1
|
Wang Z, Huang W, Liu Z, Zeng J, He Z, Shu L. The neonicotinoid insecticide imidacloprid has unexpected effects on the growth and development of soil amoebae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161884. [PMID: 36716868 DOI: 10.1016/j.scitotenv.2023.161884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Neonicotinoid pesticides are the most widely used insecticides worldwide and have become a global environmental issue. Previous studies have shown that imidacloprid, the most used neonicotinoid, can negatively affect a wide range of organisms, including non-target insects, fish, invertebrates, and mammals. Imidacloprid can also accumulate and persist in soils, posing threats to the terrestrial ecosystem. However, we know little about one ecologically important group of organisms, the single-celled soil protists. In this study, we used a soil amoeba, Dictyostelium discoideum, to test whether and how imidacloprid affects the growth and development of soil amoebae. We provide the first empirical evidence that environmental concentrations of imidacloprid negatively impact the fitness and development of soil amoebae. In addition, the adverse effects did not show a dose-response relationship with increased imidacloprid concentrations, where no significant difference was observed among the treatment groups. Further transcriptome analyses showed that imidacloprid affected amoeba's key DEGs related to phagocytosis, cell division, morphogenesis, and cytochrome P450. Moreover, soil amoebae show both conserved and novel transcriptional responses to imidacloprid. In conclusion, this study has expanded the non-target list of imidacloprid from animals and plants to single-celled protists, and we believe the impact of neonicotinoid pesticides on the microbiome is significantly underestimated and deserves more studies.
Collapse
Affiliation(s)
- Zihe Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiwei Liu
- School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Jiaxiong Zeng
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
The chilling of adenylyl cyclase 9 and its translational potential. Cell Signal 2020; 70:109589. [PMID: 32105777 DOI: 10.1016/j.cellsig.2020.109589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/26/2022]
Abstract
A recent break-through paper has revealed for the first time the high-resolution, three-dimensional structure of a mammalian trans-membrane adenylyl cyclase (tmAC) obtained by cryo-electronmicroscopy (cryo-EM). Reporting the structure of adenylyl cyclase 9 (AC9) in complex with activated Gsα, the cryo-EM study revealed that AC9 has three functionally interlinked, yet structurally distinct domains. The array of the twelve transmembrane helices is connected to the cytosolic catalytic core by two helical segments that are stabilized through the formation of a parallel coiled-coil. Surprisingly, in the presence of Gsα, the isoform-specific carboxyl-terminal tail of AC9 occludes the forskolin- as well as the active substrate-sites, resulting in marked autoinhibition of the enzyme. As AC9 has the lowest primary sequence homology with the eight further mammalian tmAC paralogues, it appears to be the best candidate for selective pharmacologic targeting. This is now closer to reality as the structural insight provided by the cryo-EM study indicates that all of the three structural domains are potential targets for bioactive agents. The present paper summarizes for molecular physiologists and pharmacologists what is known about the biological role of AC9, considers the potential modes of physiologic regulation, as well as pharmacologic targeting on the basis of the high-resolution cryo-EM structure. The translational potential of AC9 is considered upon highlighting the current state of genome-wide association screens, and the corresponding experimental evidence. Overall, whilst the high- resolution structure presents unique opportunities for the full understanding of the control of AC9, the data on the biological role of the enzyme and its translational potential are far from complete, and require extensive further study.
Collapse
|
3
|
Kriebel PW, Majumdar R, Jenkins LM, Senoo H, Wang W, Ammu S, Chen S, Narayan K, Iijima M, Parent CA. Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J Cell Biol 2018; 217:2891-2910. [PMID: 29884750 PMCID: PMC6080930 DOI: 10.1083/jcb.201710170] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/14/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023] Open
Abstract
Chemotactic signals are relayed to neighboring cells through the secretion of additional chemoattractants. We previously showed in Dictyostelium discoideum that the adenylyl cyclase A, which synthesizes the chemoattractant cyclic adenosine monophosphate (cAMP), is present in the intraluminal vesicles of multivesicular bodies (MVBs) that coalesce at the back of cells. Using ultrastructural reconstructions, we now show that ACA-containing MVBs release their contents to attract neighboring cells. We show that the released vesicles are capable of directing migration and streaming and are central to chemotactic signal relay. We demonstrate that the released vesicles not only contain cAMP but also can actively synthesize and release cAMP to promote chemotaxis. Through proteomic, pharmacological, and genetic approaches, we determined that the vesicular cAMP is released via the ABCC8 transporter. Together, our findings show that extracellular vesicles released by Ddiscoideum cells are functional entities that mediate signal relay during chemotaxis and streaming.
Collapse
Affiliation(s)
- Paul W Kriebel
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hiroshi Senoo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Weiye Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sonia Ammu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Song Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Institute for Physical Science and Technology, University of Maryland, College Park, MD
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Institute for Physical Science and Technology, University of Maryland, College Park, MD
| |
Collapse
|
4
|
Wang W, Chen S, Das S, Losert W, Parent CA. Adenylyl cyclase A mRNA localized at the back of cells is actively translated in live chemotaxing Dictyostelium. J Cell Sci 2018; 131:jcs.216176. [PMID: 29618632 DOI: 10.1242/jcs.216176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum cells transport adenylyl cyclase A (ACA)-containing vesicles to the back of polarized cells to relay exogenous cAMP signals during chemotaxis. Fluorescence in situ hybridization (FISH) experiments showed that ACA mRNA is also asymmetrically distributed at the back of polarized cells. By using the MS2 bacteriophage system, we now visualize the distribution of ACA mRNA in live chemotaxing cells. We found that the ACA mRNA localization is not dependent on the translation of the protein product and requires multiple cis-acting elements within the ACA-coding sequence. We show that ACA mRNA is associated with actively translating ribosomes and is transported along microtubules towards the back of cells. By monitoring the recovery of ACA-YFP after photobleaching, we observed that local translation of ACA-YFP occurs at the back of cells. These data represent a novel functional role for localized translation in the relay of chemotactic signals during chemotaxis.
Collapse
Affiliation(s)
- Weiye Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Song Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.,Department of Pharmacology, Michigan Medicine, Ann Arbor, MI 48109, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Satarupa Das
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA .,Department of Pharmacology, Michigan Medicine, Ann Arbor, MI 48109, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Aufderheide KJ, Janetopoulos C. Migration of Dictyostelium discoideum to the Chemoattractant Folic Acid. Methods Mol Biol 2017; 1407:25-39. [PMID: 27271892 DOI: 10.1007/978-1-4939-3480-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dictyostelium discoideum can be grown axenically in a cultured media or in the presence of a natural food source, such as the bacterium Klebsiella aerogenes (KA). Here we describe the advantages and methods for growing D. discoideum on a bacterial lawn for several processes studied using this model system. When grown on a bacterial lawn, D. discoideum show positive chemotaxis towards folic acid (FA). While these vegetative cells are highly unpolarized, it has been shown that the signaling and cytoskeletal molecules regulating the directed migration of these cells are homologous to those seen in the motility of polarized cells in response to the chemoattractant cyclic adenosine monophosphate (cAMP). Growing D. discoideum on KA stimulates chemotactic responsiveness to FA. A major advantage of performing FA-mediated chemotaxis is that it does not require expression of the cAMP developmental program and therefore has the potential to identify mutants that are purely unresponsive to chemoattractant gradients. The cAMP-mediated chemotaxis can appear to fail when cells are developmentally delayed or do not up-regulate genes needed for cAMP-mediated migration. In addition to providing robust chemotaxis to FA, cells grown on bacterial lawns are highly resistant to light damage during fluorescence microscopy. This resistance to light damage could be exploited to better understand other biological processes such as phagocytosis or cytokinesis. The cell cycle is also shortened when cells are grown in the presence of KA, so the chances of seeing a mitotic event increases.
Collapse
Affiliation(s)
| | - Chris Janetopoulos
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Das S, Parker JM, Guven C, Wang W, Kriebel PW, Losert W, Larson DR, Parent CA. Adenylyl cyclase mRNA localizes to the posterior of polarized DICTYOSTELIUM cells during chemotaxis. BMC Cell Biol 2017; 18:23. [PMID: 28545392 PMCID: PMC5445419 DOI: 10.1186/s12860-017-0139-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/09/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In Dictyostelium discoideum, vesicular transport of the adenylyl cyclase A (ACA) to the posterior of polarized cells is essential to relay exogenous 3',5'-cyclic adenosine monophosphate (cAMP) signals during chemotaxis and for the collective migration of cells in head-to-tail arrangements called streams. RESULTS Using fluorescence in situ hybridization (FISH), we discovered that the ACA mRNA is asymmetrically distributed at the posterior of polarized cells. Using both standard estimators and Monte Carlo simulation methods, we found that the ACA mRNA enrichment depends on the position of the cell within a stream, with the posterior localization of ACA mRNA being strongest for cells at the end of a stream. By monitoring the recovery of ACA-YFP after cycloheximide (CHX) treatment, we observed that ACA mRNA and newly synthesized ACA-YFP first emerge as fluorescent punctae that later accumulate to the posterior of cells. We also found that the ACA mRNA localization requires 3' ACA cis-acting elements. CONCLUSIONS Together, our findings suggest that the asymmetric distribution of ACA mRNA allows the local translation and accumulation of ACA protein at the posterior of cells. These data represent a novel functional role for localized translation in the relay of chemotactic signal during chemotaxis.
Collapse
Affiliation(s)
- Satarupa Das
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, 37 Convent Drive, Bldg.37/Rm2066, NCI, NIH, Bethesda, MD, 20892-4256, USA.,Institute for Physical Science and Technology, Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | - Joshua M Parker
- Institute for Physical Science and Technology, Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | - Can Guven
- Institute for Physical Science and Technology, Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | - Weiye Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, 37 Convent Drive, Bldg.37/Rm2066, NCI, NIH, Bethesda, MD, 20892-4256, USA
| | - Paul W Kriebel
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, 37 Convent Drive, Bldg.37/Rm2066, NCI, NIH, Bethesda, MD, 20892-4256, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, 37 Convent Drive, Bldg.37/Rm2066, NCI, NIH, Bethesda, MD, 20892-4256, USA. .,Institute for Physical Science and Technology, Department of Physics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
7
|
Blum A, Benfield AH, Stiller J, Kazan K, Batley J, Gardiner DM. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production. Fungal Genet Biol 2016; 90:1-11. [PMID: 26932301 DOI: 10.1016/j.fgb.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/02/2016] [Accepted: 02/26/2016] [Indexed: 01/21/2023]
Abstract
Fusarium head blight and crown rot, caused by the fungal plant pathogen Fusarium graminearum, impose a major threat to global wheat production. During the infection, plants are contaminated with mycotoxins such as deoxynivalenol (DON), which can be toxic for humans and animals. In addition, DON is a major virulence factor during wheat infection. However, it is not fully understood how DON production is regulated in F. graminearum. In order to identify regulators of DON production, a high-throughput mutant screen using Fluorescence Activated Cell Sorting (FACS) of a mutagenised TRI5-GFP reporter strain was established and a mutant over-producing DON under repressive conditions identified. A gain-of-function mutation in the F. graminearum adenylyl cyclase (FAC1), which is a known positive regulator of DON production, was identified as the cause of this phenotype through genome sequencing and segregation analysis. Our results show that the high-throughput mutant screening procedure developed here can be applied for identification of fungal proteins involved in diverse processes.
Collapse
Affiliation(s)
- Ailisa Blum
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia; School of Agriculture & Food Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - Aurélie H Benfield
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia; Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| | - Jacqueline Batley
- School of Agriculture & Food Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Donald M Gardiner
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
8
|
Kim JS, Seo JH, Kang SO. Glutathione initiates the development of Dictyostelium discoideum through the regulation of YakA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:664-74. [PMID: 24373846 DOI: 10.1016/j.bbamcr.2013.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/25/2013] [Accepted: 12/16/2013] [Indexed: 01/23/2023]
Abstract
Reduced glutathione (GSH) is an essential metabolite that performs multiple indispensable roles during the development of Dictyostelium. We show here that disruption of the gene (gcsA-) encoding y-glutamylcysteine synthetase, an essential enzyme in GSH biosynthesis, inhibited aggregation, and that this developmental defect was rescued by exogenous GSH, but not by other thiols or antioxidants. In GSH-depleted gcsA- cells, the expression ofa growth-stage-specific gene (cprD) was not inhibited, and we did not detect the expression of genes that encode proteins required for early development (cAMP receptor, carA/cAR1; adenylyl cyclase, acaA/ACA; and the catalytic subunit of protein kinase A, pkaC/PKA-C). The defects in gcsA cells were not restored by cAMP stimulation or by cAR1 expression. Further, the expression of yakA, which initiates development and induces the expression of PKA-C, ACA, and cAR1, was regulated by the intracellular concentration of GSH. Constitutive expression of YakA in gcsA- cells (YakA(OE)/gcsA-) rescued the defects in developmental initiation and the expression of early developmental genes in the absence of GSH. Taken together, these findings suggest that GSH plays an essential role in the transition from growth to development by modulating the expression of the genes encoding YakA as well as components thatact downstream in the YakA signaling pathway.
Collapse
|
9
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
10
|
Srinivasan K, Wright GA, Hames N, Housman M, Roberts A, Aufderheide KJ, Janetopoulos C. Delineating the core regulatory elements crucial for directed cell migration by examining folic-acid-mediated responses. J Cell Sci 2012; 126:221-33. [PMID: 23132928 DOI: 10.1242/jcs.113415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dictyostelium discoideum shows chemotaxis towards folic acid (FA) throughout vegetative growth, and towards cAMP during development. We determined the spatiotemporal localization of cytoskeletal and signaling molecules and investigated the FA-mediated responses in a number of signaling mutants to further our understanding of the core regulatory elements that are crucial for cell migration. Proteins enriched in the pseudopods during chemotaxis also relocalize transiently to the plasma membrane during uniform FA stimulation. In contrast, proteins that are absent from the pseudopods during migration redistribute transiently from the PM to the cytosol when cells are globally stimulated with FA. These chemotactic responses to FA were also examined in cells lacking the GTPases Ras C and G. Although Ras and phosphoinositide 3-kinase activity were significantly decreased in Ras G and Ras C/G nulls, these mutants still migrated towards FA, indicating that other pathways must support FA-mediated chemotaxis. We also examined the spatial movements of PTEN in response to uniform FA and cAMP stimulation in phospholipase C (PLC) null cells. The lack of PLC strongly influences the localization of PTEN in response to FA, but not cAMP. In addition, we compared the gradient-sensing behavior of polarized cells migrating towards cAMP to that of unpolarized cells migrating towards FA. The majority of polarized cells make U-turns when the cAMP gradient is switched from the front of the cell to the rear. Conversely, unpolarized cells immediately extend pseudopods towards the new FA source. We also observed that plasma membrane phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] levels oscillate in unpolarized cells treated with Latrunculin-A, whereas polarized cells had stable plasma membrane PtdIns(3,4,5)P3 responses toward the chemoattractant gradient source. Results were similar for cells that were starved for 4 hours, with a mixture of polarized and unpolarized cells responding to cAMP. Taken together, these findings suggest that similar components control gradient sensing during FA- and cAMP-mediated motility, but the response of polarized cells is more stable, which ultimately helps maintain their directionality.
Collapse
|
11
|
A gain-of-function mutation in adenylate cyclase confers isoflurane resistance in Caenorhabditis elegans. Anesthesiology 2012; 115:1162-71. [PMID: 22024713 DOI: 10.1097/aln.0b013e318239355d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Volatile general anesthetics inhibit neurotransmitter release by a mechanism not fully understood. Genetic evidence in Caenorhabditis elegans has shown that a major mechanism of action of volatile anesthetics acting at clinical concentrations in this animal is presynaptic inhibition of neurotransmission. To define additional components of this presynaptic volatile anesthetic mechanism, C. elegans mutants isolated as phenotypic suppressors of a mutation in syntaxin, an essential component of the neurotransmitter release machinery, were screened for anesthetic sensitivity phenotypes. METHODS Sensitivity to isoflurane concentrations was measured in locomotion assays on adult C. elegans. Sensitivity to the acetylcholinesterase inhibitor aldicarb was used as an assay for the global level of C. elegans acetylcholine release. Comparisons of isoflurane sensitivity (measured by the EC₅₀) were made by simultaneous curve-fitting and F test. RESULTS Among the syntaxin suppressor mutants, js127 was the most isoflurane resistant, with an EC₅₀ more than 3-fold that of wild type. Genetic mapping, sequencing, and transformation phenocopy showed that js127 was an allele of acy-1, which encodes an adenylate cyclase expressed throughout the C. elegans nervous system and in muscle. js127 behaved as a gain-of-function mutation in acy-1 and had increased concentrations of cyclic adenosine monophosphate. Testing of single and double mutants along with selective tissue expression of the js127 mutation revealed that acy-1 acts in neurons within a Gαs-PKA-UNC-13-dependent pathway to regulate behavior and isoflurane sensitivity. CONCLUSIONS Activation of neuronal adenylate cyclase antagonizes isoflurane inhibition of locomotion in C. elegans.
Collapse
|
12
|
Dallon JC, Dalton B, Malani C. Understanding streaming in Dictyostelium discoideum: theory versus experiments. Bull Math Biol 2010; 73:1603-26. [PMID: 20936368 DOI: 10.1007/s11538-010-9583-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 09/06/2010] [Indexed: 11/30/2022]
Abstract
Recent experimental work involving Dictyostelium discoideum seems to contradict several theoretical models. Experiments suggest that localization of the release of the chemoattractant cyclic adenosine monophosphate to the uropod of the cell is important for stream formation during aggregation. Yet several mathematical models are able to reproduce streaming as the cells aggregate without taking into account localization of the chemoattractant. A careful analysis of the experiments and the theory suggests the two major features of the system which are important to stream formation are random cell motion and chemotaxis to regions of higher cell density. Random cell motion acts to reduce streaming, whereas chemotaxis to regions of higher cell density reinforces streaming. With this understanding, the experimental results can be explained in a manner consistent with the theoretical results. In all the experiments, alterations in the two main factors of random motion and chemotaxis to regions of higher cell density, not the localization of the release of the chemoattractant, can explain the results as they relate to streaming. Additionally, a comparison of results from a mathematical model that simulates cells which localize the chemoattractant and cells which do not shows little difference in the streaming patterns.
Collapse
Affiliation(s)
- J C Dallon
- Department of Mathematics, Brigham Young University, Provo, UT 84602-6539, USA.
| | | | | |
Collapse
|
13
|
Kriebel PW, Barr VA, Rericha EC, Zhang G, Parent CA. Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge. ACTA ACUST UNITED AC 2008; 183:949-61. [PMID: 19047467 PMCID: PMC2592838 DOI: 10.1083/jcb.200808105] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemoattractant signaling induces the polarization and directed movement of cells secondary to the activation of multiple effector pathways. In addition, chemotactic signals can be amplified and relayed to proximal cells via the synthesis and secretion of additional chemoattractant. The mechanisms underlying such remarkable features remain ill defined. We show that the asymmetrical distribution of adenylyl cyclase (ACA) at the back of Dictyostelium discoideum cells, an essential determinant of their ability to migrate in a head-to-tail fashion, requires vesicular trafficking. This trafficking results in a local accumulation of ACA-containing intracellular vesicles and involves intact actin, microtubule networks, and de novo protein synthesis. We also show that migrating cells leave behind ACA-containing vesicles, likely secreted as multivesicular bodies and presumably involved in the formation of head-to-tail arrays of migrating cells. We propose that similar compartmentalization and shedding mechanisms exist in mammalian cells during embryogenesis, wound healing, neuron growth, and metastasis.
Collapse
Affiliation(s)
- Paul W Kriebel
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
14
|
Shpakov AO, Pertseva MN. Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:151-282. [DOI: 10.1016/s1937-6448(08)01004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Shpakov AO. Structure-functional organization of adenylyl cyclases of unicellular eukaryotes and molecular mechanisms of their regulation. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Alvarez-Curto E, Weening K, Schaap P. Pharmacological profiling of the Dictyostelium adenylate cyclases ACA, ACB and ACG. Biochem J 2007; 401:309-16. [PMID: 16952277 PMCID: PMC1698679 DOI: 10.1042/bj20060880] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular and secreted cAMPs play crucial roles in controlling cell movement and gene regulation throughout development of the social amoeba Dictyostelium discoideum. cAMP is produced by three structurally distinct ACs (adenylate cyclases), ACA, ACG and ACB, which have distinctive but overlapping patterns of expression and, as concluded from gene disruption studies, seemingly overlapping functions. In addition to gene disruption, acute pharmacological abrogation of protein activity can be a powerful tool to identify the protein's role in the biology of the organism. We analysed the effects of a range of compounds on the activity of ACA, ACB and ACG to identify enzyme-specific modulators. Caffeine, which was previously used to specifically block ACA function, also inhibited cAMP accumulation by ACB and ACG. IPA (2',3'-O-isopropylidene adenosine) specifically inhibits ACA when measured in intact cells, without affecting ACB or ACG. All three enzymes are inhibited by the P-site inhibitor DDA (2',5'-dideoxyadenosine) when assayed in cell lysates, but not in intact cells. Tyrphostin A25 [alpha-cyano-(3,4,5-trihydroxy)cinnamonitrile] and SQ22536 [9-(tetrahydro-2'-furyl)adenine] proved to be effective and specific inhibitors for ACG and ACA respectively. Both compounds acted directly on enzyme activity assayed in cell lysates, but only SQ22536 was also a specific inhibitor when added to intact cells.
Collapse
Affiliation(s)
| | - Karin E. Weening
- School of Life Sciences, University of Dundee, Dundee, Scotland, U.K
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, Scotland, U.K
- To whom correspondence should be addressed, at MSI/WTB/JBC Complex, Dow Street, Dundee DD1 5EH, Scotland, U.K. (email )
| |
Collapse
|
17
|
Yoshimura M, Pearson S, Kadota Y, Gonzalez CE. Identification of ethanol responsive domains of adenylyl cyclase. Alcohol Clin Exp Res 2006; 30:1824-32. [PMID: 17067346 DOI: 10.1111/j.1530-0277.2006.00219.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The activity of adenylyl cyclase (AC) is enhanced by pharmacologically relevant concentrations of ethanol. The enhancing effect of ethanol on AC activity is AC isoform-specific. Therefore, we hypothesized that within a cyclic AMP-generating system, AC is the target of ethanol's action and that ethanol-sensitive AC molecules contain structural elements modulated by ethanol. The structural elements are designated as "ethanol responsive domains." METHODS By using a series of chimeric mutants, we searched regions of the AC molecule that are important for the ethanol effect. These chimeric mutants were derived from 3 isoforms of AC: AC7 (type 7), the most ethanol responsive isoform; AC3 (type 3), an isoform that is far less responsive to ethanol; and AC2 (type 2), an isoform that is homologous to AC7 but less responsive to ethanol. RESULTS We identified 2 discrete regions of the AC molecule that are important for the enhancement of AC activity by ethanol. The first is the N-terminal 28-amino-acid (aa) region of the C(1a) domain. The second is the C-terminal region ( approximately 140 aa) of the AC molecule. Sequence differences in the N-terminal tail, 2 putative transmembrane domains, and the C(1b) domain are not important for ethanol's effect. CONCLUSIONS The current study with mammalian ACs provides a new class of alcohol-responsive protein and possibly a new mechanism of alcohol action on cellular function. The identification of ethanol responsive domains will facilitate the elucidation of the mechanisms by which ethanol enhances the activity of AC.
Collapse
Affiliation(s)
- Masami Yoshimura
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO, USA.
| | | | | | | |
Collapse
|
18
|
Hirose S, Mayanagi T, Pears C, Amagai A, Loomis WF, Maeda Y. Transcriptional switch of the dia1 and impA promoter during the growth/differentiation transition. EUKARYOTIC CELL 2005; 4:1477-82. [PMID: 16087752 PMCID: PMC1214529 DOI: 10.1128/ec.4.8.1477-1482.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When growth stops due to the depletion of nutrients, Dictyostelium cells rapidly turn off vegetative genes and start to express developmental genes. One of the early developmental genes, dia1, is adjacent to a vegetative gene, impA, on chromosome 4. An intergenic region of 654 bp separates the coding regions of these divergently transcribed genes. Constructs carrying the intergenic region expressed a reporter gene (green fluorescent protein gene) that replaced impA in growing cells and a reporter gene that replaced dia1 (DsRed) during development. Deletion of a 112-bp region proximal to the transcriptional start site of impA resulted in complete lack of expression of both reporter genes during growth or development. At the other end of the intergenic region there are two copies of a motif that is also found in the carA regulatory region. Removing one copy of this repeat reduced impA expression twofold. Removing the second copy had no further consequences. Removing the central portion of the intergenic region resulted in high levels of expression of dia1 in growing cells, indicating that this region contains a sequence involved in repression during the vegetative stage. Gel shift experiments showed that a nuclear protein present in growing cells recognizes the sequence GAAGTTCTAATTGATTGAAG found in this region. This DNA binding activity is lost within the first 4 h of development. Different nuclear proteins were found to recognize the repeated sequence proximal to dia1. One of these became prevalent after 4 h of development. Together these regulatory components at least partially account for this aspect of the growth-to-differentiation transition.
Collapse
Affiliation(s)
- Shigenori Hirose
- Cell and Developmental Biology, Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0368, USA
| | | | | | | | | | | |
Collapse
|
19
|
Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM. Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Crit Rev Clin Lab Sci 2004; 40:643-72. [PMID: 14708958 DOI: 10.1080/714037693] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platelet-activating factor (PAF) is a potent proinflammatory phospholipid with diverse pathological and physiological effects. This bioactive phospholipid mediates processes as diverse as wound healing, physiological inflammation, apoptosis, angiogenesis, reproduction and long-term potentiation. Recent progress has demonstrated the participation of MAP kinase signaling pathways as modulators of the two critical enzymes, phospholipase A2 and acetyltransferase, involved in the remodeling pathway of PAF biosynthesis. The unregulated production of structural analogs of PAF by non-specific oxidative reactions has expanded this superfamily of signaling molecules to include "PAF-like" lipids whose mode of action is identical to that of authentic PAF. The action of members of this family is mediated by the PAF receptor, a G protein-coupled membrane-spanning molecule that can engage multiple signaling pathways in various cell types. Inappropriate activation of this signaling pathway is associated with many diseases in which inflammation is thought to be one of the underlying features. Inactivation of all members of the PAF superfamily occurs by a unique class of enzymes, the PAF acetylhydrolases, that have been characterized at the molecular level and that terminate signals initiated by both regulated and unregulated PAF production.
Collapse
Affiliation(s)
- Diana M Stafforini
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, USA.
| | | | | | | |
Collapse
|
20
|
Saran S, Meima ME, Alvarez-Curto E, Weening KE, Rozen DE, Schaap P. cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation and detection. J Muscle Res Cell Motil 2003; 23:793-802. [PMID: 12952077 DOI: 10.1023/a:1024483829878] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
cAMP plays a pivotal role in control of cell movement, differentiation and response to stress in all phases of the Dictyostelium life cycle. The multitudinous functions of cAMP require precise spatial and temporal control of its production, degradation and detection. Many novel proteins have recently been identified that critically modulate the cAMP signal. We focus in this review on the properties and functions of the three adenylyl cyclases and the three cAMP-phosphodiesterases that are present in Dictyostelium, and the network of proteins that regulate the activity of these enzymes. We also briefly discuss the two modes of detection of cAMP.
Collapse
Affiliation(s)
- Shweta Saran
- School of Life Sciences, University of Dundee, MSI/WTB complex, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
We studied the role of the adenylyl cyclase ACA in Dictyostelium discoideum chemotaxis and streaming. In this process, cells orient themselves in a head to tail fashion as they are migrating to form aggregates. We show that cells lacking ACA are capable of moving up a chemoattractant gradient, but are unable to stream. Imaging of ACA-YFP reveals plasma membrane labeling highly enriched at the uropod of polarized cells. This localization requires the actin cytoskeleton but is independent of the regulator CRAC and the effector PKA. A constitutively active mutant of ACA shows dramatically reduced uropod enrichment and has severe streaming defects. We propose that the asymmetric distribution of ACA provides a compartment from which cAMP is secreted to locally act as a chemoattractant, thereby providing a unique mechanism to amplify chemical gradients. This could represent a general mechanism that cells use to amplify chemotactic responses.
Collapse
Affiliation(s)
- Paul W Kriebel
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37/Room 1E24, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
22
|
Parent CA, Borleis J, Devreotes PN. Regulation of adenylyl cyclases by a region outside the minimally functional cytoplasmic domains. J Biol Chem 2002; 277:1354-60. [PMID: 11694527 DOI: 10.1074/jbc.m106430200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved topological structure of G protein-activated adenylyl cyclases seems unnecessary because the soluble cytoplasmic domains retain regulatory and catalytic properties. Yet, we previously isolated a constitutively active mutant of the Dictyostelium discoideum adenylyl cyclase harboring a single point mutation in the region linking the cytoplasmic and membrane domains (Leu-394). We show here that multiple amino acid substitutions at Leu-394 also display constitutive activity. The constitutive activity of these mutants is not dependent on G proteins or cytosolic regulators, although some of the mutants can be activated to higher levels than wild type. Combining a constitutive mutation such as L394T with K482N, a point mutation that renders the enzyme insensitive to regulators, restores an enzyme with wild type properties of low basal activity and the capacity to be activated by G proteins. Thus regions located outside the cytoplasmic loops of adenylyl cyclases are not only important in the acquisition of an activated conformation, they also have impact on other regions within the catalytic core of the enzyme.
Collapse
Affiliation(s)
- Carole A Parent
- Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
23
|
Patel H, Guo K, Parent C, Gross J, Devreotes PN, Weijer CJ. A temperature-sensitive adenylyl cyclase mutant of Dictyostelium. EMBO J 2000; 19:2247-56. [PMID: 10811616 PMCID: PMC384365 DOI: 10.1093/emboj/19.10.2247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dictyostelium development starts with the chemotactic aggregation of up to 10(6) amoebae in response to propagating cAMP waves. cAMP is produced by the aggregation stage adenylyl cyclase (ACA) and cells lacking ACA (aca null) cannot aggregate. Temperature-sensitive mutants of ACA were selected from a population of aca null cells transformed with a library of ACA genes, a major segment of which had been amplified by error-prone PCR. One mutant (tsaca2) that can complement the aggregation null phenotype of aca null cells at 22 degrees C but not at 28 degrees C was characterized in detail. The basal catalytic activity of the enzyme in this mutant was rapidly and reversibly inactivated at 28 degrees C. Using this mutant strain we show that cell movement in aggregates and mounds is organized by propagating waves of cAMP. Synergy experiments between wild-type and tsaca2 cells, shifted to the restrictive temperature at various stages of development, showed that ACA plays an important role in the control of cell sorting and tip formation.
Collapse
Affiliation(s)
- H Patel
- Department of Anatomy and Physiology, University of Dundee, WTB/MSI complex, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
New structures solved in 1997 revealed that the adenylyl cyclase core consists of a pair of catalytic domains arranged in a wreath. Homologous catalytic domains are arranged in diverse adenylyl and guanylyl cyclases as symmetric homodimers or pseudosymmetric heterodimers. The kinship of the adenylyl and guanylyl cyclases has been confirmed by the structure-based interconversion of their nucleotide specificities. Catalysis is activated when two metal-binding aspartate residues on one domain are juxtaposed with a key aspargine-arginine pair on the other. Allosteric activators of mammalian adenylyl cyclase, forskolin and the stimulatory G protein alpha subunit, promote the catalytically optimal juxtaposition of the two domains.
Collapse
Affiliation(s)
- J H Hurley
- Laboratory of Molecular Biology National Institute of Diabetes, Digestive and Kidney Diseases National Institutes of Health Bethesda MD 20892-0580 USA.
| |
Collapse
|
25
|
Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 1998; 95:81-91. [PMID: 9778249 DOI: 10.1016/s0092-8674(00)81784-5] [Citation(s) in RCA: 498] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Directional sensing by eukaryotic cells does not require polarization of chemoattractant receptors. The translocation of the PH domain-containing protein CRAC in D. discoideum to binding sites on the inner face of the plasma membrane reflects activation of the G protein-linked signaling system. Increments in chemoattractant elicit a uniform response around the cell periphery. Yet when cells are exposed to a gradient, the activation occurs selectively at the stimulated edge, even in immobilized cells. We propose that such localized activation, transmitted by the recruitment of cytosolic proteins, may be a general mechanism for gradient sensing by G protein-linked chemotactic systems including those involving chemotactic cytokines in leukocytes.
Collapse
Affiliation(s)
- C A Parent
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
26
|
Cann MJ, Levin LR. Genetic characterization of adenylyl cyclase function. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1998; 32:121-35. [PMID: 9421588 DOI: 10.1016/s1040-7952(98)80008-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M J Cann
- Department of Pharmacology, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
27
|
Milne JL, Kim JY, Devreotes PN. Chemoattractant receptor signaling: G protein-dependent and -independent pathways. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1997; 31:83-104. [PMID: 9344244 DOI: 10.1016/s1040-7952(97)80011-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J L Milne
- Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
28
|
Escalante R, Wessels D, Soll DR, Loomis WF. Chemotaxis to cAMP and slug migration in Dictyostelium both depend on migA, a BTB protein. Mol Biol Cell 1997; 8:1763-75. [PMID: 9307972 PMCID: PMC305735 DOI: 10.1091/mbc.8.9.1763] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chemotaxis in natural aggregation territories and in a chamber with an imposed gradient of cyclic AMP (cAMP) was found to be defective in a mutant strain of Dictyostelium discoideum that forms slugs unable to migrate. This strain was selected from a population of cells mutagenized by random insertion of plasmids facilitated by introduction of restriction enzyme (a method termed restriction enzyme-mediated integration). We picked this strain because it formed small misshapen fruiting bodies. After isolation of portions of the gene as regions flanking the inserted plasmid, we were able to regenerate the original genetic defect in a fresh host and show that it is responsible for the developmental defects. Transformation of this recapitulated mutant strain with a construct carrying the full-length migA gene and its upstream regulatory region rescued the defects. The sequence of the full-length gene revealed that it encodes a novel protein with a BTB domain near the N terminus that may be involved in protein-protein interactions. The migA gene is expressed at low levels in all cells during aggregation and then appears to be restricted to prestalk cells as a consequence of rapid turnover in prespore cells. Although migA- cells have a dramatically reduced chemotactic index to cAMP and an abnormal pattern of aggregation in natural waves of cAMP, they are completely normal in size, shape, and ability to translocate in the absence of any chemotactic signal. They respond behaviorally to the rapid addition of high levels of cAMP in a manner indicative of intact circuitry connecting receptor occupancy to restructuring of the cytoskeleton. Actin polymerization in response to cAMP is also normal in the mutant cells. The defects at both the aggregation and slug stage are cell autonomous. The MigA protein therefore is necessary for efficiently assessing chemical gradients, and its absence results in defective chemotaxis and slug migration.
Collapse
Affiliation(s)
- R Escalante
- Department of Biology, University of California San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
29
|
Yan SZ, Huang ZH, Shaw RS, Tang WJ. The conserved asparagine and arginine are essential for catalysis of mammalian adenylyl cyclase. J Biol Chem 1997; 272:12342-9. [PMID: 9139678 DOI: 10.1074/jbc.272.19.12342] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian adenylyl cyclases have two homologous cytoplasmic domains (C1 and C2), and both domains are required for the high enzymatic activity. Mutational and genetic analyses of type I and soluble adenylyl cyclases suggest that the C2 domain is catalytically active and the C1 domain is not; the role of the C1 domain is to promote the catalytic activity of the C2 domain. Two amino acid residues, Asn-1025 and Arg-1029 of type II adenylyl cyclase, are conserved among the C2 domains, but not among the C1 domains, of adenylyl cyclases with 12 putative transmembrane helices. Mutations at each amino acid residue alone result in a 30-100-fold reduction in Kcat of adenylyl cyclase. However, the same mutations do not affect the Km for ATP, the half-maximal concentration (EC50) for the C2 domain of type II adenylyl cyclase to associate with the C1 domain of type I adenylyl cyclase and achieve maximal enzyme activity, or the EC50 for forskolin to maximally activate enzyme activity with or without Gsalpha. This indicates that the mutations at these two residues do not cause gross structural alteration. Thus, these two conserved amino acid residues appear to be crucial for catalysis, and their absence from the C1 domains may account for its lack of catalytic activity. Mutations at both amino acid residues together result in a 3,000-fold reduction in Kcat of adenylyl cyclase, suggesting that these two residues have additive effects in catalysis. A second site suppressor of the Asn-1025 to Ser mutant protein has been isolated. This suppressor has 17-fold higher activity than the mutant and has a Pro-1015 to Ser mutation.
Collapse
Affiliation(s)
- S Z Yan
- Department of Pharmacological and Physiological Sciences, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|