1
|
Peripheral Purinergic Modulation in Pediatric Orofacial Inflammatory Pain Affects Brainstem Nitroxidergic System: A Translational Research. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1326885. [PMID: 35309172 PMCID: PMC8933089 DOI: 10.1155/2022/1326885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/18/2022]
Abstract
Physiology of orofacial pain pathways embraces primary afferent neurons, pathologic changes in the trigeminal ganglion, brainstem nociceptive neurons, and higher brain function regulating orofacial nociception. The goal of this study was to investigate the nitroxidergic system alteration at brainstem level (spinal trigeminal nucleus), and the role of peripheral P2 purinergic receptors in an experimental mouse model of pediatric inflammatory orofacial pain, to increase knowledge and supply information concerning orofacial pain in children and adolescents, like pediatric dentists and pathologists, as well as oro-maxillo-facial surgeons, may be asked to participate in the treatment of these patients. The experimental animals were treated subcutaneously in the perioral region with pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS), a P2 receptor antagonist, 30 minutes before formalin injection. The pain-related behavior and the nitroxidergic system alterations in the spinal trigeminal nucleus using immunohistochemistry and western blotting analysis have been evaluated. The local administration of PPADS decreased the face-rubbing activity and the expression of both neuronal and inducible nitric oxide (NO) synthase isoforms in the spinal trigeminal nucleus. These results underline a relationship between orofacial inflammatory pain and nitroxidergic system in the spinal trigeminal nucleus and suggest a role of peripheral P2 receptors in trigeminal pain transmission influencing NO production at central level. In this way, orofacial pain physiology should be elucidated and applied to clinical practice in the future.
Collapse
|
2
|
Hepatoma-derived growth factor participates in Helicobacter Pylori-induced neutrophils recruitment, gastritis and gastric carcinogenesis. Oncogene 2019; 38:6461-6477. [PMID: 31332288 DOI: 10.1038/s41388-019-0886-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (Hp) infection and overexpression of hepatoma-derived growth factor (HDGF) are involved in gastric carcinogenesis. However, the relationship between Hp-induced gastric diseases and HDGF upregulation is not yet completely clear. This study aimed to elucidate the role of HDGF in Hp-induced gastric inflammation and carcinogenesis. HDGF expression in gastric biopsy and serum from patients was analyzed by immunohistochemical and ELISA analysis, respectively. Hp and gastric cells coculture system was employed to delineate the mechanism underlying HDGF overexpression during Hp infection. The gastric pathologies of wild type and HDGF knockout mice after Hp infection were investigated by immunohistochemical, immunoblot, and immunofluorescence analyses. HDGF level was significantly elevated in patients with Hp infection or intestinal metaplasia (IM, a precancerous lesion), and HDGF overexpression was positively correlated with Hp load, IM, and neutrophil infiltration in gastric biopsy. Consistently, patients with Hp infection or IM had significantly higher serum HDGF level. By using coculture assay, Hp infection led to HDGF upregulation and secretion in gastric cells. In mice model, HDGF ablation significantly suppressed the Hp-induced neutrophil infiltration and inflammatory TNF-α/COX-2 signaling, thereby relieving the tissue damage in stomach. This was further supported by that recombinant HDGF (rHDGF) stimulated the differentiation/chemotaxis of cultured neutrophils and oncogenic behaviors of gastric cells. Time series studies showed that Hp infection elicited an inflammatory TNF-α/HDGF/COX-2 cascade in stomach. HDGF secretion by Hp infection promotes the neutrophils infiltration and relays Hp-induced inflammatory signaling. Thus, HDGF may constitute a novel diagnostic marker and therapeutic target for Hp-induced gastritis and carcinogenesis.
Collapse
|
3
|
Denk S, Taylor RP, Wiegner R, Cook EM, Lindorfer MA, Pfeiffer K, Paschke S, Eiseler T, Weiss M, Barth E, Lambris JD, Kalbitz M, Martin T, Barth H, Messerer DAC, Gebhard F, Huber-Lang MS. Complement C5a-Induced Changes in Neutrophil Morphology During Inflammation. Scand J Immunol 2017; 86:143-155. [PMID: 28671713 DOI: 10.1111/sji.12580] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022]
Abstract
The complement and neutrophil defence systems, as major components of innate immunity, are activated during inflammation and infection. For neutrophil migration to the inflamed region, we hypothesized that the complement activation product C5a induces significant changes in cellular morphology before chemotaxis. Exposure of human neutrophils to C5a dose- and time-dependently resulted in a rapid C5a receptor-1 (C5aR1)-dependent shape change, indicated by enhanced flow cytometric forward-scatter area values. Similar changes were observed after incubation with zymosan-activated serum and in blood neutrophils during murine sepsis, but not in mice lacking the C5aR1. In human neutrophils, Amnis high-resolution digital imaging revealed a C5a-induced decrease in circularity and increase in the cellular length/width ratio. Biomechanically, microfluidic optical stretching experiments indicated significantly increased neutrophil deformability early after C5a stimulation. The C5a-induced shape changes were inhibited by pharmacological blockade of either the Cl-/HCO3--exchanger or the Cl- -channel. Furthermore, actin polymerization assays revealed that C5a exposure resulted in a significant polarization of the neutrophils. The functional polarization process triggered by ATP-P2X/Y-purinoceptor interaction was also involved in the C5a-induced shape changes, because pretreatment with suramin blocked not only the shape changes but also the subsequent C5a-dependent chemotactic activity. In conclusion, the data suggest that the anaphylatoxin C5a regulates basic neutrophil cell processes by increasing the membrane elasticity and cell size as a consequence of actin-cytoskeleton polymerization and reorganization, transforming the neutrophil into a migratory cell able to invade the inflammatory site and subsequently clear pathogens and molecular debris.
Collapse
Affiliation(s)
- S Denk
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - R P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - R Wiegner
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - E M Cook
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - K Pfeiffer
- Department of General and Visceral Surgery, Ulm University, Ulm, Germany
| | - S Paschke
- Department of General and Visceral Surgery, Ulm University, Ulm, Germany
| | - T Eiseler
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - M Weiss
- Department of Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - E Barth
- Department of Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - J D Lambris
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Hospital Ulm, Ulm, Germany
| | - T Martin
- Institute of Pharmacology and Toxicology, University Hospital Ulm, Ulm, Germany
| | - H Barth
- Institute of Pharmacology and Toxicology, University Hospital Ulm, Ulm, Germany
| | - D A C Messerer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - F Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Hospital Ulm, Ulm, Germany
| | - M S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
4
|
Chen J, Zhao Y, Liu Y. The role of nucleotides and purinergic signaling in apoptotic cell clearance - implications for chronic inflammatory diseases. Front Immunol 2014; 5:656. [PMID: 25566266 PMCID: PMC4274988 DOI: 10.3389/fimmu.2014.00656] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/08/2014] [Indexed: 02/05/2023] Open
Abstract
Billions of cells undergo apoptosis every day in healthy individuals. A prompt removal of dying cells prevents the release of pro-inflammatory intracellular content and progress to secondary necrosis. Thus, inappropriate clearance of apoptotic cells provokes autoimmunity and has been associated with many chronic inflammatory diseases. Recent studies have suggested that extracellular adenosine 5'-triphosphate and related nucleotides play an important role in the apoptotic clearance process. Here, we review the current understanding of nucleotides and purinergic receptors in apoptotic cell clearance and the potential therapeutic targets of purinergic receptor subtypes in inflammatory conditions.
Collapse
Affiliation(s)
- Jin Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Maître B, Magnenat S, Heim V, Ravanat C, Evans RJ, de la Salle H, Gachet C, Hechler B. The P2X1 receptor is required for neutrophil extravasation during lipopolysaccharide-induced lethal endotoxemia in mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:739-49. [PMID: 25480563 DOI: 10.4049/jimmunol.1401786] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular ATP is becoming increasingly recognized as an important regulator of inflammation. However, the known repertoire of P2 receptor subtypes responsible for the proinflammatory effects of ATP is sparse. We looked at whether the P2X1 receptor, an ATP-gated cation channel present on platelets, neutrophils, and macrophages, participates in the acute systemic inflammation provoked by LPS. Compared with wild-type (WT) mice, P2X1(-/-) mice displayed strongly diminished pathological responses, with dampened neutrophil accumulation in the lungs, less tissue damage, reduced activation of coagulation, and resistance to LPS-induced death. P2X1 receptor deficiency also was associated with a marked reduction in plasma levels of the main proinflammatory cytokines and chemokines induced by LPS. Interestingly, macrophages and neutrophils isolated from WT and P2X1(-/-) mice produced similar levels of proinflammatory cytokines when stimulated with LPS in vitro. Intravital microscopy revealed a defect in LPS-induced neutrophil emigration from cremaster venules into the tissues of P2X1(-/-) mice. Using adoptive transfer of immunofluorescently labeled neutrophils from WT and P2X1(-/-) mice into WT mice, we demonstrate that the absence of the P2X1 receptor on neutrophils was responsible for this defect. This study reveals a major role for the P2X1 receptor in LPS-induced lethal endotoxemia through its critical involvement in neutrophil emigration from venules.
Collapse
Affiliation(s)
- Blandine Maître
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Stéphanie Magnenat
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Véronique Heim
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Catherine Ravanat
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Richard J Evans
- Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Henri de la Salle
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Christian Gachet
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Béatrice Hechler
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| |
Collapse
|
6
|
Martínez-Zárate AD, Martínez-Vieyra I, Alonso-Rangel L, Cisneros B, Winder SJ, Cerecedo D. Dystroglycan depletion inhibits the functions of differentiated HL-60 cells. Biochem Biophys Res Commun 2014; 448:274-80. [DOI: 10.1016/j.bbrc.2014.04.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022]
|
7
|
Jacob F, Novo CP, Bachert C, Van Crombruggen K. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 2013; 9:285-306. [PMID: 23404828 PMCID: PMC3757148 DOI: 10.1007/s11302-013-9357-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/28/2013] [Indexed: 01/13/2023] Open
Abstract
Extracellular ATP and related nucleotides promote a wide range of pathophysiological responses via activation of cell surface purinergic P2 receptors. Almost every cell type expresses P2 receptors and/or exhibit regulated release of ATP. In this review, we focus on the purinergic receptor distribution in inflammatory cells and their implication in diverse immune responses by providing an overview of the current knowledge in the literature related to purinergic signaling in neutrophils, macrophages, dendritic cells, lymphocytes, eosinophils, and mast cells. The pathophysiological role of purinergic signaling in these cells include among others calcium mobilization, actin polymerization, chemotaxis, release of mediators, cell maturation, cytotoxicity, and cell death. We finally discuss the therapeutic potential of P2 receptor subtype selective drugs in inflammatory conditions.
Collapse
Affiliation(s)
- Fenila Jacob
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Claudina Pérez Novo
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Koen Van Crombruggen
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Barrett MO, Sesma JI, Ball CB, Jayasekara PS, Jacobson KA, Lazarowski ER, Harden TK. A selective high-affinity antagonist of the P2Y14 receptor inhibits UDP-glucose-stimulated chemotaxis of human neutrophils. Mol Pharmacol 2013; 84:41-9. [PMID: 23592514 PMCID: PMC3684828 DOI: 10.1124/mol.113.085654] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/12/2013] [Indexed: 12/31/2022] Open
Abstract
The nucleotide-sugar-activated P2Y14 receptor (P2Y14-R) is highly expressed in hematopoietic cells. Although the physiologic functions of this receptor remain undefined, it has been strongly implicated recently in immune and inflammatory responses. Lack of availability of receptor-selective high-affinity antagonists has impeded progress in studies of this and most of the eight nucleotide-activated P2Y receptors. A series of molecules recently were identified by Gauthier et al. (Gauthier et al., 2011) that exhibited antagonist activity at the P2Y14-R. We synthesized one of these molecules, a 4,7-disubstituted 2-naphthoic acid derivative (PPTN), and studied its pharmacological properties in detail. The concentration-effect curve of UDP-glucose for promoting inhibition of adenylyl cyclase in C6 glioma cells stably expressing the P2Y14-R was shifted to the right in a concentration-dependent manner by PPTN. Schild analyses revealed that PPTN-mediated inhibition followed competitive kinetics, with a KB of 434 pM observed. In contrast, 1 μM PPTN exhibited no agonist or antagonist effect at the P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, or P2Y13 receptors. UDP-glucose-promoted chemotaxis of differentiated HL-60 human promyelocytic leukemia cells was blocked by PPTN with a concentration dependence consistent with the KB determined with recombinant P2Y14-R. In contrast, the chemotactic response evoked by the chemoattractant peptide fMetLeuPhe was unaffected by PPTN. UDP-glucose-promoted chemotaxis of freshly isolated human neutrophils also was blocked by PPTN. In summary, this work establishes PPTN as a highly selective high-affinity antagonist of the P2Y14-R that is useful for interrogating the action of this receptor in physiologic systems.
Collapse
Affiliation(s)
- Matthew O Barrett
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Bao Y, Chen Y, Ledderose C, Li L, Junger WG. Pannexin 1 channels link chemoattractant receptor signaling to local excitation and global inhibition responses at the front and back of polarized neutrophils. J Biol Chem 2013; 288:22650-7. [PMID: 23798685 DOI: 10.1074/jbc.m113.476283] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neutrophil chemotaxis requires excitatory signals at the front and inhibitory signals at the back of cells, which regulate cell migration in a chemotactic gradient field. We have previously shown that ATP release via pannexin 1 (PANX1) channels and autocrine stimulation of P2Y2 receptors contribute to the excitatory signals at the front. Here we show that PANX1 also contributes to the inhibitory signals at the back, namely by providing the ligand for A2A adenosine receptors. In resting neutrophils, we found that A2A receptors are uniformly distributed across the cell surface. In polarized cells, A2A receptors redistributed to the back where their stimulation triggered intracellular cAMP accumulation and protein kinase A (PKA) activation, which blocked chemoattractant receptor signaling. Inhibition of PANX1 blocked A2A receptor stimulation and cAMP accumulation in response to formyl peptide receptor stimulation. Treatments that blocked endogenous A2A receptor signaling impaired the polarization and migration of neutrophils in a chemotactic gradient field and resulted in enhanced ERK and p38 MAPK signaling in response to formyl peptide receptor stimulation. These findings suggest that chemoattractant receptors require PANX1 to trigger excitatory and inhibitory signals that synergize to fine-tune chemotactic responses at the front and back of neutrophils. PANX1 channels thus link local excitatory signals to the global inhibitory signals that orchestrate chemotaxis of neutrophils in gradient fields.
Collapse
Affiliation(s)
- Yi Bao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
10
|
Viscoelastic properties of differentiating blood cells are fate- and function-dependent. PLoS One 2012; 7:e45237. [PMID: 23028868 PMCID: PMC3459925 DOI: 10.1371/journal.pone.0045237] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/20/2012] [Indexed: 11/19/2022] Open
Abstract
Although cellular mechanical properties are known to alter during stem cell differentiation, understanding of the functional relevance of such alterations is incomplete. Here, we show that during the course of differentiation of human myeloid precursor cells into three different lineages, the cells alter their viscoelastic properties, measured using an optical stretcher, to suit their ultimate fate and function. Myeloid cells circulating in blood have to be advected through constrictions in blood vessels, engendering the need for compliance at short time-scales (<seconds). Intriguingly, only the two circulating myeloid cell types have increased short time scale compliance and flow better through microfluidic constrictions. Moreover, all three differentiated cell types reduce their steady-state viscosity by more than 50% and show over 140% relative increase in their ability to migrate through tissue-like pores at long time-scales (>minutes), compared to undifferentiated cells. These findings suggest that reduction in steady-state viscosity is a physiological adaptation for enhanced migration through tissues. Our results indicate that the material properties of cells define their function, can be used as a cell differentiation marker and could serve as target for novel therapies.
Collapse
|
11
|
Sesma JI, Kreda SM, Steinckwich-Besancon N, Dang H, García-Mata R, Harden TK, Lazarowski ER. The UDP-sugar-sensing P2Y(14) receptor promotes Rho-mediated signaling and chemotaxis in human neutrophils. Am J Physiol Cell Physiol 2012; 303:C490-8. [PMID: 22673622 DOI: 10.1152/ajpcell.00138.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The G(i)-coupled P2Y(14) receptor (P2Y(14)-R) is potently activated by UDP-sugars and UDP. Although P2Y(14)-R mRNA is prominently expressed in circulating neutrophils, the signaling pathways and functional responses associated with this receptor are undefined. In this study, we illustrate that incubation of isolated human neutrophils with UDP-glucose resulted in cytoskeleton rearrangement, change of cell shape, and enhanced cell migration. We also demonstrate that UDP-glucose promotes rapid, robust, and concentration-dependent activation of RhoA in these cells. Ecto-nucleotidases expressed on neutrophils rapidly hydrolyzed extracellular ATP, but incubation with UDP-glucose for up to 1 h resulted in negligible metabolism of the nucleotide-sugar. HL60 human promyelocytic leukemia cells do not express the P2Y(14)-R, but neutrophil differentiation of HL60 cells with DMSO resulted in markedly enhanced P2Y(14)-R expression. Accordingly, UDP-glucose, UDP-galactose, and UDP-N-acetylglucosamine promoted Rho activation in differentiated but not in undifferentiated HL60 cells. Stable expression of recombinant human P2Y(14)-R conferred UDP-sugar-promoted responses to undifferentiated HL60 cells. UDP-glucose-promoted RhoA activation also was accompanied by enhanced cell migration in differentiated HL60 cells, and these responses were blocked by Rho kinase inhibitors. These results support the notion that UDP-glucose is a stable and potent proinflammatory mediator that promotes P2Y(14)-R-mediated neutrophil motility via Rho/Rho kinase activation.
Collapse
Affiliation(s)
- Juliana I Sesma
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7248, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Kudo F, Nishiguchi N, Mizuike R, Sato H, Ito K, Nakano M, Ito K. Neutrophil phagocytosis is down-regulated by nucleotides until encounter with pathogens. Immunol Lett 2012; 144:24-32. [PMID: 22445356 DOI: 10.1016/j.imlet.2012.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/29/2012] [Accepted: 03/04/2012] [Indexed: 02/06/2023]
Abstract
Extracellular nucleotides such as ATP, ADP, UTP, UDP and UDPG can trigger intracellular signal transduction via purinergic (P2Y) receptors, and their interaction induces a wide range of biological effects in various cells. In this study, we investigated P2Y expression and the effects of nucleotides on chemotaxis and phagocytosis in human neutrophils. RT-PCR detected broad expression of P2Y subfamilies in neutrophils, as well as monocytes. Moreover, intracellular Ca(2+) increased in response to ATP, ADP, UTP and UDP in these cells, suggesting that P2Y receptors were functionally expressed. In neutrophils, chemotactic activity was increased significantly in response to ATP and ADP, and moderately in response to UTP and UDP; actin polymerization by ATP, ADP, UTP and UDP was also evident in the cells. Interestingly, we found that ATP and ADP, which enhanced chemotaxis activity significantly, had inhibitory effects on phagocytosis by neutrophils. These findings provide new evidence for the regulation of neutrophil phagocytosis by nucleotides. Furthermore, this inhibitory effect was completely lost upon co-culture with fMLP or LPS, known constituents of bacteria, resulting in recovery of normal phagocytic activity. Taken together, these findings suggest that ATP and ADP constantly stimulate the chemotactic activity of neutrophils in peripheral blood, but may inhibit their phagocytic activity until they encounter pathogens, in order to prevent them acting against self-tissues or cells, as fMLP and LPS commonly present in pathogens would again trigger normal phagocytic activity.
Collapse
Affiliation(s)
- Fujimi Kudo
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Isfort K, Ebert F, Bornhorst J, Sargin S, Kardakaris R, Pasparakis M, Bähler M, Schwerdtle T, Schwab A, Hanley PJ. Real-time imaging reveals that P2Y2 and P2Y12 receptor agonists are not chemoattractants and macrophage chemotaxis to complement C5a is phosphatidylinositol 3-kinase (PI3K)- and p38 mitogen-activated protein kinase (MAPK)-independent. J Biol Chem 2011; 286:44776-87. [PMID: 22057273 DOI: 10.1074/jbc.m111.289793] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Adenosine 5'-triphosphate (ATP) has been implicated in the recruitment of professional phagocytes (neutrophils and macrophages) to sites of infection and tissue injury in two distinct ways. First, ATP itself is thought to be a chemotactic "find me" signal released by dying cells, and second, autocrine ATP signaling is implicated as an amplifier mechanism for chemotactic navigation to end-target chemoattractants, such as complement C5a. Here we show using real-time chemotaxis assays that mouse peritoneal macrophages do not directionally migrate to stable analogs of ATP (adenosine-5'-(γ-thio)-triphosphate (ATPγS)) or its hydrolysis product ADP (adenosine-5'-(β-thio)-diphosphate (ADPβS)). HPLC revealed that these synthetic P2Y(2) (ATPγS) and P2Y(12) (ADPβS) receptor ligands were in fact slowly degraded. We also found that ATPγS, but not ADPβS, promoted chemokinesis (increased random migration). Furthermore, we found that photorelease of ATP or ADP induced lamellipodial membrane extensions. At the cell signaling level, C5a, but not ATPγS, activated Akt, whereas both ligands induced p38 MAPK activation. p38 MAPK and Akt activation are strongly implicated in neutrophil chemotaxis. However, we found that inhibitors of phosphatidylinositol 3-kinase (PI3K; upstream of Akt) and p38 MAPK (or conditional deletion of p38α MAPK) did not impair macrophage chemotactic efficiency or migration velocity. Our results suggest that PI3K and p38 MAPK are redundant for macrophage chemotaxis and that purinergic P2Y(2) and P2Y(12) receptor ligands are not chemotactic. We propose that ATP signaling is strictly autocrine or paracrine and that ATP and ADP may act as short-range "touch me" (rather than long-range find me) signals to promote phagocytic clearance via cell spreading.
Collapse
Affiliation(s)
- Katrin Isfort
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shah Z, Kampfrath T, Deiuliis JA, Zhong J, Pineda C, Ying Z, Xu X, Lu B, Moffatt-Bruce S, Durairaj R, Sun Q, Mihai G, Maiseyeu A, Rajagopalan S. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 2011; 124:2338-49. [PMID: 22007077 DOI: 10.1161/circulationaha.111.041418] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dipeptidyl-peptidase 4 (DPP-4) inhibitors are increasingly used to accomplish glycemic targets in patients with type II diabetes mellitus. Because DPP-4 is expressed in inflammatory cells, we hypothesized that its inhibition will exert favorable effects in atherosclerosis. METHODS AND RESULTS Male LDLR(-/-) mice (6 weeks) were fed a high-fat diet or normal chow diet for 4 weeks and then randomized to vehicle or alogliptin, a high-affinity DPP-4 inhibitor (40 mg · kg(-1) · d(-1)), for 12 weeks. Metabolic parameters, blood pressure, vascular function, atherosclerosis burden, and indexes of inflammation were obtained in target tissues, including the vasculature, adipose, and bone marrow, with assessment of global and cell-specific inflammatory pathways. In vitro and in vivo assays of DPP-4 inhibition (DPP-4i) on monocyte activation/migration were conducted in both human and murine cells and in a short-term ApoE(-/-) mouse model. DPP-4i improved markers of insulin resistance and reduced blood pressure. DPP-4i reduced visceral adipose tissue macrophage content (adipose tissue macrophages; CD11b(+), CD11c(+), Ly6C(hi)) concomitant with upregulation of CD163. DPP-4 was highly expressed in bone marrow-derived CD11b(+) cells, with DPP-4i downregulating proinflammatory genes in these cells. DPP-4i decreased aortic plaque with a striking reduction in plaque macrophages. DPP-4i prevented monocyte migration and actin polymerization in in vitro assays via Rac-dependent mechanisms and prevented in vivo migration of labeled monocytes to the aorta in response to exogenous tumor necrosis factor-α and DPP-4. CONCLUSION DPP-4i exerts antiatherosclerotic effects and reduces inflammation via inhibition of monocyte activation/chemotaxis. These findings have important implications for the use of this class of drugs in atherosclerosis.
Collapse
Affiliation(s)
- Zubair Shah
- Davis Heart & Lung Research Institute, 473 W 12th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 2011; 1:e9. [PMID: 21364628 PMCID: PMC3032501 DOI: 10.1038/cddis.2009.11] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer.
Collapse
|
16
|
Gendaszewska-Darmach E, Kucharska M. Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing. Purinergic Signal 2011; 7:193-206. [PMID: 21519856 PMCID: PMC3146642 DOI: 10.1007/s11302-011-9233-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/10/2011] [Indexed: 12/15/2022] Open
Abstract
With a growing interest of the involvement of extracellular nucleotides in both normal physiology and pathology, it has become evident that P2 receptor agonists and antagonists may have therapeutic potential. The P2Y2 receptor agonists (diquafosol tetrasodium and denufosol tetrasodium) are in the phase 3 of clinical trials for dry eye and cystic fibrosis, respectively. The thienopyridine derivatives clopidogrel and ticlopidine (antagonists of the platelet P2Y12 receptor) have been used in cardiovascular medicine for nearly a decade. Purines and pyrimidines may be of therapeutic potential also in wound healing since ATP and UTP have been shown to have many hallmarks of wound healing factors. Recent studies have demonstrated that extracellular nucleotides take part in all phases of wound repair: hemostasis, inflammation, tissue formation, and tissue remodeling. This review is focused on the potent purines and pyrimidines which regulate many physiological processes important for wound healing.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924, Lodz, Poland,
| | | |
Collapse
|
17
|
Borsani E, Albertini R, Labanca M, Lonati C, Rezzani R, Rodella LF. Peripheral purinergic receptor modulation influences the trigeminal ganglia nitroxidergic system in an experimental murine model of inflammatory orofacial pain. J Neurosci Res 2011; 88:2715-26. [PMID: 20648657 DOI: 10.1002/jnr.22420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ATP plays an important role as an endogenous pain mediator generating and/or modulating pain signaling from the periphery to the central nervous system. The aim of this study was to analyze the role of peripheral purinergic receptors in modulation of the nitroxidergic system at a trigeminal ganglia level by monitoring changes in nitric oxide synthase isoforms. We also evaluated Fos-positive neurons in brainstem (spinal trigeminal nucleus) and pain-related behavior. We found that local administration of the P2 purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) decreased face-rubbing activity, nitric oxide synthase isoform expression in trigeminal ganglia, and Fos expression in spinal trigeminal nucleus after subcutaneous injection of formalin. These results suggest a role for peripheral P2 purinergic receptors in orofacial pain transmission through modulation of the nitroxidergic system. .
Collapse
Affiliation(s)
- Elisa Borsani
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, Brescia University, 25123 Brescia, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Lucattelli M, Cicko S, Müller T, Lommatzsch M, Cunto GD, Cardini S, Sundas W, Grimm M, Zeiser R, Dürk T, Zissel G, Sorichter S, Ferrari D, Virgilio FD, Virchow JC, Lungarella G, Idzko M. P2X7Receptor Signaling in the Pathogenesis of Smoke-Induced Lung Inflammation and Emphysema. Am J Respir Cell Mol Biol 2011; 44:423-9. [DOI: 10.1165/rcmb.2010-0038oc] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Abstract
Stimulation of almost all mammalian cell types leads to the release of cellular ATP and autocrine feedback through a diverse array of purinergic receptors. Depending on the types of purinergic receptors that are involved, autocrine signalling can promote or inhibit cell activation and fine-tune functional responses. Recent work has shown that autocrine signalling is an important checkpoint in immune cell activation and allows immune cells to adjust their functional responses based on the extracellular cues provided by their environment. This Review focuses on the roles of autocrine purinergic signalling in the regulation of both innate and adaptive immune responses and discusses the potential of targeting purinergic receptors for treating immune-mediated disease.
Collapse
|
20
|
Cicko S, Lucattelli M, Müller T, Lommatzsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Dürk T, Zissel G, Boeynaems JM, Sorichter S, Ferrari D, Di Virgilio F, Virchow JC, Lungarella G, Idzko M. Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema. THE JOURNAL OF IMMUNOLOGY 2010; 185:688-97. [PMID: 20519655 DOI: 10.4049/jimmunol.0904042] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular ATP acts as a "danger signal" and can induce inflammation by binding to purinergic receptors. Chronic obstructive pulmonary disease is one of the most common inflammatory diseases associated with cigarette smoke inhalation, but the underlying mechanisms are incompletely understood. In this study, we show that endogenous pulmonary ATP levels are increased in a mouse model of smoke-induced acute lung inflammation and emphysema. ATP neutralization or nonspecific P2R-blockade markedly reduced smoke-induced lung inflammation and emphysema. We detected an upregulation the purinergic receptors subtypes on neutrophils (e.g., P2Y2R), macrophages, and lung tissue from animals with smoke-induced lung inflammation. By using P2Y(2)R deficient ((-/-)) animals, we show that ATP induces the recruitment of blood neutrophils to the lungs via P2Y(2)R. Moreover, P2Y(2)R deficient animals had a reduced pulmonary inflammation following acute smoke-exposure. A series of experiments with P2Y(2)R(-/-) and wild type chimera animals revealed that P2Y(2)R expression on hematopoietic cell plays the pivotal role in the observed effect. We demonstrate, for the first time, that endogenous ATP contributes to smoke-induced lung inflammation and then development of emphysema via activation of the purinergic receptor subtypes, such as P2Y(2)R.
Collapse
Affiliation(s)
- Sanja Cicko
- Department of Pulmonary Medicine, University Hospital, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pundir P, Kulka M. The role of G protein‐coupled receptors in mast cell activation by antimicrobial peptides: is there a connection? Immunol Cell Biol 2010; 88:632-40. [DOI: 10.1038/icb.2010.27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Priyanka Pundir
- National Research Council‐Institute for Nutrisciences and Health Charlottetown Prince Edward Island Canada
- Department of Biomedical Sciences, Atlantic Veterinary College, University of PEI Charlottetown Prince Edward Island Canada
| | - Marianna Kulka
- National Research Council‐Institute for Nutrisciences and Health Charlottetown Prince Edward Island Canada
- Department of Biomedical Sciences, Atlantic Veterinary College, University of PEI Charlottetown Prince Edward Island Canada
| |
Collapse
|
22
|
Zhang Y, Gong LH, Zhang HQ, Du Q, You JF, Tian XX, Fang WG. Extracellular ATP enhances in vitro invasion of prostate cancer cells by activating Rho GTPase and upregulating MMPs expression. Cancer Lett 2010; 293:189-97. [PMID: 20202742 DOI: 10.1016/j.canlet.2010.01.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 01/04/2010] [Accepted: 01/11/2010] [Indexed: 01/22/2023]
Abstract
We previously found that in addition to anti-proliferation function, extracellular ATP had a pro-invasion effect on prostate cancer cells, and probably serves as an important regulator of invasion in local microenvironment. However, the underlying mechanism remains unclear. In this study, we demonstrated that ATP increased the motility of prostate cancer cells, and promoted formation of lamellipodia and filopodia. We also found that ATP induced activation of Rac1 and Cdc42, and promoted expression of MMP-3 and MMP-13. These data suggest that extracellular ATP enhances the invasion of prostate cancer cells by activating Rho GTPases Rac1 and Cdc42 and upregulating MMPs expression.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Martel-Gallegos G, Rosales-Saavedra MT, Reyes JP, Casas-Pruneda G, Toro-Castillo C, Pérez-Cornejo P, Arreola J. Human neutrophils do not express purinergic P2X7 receptors. Purinergic Signal 2010; 6:297-306. [PMID: 21103213 DOI: 10.1007/s11302-010-9178-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/28/2010] [Indexed: 02/08/2023] Open
Abstract
It has been reported that in human neutrophils, external ATP activates plasma membrane purinergic P2X(7) receptors (P2X(7)R) to elicit Ca(2+) entry, production of reactive oxygen species (ROS), processing and release of pro-inflammatory cytokines, shedding of adhesion molecules and uptake of large molecules. However, the expression of P2X(7)R at the plasma membrane of neutrophils has also been questioned since these putative responses are not always reproduced. In this work, we used electrophysiological recordings to measure functional responses associated with the activation of membrane receptors, spectrofluorometric measurements of ROS production and ethidium bromide uptake to asses coupling of P2X(7)R activation to downstream effectors, immune-labelling of P2X(7)R using a fluorescein isothiocyanate-conjugated antibody to detect the receptors at the plasma membrane, RT-PCR to determine mRNA expression of P2X(7)R and Western blot to determine protein expression in neutrophils and HL-60 cells. None of these assays reported the presence of P2X(7)R in the plasma membrane of neutrophils and non-differentiated or differentiated HL-60 cells-a model cell for human neutrophils. We concluded that P2X(7)R are not present at plasma membrane of human neutrophils and that the putative physiological responses triggered by external ATP should be reconsidered.
Collapse
|
24
|
Lommatzsch M, Cicko S, Müller T, Lucattelli M, Bratke K, Stoll P, Grimm M, Dürk T, Zissel G, Ferrari D, Di Virgilio F, Sorichter S, Lungarella G, Virchow JC, Idzko M. Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 181:928-34. [PMID: 20093639 DOI: 10.1164/rccm.200910-1506oc] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Extracellular ATP promotes inflammation, but its role in chronic obstructive pulmonary disease (COPD) is unknown. OBJECTIVES To analyze the expression of ATP and its functional consequences in never-smokers, asymptomatic smokers, and patients with COPD. METHODS ATP was quantified in bronchoalveolar lavage fluid (BALF) of never-smokers, asymptomatic smokers, and patients with COPD of different severity. The expression of specific ATP (purinergic) receptors was measured in airway macrophages and blood neutrophils from control subjects and patients with COPD. The release of mediators by macrophages and neutrophils and neutrophil chemotaxis was assessed after ATP stimulation. MEASUREMENTS AND MAIN RESULTS Chronic smokers had elevated ATP concentrations in BALF compared with never-smokers. Acute smoke exposure led to a further increase in endobronchial ATP concentrations. Highest ATP concentrations in BALF were present in smokers and ex-smokers with COPD. In patients with COPD, BALF ATP concentrations correlated negatively with lung function and positively with BALF neutrophil counts. ATP induced a stronger chemotaxis and a stronger elastase release in blood neutrophils from patients with COPD, as compared with control subjects. In addition, airway macrophages from patients with COPD responded with an increased secretion of proinflammatory and tissue-degrading mediators after ATP stimulation. These findings were accompanied by an up-regulation of specific purinergic receptors in blood neutrophils and airway macrophages of patients with COPD. CONCLUSIONS COPD is characterized by a strong and persistent up-regulation of extracellular ATP in the airways. Extracellular ATP appears to contribute to the pathogenesis of COPD by promoting inflammation and tissue degradation.
Collapse
Affiliation(s)
- Marek Lommatzsch
- Department of Pneumology, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lecut C, Frederix K, Johnson DM, Deroanne C, Thiry M, Faccinetto C, Marée R, Evans RJ, Volders PGA, Bours V, Oury C. P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation. THE JOURNAL OF IMMUNOLOGY 2009; 183:2801-9. [PMID: 19635923 DOI: 10.4049/jimmunol.0804007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ATP, released at the leading edge of migrating neutrophils, amplifies chemotactic signals. The aim of our study was to investigate whether neutrophils express ATP-gated P2X(1) ion channels and whether these channels could play a role in chemotaxis. Whole-cell patch clamp experiments showed rapidly desensitizing currents in both human and mouse neutrophils stimulated with P2X(1) agonists, alphabeta-methylene ATP (alphabetaMeATP) and betagammaMeATP. These currents were strongly impaired or absent in neutrophils from P2X(1)(-/-) mice. In Boyden chamber assays, alphabetaMeATP provoked chemokinesis and enhanced formylated peptide- and IL-8-induced chemotaxis of human neutrophils. This agonist similarly increased W-peptide-induced chemotaxis of wild-type mouse neutrophils, whereas it had no effect on P2X(1)(-/-) neutrophils. In human as in mouse neutrophils, alphabetaMeATP selectively activated the small RhoGTPase RhoA that caused reversible myosin L chain phosphorylation. Moreover, the alphabetaMeATP-elicited neutrophil movements were prevented by the two Rho kinase inhibitors, Y27632 and H1152. In a gradient of W-peptide, P2X(1)(-/-) neutrophils migrated with reduced speed and displayed impaired trailing edge retraction. Finally, neutrophil recruitment in mouse peritoneum upon Escherichia coli injection was enhanced in wild-type mice treated with alphabetaMeATP, whereas it was significantly impaired in the P2X(1)(-/-) mice. Thus, activation of P2X(1) ion channels by ATP promotes neutrophil chemotaxis, a process involving Rho kinase-dependent actomyosin-mediated contraction at the cell rear. These ion channels may therefore play a significant role in host defense and inflammation.
Collapse
Affiliation(s)
- Christelle Lecut
- GIGA-Research Human Genetics Unit, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Caspase-3 and -9 are activated in human myeloid HL-60 cells by calcium signal. Mol Cell Biochem 2009; 333:151-7. [PMID: 19626422 DOI: 10.1007/s11010-009-0215-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
This study is aimed to determine the role of calcium signaling evoked by the calcium-mobilizing agonist uridine-5'-triphosphate (UTP) and by the specific inhibitor of the endoplasmic reticulum calcium reuptake thapsigargin on caspase activation in human leukemia cell line HL-60. We have analyzed cytosolic free calcium concentration ([Ca(2+)](c)) determination, mitochondrial membrane potential and caspase-3 and -9 activity by fluorimetric methods, using the fluorescent ratiometric calcium indicator Fura-2, the dye JC-1, and specific fluorogenic substrate, respectively. Our results indicated that treatment of HL-60 cells with 10 microM UTP or 1 microM thapsigargin induced a transient increase in [Ca(2+)](c) due to calcium release from internal stores. The stimulatory effect of UTP and thapsigargin on calcium signal was followed by a mitochondrial membrane depolarization. Our results also indicated that UTP and thapsigargin were able to increase the caspase-3 and -9 activities. The effect of UTP and thapsigargin on caspase activation was time dependent, reaching a maximal caspase activity after 60 min of stimulation. Loading of cells with 10 microM dimethyl BAPTA, an intracellular calcium chelator, for 30 min significantly reduced both UTP- or thapsigargin-induced mitochondrial depolarization and caspase activation. Similar results were obtained when the cells were pretreated with 10 microM Ru360 for 30 min, a specific blocker of calcium uptake into mitochondria. The findings suggest that UTP- and thapsigargin-induced caspase-3 and -9 activation and mitochondrial membrane depolarization is dependent on rises in [Ca(2+)](c) in human myeloid HL-60 cells.
Collapse
|
27
|
Kukulski F, Ben Yebdri F, Lecka J, Kauffenstein G, Lévesque SA, Martín-Satué M, Sévigny J. Extracellular ATP and P2 receptors are required for IL-8 to induce neutrophil migration. Cytokine 2009; 46:166-70. [PMID: 19303321 DOI: 10.1016/j.cyto.2009.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/09/2009] [Accepted: 02/14/2009] [Indexed: 12/20/2022]
Abstract
The chemokine interleukin 8 (IL-8) is a major chemoattractant for human neutrophils. Here, we demonstrate novel evidence that IL-8-induced neutrophil chemotaxis requires a concurrent activation of P2 receptors, most likely the P2Y(2) which is dominantly expressed in these cells. Indeed, the migration of human neutrophils towards IL-8 was significantly inhibited by the P2Y receptor antagonists, suramin and reactive blue 2 (RB-2) and potentiated by a P2Y(2) ligand, ATP, but insensitive to specific antagonists of P2Y(1), P2Y(6) and P2Y(11) receptors. Adenosine had no effect on neutrophil migration towards IL-8 which contrasted with the stimulatory effect of this molecule on neutrophil chemotaxis caused by formyl-Met-Leu-Phe (fMLP or fMLF). Taken together, these data suggest that extracellular ATP is necessary for IL-8 to exert its chemotactic effect on neutrophils.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, 2705, Boulevard Laurier, Local T1-49, Que., Canada G1V 4G2
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Chemotaxis allows polymorphonuclear neutrophils (PMN) to rapidly reach infected and inflamed sites. However, excessive influx of PMN damages host tissues. Better knowledge of the mechanisms that control PMN chemotaxis may lead to improved treatments of inflammatory diseases. Recent findings suggest that ATP and adenosine are involved in PMN chemotaxis. Therefore, these purinergic signaling processes may be suitable targets for novel therapeutic approaches to ameliorate host tissue damage.
Collapse
Affiliation(s)
- W G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, East Stoneman 8M 10C, Boston, Massachusetts 02215, USA.
| |
Collapse
|
29
|
Esther CR, Alexis NE, Clas ML, Lazarowski ER, Donaldson SH, Ribeiro CMP, Moore CG, Davis SD, Boucher RC. Extracellular purines are biomarkers of neutrophilic airway inflammation. Eur Respir J 2008; 31:949-56. [PMID: 18256064 DOI: 10.1183/09031936.00089807] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purinergic signalling regulates airway defence mechanisms, suggesting that extracellular purines could serve as airway inflammation biomarkers in cystic fibrosis (CF). The purines adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and adenosine were measured in sputum from 21 adults (spontaneously expectorated from seven CF patients, induced from 14 healthy controls) to assess normal values and CF-associated changes. Subsequently, purine levels were measured in bronchoalveolar lavage fluid (BALF) from 37 children (25 CF patients, 12 disease controls) and compared with neutrophil counts, presence of airway infection and lung function. To noninvasively assess airway purines, ATP levels were measured using luminometry in exhaled breath condensate (EBC) from 14 children with CF and 14 healthy controls, then 14 CF children during a pulmonary exacerbation. Both ATP and AMP were elevated in sputum and BALF from CF subjects compared with controls. In BALF, ATP and AMP levels were inversely related to lung function and strongly correlated with neutrophil counts. In EBC, ATP levels were increased in CF relative to controls and decreased after treatment of CF pulmonary exacerbation. The purines adenosine triphosphate and adenosine monophosphate are candidate biomarkers of neutrophilic airways inflammation. Measurement of purines in sputum or exhaled breath condensate may provide a relatively simple and noninvasive method to track this inflammation.
Collapse
Affiliation(s)
- C R Esther
- Pediatric Pulmonology, 5 Floor Bioinformatics, CB#7220, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7220, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wirkner K, Sperlagh B, Illes P. P2X3 receptor involvement in pain states. Mol Neurobiol 2007; 36:165-83. [PMID: 17952660 DOI: 10.1007/s12035-007-0033-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/19/2007] [Indexed: 12/20/2022]
Abstract
The understanding of how pain is processed at each stage in the peripheral and central nervous system is the precondition to develop new therapies for the selective treatment of pain. In the periphery, ATP can be released from various cells as a consequence of tissue injury or visceral distension and may stimulate the local nociceptors. The highly selective distribution of P2X(3) and P2X(2/3) receptors within the nociceptive system has inspired a variety of approaches to elucidate the potential role of ATP as a pain mediator. Depolarization by ATP of neurons in pain-relevant neuronal structures such as trigeminal ganglion, dorsal root ganglion, and spinal cord dorsal horn neurons are well investigated. P2X receptor-mediated afferent activation appears to have been implicated in visceral and neuropathic pain and even in migraine and cancer pain. This article reviews recently published research describing the role that ATP and P2X receptors may play in pain perception, highlighting the importance of the P2X(3) receptor in different states of pain.
Collapse
Affiliation(s)
- Kerstin Wirkner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | |
Collapse
|
31
|
Taboubi S, Milanini J, Delamarre E, Parat F, Garrouste F, Pommier G, Takasaki J, Hubaud JC, Kovacic H, Lehmann M. G alpha(q/11)-coupled P2Y2 nucleotide receptor inhibits human keratinocyte spreading and migration. FASEB J 2007; 21:4047-58. [PMID: 17609252 DOI: 10.1096/fj.06-7476com] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reepithelialization is a critical step in wound healing. It is initiated by keratinocyte migration at the wound edges. After wounding, extracellular nucleotides are released by keratinocytes and other skin cells. Here, we report that activation of P2Y2 nucleotide receptor by ATP/UTP inhibits keratinocyte cell spreading and induces lamellipodium withdrawal. Kymography analysis demonstrates that these effects correlate with a durable decrease of lamellipodium dynamics. P2Y2 receptor activation also induces a dramatic dismantling of the actin network, the loss of alpha3 integrin expression at the cell periphery, and the dissolution of focal contacts as indicated by the alteration of alpha(v) integrins and focal contact protein distribution. In addition, activation of P2Y2R prevents growth factor-induced phosphorylation of Erk(1,2) and Akt/PkB. The use of a specific pharmacological inhibitor (YM-254890), the depletion of G alpha(q/11) by siRNA, or the expression of a constitutively active G alpha(q/11) mutant (Q209L) show that activation of G alpha(q/11) is responsible for these ATP/UTP-induced effects. Finally, we report that ATP delays growth factor-induced wound healing of keratinocyte monolayers. Collectively, these findings provide evidence for a unique and important role for extracellular nucleotides as efficient autocrine/paracrine regulators of keratinocyte shape and migration during wound healing.
Collapse
Affiliation(s)
- Salma Taboubi
- CISMET, FRE CNRS 2737, Faculté de Pharmacie, Université d'Aix-Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chorna NE, Chevres M, Santos-Berrios C, Orellano EA, Erb L, González FA. P2Y2 receptors induced cell surface redistribution of alpha(v) integrin is required for activation of ERK 1/2 in U937 cells. J Cell Physiol 2007; 211:410-22. [PMID: 17186500 DOI: 10.1002/jcp.20946] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nucleotides released from cells due to stress, injury or inflammation, induce mitogenic effects in monocytes via activation of P2Y(2) nucleotide receptors (P2Y(2)Rs). Here we show that P2Y(2) nucleotide receptors in U937 monocytic cells regulate the activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) by inducing the clustering of alpha(v) integrins. The activation of phosphatidylinositol 3-kinase by P2Y(2)R ligands was required for alpha(v) clustering, suggesting a means whereby two different classes of receptors communicate to induce mitogenic responses in monocytic cells. P2Y(2)R-induced alpha(v) clustering was also associated with a flattened phenotype of the U937 cells, consistent with the role of the P2Y(2)R in regulating early events in cell migration.
Collapse
Affiliation(s)
- Nataliya E Chorna
- Department of Chemistry, Río Piedras Campus, University of Puerto Rico, San Juan, Puerto Rico, USA
| | | | | | | | | | | |
Collapse
|
33
|
Evaldsson C, Rydén I, Uppugunduri S. Anti-inflammatory effects of exogenous uridine in an animal model of lung inflammation. Int Immunopharmacol 2007; 7:1025-32. [PMID: 17570319 DOI: 10.1016/j.intimp.2007.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/07/2007] [Accepted: 03/25/2007] [Indexed: 11/18/2022]
Abstract
Nucleosides like adenosine, uridine and their nucleotide derivatives (e.g. ATP and UTP) play important roles in many cellular functions, sometimes by acting as signalling molecules through binding to specific P2 nucleotide receptors. P2 receptors are subdivided into P2X and P2Y subfamilies, the latter of which are G-protein coupled receptors. P2Y receptors and nucleoside transporters have been detected in human and rat lungs, where they mediate effects of interest in airway diseases. The aim of this study was to investigate whether uridine has any anti-inflammatory properties in an asthma-like animal model of lung inflammation. The Sephadex-induced lung inflammation model in Sprague-Dawley rats was chosen mainly due to its localised inflammatory response and uridine's limited oral bioavailability. The dextran beads, with or without the addition of uridine, were instilled intratracheally into the lungs, which were excised and examined after 24 h. Sephadex alone led to massive oedema and infiltration of macrophages, neutrophils and eosinophils. Microgranulomas with giant cell formations were clearly visible around the partially degraded beads. Uridine reduced both the oedema and the infiltration of leukocytes significantly, measured as lung wet weight and leukocyte counts in bronchoalveolar lavage fluid, respectively. Uridine appeared to affect the tumour necrosis factor (TNF) levels, although this could not be statistically confirmed due to large variations within the Sephadex control group. We conclude that uridine has anti-inflammatory effects, and that the exact mechanism(s) of action requires further study.
Collapse
Affiliation(s)
- C Evaldsson
- Division of Clinical Chemistry, Department of Biomedicine and Surgery, Linköping University, 581 85 Linköping, Sweden.
| | | | | |
Collapse
|
34
|
Myrtek D, Idzko M. Chemotactic activity of extracellular nucleotideson human immune cells. Purinergic Signal 2007; 3:5-11. [PMID: 18404414 PMCID: PMC2096771 DOI: 10.1007/s11302-006-9032-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 10/10/2006] [Indexed: 12/15/2022] Open
Abstract
Purinergic P2 receptors are a class of plasma membrane receptors that are express in many tissues and are ligated by extracellular nucleotides [such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine 5–triphosphate (UTP) and uridine 5–diphosphate (UDP)], which are released as a consequence of cell damage, cell stress, bacterial infection or other noxious stimuli. According to the molecular structure, P2 receptors are divided into two subfamilies: P2X and P2Y receptors. The P2X receptors are ligand-gated channels, whereas P2Y receptors are G-protein-coupled seven-membrane-spanning receptors. Several studies indicate that nucleotides play an important role in immune response modulation through their action on multiple cell types, including monocytes, mast cells, dendritic cells, neutrophils, and eosinophils. Recent work by our group and others identified extracellular nucleotides as chemotaxins for various human immune cells, including eosinophils, neutrophils and dendritic cells. In this review, we summarise recent findings in this field and put forward a hypothesis on the role of P2 receptors in the early recruitment of human immune cells to the site of inflammation.
Collapse
Affiliation(s)
- Daniel Myrtek
- Department of Pneumology, University-Hospital-Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | | |
Collapse
|
35
|
Abstract
Spermine (SPM) and spermidine (SPD) activate isolated phosphatidylinositol-4-phosphate 5-kinases (PI(4)P5K), enzymes that convert phosphatidylinositol-4-phosphate to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). PI(4,5)P2 formation is known to be involved in cellular actin reorganization and motility, functions that are also influenced by polyamines. It has not been proven that endogenous polyamines can control inositol phospholipid metabolism. We evoked large decreases in SPD and putrescine (PUT) contents in HL60 cells, using the ornithine decarboxylase inhibitor, alpha-difluoromethylornithine (DFMO), which resulted in decreases in PI(4,5)P2 content per cell and inositol phosphate formation to 76.9 +/- 3.5% and 81.5 +/- 4.0% of control, respectively. Accurately reversing DFMO-evoked decreases in SPD content by incubating cells with exogenous SPD for 20 min rescued these decreases. DFMO treatment and SPD rescues also changed the ratio of total cellular PI(4,5)P2 to PIP suggesting involvement of a SPD-sensitive PI(4)P5K. PUT and SPM were not involved in DFMO-evoked changes in cellular PI(4,5)P2 contents. In DFMO-treated HL60 cells, the percent of total actin content that was filamentous was decreased to 59.1 +/- 5.8% of that measured in paired control HL60 cells, a finding that was rescued following reversal of DFMO-evoked decreases in SPD and PI(4,5)P2 contents. In slowly proliferating DMSO-differentiated HL60 cells, inositol phospholipid metabolism was uncoupled from SPD control. We conclude: in rapidly proliferating HL60 cells, but not in slowly proliferating differentiated HL60 cells, there are endogenous SPD-sensitive PI(4,5)P2 pools, probably formed via SPD-sensitive PI(4)P5K, that likely control actin polymerization.
Collapse
Affiliation(s)
- Ronald F Coburn
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA.
| | | | | |
Collapse
|
36
|
Rossi L, Manfredini R, Bertolini F, Ferrari D, Fogli M, Zini R, Salati S, Salvestrini V, Gulinelli S, Adinolfi E, Ferrari S, Di Virgilio F, Baccarani M, Lemoli RM. The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood 2006; 109:533-42. [PMID: 17008551 DOI: 10.1182/blood-2006-01-035634] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Homing and engraftment of hematopoietic stem cells (HSCs) to the bone marrow (BM) involve a complex interplay between chemokines, cytokines, and nonpeptide molecules. Extracellular nucleotides and their cognate P2 receptors are emerging as key factors of inflammation and related chemotactic responses. In this study, we investigated the activity of extracellular adenosine triphosphate (ATP) and uridine triphosphate (UTP) on CXCL12-stimulated CD34+ HSC chemotaxis. In vitro, UTP significantly improved HSC migration, inhibited cell membrane CXCR4 down-regulation by migrating CD34+ cells, and increased cell adhesion to fibronectin. In vivo, preincubation with UTP significantly enhanced the BM homing efficiency of human CD34+ cells in immunodeficient mice. Pertussis toxin blocked CXCL12- and UTP-dependent chemotactic responses, suggesting that G-protein alpha-subunits (Galphai) may provide a converging signal for CXCR4- and P2Y-activated transduction pathways. In addition, gene expression profiling of UTP- and CXCL12-treated CD34+ cells and in vitro inhibition assays demonstrated that Rho guanosine 5'-triphosphatase (GTPase) Rac2 and downstream effectors Rho GTPase-activated kinases 1 and 2 (ROCK1/2) are involved in UTP-promoted/CXCL12-dependent HSC migration. Our data suggest that UTP may physiologically modulate the homing of HSCs to the BM, in concert with CXCL12, via the activation of converging signaling pathways between CXCR4 and P2Y receptors, involving Galphai proteins and RhoGTPases.
Collapse
Affiliation(s)
- Lara Rossi
- Institute of Hematology and Medical Oncology L & A Seràgnoli, University of Bologna, and Stem Cell Research Center, S. Orsola-Malpighi Hospital, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Marcet B, Boeynaems JM. Relationships between cystic fibrosis transmembrane conductance regulator, extracellular nucleotides and cystic fibrosis. Pharmacol Ther 2006; 112:719-32. [PMID: 16828872 DOI: 10.1016/j.pharmthera.2006.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Cystic fibrosis (CF) is one of the most common lethal autosomal recessive genetic diseases in the Caucasian population, with a frequency of about 1 in 3000 livebirths. CF is due to a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, a cyclic adenosine 5'-monophosphate (cAMP)-regulated chloride channel localized in the apical membrane of epithelial cells. CFTR is a multifunctional protein which, in addition to be a Cl-channel, is also a regulator of multiple ion channels and other proteins. In particular CFTR has been reported to play a role in the outflow of adenosine 5'-triphosphate (ATP) from cells, but this remains controversial. Extracellular nucleotides are signaling molecules that regulate ion transport and mucociliary clearance by acting on P2 nucleotide receptors, in particular the P2Y(2) receptor. Nucleotides activating the P2Y(2) receptor represent thus one pharmacotherapeutic strategy to treat CF disease, via improvement of mucus hydration and mucociliary clearance in airways. Phase II clinical trials have recently shown that aerosolized denufosol (INS37217, Inspire(R)) improves pulmonary function in CF patients: denufosol was granted orphan drug status and phase III trials are planned. Here, we review what is known about the relationship between extracellular nucleotides and CFTR, the role of extracellular nucleotides in epithelial pathophysiology and their putative role as therapeutic agents.
Collapse
Affiliation(s)
- Brice Marcet
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Campus Erasme (Bât C5-110), route de Lennik 808, 1070 Brussels, Belgium.
| | | |
Collapse
|
38
|
Meshki J, Tuluc F, Bredetean O, Garcia A, Kunapuli SP. Signaling pathways downstream of P2 receptors in human neutrophils. Purinergic Signal 2006; 2:537-44. [PMID: 18404491 PMCID: PMC2254476 DOI: 10.1007/s11302-006-9007-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 03/10/2006] [Indexed: 11/28/2022] Open
Abstract
Extracellular nucleotides stimulate human neutrophils by activating the purinergic P2Y(2) receptor. However, it is not completely understood which types of G proteins are activated downstream of this P2 receptor subtype. We investigated the G-protein coupling to P2Y(2) receptors and several subsequent signaling events. Treatment of neutrophils with pertussis toxin (PTX), a Gi protein inhibitor, caused only approximately 75% loss of nucleotide-induced Ca(2+) mobilization indicating that nucleotides cause Ca(2+) mobilization both through Gi-dependent and Gi-independent pathways. However, the PLC inhibitor U73122 almost completely inhibited Ca(2+) mobilization in both nucleotide- and fMLP-stimulated neutrophils, strongly supporting the view that both the PTX-sensitive and the PTX-insensitive mechanism of Ca(2+) increase require activation of PLC. We investigated the dependence of ERK phosphorylation on the Gi pathway. Treatment of neutrophils with PTX caused almost complete inhibition of ERK phosphorylation in nucleotide or fMLP activated neutrophils. U73122 caused inhibition of nucleotide- or fMLP-stimulated ERK phosphorylation, suggesting that although pertussis toxin-insensitive pathways cause measurable Ca(2+) mobilization, they are not sufficient for causing ERK phosphorylation. Since PLC activation leads to intracellular Ca(2+) increase and PKC activation, we investigated if these intracellular events are necessary for ERK phosphorylation. Exposure of cells to the Ca(2+) chelator BAPTA had no effect on nucleotide- or fMLP-induced ERK phosphorylation. However, the PKC inhibitor GF109203X was able to almost completely inhibit nucleotide- or fMLP-induced ERK phosphorylation. We conclude that the P2Y(2) receptor can cause Ca(2+) mobilization through a PTX-insensitive but PLC-dependent pathway and ERK phosphorylation is highly dependent on activation of the Gi proteins.
Collapse
Affiliation(s)
- John Meshki
- Department of Physiology, Temple University Medical School, 3420 N. Broad Street, Philadelphia, PA, 19140, USA
| | | | | | | | | |
Collapse
|
39
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 782] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
40
|
Scrivens M, Dickenson JM. Functional expression of the P2Y14 receptor in human neutrophils. Eur J Pharmacol 2006; 543:166-73. [PMID: 16820147 DOI: 10.1016/j.ejphar.2006.05.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 05/16/2006] [Accepted: 05/19/2006] [Indexed: 11/18/2022]
Abstract
Previous studies using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis have shown that the P2Y(14) receptor is expressed at high levels in human neutrophils. Therefore the primary aim of this study was to determine whether the P2Y(14) receptor is functionally expressed in human neutrophils. In agreement with previous studies RT-PCR analysis detected the expression of P2Y(14) receptor mRNA in human neutrophils. UDP-glucose (IC(50)=1 microM) induced a small but significant inhibition (circa 30%) of forskolin-stimulated cAMP accumulation suggesting functional coupling of endogenously expressed P2Y(14) receptors to the inhibition of adenylyl cyclase activity in human neutrophils. In contrast, the other putative P2Y(14) receptor agonists UDP-galactose and UDP-glucuronic acid (at concentrations up to 100 microM) had no significant effect, whereas 100 microM UDP-N-acetylglucosamine-induced a small but significant inhibition of forskolin-stimulated cAMP accumulation (20% inhibition). UDP-galactose, UDP-glucuronic acid and UDP-N-acetylglucosamine behaved as partial agonists by blocking UDP-glucose mediated inhibition of forskolin-induced cAMP accumulation. Treatment of neutrophils with pertussis toxin (G(i/o) blocker) abolished the inhibitory effects of UDP-glucose on forskolin-stimulated cAMP accumulation. UDP-glucose (100 microM) also induced a modest increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, whereas the other sugar nucleotides had no effect on ERK1/2 activation. Finally, UDP-glucose and related sugar nucleotides had no significant effect on N-formyl-methionyl-leucyl-phenylalanine-induced elastase release from neutrophils. In summary, although we have shown that the P2Y(14) receptor is functionally expressed in human neutrophils (coupling to inhibition of forskolin-induced cAMP and ERK1/2 activation) it does not modulate neutrophil degranulation (assessed by monitoring elastase release). Clearly further studies are required in order to establish the functional role of the P2Y(14) receptor expressed in human neutrophils.
Collapse
Affiliation(s)
- Michelle Scrivens
- School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | | |
Collapse
|
41
|
Geary C, Akinbi H, Korfhagen T, Fabre JE, Boucher R, Rice W. Increased susceptibility of purinergic receptor-deficient mice to lung infection with Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2005; 289:L890-5. [PMID: 16024720 DOI: 10.1152/ajplung.00428.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purinergic receptors are expressed throughout the respiratory system in diverse cell types. The efficiency of mucus clearance in the airways, the cascade leading to tissue injury, and inflammation are modulated by autocrine/paracrine release of nucleotides and signaling by purinergic receptors. We assessed the role of purinergic receptors in innate host defense of the lung in vivo by infecting mice deficient in P2Y1, P2Y2, or both receptors with intratracheal instillation of Pseudomonas aeruginosa. After P. aeruginosa challenge, all double knockout (P2Y1/P2Y2-/-) mice succumbed within 30 h of challenge, whereas 85% of the wild-type mice survived. Thirty-three percent of wild-type mice survived beyond 96 h. Single knockout mice, P2Y1-/-, or P2Y2-/-, exhibited intermediate survivals. Twenty-four hours following intratracheal instillation of a sublethal dose of P. aeruginosa, the level of total protein in bronchoalveolar lavage fluid was 1.8-fold higher in double knockout than in wild-type mice (P < 0.04). Total cell count in bronchoalveolar lavage fluids at 4 h and levels of IL-6 and macrophage inflammatory protein-2 in lung homogenates at 24 h postchallenge were significantly reduced in P2Y1/P2Y2-/- mice relative to wild-type mice. These findings suggest that purinergic receptors exert a protective role against infection of the lungs by P. aeruginosa by decreasing protein leak and enhancing proinflammatory cytokine response.
Collapse
MESH Headings
- Animals
- Cytokines/metabolism
- Immunity, Innate
- Inflammation Mediators/metabolism
- Mice
- Mice, Knockout
- Pneumonia, Bacterial/etiology
- Pneumonia, Bacterial/genetics
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/physiopathology
- Pseudomonas Infections/etiology
- Pseudomonas Infections/genetics
- Pseudomonas Infections/immunology
- Pseudomonas Infections/physiopathology
- Receptors, Purinergic P2/deficiency
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2Y1
- Receptors, Purinergic P2Y2
- Signal Transduction
Collapse
Affiliation(s)
- Cara Geary
- Division of Neonatology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | |
Collapse
|
42
|
Klepeis VE, Weinger I, Kaczmarek E, Trinkaus-Randall V. P2Y receptors play a critical role in epithelial cell communication and migration. J Cell Biochem 2005; 93:1115-33. [PMID: 15449317 DOI: 10.1002/jcb.20258] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cellular injury induces a complex series of events that involves Ca2+ signaling, cell communication, and migration. One of the first responses following mechanical injury is the propagation of a Ca2+ wave (Klepeis et al. [2001] J Cell Sci 114(Pt 23):4185-4195). The wave is generated by the extracellular release of ATP, which also induces phosphorylation of ERK (Yang et al. [2004] J Cell Biochem 91(5):938-950). ATP and other nucleotides, which bind to and activate specific purinergic receptors were used to mimic injury. Our goal was to determine which of the P2Y purinergic receptors are expressed and stimulated in corneal epithelial cells and which signaling pathways are activated leading to changes in cell migration, an event critical for wound closure. In this study, we demonstrated that the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors were present in corneal epithelial cells. A potency profile was determined by Ca2+ imaging for nucleotide agonists as follows: ATP > or = UTP > ADP > or = UDP. In contrast, negligible responses were seen for beta,gamma-meATP, a general P2X receptor agonist and adenosine, a P1 receptor agonist. Homologous desensitization of the Ca2+ response was observed for the four nucleotides. However, P2Y receptor internalization and degradation was not detected following stimulation with ATP, which is in contrast to EGFR internalization observed in response to EGF. ATP induced cell migration was comparable to that of EGF and was maximal at 1 microM. Cells exposed to ATP, UTP, ADP, and UDP demonstrated a rapid twofold increase in phosphorylation of paxillin at Y31 and Y118, however, there was no activation elicited by beta,gamma-meATP or adenosine. Additional studies demonstrated that wound closure was inhibited by reactive blue 2. These results indicate that P2Y receptors play a critical role in the injury repair process.
Collapse
Affiliation(s)
- Veronica E Klepeis
- Department of Pathology, Boston University School of Medicine, Boston, MA, 02118
| | | | | | | |
Collapse
|
43
|
Paredes-Gamero EJ, França JP, Moraes AAFS, Aguilar MO, Oshiro ME, Ferreira AT. Problems caused by high concentration of ATP on activation of the P2X7 receptor in bone marrow cells loaded with the Ca2+ fluorophore fura-2. J Fluoresc 2005; 14:711-22. [PMID: 15649023 DOI: 10.1023/b:jofl.0000047221.51493.e3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fura-2 is one of the most used fluorophore for measuring intracellular calcium concentration ([Ca2+]i). In mouse bone marrow cell suspensions ATP produces a biphasic effect: till 1 mM, ATP produces increases in [Ca2+]i; from 1 mM on an increase is observed, that is followed by the decrease in the 340/380 nm ratio (R340/380). At high ATP (4 mM) concentration fura-2 leaked from loaded bone marrow cell suspensions. We observed that ATP decreases fluorescence in the absorption and excitation spectra of fura-2, consequently the emitted one is decreased including the isobestic point (360 nm). ATP analogs: BzATP, ATPyS and UTP, but not alphabetaATP, ADP or AMP, promote decrease of fluorescence in the isobestic point of fura-2. The physical/chemical process that reduces the absorption and excitation of fura-2 by ATP is unknown. The P2X7 inhibitors, Mg2+ (5 mM), OxATP (300 microM) and Brilliant Blue (100 nM), blocked the efflux of fura-2 and ATP-induced R340/380 decrease. The J774 cell line and mononuclear cells with a higher expression of P2X7 receptors show the same decrease in R340/380 as that induced by ATP. In the HL-60 cell line, myeloid cells and erythroblasts extracted from bone marrow, such effect does not occur. It is concluded that the use of the fluorescent Ca2+ indicator fura-2 does not allow the correct measurement of [Ca2+]i in these cells in the presence of a higher concentration of ATP which activated the P2X7 receptor.
Collapse
Affiliation(s)
- E J Paredes-Gamero
- Department of Biophysics, Federal University of São Paulo, Caixa Postal 20372, São Paulo 04034-060, Brazil.
| | | | | | | | | | | |
Collapse
|
44
|
White JA, Blackmore PF, Schoenbach KH, Beebe SJ. Stimulation of Capacitative Calcium Entry in HL-60 Cells by Nanosecond Pulsed Electric Fields. J Biol Chem 2004; 279:22964-72. [PMID: 15026420 DOI: 10.1074/jbc.m311135200] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nanosecond pulsed electric fields (nsPEFs) are hypothesized to affect intracellular structures in living cells providing a new means to modulate cell signal transduction mechanisms. The effects of nsPEFs on the release of internal calcium and activation of calcium influx in HL-60 cells were investigated by using real time fluorescent microscopy with Fluo-3 and fluorometry with Fura-2. nsPEFs induced an increase in intracellular calcium levels that was seen in all cells. With pulses of 60 ns duration and electric fields between 4 and 15 kV/cm, intracellular calcium increased 200-700 nM, respectively, above basal levels (approximately 100 nM), while the uptake of propidium iodide was absent. This suggests that increases in intracellular calcium were not because of plasma membrane electroporation. nsPEF and the purinergic agonist UTP induced calcium mobilization in the presence and absence of extracellular calcium with similar kinetics and appeared to target the same inositol 1,4,5-trisphosphate- and thapsigargin-sensitive calcium pools in the endoplasmic reticulum. For cells exposed to either nsPEF or UTP in the absence of extracellular calcium, there was an electric field-dependent or UTP dose-dependent increase in capacitative calcium entry when calcium was added to the extracellular media. These findings suggest that nsPEFs, like ligand-mediated responses, release calcium from similar internal calcium pools and thus activate plasma membrane calcium influx channels or capacitative calcium entry.
Collapse
Affiliation(s)
- Jody A White
- Biomedical Sciences Program, Old Dominion University and Eastern Virginia Medical School, Norfolk, Virginia, USA
| | | | | | | |
Collapse
|
45
|
Meshki J, Tuluc F, Bredetean O, Ding Z, Kunapuli SP. Molecular mechanism of nucleotide-induced primary granule release in human neutrophils: role for the P2Y2 receptor. Am J Physiol Cell Physiol 2003; 286:C264-71. [PMID: 14613890 DOI: 10.1152/ajpcell.00287.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotides are released during vascular injury from activated platelets and broken cells, which could stimulate human neutrophils. In this study, we characterized the P2Y receptors and investigated the functional effects of extracellular nucleotides on human neutrophils. Pharmacological characterization using selective agonists and pertussis toxin revealed that human neutrophils express only functional P2Y2 receptors. However, P2Y2 receptor agonists ATP or uridine triphosphate (UTP) caused intracellular Ca2+ increases in isolated human neutrophils with an EC50 of 1 microM but failed to cause release of primary granules from human neutrophils. ATP and UTP were equally potent in causing elastase release from human neutrophils in the presence of exogenous soluble fibrinogen, whereas ADP and UDP were without effect. We investigated whether nucleotides depend on generated arachidonic acid metabolites to cause degranulation. However, phenidone and MK-886, inhibitors of the 5-lipoxygenase pathway, failed to block nucleotide-induced intracellular calcium mobilization and elastase release. ATP and UTP caused activation of p38 MAPK and ERK1/2 in human neutrophils. In addition, the inhibitors of the MAPK pathway, SB-203580 and U-0126, inhibited nucleotide-induced elastase release. We conclude that fibrinogen is required for nucleotide-induced primary granule release from human neutrophils through the P2Y2 receptor without a role for arachidonic acid metabolites. Both ERK1/2 and p38 MAPK play an important role in nucleotide-induced primary granule release from human neutrophils.
Collapse
Affiliation(s)
- John Meshki
- Department of Physiology, Temple University Medical School, 3420 N. Broad St., Philadelphia, PA, 19140, USA
| | | | | | | | | |
Collapse
|
46
|
Rich PB, Douillet CD, Mahler SA, Husain SA, Boucher RC. Adenosine triphosphate is released during injurious mechanical ventilation and contributes to lung edema. THE JOURNAL OF TRAUMA 2003; 55:290-7. [PMID: 12913640 DOI: 10.1097/01.ta.0000078882.11919.af] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Extracellular nucleotides mediate many cellular functions and are released in response to mechanical stress in vitro. It is unknown whether adenosine triphosphate (ATP) is released in vivo during mechanical ventilation (MV). We hypothesized that stress from high-pressure MV would increase airway ATP, contributing to MV-associated lung edema. METHODS Rats were randomized to nonventilated control (n = 6) or 30 minutes of MV with low (15 cm H(2)0, n = 7) or high (40 cm H(2)0, n = 6) pressure. Additional groups received intratracheal ATP (n = 7) or saline (n = 7) before low-pressure MV. RESULTS Low-pressure MV did not affect lung edema or bronchoalveolar lavage (BAL) ATP levels. In contrast, high-pressure MV significantly increased BAL ATP and produced alveolar edema; lactate dehydrogenase was unchanged. Intratracheal ATP administration significantly increased lung water during low-pressure MV. CONCLUSION High-pressure MV increases BAL ATP concentration without altering lactate dehydrogenase, suggesting that release is not from cell lysis. Intratracheal ATP increases lung water, implicating nucleotides in MV-associated lung edema.
Collapse
Affiliation(s)
- Preston B Rich
- Department of Surgery, Univeristy of North Carolina School of Medicine, Chapel Hill, 27599-7228, USA.
| | | | | | | | | |
Collapse
|
47
|
Sak K, Boeynaems JM, Everaus H. Involvement of P2Y receptors in the differentiation of haematopoietic cells. J Leukoc Biol 2003; 73:442-7. [PMID: 12660218 DOI: 10.1189/jlb.1102561] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The effects of extracellular nucleotides are mediated by multiple P2X ionotropic receptors and G protein-coupled P2Y receptors. These receptors are ubiquitous, but few physiological roles have been firmly identified. In this review article, we present a survey of the functional expression of P2Y receptors in the different haematopoietic lineages by analyzing the selectivity of these cells for the various adenine and uracil nucleotides as well as the second messenger signaling pathways involved. The pharmacological profiles of metabotropic nucleotide receptors are different among myeloid, megakaryoid, erythroid, and lymphoid cells and change during differentiation. A role of P2Y receptors in the differentiation and maturation of blood cells has been proposed: In particular the P2Y(11)receptor seems to be involved in the granulocytic differentiation of promyelocytes and in the maturation of monocyte-derived dendritic cells. It is suggested that the role of P2Y receptors in the maturation of blood cells may be more important than believed so far.
Collapse
Affiliation(s)
- Katrin Sak
- Hematology-Oncology Clinic, University of Tartu, Estonia.
| | | | | |
Collapse
|
48
|
Guile SD, Ince F, Ingall AH, Kindon ND, Meghani P, Mortimore MP. The medicinal chemistry of the P2 receptor family. PROGRESS IN MEDICINAL CHEMISTRY 2002; 38:115-87. [PMID: 11774794 DOI: 10.1016/s0079-6468(08)70093-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- S D Guile
- Department of Medicinal Chemistry, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire, LE11 5RH, UK
| | | | | | | | | | | |
Collapse
|
49
|
Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR. Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1521:107-19. [PMID: 11690642 DOI: 10.1016/s0167-4781(01)00291-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diverse biological actions of extracellular nucleotides in tissues and cells are mediated by two distinct classes of P2 receptor, P2X and P2Y. The G protein-coupled P2Y receptors comprise at least six mammalian subtypes (P2Y(1,2,4,6,11,12)), all of which have been cloned from human tissues, as well as other species. The P2Y receptor subtypes differ in their pharmacological selectivity for various adenosine and uridine nucleotides, which overlap in some cases. Data concerning the mRNA expression patterns of five P2Y receptors (P2Y(1,2,4,6,11)) in different human tissues and cells are currently quite limited, while P2Y mRNA distribution in the human brain has not previously been studied. In this study, we have addressed this deficiency in receptor expression data by using a quantitative reverse transcription-polymerase chain reaction approach to measure the precise mRNA expression pattern of each P2Y receptor subtype in a number of human peripheral tissues and brain regions, from multiple individuals, as well as numerous human cell lines and primary cells. All five P2Y receptors exhibited widespread yet subtype-selective mRNA expression profiles throughout the human tissues, brain regions and cells used. Our extensive expression data indicate the many potentially important roles of P2Y receptors throughout the human body, and will help in elucidating the physiological function of each receptor subtype in a wide variety of human systems.
Collapse
Affiliation(s)
- D J Moore
- Neurobiology Programme, The Babraham Institute, Cambridege, UK.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chaulet H, Desgranges C, Renault MA, Dupuch F, Ezan G, Peiretti F, Loirand G, Pacaud P, Gadeau AP. Extracellular nucleotides induce arterial smooth muscle cell migration via osteopontin. Circ Res 2001; 89:772-8. [PMID: 11679406 DOI: 10.1161/hh2101.098617] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Migration and proliferation of arterial smooth muscle cells (SMCs) play a prominent role in the development of atherosclerotic plaques and restenosis lesions. Most of the growth-regulatory molecules potentially involved in these pathological conditions also demonstrate chemotactic properties. Extracellular purine and pyrimidine nucleotides have been shown to induce cell cycle progression and to elicit growth of cultured vascular SMCs. Moreover, the P2Y(2) ATP/UTP receptor was overexpressed in intimal thickening, suggesting a role of these nucleotides in vascular remodeling. Using the Transwell system migration assay, we demonstrate that extracellular ATP, UTP, and UDP exhibit a concentration-dependent chemotactic effect on cultured rat aortic SMCs. UTP, the most powerful nucleotide inducer of migration, elicited significant responses from 10 nmol/L. In parallel, UTP increased osteopontin expression dose-dependently. The blockade of osteopontin or its integrin receptors alpha(v)beta(3)/beta(5) by specific antibodies or antagonists inhibited UTP-induced migration. Moreover, the blockade of ERK-1/ERK-2 MAP kinase or rho protein pathways led to the inhibition of both UTP-induced osteopontin increase and migration, demonstrating the central role of osteopontin in this process. Taken together, these results suggest that extracellular nucleotides, and particularly UTP, can induce arterial SMC migration via the action of osteopontin.
Collapse
MESH Headings
- Adenosine Diphosphate/pharmacology
- Adenosine Triphosphate/pharmacology
- Animals
- Aorta
- Calcium/metabolism
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Diffusion Chambers, Culture
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Extracellular Space/metabolism
- Intracellular Signaling Peptides and Proteins
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nucleotides/pharmacology
- Oligopeptides/pharmacology
- Osteopontin
- Phosphorylation/drug effects
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Rats
- Rats, Wistar
- Sialoglycoproteins/metabolism
- Uridine Diphosphate/pharmacology
- Uridine Triphosphate/pharmacology
- rho-Associated Kinases
- rhoA GTP-Binding Protein/metabolism
Collapse
|