demineralized bone matrix. SCIENCE CHINA-LIFE SCIENCES 2012; 55:1045-56. [DOI: 10.1007/s11427-012-4415-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/15/2012] [Indexed: 01/24/2023]
|
12
|
Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: creation of a new phage genus. J Virol 2011; 85:11265-73. [PMID: 21865376 DOI: 10.1128/jvi.01769-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
(Bacterio)phage PVP-SE1, isolated from a German wastewater plant, presents a high potential value as a biocontrol agent and as a diagnostic tool, even compared to the well-studied typing phage Felix 01, due to its broad lytic spectrum against different Salmonella strains. Sequence analysis of its genome (145,964 bp) shows it to be terminally redundant and circularly permuted. Its G+C content, 45.6 mol%, is lower than that of its hosts (50 to 54 mol%). We found a total of 244 open reading frames (ORFs), representing 91.6% of the coding capacity of the genome. Approximately 46% of encoded proteins are unique to this phage, and 22.1% of the proteins could be functionally assigned. This myovirus encodes a large number of tRNAs (n=24), reflecting its lytic capacity and evolution through different hosts. Tandem mass spectrometric analysis using electron spray ionization revealed 25 structural proteins as part of the mature phage particle. The genome sequence was found to share homology with 140 proteins of the Escherichia coli bacteriophage rV5. Both phages are unrelated to any other known virus, which suggests that an "rV5-like virus" genus should be created within the Myoviridae to contain these two phages.
Collapse
|
13
|
The Influence of Short-Day Photoperiods on Bone Composition of Hamsters: a Raman Spectroscopic Investigation. Z PHYS CHEM 2011. [DOI: 10.1524/zpch.2011.0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Biological rhythms, which regulate the biological cycles of life, are of great interest in biomedicine. The effect of biological rhythms on bone is controversial at the moment. Raman spectroscopy was applied to assess the bone compositional information of hamsters under different photoperiods, designed as long day photoperiod of 16 h light and 8 h dark (LD, 16L : 8D) and short day photoperiod of 8 h light and 16 h dark (SD, 8L : 16D). After three months under such well-defined conditions, the hamsters in the two groups exhibited differences in body weight, fur color and testis size. In addition, for the first time to our knowledge bone compositional variations were observed in both mineral constituents and collagen secondary structures in hamsters conditioned under the different photoperiods. The collagen secondary structure in the SD hamsters was characterized by a higher ratio of mature intra-fibril cross-links indicating a more stable form of collagen. It is hypothesized that increased bone turnover rate and resorption led to the alteration of collagen cross-links in the SD group.
Collapse
|
14
|
Risteli J, Risteli L. Assays of type I procollagen domains and collagen fragments: Problems to be solved and future trends. Scandinavian Journal of Clinical and Laboratory Investigation 2010. [DOI: 10.1080/00365519709168316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Eyre DR, Weis MA, Wu JJ. Advances in collagen cross-link analysis. Methods 2008; 45:65-74. [PMID: 18442706 DOI: 10.1016/j.ymeth.2008.01.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 11/16/2022] Open
Abstract
The combined application of ion-trap mass spectrometry and peptide-specific antibodies for the isolation and structural analysis of collagen cross-linking domains is illustrated with examples of results from various types of collagen with the emphasis on bone and cartilage. We highlight the potential of such methods to advance knowledge on the importance of post-translational modifications (e.g., degrees of lysine hydroxylation and glycosylation) and preferred intermolecular binding partners for telopeptide and helical cross-linking domains in regulating cross-link type and placement.
Collapse
Affiliation(s)
- David R Eyre
- Orthopaedic Research Labs, Department of Orthopaedics & Sports Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6500, USA.
| | | | | |
Collapse
|
16
|
Yamauchi M, Shiiba M. Lysine hydroxylation and crosslinking of collagen. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 446:95-108. [PMID: 12029842 DOI: 10.1007/978-1-60327-084-7_7] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Mitsuo Yamauchi
- Dental Research Center, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
17
|
Peltoniemi MJ, Karala AR, Jurvansuu JK, Kinnula VL, Ruddock LW. Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione. J Biol Chem 2006; 281:33107-14. [PMID: 16956877 DOI: 10.1074/jbc.m605602200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutaredoxins are small proteins with a conserved active site (-CXX(C/S)-) and thioredoxin fold. These thiol disulfide oxidoreductases catalyze disulfide reductions, preferring GSH-mixed disulfides as substrates. We have developed a new real-time fluorescence-based method for measuring the deglutathionylation activity of glutaredoxins using a glutathionylated peptide as a substrate. Mass spectrometric analysis showed that the only intermediate in the reaction is the glutaredoxin-GSH mixed disulfide. This specificity was solely dependent on the unusual gamma-linkage present in glutathione. The deglutathionylation activity of both wild-type Escherichia coli glutaredoxin and the C14S mutant was competitively inhibited by oxidized glutathione, with K(i) values similar to the K(m) values for the glutathionylated peptide substrate, implying that glutaredoxin primarily recognizes the substrate via the glutathione moiety. In addition, wild-type glutaredoxin showed a sigmoidal dependence on GSH concentrations, the activity being significantly decreased at low GSH concentrations. Thus, under oxidative stress conditions, where the ratio of GSH/GSSG is decreased, the activity of glutaredoxin is dramatically reduced, and it will only have significant deglutathionylation activity once the oxidative stress has been removed. Different members of the protein disulfide isomerases (PDI) family showed lower activity levels when compared with glutaredoxins; however, their deglutathionylation activities were comparable with their oxidase activities. Furthermore, in contrast to the glutaredoxin-GSH mixed disulfide intermediate, the only intermediate in the PDI-catalyzed reaction was PDI peptide mixed disulfide.
Collapse
Affiliation(s)
- Mirva J Peltoniemi
- Biocenter Oulu and Department of Biochemistry, University of Oulu, 90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
18
|
Bukovska G, Klucar L, Vlcek C, Adamovic J, Turna J, Timko J. Complete nucleotide sequence and genome analysis of bacteriophage BFK20 — A lytic phage of the industrial producer Brevibacterium flavum. Virology 2006; 348:57-71. [PMID: 16457869 DOI: 10.1016/j.virol.2005.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/14/2005] [Accepted: 12/11/2005] [Indexed: 10/25/2022]
Abstract
The entire double-stranded DNA genome of bacteriophage BFK20, a lytic phage of the Brevibacterium flavum CCM 251--industrial producer of L-lysine--was sequenced and analyzed. It consists of 42,968 base pairs with an overall molar G + C content of 56.2%. Fifty-five potential open reading frames were identified and annotated using various bioinformatics tools. Clusters of functionally related putative genes were defined (structural, lytic, replication and regulatory). To verify the annotation of structural proteins, they were resolved by 2D gel electrophoresis and were submitted to N-terminal amino acid sequencing. Structural proteins identified included the portal and major and minor tail proteins. Based on the overall genome sequence comparison, similarities with other known bacteriophage genomes include primarily bacteriophages from Mycobacterium spp. and some regions of Corynebacterium spp. genomes--possible prophages. Our results support the theory that phage genomes are mosaics with respect to each other.
Collapse
Affiliation(s)
- Gabriela Bukovska
- Institute of Molecular Biology, Centre of Excellence for Molecular Medicine, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
19
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Shiiba M, Arnaud SB, Tanzawa H, Uzawa K, Yamauchi M. Alterations of collagen matrix in weight-bearing bones during skeletal unloading. Connect Tissue Res 2002; 42:303-11. [PMID: 11913774 DOI: 10.3109/03008200109016844] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Skeletal unloading induces loss of bone mineral density in weight-bearing bones. The objectives of this study were to characterize the post-translational modifications of collagen of weight-bearing bones subjected to hindlimb unloading for 8 weeks. In unloaded bones, tibiae and femurs, while the overall amino acid composition was essentially identical in the unloaded and control tibiae and femurs, the collagen cross-link profile showed significant differences. Two major reducible cross-links (analyzed as dihydroxylysinonorleucine and hydroxylysinonorleucine) were increased in the unloaded bones. In addition, the ratios of the former to the latter as well as pyridinoline to deoxypyridinoline were significantly decreased in the unloaded bones indicating a difference in the extent of lysine hydroxylation at the cross-linking sites between these two groups. These results indicate that upon skeletal unloading the relative pool of newly synthesized collagen is increased and it is post-translationally altered. The alteration could be associated with impaired osteoblastic differentiation induced by skeletal unloading that results in a mineralization defect.
Collapse
Affiliation(s)
- M Shiiba
- Dental Research Center, University of North Carolina, Chapel Hill 27599-7455, USA
| | | | | | | | | |
Collapse
|
21
|
Rahlfs S, Fischer M, Becker K. Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain. J Biol Chem 2001; 276:37133-40. [PMID: 11479312 DOI: 10.1074/jbc.m105524200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The genes coding for two different proteins with homologies to glutaredoxins have been identified in the genome of the malarial parasite Plasmodium falciparum. Both genes were amplified from a gametocytic cDNA and overexpressed in Escherichia coli. The smaller protein (named PfGrx-1) with 12.4 kDa in size exhibits the typical glutaredoxin active site motif "CPYC," shows glutathione-dependent glutaredoxin activity in the beta-hydroxyethyl disulfide (HEDS) assay, and reduces Trypanosoma brucei ribonucleotide reductase. Glutathione:HEDS transhydrogenase activity (approximately 60 milliunits/mg of protein) was clearly detectable in trophozoite extracts from eight different P. falciparum strains and did not differ between chloroquine-resistant and -sensitive parasites. Five different antimalarial drugs at 100 microm did not significantly influence isolated PfGrx-1 activity. In contrast, the second protein (deduced mass 19.9 kDa) with homology to glutaredoxins (31% identity to Schizosaccharomyces pombe in a 140-amino acid overlap) was not active in the HEDS assay; however, its general dithiol reducing activity was demonstrated in the insulin assay in the presence of dithiothreitol. Interestingly, the sequence contains a PICOT (for protein kinase C-interacting cousin of thioredoxin) homology domain, which might suggest regulatory functions of the protein. We named this protein PfGLP-1, for P. falciparum 1-Cys-glutaredoxin-like protein-1. In contrast to glutaredoxins, PfGLP-1 could not be reduced by glutathione. This is the first report on glutaredoxin-like proteins in the family of Plasmodia.
Collapse
Affiliation(s)
- S Rahlfs
- Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | | | | |
Collapse
|
22
|
Metzler DE, Metzler CM, Sauke DJ. Lipids, Membranes, and Cell Coats. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Adamczyk M, Reddy RE. SYNTHESIS OF ( S)-(−)-1-[(9-FLUORENYLMETHOXYCARBONYL)AMINO-5-CARBOXYPENTYL]-3-HYDROXYPYRIDINIUM TRIFLUOROACETATE. ORG PREP PROCED INT 2000. [DOI: 10.1080/00304940009355922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Adamczyk M, Johnson DD, Reddy RE. Synthesis of immunoreagents for detection of deoxypyrrololine, a cross-link of bone collagen. Bioorg Med Chem Lett 2000; 10:269-71. [PMID: 10698451 DOI: 10.1016/s0960-894x(99)00682-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two immunogens (5,6) and two probes (fluorescent 7 and chemiluminescent 8) were prepared from benzyl ester (-)-10. These immunoreagents (5,6 and 7,8) are useful for detection of collagen cross-link (+)-deoxypyrrololine (Dpl, 4), and for development of assays for osteoporosis.
Collapse
Affiliation(s)
- M Adamczyk
- Department of Chemistry, Abbott Laboratories, Abbott Park, IL 60064-6016, USA
| | | | | |
Collapse
|
25
|
Aslund F, Beckwith J. The thioredoxin superfamily: redundancy, specificity, and gray-area genomics. J Bacteriol 1999; 181:1375-9. [PMID: 10049365 PMCID: PMC93523 DOI: 10.1128/jb.181.5.1375-1379.1999] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- F Aslund
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
26
|
Adamczyk M, Johnson DD, Reddy RE. Collagen cross-links: Synthesis of pyridinoline, deoxypyridinoline and their analogues. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(98)01023-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Duance VC, Crean JK, Sims TJ, Avery N, Smith S, Menage J, Eisenstein SM, Roberts S. Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine (Phila Pa 1976) 1998; 23:2545-51. [PMID: 9854753 DOI: 10.1097/00007632-199812010-00009] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Biochemical study of the changes in the collagen cross-link profile of human intervertebral discs collected at surgery from patients with either low back pain associated with disc degeneration or scoliosis. OBJECTIVE To determine whether changes occur in the collagen cross-link profile in the disc of patients with either low back pain associated with disc degeneration or scoliosis, which may well influence matrix integrity. Such changes in the cross-link profile of a tissue indicates increased matrix turnover and tissue remodeling and may have implications for the progression of these disorders. SUMMARY OF BACKGROUND DATA The diseases of the intervertebral disc, degenerative disc disease and scoliosis, are both characterized by changes in the extracellular matrix components that will affect the mechanical function of the tissue. The stability of the collagenous components and hence the mechanical integrity of connective tissues such as the disc is dependent on the degree and type of cross-links between the collagen molecules. This article reports results on the distribution of the different cross-links in the disc and the changes that occur with age, degenerative disc disease, and scoliosis. METHODS Thirty-three discs were obtained from patients with degenerative disc disease and 29 discs from patients with scoliosis. Samples were acid hydrolyzed and the collagen cross-links analyzed by either fractionation on an amino acid analyzer configured for cross-link analysis using ninhydrin postcolumn detection or fractionation by high-pressure liquid chromatography with fluorescence detection. RESULTS The reducible cross-links and the mature cross-link all increased from the outer anulus fibrosus through into the nucleus pulposus. The highest levels of the mature cross-link were found in the cartilage end-plate. The nonenzymic derived cross-link, pentosidine, in contrast, showed little difference across the disc, but did show the expected age-related increase. In degenerative disc disease, no change in the levels of the reducible or mature cross-links was found, but a decrease was observed in the levels of the age-related cross-link pentosidine in the more severe disease samples. In scoliosis, significantly higher levels of the reducible cross-links were found on the convex than on the concave side of the scoliotic disc. CONCLUSIONS These changes in the cross-link profile of the intervertebral disc in degenerative disc disease and scoliosis are indicative of increased matrix turnover and tissue remodeling and likely to have implications for the progression of these disorders.
Collapse
Affiliation(s)
- V C Duance
- Connective Tissue Biology Laboratories, School of Molecular and Medical Biosciences, University of Wales Cardiff, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Stewart EJ, Aslund F, Beckwith J. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 1998; 17:5543-50. [PMID: 9755155 PMCID: PMC1170883 DOI: 10.1093/emboj/17.19.5543] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur.
Collapse
Affiliation(s)
- E J Stewart
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
29
|
Campbell BG, Wootton JA, MacLeod JN, Minor RR. Sequence of canine COL1A2 cDNA: nucleotide substitutions affecting the cyanogen bromide peptide map of the alpha 2(I) chain. Arch Biochem Biophys 1998; 357:67-75. [PMID: 9721184 DOI: 10.1006/abbi.1998.0774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The alpha2 chain of canine type I collagen was characterized with both sequence analysis of COL1A2 cDNA and chemical analysis of alpha2(I) chains. The complete sequence of canine COL1A2 cDNA was determined from reverse-transcribed and polymerase chain reaction-amplified total RNA from cultured skin fibroblasts. Pepsin-digested and cyanogen bromide-digested type I collagen peptides were analyzed with chromatography, gel electrophoresis, and mass spectrometry. Identity between the sequences of canine and human COL1A2 cDNA was 90.9%, predicting conservation of the 3 cysteine residues required for C-propeptide registration and of cleavage sites for signal peptidase, procollagen N-proteinase, vertebrate collagenase, and procollagen C-proteinase. Conservation of all 50 lysine residues was also predicted, including preservation of the 1:2 asymmetry in the X:Y distribution of the 31 lysine residues in the alpha2(I) triple helix. The human and canine sequences differed in the location of Y-position proline residues and the presence of two unique canine cyanogen bromide peptides, alpha2 CB3b and alpha2 CB3c,5. Knowledge of the conserved and unique features of canine COL1A2 will be valuable for analysis of the expression, synthesis, and structure of type I collagen as well as studies of canine osteogenesis imperfecta.
Collapse
Affiliation(s)
- B G Campbell
- College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
Biochemical tests that can index bone turnover rate in the patient are increasingly being used in the study and management of osteoporosis. Markers of bone formation and resorption are reviewed here, including their molecular basis, relative strengths and weaknesses in clinical performance, and future potential. A bone mass measurement (e.g., by dual-energy x-ray absorptiometry) and a biochemical index of bone turnover provide different but complementary information that can aid in predicting risk of future bone loss and osteoporotic fracture. A specific and responsive bone resorption marker can also be used to monitor and establish the short-term effectiveness of an antiresorptive therapy in the patient. Bone-specific alkaline phosphatase (an osteoblast enzyme) and osteocalcin (a bone matrix protein) levels in serum are the best markers of bone formation. Collagen degradation products in urine, particularly cross-linked telopeptides and pyridinolines, have the highest specificity to bone resorption activity. The telopeptide markers (NTx and CTx) appear to be the most specific and responsive markers of systemic osteoclast activity.
Collapse
Affiliation(s)
- D R Eyre
- Department of Orthopaedics, University of Washington, Seattle, USA
| |
Collapse
|
31
|
Davis DA, Newcomb FM, Starke DW, Ott DE, Mieyal JJ, Yarchoan R. Thioltransferase (glutaredoxin) is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro. J Biol Chem 1997; 272:25935-40. [PMID: 9325327 DOI: 10.1074/jbc.272.41.25935] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies have suggested that the two conserved cysteines of the HIV-1 protease may be involved in regulating protease activity. Here, we examined diglutathionylated wild type protease (Cys-67-SSG, Cys-95-SSG) and the monoglutathionylated protease mutants (C67A, Cys-95-SSG and C95A, Cys-67-SSG) as potential substrates for thioltransferase (glutaredoxin). Time-dependent changes in the extent of deglutathionylation of each protein were assayed by reverse phase-high performance liquid chromatography. Glutathione alone was not an effective reductant, whereas thioltransferase displayed differential catalysis toward the Cys-95-SSG and Cys-67-SSG sites. At low thioltransferase concentrations (5 nM), deglutathionylation occurred almost exclusively at Cys-95-SSG. With substantially more thioltransferase (100 nM) Cys-67-SSG was partially deglutathionylated but only at 20% of the rate of Cys-95-SSG reduction. Treatment of the diglutathionylated protease with thioltransferase not only restored protease activity but generated an enzyme preparation that had a 3- to 5-fold greater specific activity relative to the fully reduced form. Immunoblot analysis of HIV-1MN virus with an antibody to thioltransferase detected a band co-migrating with recombinant thioltransferase that persisted following subtilisin treatment, indicating the presence of thioltransferase within HIV-1. Our results implicate thioltransferase in the regulation and/or maintenance of protease activity in HIV-1 infected cells.
Collapse
Affiliation(s)
- D A Davis
- HIV and AIDS Malignancy Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
32
|
Jordan A, Aslund F, Pontis E, Reichard P, Holmgren A. Characterization of Escherichia coli NrdH. A glutaredoxin-like protein with a thioredoxin-like activity profile. J Biol Chem 1997; 272:18044-50. [PMID: 9218434 DOI: 10.1074/jbc.272.29.18044] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ribonucleotides are converted to deoxyribonucleotides by ribonucleotide reductases. Either thioredoxin or glutaredoxin is a required electron donor for class I and II enzymes. Glutaredoxins are reduced by glutathione, thioredoxins by thioredoxin reductase. Recently, a glutaredoxin-like protein, NrdH, was isolated as the functional electron donor for a NrdEF ribonucleotide reductase, a class Ib enzyme, from Lactococcus lactis. The absence of glutathione in this bacterium raised the question of the identity of the intracellular reductant for NrdH. Homologues of NrdH are present in the genomes of Escherichia coli and Salmonella typhimurium, upstream of the genes for the poorly transcribed nrdEF, separated from it by an open reading frame (nrdI) coding for a protein of unknown function. Overexpression of E. coli NrdH protein shows that it is a functional hydrogen donor with higher specificity for the class Ib (NrdEF) than for the class Ia (NrdAB) ribonucleotide reductase. Furthermore, this glutaredoxin-like enzyme is reduced by thioredoxin reductase and not by glutathione. We suggest that several uncharacterized glutaredoxin-like proteins present in the genomes of organisms lacking GSH, including archae, will also react with thioredoxin reductase and be related to the ancestors from which the GSH-dependent glutaredoxins have evolved by the acquisition of a GSH-binding site. We also show that NrdI, encoded by all nrdEF operons, has a stimulatory effect on ribonucleotide reduction.
Collapse
Affiliation(s)
- A Jordan
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
33
|
Ebel T, Middleton JF, Frisch A, Lipp J. Characterization of a secretory type Theileria parva glutaredoxin homologue identified by novel screening procedure. J Biol Chem 1997; 272:3042-8. [PMID: 9006954 DOI: 10.1074/jbc.272.5.3042] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The schizont stage of the protozoan parasite Theileria parva induces features characteristic of tumor cells in infected bovine T-cell lines. Most strikingly T. parva-infected cell lines acquire unlimited growth potential in vitro. Their proliferative state is entirely dependent on the presence of a viable parasite within the host cell cytoplasm. It has been postulated that parasite proteins either secreted into the host cell or expressed on the parasite surface membrane are involved in the parasite-host cell interaction. We used an in vitro transcription-translation-membrane translocation system to identify T. parva-derived cDNA clones encoding secretory or membrane proteins. Within 600 clones we found one encoding a 17-kDa protein which is processed by microsomal membranes to a 14-kDa protein (11E), presumably by signal peptidase. The processed form is expressed in the T-cell line TpM803 harboring viable parasites. By immunolocalization we show that the 11E protein mostly resides within the parasite, often in close vicinity to membranous structures, but in addition it appears at the surface membrane. Amino acid sequence comparison suggests that 11E belongs to the glutaredoxin family, but is unique so far in containing a signal sequence for endoplasmic reticulum membrane translocation.
Collapse
Affiliation(s)
- T Ebel
- Vienna International Research Cooperation Center, University of Vienna, A-1235 Vienna, Austria
| | | | | | | |
Collapse
|