1
|
Assal RA, Abd El-Bary RBED, Youness RA, Abdelrahman MM, Zahran H, Hosny KA, Esmat G, Breuhahn K, El-Ekiaby N, Fawzy IO, Abdelaziz AI. OncomiR-181a promotes carcinogenesis by repressing the extracellular matrix proteoglycan decorin in hepatocellular carcinoma. BMC Gastroenterol 2024; 24:337. [PMID: 39350070 PMCID: PMC11443891 DOI: 10.1186/s12876-024-03413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Proteoglycans are important tumor microenvironment extracellular matrix components. The regulation of key proteoglycans, such as decorin (DCN), by miRNAs has drawn attention since they have surfaced as novel therapeutic targets in cancer. Accordingly, this study aimed at identifying the impact of miR-181a in liver cancer and its regulatory role on the extracellular matrix proteoglycan, DCN, and hence on downstream oncogenes and tumor suppressor genes. RESULTS DCN was under-expressed in 22 cirrhotic and HCC liver tissues compared to that in 11 healthy tissues of liver transplantation donors. Conversely, miR-181a was over-expressed in HCC liver tissues compared to that in healthy liver tissues. In silico analysis predicted that DCN 3'UTR harbors two high-score oncomiR-181a binding regions. This was validated by pmiRGLO luciferase reporter assay. Ectopic miR-181a expression into HuH-7 cells repressed the transcript and protein levels of DCN as assessed fluorometrically and by western blotting. DCN siRNAs showed similar results to miR-181a, where they both enhanced the cellular viability, proliferation, and clonogenicity. They also increased Myc and E2F and decreased p53 and Rb signaling as assessed using reporter vectors harboring p53, Rb, Myc, and E2F response elements. Our findings demonstrated that miR-181a directly downregulated the expression of its direct downstream target DCN, which in turn affected downstream targets related to cellular proliferation and apoptosis. CONCLUSION To our knowledge, this is the first study to unveil the direct targeting of DCN by oncomiR-181a. We also highlighted that miR-181a affects targets related to cellular proliferation in HCC which may be partly mediated through inhibition of DCN transcription. Thus, miR-181a could be a promising biomarker for the early detection and monitoring of liver cancer progression. This would pave the way for the future targeting of the oncomiR-181a as a therapeutic approach in liver cancer, where miR-181a-based therapy approach could be potentially combined with chemotherapy and immunotherapy for the management of liver cancer.
Collapse
Affiliation(s)
- Reem Amr Assal
- Department of Pharmacology and Toxicology, Heliopolis University for Sustainable Development (HU), Cairo, Egypt
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), Cairo, Egypt
| | | | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, Egypt
| | | | - Hala Zahran
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karim Adel Hosny
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Cairo University, Cairo, Egypt
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | | | | |
Collapse
|
2
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
3
|
Mondal DK, Xie C, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555187. [PMID: 37693608 PMCID: PMC10491239 DOI: 10.1101/2023.08.28.555187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a pro-survival program and to sustain a pro-angiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we discovered that decorin downregulated a cluster of tumor-associated genes involved in lymphatic vessel development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of lymphatic vessels, were markedly suppressed at both the mRNA and protein levels and this suppression correlated with a significant reduction in tumor lymphatic vessels. We further discovered that soluble decorin, but not its homologous proteoglycan biglycan, inhibited lymphatic vessel sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with VEGFR3, the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we discovered that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a new biological factor with anti-lymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
|
4
|
Sánchez-Porras D, Varas J, Godoy-Guzmán C, Bermejo-Casares F, San Martín S, Carriel V. Histochemical and Immunohistochemical Methods for the Identification of Proteoglycans. Methods Mol Biol 2023; 2566:85-98. [PMID: 36152244 DOI: 10.1007/978-1-0716-2675-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Proteoglycans (PGs) are non-fibrillar extracellular matrix (ECM) molecules composed by a protein core and glycosaminoglycan (GAG) chains. These molecules are present in all tissues playing essential structural, biomechanical, and biological roles. In addition, PGs can regulate cell behavior due to their versatility and ability to interact with other ECM molecules, growth factors, and cells. The distribution of PGs can be evaluated by histochemical and immunohistochemical methods. Histochemical methods aimed to provide a useful overview of the presence and distribution pattern of certain groups of PGs. In contrast, immunohistochemical procedures aimed the identification of highly specific target molecules. In this chapter we described Alcian Blue, Safranin O, and Toluidine Blue histochemical methods for the screening of PGs in tissue sections. Finally, we describe the immunohistochemical procedures for specific identification of PGs (decorin, biglycan, and versican) in formaldehyde-fixed and paraffin-embedded tissues.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Juan Varas
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos Godoy-Guzmán
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - Fabiola Bermejo-Casares
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Sebastián San Martín
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Víctor Carriel
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain.
| |
Collapse
|
5
|
Neill T, Xie C, Iozzo RV. Decorin evokes reversible mitochondrial depolarization in carcinoma and vascular endothelial cells. Am J Physiol Cell Physiol 2022; 323:C1355-C1373. [PMID: 36036446 PMCID: PMC9602711 DOI: 10.1152/ajpcell.00325.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Decorin, a small leucine-rich proteoglycan with multiple biological functions, is known to evoke autophagy and mitophagy in both endothelial and cancer cells. Here, we investigated the effects of soluble decorin on mitochondrial homeostasis using live cell imaging and ex vivo angiogenic assays. We discovered that decorin triggers mitochondrial depolarization in triple-negative breast carcinoma, HeLa, and endothelial cells. This bioactivity was mediated by the protein core in a time- and dose-dependent manner and was specific for decorin insofar as biglycan, the closest homolog, failed to trigger depolarization. Mechanistically, we found that the bioactivity of decorin to promote depolarization required the MET receptor and its tyrosine kinase. Moreover, two mitochondrial interacting proteins, mitostatin and mitofusin 2, were essential for downstream decorin effects. Finally, we found that decorin relied on the canonical mitochondrial permeability transition pore to trigger tumor cell mitochondrial depolarization. Collectively, our study implicates decorin as a soluble outside-in regulator of mitochondrial dynamics.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Xie C, Mondal DK, Ulas M, Neill T, Iozzo RV. Oncosuppressive roles of decorin through regulation of multiple receptors and diverse signaling pathways. Am J Physiol Cell Physiol 2022; 322:C554-C566. [PMID: 35171698 PMCID: PMC8917911 DOI: 10.1152/ajpcell.00016.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Decorin is a stromal-derived prototype member of the small leucine-rich proteoglycan gene family. In addition to its functions as a regulator of collagen fibrillogenesis and TGF-β activity soluble decorin acts as a pan-receptor tyrosine kinase (RTK) inhibitor. Decorin binds to various RTKs including EGFR HER2 HGFR/Met VEGFR2 TLR and IGFR. Although the molecular mechanism for the action of decorin on these receptors is not entirely elucidated overall decorin evokes transient activation of these receptors with suppression of downstream signaling cascades culminating in growth inhibition followed by their physical downregulation via caveosomal internalization and degradation. In the case of Met decorin leads to decreased β-catenin signaling pathway and growth suppression. As most of these RTKs are responsible for providing a growth advantage to cancer cells the result of decorin treatment is oncosuppression. Another decorin-driven mechanism to restrict cancer growth and dissemination is by impeding angiogenesis via vascular endothelial growth factor receptor 2 (VEGFR2) and the concurrent activation of protracted endothelial cell autophagy. In this review we will dissect the multiple roles of decorin in cancer biology and its potential use as a next-generation protein-based adjuvant therapy to combat cancer.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dipon K. Mondal
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mikdat Ulas
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Huang SY, Lin HH, Yao M, Tang JL, Wu SJ, Chou WC, Hsu SC, Ko BS, Tien HF. Bone marrow plasma level of decorin may be associated with improved treatment outcomes in a subset of multiple myeloma patients. J Formos Med Assoc 2021; 121:643-651. [PMID: 34246509 DOI: 10.1016/j.jfma.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND/PURPOSE Decorin is a small leucine-rich proteoglycan rich in extracellular matrix with potential antitumor activity. However, the role of decorin in hematological malignancies remains unclear, especially in the case of multiple myeloma (MM), a bone marrow (BM) stroma-dependent plasma cell neoplasm. METHODS We measured decorin levels in BM plasma samples from 270 patients with newly diagnosed MM (NDMM) using enzyme-linked immunosorbent assays. RESULTS Patients were divided into high decorin (H-DCN, > 18.99 ng/mL) and low decorin (L-DCN <9.76 ng/mL) groups. Patients in the H-DCN group had more advanced-stage disease, including more osteolysis terms of higher levels of C-terminal telopeptides of type I collagen (0.69 ± 0.55 vs. 0.49 ± 0.36 ng/mL; P = 0.028), than those in the L-DCN group. Decorin levels correlated positively with hepatocyte growth factor (HGF) levels in BM plasma samples from NDMM patients (Pearson correlation coefficient, 0.226; P < 0.001). Patients with low HGF (<0.79 ng/mL) but high decorin levels (≥12.95 ng/mL) had a higher treatment response rate (90.5% vs. 54.5%, respectively; P = 0.015) and improved overall survival (not reached vs. 53 months; P = 0.0148) than those with lower decorin levels (<12.95 ng/mL). Multivariate analysis confirmed that a high decorin level was an independent predictive factor for treatment response and survival in patients with low HGF levels. CONCLUSION Our findings suggest that decorin may exert protective effects in this subset of MM patients.
Collapse
Affiliation(s)
- Shang-Yi Huang
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taiwan.
| | - Hsiu-Hsia Lin
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taiwan
| | - Ming Yao
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taiwan
| | - Jih-Luh Tang
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taiwan
| | - Shang-Ju Wu
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taiwan
| | - Wen-Chien Chou
- Department of Laboratory Medicine, National Taiwan University, Medical College and Hospital, Taiwan
| | - Szu-Chun Hsu
- Department of Laboratory Medicine, National Taiwan University, Medical College and Hospital, Taiwan
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taiwan
| | - Hwei-Fang Tien
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taiwan
| |
Collapse
|
8
|
Fu Y, Bao Q, Liu Z, He G, Wen J, Liu Q, Xu Y, Jin Z, Zhang W. Development and Validation of a Hypoxia-Associated Prognostic Signature Related to Osteosarcoma Metastasis and Immune Infiltration. Front Cell Dev Biol 2021; 9:633607. [PMID: 33816483 PMCID: PMC8012854 DOI: 10.3389/fcell.2021.633607] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Increasing evidence has shown that hypoxia microenvironment relates to tumor initiation and progression. However, no studies focus on the application of hypoxia-associated genes in predicting osteosarcoma patients’ prognosis. This research aims to identify the hypoxia-associated genes related to osteosarcoma metastasis and construct a gene signature to predict osteosarcoma prognosis. Methods The differentially expressed messenger RNAs (DEmRNAs) related to osteosarcoma metastasis were identified from Therapeutically Applicable Research to Generate Effective Treatments (Target) database. Univariate and multivariate cox regression analyses were performed to develop the hypoxia-associated prognostic signature. The Kaplan–Meier (KM) survival analyses of patients with high and low hypoxia risk scores were conducted. The nomogram was constructed and the gene signature was validated in the external Gene Expression Omnibus (GEO) cohort. Single-sample gene set enrichment analysis (ssGSEA) was conducted to investigate the relationships between immune infiltration and gene signature. Results Two genes, including decorin (DCN) and prolyl 4-hydroxylase subunit alpha 1 (P4HA1), were involved in the hypoxia-associated gene signature. In training and testing datasets, patients with high-risk scores showed lower survival rates and the gene signature was identified as the independent prognostic factor. Receiver operating characteristic (ROC) curves demonstrated the robustness of signature. Functional analyses of DEmRNAs among high- and low-risk groups revealed that immune-associated functions and pathways were significantly enriched. Furthermore, ssGSEA showed that five immune cells (DCs, macrophages, neutrophils, pDCs, and TIL) and three immune features (CCR, APC co inhibition, and Check-point) were down-regulated in the high-risk group. Conclusion The current study established and validated a novel hypoxia-associated gene signature in osteosarcoma. It could act as a prognostic biomarker and serve as therapeutic guidance in clinical applications.
Collapse
Affiliation(s)
- Yucheng Fu
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiyuan Bao
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuochao Liu
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu He
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junxiang Wen
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Liu
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqi Xu
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijian Jin
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weibin Zhang
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Wong TH, Chen TY, Tseng KY, Chen ZY, Chen CH, Lin FH, Wu HM, Lin S. Decorin inhibits the insulin-like growth factor I signaling in bone marrow mesenchymal stem cells of aged humans. Aging (Albany NY) 2020; 13:578-597. [PMID: 33257596 PMCID: PMC7835024 DOI: 10.18632/aging.202166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Aging impairs the IGF-I signaling of bone marrow mesenchymal stem cells (bmMSCs), but the mechanism is unclear. Here, we found that the ability to auto-phosphorylate IGF-I receptor (IGF-IR) in response to IGF-I was decreased in the bmMSCs of aged donors. Conversely, data showed that decorin (DCN) expression was prominently increased in aged bmMSCs, and that under IGF-I treatment, DCN knockdown in serum-starved aged bmMSCs potentiated their mitogenic activity and IGF-IR auto-phosphorylation, whereas DCN overexpression in serum-starved adult bmMSCs decreased both activities. Co-immunoprecipitation assays suggested that IGF-I and DCN bound to IGF-IR in a competitive manner. Online MethPrimer predicted 4 CpG islands (CGIs) in the introns of DCN gene. RT-qPCR and bisulfite sequencing showed that dimethyloxalylglycine, an inhibitor of DNA demethylation, increased DCN mRNA expression and CGI-I methylation in adult bmMSCs, whereas 5-aza-2’-deoxycytidine, a DNA methylation inhibitor, decreased DCN mRNA expression and CGI-I methylation in aged bmMSCs, and ultimately enhanced the proliferation of serum-starved aged bmMSCs under IGF-I stimulation. Thus, IGF-IR could be the prime target of aging in down-regulating the IGF-I signaling of bmMSCs, where DCN could be a critical mediator.
Collapse
Affiliation(s)
- Tze-Hong Wong
- Department of Orthopedics, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan, Republic of China
| | - Ting-Yu Chen
- Inflammation Research and Drug Development Center, Changhua Christian Hospital, Taiwan, Republic of China
| | - Kuo-Yun Tseng
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Taiwan, Republic of China
| | - Zih-Ying Chen
- Inflammation Research and Drug Development Center, Changhua Christian Hospital, Taiwan, Republic of China
| | - Chung-Hsing Chen
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China.,Taiwan Bioinformatics Institute Core, National Health Research Institutes, Taiwan, Republic of China
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan, Republic of China.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Taiwan, Republic of China
| | - Hung-Ming Wu
- Inflammation Research and Drug Development Center, Changhua Christian Hospital, Taiwan, Republic of China.,Department of Neurology, Changhua Christian Hospital, Taiwan, Republic of China.,Graduate Institute of Acupuncture Science, China Medical University, Taiwan, Republic of China
| | - Shankung Lin
- Inflammation Research and Drug Development Center, Changhua Christian Hospital, Taiwan, Republic of China.,Graduate Institute of Biomedical Sciences, China Medical University, Taiwan, Republic of China
| |
Collapse
|
10
|
Blokland K, Pouwels S, Schuliga M, Knight D, Burgess J. Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin Sci (Lond) 2020; 134:2681-2706. [PMID: 33084883 PMCID: PMC7578566 DOI: 10.1042/cs20190893] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a complex network of macromolecules surrounding cells providing structural support and stability to tissues. The understanding of the ECM and the diverse roles it plays in development, homoeostasis and injury have greatly advanced in the last three decades. The ECM is crucial for maintaining tissue homoeostasis but also many pathological conditions arise from aberrant matrix remodelling during ageing. Ageing is characterised as functional decline of tissue over time ultimately leading to tissue dysfunction, and is a risk factor in many diseases including cardiovascular disease, diabetes, cancer, dementia, glaucoma, chronic obstructive pulmonary disease (COPD) and fibrosis. ECM changes are recognised as a major driver of aberrant cell responses. Mesenchymal cells in aged tissue show signs of growth arrest and resistance to apoptosis, which are indicative of cellular senescence. It was recently postulated that cellular senescence contributes to the pathogenesis of chronic fibrotic diseases in the heart, kidney, liver and lung. Senescent cells negatively impact tissue regeneration while creating a pro-inflammatory environment as part of the senescence-associated secretory phenotype (SASP) favouring disease progression. In this review, we explore and summarise the current knowledge around how aberrant ECM potentially influences the senescent phenotype in chronic fibrotic diseases. Lastly, we will explore the possibility for interventions in the ECM-senescence regulatory pathways for therapeutic potential in chronic fibrotic diseases.
Collapse
Affiliation(s)
- Kaj E.C. Blokland
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Simon D. Pouwels
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- Department of Lung Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
11
|
Decorin expression is associated with predictive diffusion MR phenotypes of anti-VEGF efficacy in glioblastoma. Sci Rep 2020; 10:14819. [PMID: 32908231 PMCID: PMC7481206 DOI: 10.1038/s41598-020-71799-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Previous data suggest that apparent diffusion coefficient (ADC) imaging phenotypes predict survival response to anti-VEGF monotherapy in glioblastoma. However, the mechanism by which imaging may predict clinical response is unknown. We hypothesize that decorin (DCN), a proteoglycan implicated in the modulation of the extracellular microenvironment and sequestration of pro-angiogenic signaling, may connect ADC phenotypes to survival benefit to anti-VEGF therapy. Patients undergoing resection for glioblastoma as well as patients included in The Cancer Genome Atlas (TCGA) and IVY Glioblastoma Atlas Project (IVY GAP) databases had pre-operative imaging analyzed to calculate pre-operative ADCL values, the average ADC in the lower distribution using a double Gaussian mixed model. ADCL values were correlated to available RNA expression from these databases as well as from RNA sequencing from patient derived mouse orthotopic xenograft samples. Targeted biopsies were selected based on ADC values and prospectively collected during resection. Surgical specimens were used to evaluate for DCN RNA and protein expression by ADC value. The IVY Glioblastoma Atlas Project Database was used to evaluate DCN localization and relationship with VEGF pathway via in situ hybridization maps and RNA sequencing data. In a cohort of 35 patients with pre-operative ADC imaging and surgical specimens, DCN RNA expression levels were significantly larger in high ADCL tumors (41.6 vs. 1.5; P = 0.0081). In a cohort of 17 patients with prospectively targeted biopsies there was a positive linear correlation between ADCL levels and DCN protein expression between tumors (Pearson R2 = 0.3977; P = 0.0066) and when evaluating different targets within the same tumor (Pearson R2 = 0.3068; P = 0.0139). In situ hybridization data localized DCN expression to areas of microvascular proliferation and immunohistochemical studies localized DCN protein expression to the tunica adventitia of blood vessels within the tumor. DCN expression positively correlated with VEGFR1 & 2 expression and localized to similar areas of tumor. Increased ADCL on diffusion MR imaging is associated with high DCN expression as well as increased survival with anti-VEGF therapy in glioblastoma. DCN may play an important role linking the imaging features on diffusion MR and anti-VEGF treatment efficacy. DCN may serve as a target for further investigation and modulation of anti-angiogenic therapy in GBM.
Collapse
|
12
|
Neill T, Chen CG, Buraschi S, Iozzo RV. Catabolic degradation of endothelial VEGFA via autophagy. J Biol Chem 2020; 295:6064-6079. [PMID: 32209654 DOI: 10.1074/jbc.ra120.012593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/19/2020] [Indexed: 01/04/2023] Open
Abstract
Extracellular matrix-evoked angiostasis and autophagy within the tumor microenvironment represent two critical, but unconnected, functions of the small leucine-rich proteoglycan, decorin. Acting as a partial agonist of vascular endothelial growth factor 2 (VEGFR2), soluble decorin signals via the energy sensing protein, AMP-activated protein kinase (AMPK), in the autophagic degradation of intracellular vascular endothelial growth factor A (VEGFA). Here, we discovered that soluble decorin evokes intracellular catabolism of endothelial VEGFA that is mechanistically independent of mTOR, but requires an autophagic regulator, paternally expressed gene 3 (PEG3). We found that administration of autophagic inhibitors such as chloroquine or bafilomycin A1, or depletion of autophagy-related 5 (ATG5), results in accumulation of intracellular VEGFA, indicating that VEGFA is a basal autophagic substrate. Mechanistically, decorin increased the VEGFA clearance rate by augmenting autophagic flux, a process that required RAB24 member RAS oncogene family (RAB24), a small GTPase that facilitates the disposal of autophagic compartments. We validated these findings by demonstrating the physiological relevance of this process in vivo Mice starved for 48 h exhibited a sharp decrease in overall cardiac and aortic VEGFA that could be blocked by systemic chloroquine treatment. Thus, our findings reveal a unified mechanism for the metabolic control of endothelial VEGFA for autophagic clearance in response to decorin and canonical pro-autophagic stimuli. We posit that the VEGFR2/AMPK/PEG3 axis integrates the anti-angiogenic and pro-autophagic bioactivities of decorin as the molecular basis for tumorigenic suppression. These results support future therapeutic use of decorin as a next-generation protein therapy to combat cancer.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| | - Carolyn G Chen
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
13
|
Xiao D, Lu Y, Zhu L, Liang T, Wang Z, Ren J, He R, Wang K. Anti-osteosarcoma property of decorin-modified titanium surface: A novel strategy to inhibit oncogenic potential of osteosarcoma cells. Biomed Pharmacother 2020; 125:110034. [PMID: 32187963 DOI: 10.1016/j.biopha.2020.110034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/03/2023] Open
Abstract
Osteosarcoma is the most common bone sarcoma in adolescents. Decorin (DCN) has been proposed to be a new anti-osteosarcoma therapeutic strategy. Our previous study has loaded decorin on titanium (Ti) surface by polydopamine (DOPA) as an anchor to enhance osseointegration. In this study, we investigated the effect of decorin-coated Ti substrates (TI-DOPA-DCN) on the oncogenic potential of osteosarcoma cells SAOS-2. The substrates were placed in 24-well plates for cell culture. Cell viability was determined by Cell Counting Kit-8 (CCK8) assay. Apoptosis was evaluated by DAPI staining and Annexin V-FITC/PI double staining analysis. Cell cycle was analyzed by flow cytometry. Cell migration and invasion were evaluated by Transwell assay. For co-culture, the pre-osteogenic cells MEC3T3-E1 and osteosarcoma cells SAOS-2 were stained with cell membrane fluorescent dyes, and then mixed (1:1) for co-culture. The cells were observed under a fluorescence microscope at four time points of 24, 48, 72, and 96 h. The results showed that TI-DOPA-DCN substrate can selectively inhibit cell proliferation of osteosarcoma cells but not pre-osteoblasts. However, the cell cycle of SAOS-2 was not affected by TI-DOPA-DCN substrates. Both DAPI staining and Annexin V-FITC/PI double staining analysis revealed that TI-DOPA-DCN substrates induced apoptosis of osteosarcoma cells. Transwell assay showed that TI-DOPA-DCN substrates inhibited invasion and migration of osteosarcoma cells. Moreover, TI-DOPA-DCN substrates inhibited the growth of osteosarcoma cells but promoted that of pre-osteoblasts in the coculture system. Taken together, these findings suggested that decorin coating on Ti surface simultaneously inhibited the oncogenic potential of osteosarcoma cells but enhanced cell growth of pre-osteoblasts, which could be applied to surface modification of Ti orthopedic implant.
Collapse
Affiliation(s)
- Dahai Xiao
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunxiang Lu
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Zhu
- Department of Plastic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tangzhao Liang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhe Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianhua Ren
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Kun Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Kedem A, Ulanenko-Shenkar K, Yung Y, Yerushalmi GM, Maman E, Hourvitz A. Elucidating Decorin's role in the preovulatory follicle. J Ovarian Res 2020; 13:15. [PMID: 32041647 PMCID: PMC7011259 DOI: 10.1186/s13048-020-0612-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/20/2020] [Indexed: 11/11/2022] Open
Abstract
Background DCN (decorin) is a proteoglycan known to be involved in regulating cell proliferation, collagen fibril organization and migration. In our global transcriptome RNA-sequencing approach to systematically identify new ovulation-associated genes, DCN was identified as one of the highly regulated genes. We therefore hypothesize that DCN may have a role in ovulatory processes such as cell migration and proliferation. Aim To characterize the expression, regulation and function of the proteoglycan DCN in the human ovarian follicles during the preovulatory period. Methods The in-vivo expression of DCN mRNA in mural (MGCs) and cumulus (CGCs) granulosa cells was characterized using quantitative RT-PCR and western blot. A signaling study was performed by treating human MGCs cultures with gonadotropins and different stimulators and inhibitors to determine their effect on DCN expression by qRT- PCR and elucidate the pathways regulating these proteins. In a functional study, KGN granulosa cell line was used to study cell migration with a scratch assay. Results DCN mRNA expression was significantly higher in MGCs compared to CGCs. DCN mRNA was significantly higher in CGCs surrounding mature metaphase II (MII) oocytes compared to CGCs of germinal vesicle (GV) and metaphase I (MI) oocytes. hCG significantly increased DCN mRNA and protein expression levels in cultured MGCs. Using signal transduction activators and inhibitors, we demonstrated that DCN induction by LH/hCG is carried out via PKA, PKC, ERK/MEK, and PI3K pathways. We showed that DCN expression is also induced in high-density cell cultures, in a dose-dependent pattern. In addition, progesterone induced a significant increase in DCN secretion to the media. MGCs from follicles of endometriosis patients exhibited reduced (about 20% of) mRNA transcriptions levels compared to MGCs follicles of control patients. More significantly, we found that DCN has an inhibiting effect on KGN cell migration. Conclusions Our study indicates that DCN is a unique ovulatory gene. Our findings support the hypothesis that DCN plays an important new role during the preovulatory period and ovulation, and stress its involvement in endometriosis infertility. A better understanding of DCN role in ovulation and endometriosis may provide treatment for some types of infertility.
Collapse
Affiliation(s)
- A Kedem
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel. .,IVF unit, Shamir Medical center (Assaf Hrofeh), Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Aviv, Israel.
| | - K Ulanenko-Shenkar
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel
| | - Y Yung
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel
| | - G M Yerushalmi
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel.,IVF unit, Shamir Medical center (Assaf Hrofeh), Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Aviv, Israel
| | - E Maman
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel
| | - A Hourvitz
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel.,IVF unit, Shamir Medical center (Assaf Hrofeh), Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Aviv, Israel
| |
Collapse
|
15
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
16
|
Wang M, Xue S, Fang Q, Zhang M, He Y, Zhang Y, Lammi MJ, Cao J, Chen J. Expression and localization of the small proteoglycans decorin and biglycan in articular cartilage of Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Glycoconj J 2019; 36:451-459. [PMID: 31478096 DOI: 10.1007/s10719-019-09889-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022]
Abstract
Kashin-Beck disease (KBD) is an endemic degenerative osteoarthropathy of uncertain etiology. Our study sought to identify a correlation between small proteoglycans decorin and biglycan expression and Kashin-Beck Disease. Immunohistochemistry was used to assess the decorin and biglycan levels in cartilage specimens from both child KBD patients, and rats fed with T-2 toxin under a selenium-deficient condition. Real-time PCR and Western blot were used to assess mRNA and protein levels of decorin and biglycan in rat cartilages, as well as in C28/I2 chondrocytes stimulated by T-2 toxin and selenium in vitro. The result showed that decorin was reduced in all zones of KBD articular cartilage, while the expression of biglycan was prominently increased in KBD cartilage samples. Increased expression of biglycan and reduced expression of decorin were observed at mRNA and protein levels in the cartilage of rats fed with T-2 toxin and selenium- deficiency plus T-2 toxin diet, when compared with the normal diet group. Moreover, In vitro stimulation of C28/I2 cells with T-2 toxin resulted in an upregulation of biglycan and downregulation of decorin, T-2 toxin induction of biglycan and decorin levels were partly rescued by selenium supplement. This study highlights the focal nature of the degenerative changes that occur in KBD cartilage and may suggest that the altered expression pattern of decorin and biglycan have an important role in the onset and pathogenesis of KBD.
Collapse
Affiliation(s)
- Mengying Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Senhai Xue
- Xijing Hospital, Medical University of the Air Force, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Qian Fang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ying Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Junling Cao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
Kolb AD, Shupp AB, Mukhopadhyay D, Marini FC, Bussard KM. Osteoblasts are "educated" by crosstalk with metastatic breast cancer cells in the bone tumor microenvironment. Breast Cancer Res 2019; 21:31. [PMID: 30813947 PMCID: PMC6391840 DOI: 10.1186/s13058-019-1117-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION In a cancer-free environment in the adult, the skeleton continuously undergoes remodeling. Bone-resorbing osteoclasts excavate erosion cavities, and bone-depositing osteoblasts synthesize osteoid matrix that forms new bone, with no net bone gain or loss. When metastatic breast cancer cells invade the bone, this balance is disrupted. Patients with bone metastatic breast cancer frequently suffer from osteolytic bone lesions that elicit severe bone pain and fractures. Bisphosphonate treatments are not curative. Under ideal circumstances, osteoblasts would synthesize new matrix to fill in erosion cavities caused by osteoclasts, but this is not what occurs. Our prior evidence demonstrated that osteoblasts are diverted from laying down bone matrix to producing cytokines that facilitate breast cancer cell maintenance in late-stage disease. Here, we have new evidence to suggest that there are subpopulations of osteoblasts in the tumor niche as evidenced by their protein marker expression that have distinct roles in tumor progression in the bone. METHODS Tumor-bearing tibia of mice was interrogated by immunofluorescent staining for the presence of osteoblasts and alterations in niche protein expression. De-identified tissue from patients with bone metastatic breast cancer was analyzed for osteoblast subpopulations via multi-plex immunofluorescent staining. Effects of breast cancer cells on osteoblasts were recapitulated in vitro by osteoblast exposure to breast cancer-conditioned medium. Triple-negative and estrogen receptor-positive breast cancer proliferation, cell cycle, and p21 expression were assessed upon contact with "educated" osteoblasts. RESULTS A subpopulation of osteoblasts was identified in the bone tumor microenvironment in vivo of both humans and mice with bone metastatic breast cancer that express RUNX2/OCN/OPN but is negative for IL-6 and alpha-smooth muscle actin. These tumor "educated" osteoblasts (EOs) have altered properties compared to "uneducated" osteoblasts and suppress both triple-negative and estrogen receptor-positive breast cancer cell proliferation and increase cancer cell p21 expression. EO effects on breast cancer proliferation were mediated by NOV and decorin. Importantly, the presence of EO cells in the tibia of mice bearing tumors led to increased amounts of alkaline phosphatase and suppressed the expression of inflammatory cytokines in vivo. CONCLUSIONS Our work reveals that there is a subpopulation of osteoblasts in the bone tumor microenvironment that demonstrate a functional role in retarding breast cancer cell growth.
Collapse
Affiliation(s)
- Alexus D. Kolb
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Alison B. Shupp
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Dimpi Mukhopadhyay
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Frank C. Marini
- Comprehensive Cancer Center Wake Forest University and Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC USA
| | - Karen M. Bussard
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| |
Collapse
|
18
|
Pulmonary fibrosis in vivo displays increased p21 expression reduced by 5-HT 2B receptor antagonists in vitro - a potential pathway affecting proliferation. Sci Rep 2018; 8:1927. [PMID: 29386571 PMCID: PMC5792547 DOI: 10.1038/s41598-018-20430-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Serotonin (5-hydroxytryptamine) has repeatedly been associated with the development of fibrotic disorders such as pulmonary fibrosis. By blocking the binding of 5-HT to 5-HT2B receptors with receptor antagonists, several pro-fibrotic mechanisms can be inhibited. Bleomycin-induced pulmonary fibrosis is a model used to evaluate pathological mechanisms and pharmacological interventions. Previously we have shown attenuated fibrosis in systemic bleomycin-treated mice following treatment with two 5-HT2B receptor antagonists (EXT5 and EXT9). Our aim is to further identify cellular effects and signaling pathways associated with the anti-fibrotic effects of EXT5/9. Gene expressions in lung tissues from systemic bleomycin-treated mice were examined, revealing significant increased expression of Cdkn1α (a gene coding for p21), particularly in distal regions of the lung. In vitro studies in human lung fibroblasts revealed increased levels of p21 (p = 0.0032) and pAkt (p = 0.12) following treatment with 5-HT (10 µM). The induction of p21 and pAkt appears to be regulated by 5-HT2B receptors, with diminished protein levels following EXT9-treatment (p21 p = 0.0024, pAkt p = 0.15). Additionally, 5-HT induced fibroblast proliferation, an event significantly reduced by EXT5 (10 µM) and EXT9 (10 µM). In conclusion, our results suggest that 5-HT2B receptor antagonism attenuates pulmonary fibrosis in part by anti-proliferative effects, associated with inhibited pAkt/p21 signaling pathway.
Collapse
|
19
|
Nikitovic D, Berdiaki A, Spyridaki I, Krasanakis T, Tsatsakis A, Tzanakakis GN. Proteoglycans-Biomarkers and Targets in Cancer Therapy. Front Endocrinol (Lausanne) 2018; 9:69. [PMID: 29559954 PMCID: PMC5845539 DOI: 10.3389/fendo.2018.00069] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/16/2018] [Indexed: 12/18/2022] Open
Abstract
Proteoglycans (PGs), important constituents of the extracellular matrix, have been associated with cancer pathogenesis. Their unique structure consisting of a protein core and glycosaminoglycan chains endowed with fine modifications constitutes these molecules as capable cellular effectors important for homeostasis and contributing to disease progression. Indeed, differential expression of PGs and their interacting proteins has been characterized as specific for disease evolvement in various cancer types. Importantly, PGs to a large extent regulate the bioavailability of hormones, growth factors, and cytokines as well as the activation of their respective receptors which regulate phenotypic diversibility, gene expression and rates of recurrence in specific tumor types. Defining and targeting these effectors on an individual patient basis offers ground for the development of newer therapeutic approaches which may act as either supportive or a substitute treatment to the standard therapy protocols. This review discusses the roles of PGs in cancer progression, developing technologies utilized for the defining of the PG "signature" in disease, and how this may facilitate the generation of tailor-made cancer strategies.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Ioanna Spyridaki
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Theodoros Krasanakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
20
|
Decorin is a devouring proteoglycan: Remodeling of intracellular catabolism via autophagy and mitophagy. Matrix Biol 2017; 75-76:260-270. [PMID: 29080840 DOI: 10.1016/j.matbio.2017.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Autophagy, a fundamental and evolutionarily-conserved eukaryotic pathway, coordinates a complex balancing act for achieving both nutrient and energetic requirements for proper cellular function and homeostasis. We have discovered that soluble proteoglycans evoke autophagy in endothelial cells and mitophagy in breast carcinoma cells by directly interacting with receptor tyrosine kinases, including VEGF receptor 2 and Met. Under these circumstances, autophagic regulation is considered "non-canonical" and is epitomized by the bioactivity of the small leucine-rich proteoglycan, decorin. Soluble matrix-derived cues being transduced downstream of receptor engagement converge upon a newly-discovered nexus of autophagic machinery consisting of Peg3 for endothelial cell autophagy and mitostatin for tumor cell mitophagy. In this thematic mini-review, we will provide an overview of decorin-mediated autophagy and mitophagy and propose that regulating intracellular catabolism is the underlying molecular basis for the versatility of decorin as a potent oncosuppressive agent.
Collapse
|
21
|
Appunni S, Anand V, Khandelwal M, Seth A, Mathur S, Sharma A. Altered expression of small leucine-rich proteoglycans (Decorin, Biglycan and Lumican): Plausible diagnostic marker in urothelial carcinoma of bladder. Tumour Biol 2017; 39:1010428317699112. [DOI: 10.1177/1010428317699112] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Small leucine-rich proteoglycans are components of extracellular matrix that regulates neoplastic transformation. Among small leucine rich proteoglycans, Decorin, Biglycan and Lumican are most commonly implicated markers, and their expression is well studied in various malignancies. In this novel study, we have collectively evaluated expression of these three molecules in urothelial carcinoma of bladder. Thirty patients of confirmed untreated bladder cancer, 30 healthy controls for blood and 30 controls for adjacent non-tumour tissue were enrolled. Blood was collected from all subjects and tumour/adjacent normal tissue was obtained from the patients. Circulatory levels were estimated by enzyme-linked immunosorbent assay, relative messenger RNA expression by quantitative polymerase chain reaction and protein expression by immunohistochemistry and western-blotting. Circulatory levels of Biglycan (p = 0.0038) and Lumican (p < 0.0001) were significantly elevated, and that of Decorin (p < 0.0001) was significantly reduced in patients as compared with controls. Protein expression by immunohistochemistry and western-blotting showed elevated expression of Lumican and Biglycan and lower expression of Decorin in urothelial carcinoma of bladder. Quantitative polymerase chain reaction for messenger RNA expression from tissue specimens revealed significantly higher expression of Biglycan (p = 0.0008) and Lumican (p = 0.01) and lower expression of Decorin (p < 0.0001) in urothelial carcinoma of bladder. Out of all molecules receiver operating characteristic curve showed that the 0.207 ng/ml cut-off of serum Lumican provided optimum sensitivity (90.0%) and specificity (90.0%). Significant alteration of matrix small leucine-rich proteoglycans in urothelial carcinoma of bladder was observed. Higher expression of Lumican in Bladder cancer patients with the cut-off value of highest optimum sensitivity and specificity shows its importance as a potential non-invasive marker for early detection of UBC following further validation in large patient cohort.
Collapse
Affiliation(s)
- Sandeep Appunni
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Anand
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Madhuram Khandelwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
Castañeda-Gill JM, Vishwanatha JK. Antiangiogenic mechanisms and factors in breast cancer treatment. J Carcinog 2016; 15:1. [PMID: 27013929 PMCID: PMC4785777 DOI: 10.4103/1477-3163.176223] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is known to metastasize in its latter stages of existence. The different angiogenic mechanisms and factors that allow for its progression are reviewed in this article. Understanding these mechanisms and factors will allow researchers to design drugs to inhibit angiogenic behaviors and control the rate of tumor growth.
Collapse
Affiliation(s)
- Jessica M. Castañeda-Gill
- Department of Molecular and Medical Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jamboor K. Vishwanatha
- Department of Molecular and Medical Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Institute for Cancer Research, Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
23
|
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97:4-27. [PMID: 26562801 DOI: 10.1016/j.addr.2015.11.001] [Citation(s) in RCA: 1379] [Impact Index Per Article: 172.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece; Division of Medical Protein Chemistry, Department of Translational Medicine Malmö, Lund University, S-20502 Malmö, Sweden
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
24
|
Neill T, Schaefer L, Iozzo RV. Decorin as a multivalent therapeutic agent against cancer. Adv Drug Deliv Rev 2016; 97:174-85. [PMID: 26522384 DOI: 10.1016/j.addr.2015.10.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Decorin is a prototypical small leucine-rich proteoglycan that epitomizes the multifunctional nature of this critical gene family. Soluble decorin engages multiple receptor tyrosine kinases within the target-rich environment of the tumor stroma and tumor parenchyma. Upon receptor binding, decorin initiates signaling pathways within endothelial cells downstream of VEGFR2 that ultimately culminate in a Peg3/Beclin 1/LC3-dependent autophagic program. Concomitant with autophagic induction, decorin blunts capillary morphogenesis and endothelial cell migration, thereby significantly compromising tumor angiogenesis. In parallel within the tumor proper, decorin binds multiple RTKs with high affinity, including Met, for a multitude of oncosuppressive functions including growth inhibition, tumor cell mitophagy, and angiostasis. Decorin is also pro-inflammatory by modulating macrophage function and cytokine secretion. Decorin suppresses tumorigenic growth, angiogenesis, and prevents metastatic lesions in a variety of in vitro and in vivo tumor models. Therefore, decorin would be an ideal therapeutic candidate for combating solid malignancies.
Collapse
|
25
|
Velleman SG, Clark DL. Histopathologic and Myogenic Gene Expression Changes Associated with Wooden Breast in Broiler Breast Muscles. Avian Dis 2015; 59:410-8. [PMID: 26478160 DOI: 10.1637/11097-042015-reg.1] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The wooden breast condition is a myopathy affecting the pectoralis major (p. major) muscle in fast-growing commercial broiler lines. Currently, wooden breast-affected birds are phenotypically detected by palpation of the breast area, with affected birds having a very hard p. major muscle that is of lower value. The objective of this study was to compare the wooden breast myopathy in two fast-growing broiler lines (Lines A and B) with incidence of wooden breast to a slower growing broiler Line C with no phenotypically observable wooden breast. One of the characteristics of the wooden breast condition is fibrosis of the p. major muscle. Morphologic assessment of Lines A and B showed significant fibrosis in both lines, but the collagen distribution and arrangement of the collagen fibrils was different. In Line A, the collagen fibrils were tightly packed, whereas in Line B the collagen fibrils were diffuse. This difference in collagen organization may be due to the expression of the extracellular matrix proteoglycan decorin. Decorin is a regulator of collagen crosslinking and is expressed at significantly higher levels in Line A wooden breast-affected p. major muscle, which would lead to tightly packed collagen fibers due to high levels of collagen crosslinking. Furthermore, expression of the muscle-specific transcriptional regulatory factors for proliferation and differentiation of muscle cells leading to the regeneration of muscle in response to muscle damage was significantly elevated in Line A, and only the factor for differentiation, myogenin, was increased in Line B. The results from this study provide initial evidence that the etiology of the wooden breast myopathy may vary between fast-growing commercial broiler lines.
Collapse
|
26
|
Hultgårdh-Nilsson A, Borén J, Chakravarti S. The small leucine-rich repeat proteoglycans in tissue repair and atherosclerosis. J Intern Med 2015; 278:447-61. [PMID: 26477596 PMCID: PMC4616156 DOI: 10.1111/joim.12400] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteoglycans consist of a protein core with one or more covalently attached glycosaminoglycan (GAG) side chains and have multiple roles in the initiation and progression of atherosclerosis. Here we discuss the potential and known functions of a group of small leucine-rich repeat proteoglycans (SLRPs) in atherosclerosis. We focus on five SLRPs, decorin, biglycan, lumican, fibromodulin and PRELP, because these have been detected in atherosclerotic plaques or demonstrated to have a role in animal models of atherosclerosis. Decorin and biglycan are modified post-translationally by substitution with chondroitin/dermatan sulphate GAGs, whereas lumican, fibromodulin and PRELP have keratan sulphate side chains, and the core proteins have leucine-rich repeat (LRR) motifs that are characteristic of the LRR superfamily. The chondroitin/dermatan sulphate GAG side chains have been implicated in lipid retention in atherosclerosis. The core proteins are discussed here in the context of (i) interactions with collagens and their implications in tissue integrity, fibrosis and wound repair and (ii) interactions with growth factors, cytokines, pathogen-associated molecular patterns and cell surface receptors that impact normal physiology and disease processes such as inflammation, innate immune responses and wound healing (i.e. processes that are all important in plaque development and progression). Thus, studies of these SLRPs in the context of wound healing are providing clues about their functions in early stages of atherosclerosis to plaque vulnerability and cardiovascular disease at later stages. Understanding of signal transduction pathways regulated by the core protein interactions is leading to novel roles and therapeutic potential for these proteins in wound repair and atherosclerosis.
Collapse
Affiliation(s)
| | - J Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S Chakravarti
- Departments of Medicine, Ophthalmology and Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Bi X, Xia X, Fan D, Mu T, Zhang Q, Iozzo RV, Yang W. Oncogenic activin C interacts with decorin in colorectal cancer in vivo and in vitro. Mol Carcinog 2015; 55:1786-1795. [DOI: 10.1002/mc.22427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/09/2015] [Accepted: 10/18/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Xiuli Bi
- School of Life Science; Liaoning University; Shenyang 110036 China
| | - Xichun Xia
- School of Life Science; Liaoning University; Shenyang 110036 China
| | - Dongdong Fan
- School of Life Science; Liaoning University; Shenyang 110036 China
| | - Teng Mu
- School of Life Science; Liaoning University; Shenyang 110036 China
| | - Qiuhua Zhang
- Department of Pharmacology; Liaoning Traditional Chinese Medicine University; Liaoning 110036 China
| | - Renato V. Iozzo
- Department of Pathology; Anatomy and Cell Biology; Thomas Jefferson University; Philadelphia Pennsylvania 19107
| | - Wancai Yang
- Department of Pathology and Institute of Precision Medicine; Jining Medical University; Jining Shandong 272067 China
- Department of Pathology; University of Illinois at Chicago; Chicago Illinois 60612
| |
Collapse
|
28
|
|
29
|
Gubbiotti MA, Neill T, Frey H, Schaefer L, Iozzo RV. Decorin is an autophagy-inducible proteoglycan and is required for proper in vivo autophagy. Matrix Biol 2015; 48:14-25. [PMID: 26344480 DOI: 10.1016/j.matbio.2015.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
We have recently discovered that soluble extracellular matrix constituents regulate autophagy via an outside-in signaling pathway. Decorin, a secreted proteoglycan, evokes autophagy in endothelial cells and mitophagy in breast carcinoma cells. However, it is not known whether decorin expression can be regulated by autophagic stimuli such as mTOR inhibition or nutrient deprivation. Thus, we tested whether pro-autophagic stimuli could affect decorin expression in mouse cardiac tissue and whether the absence of decorin could disrupt the in vivo autophagic response. We found that nutrient deprivation induced decorin at the mRNA and protein level in vivo and in vitro, a process regulated at the transcriptional level by inhibiting the canonical mTOR pathway. Moreover, Dcn-/- mice displayed an aberrant response to fasting compared to wild-type mice. Our study establishes a new role for an extracellular matrix proteoglycan and provides a mechanistic role for soluble decorin in regulating a fundamental intracellular catabolic process.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Helena Frey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
30
|
Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of Apoptosis In Vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:201629. [PMID: 26357650 PMCID: PMC4556865 DOI: 10.1155/2015/201629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/05/2015] [Indexed: 11/17/2022]
Abstract
Preeclampsia (PE) is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT) including proliferation, apoptosis, and migration and invasion. Decorin (DCN) has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells' metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9). Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia.
Collapse
|
31
|
Nyman MC, Sainio AO, Pennanen MM, Lund RJ, Vuorikoski S, Sundström JTT, Järveläinen HT. Decorin in Human Colon Cancer: Localization In Vivo and Effect on Cancer Cell Behavior In Vitro. J Histochem Cytochem 2015; 63:710-20. [PMID: 26001829 DOI: 10.1369/0022155415590830] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/17/2015] [Indexed: 12/15/2022] Open
Abstract
Decorin is generally recognized as a tumor suppressing molecule. Nevertheless, although decorin has been shown to be differentially expressed in malignant tissues, it has often remained unclear whether, in addition to non-malignant stromal cells, cancer cells also express it. Here, we first used two publicly available databases to analyze the current information about decorin expression and immunoreactivity in normal and malignant human colorectal tissue samples. The analyses demonstrated that decorin expression and immunoreactivity may vary in cancer cells of human colorectal tissues. Therefore, we next examined decorin expression in normal, premalignant and malignant human colorectal tissues in more detail using both in situ hybridization and immunohistochemistry for decorin. Our results invariably demonstrate that malignant cells within human colorectal cancer tissues are devoid of both decorin mRNA and immunoreactivity. Identical results were obtained for cells of neuroendocrine tumors of human colon. Using RT-qPCR, we showed that human colon cancer cell lines are also decorin negative, in accordance with the above in vivo results. Finally, we demonstrate that decorin transduction of human colon cancer cell lines causes a significant reduction in their colony forming capability. Thus, strategies to develop decorin-based adjuvant therapies for human colorectal malignancies are highly rational.
Collapse
Affiliation(s)
- Marie C Nyman
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland (MCN, AOS, MMP, HTJ)
| | - Annele O Sainio
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland (MCN, AOS, MMP, HTJ)
| | - Mirka M Pennanen
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland (MCN, AOS, MMP, HTJ)
| | - Riikka J Lund
- Turku Centre for Biotechnology , University of Turku, Turku, Finland(RJL, SV)
| | - Sanna Vuorikoski
- Turku Centre for Biotechnology , University of Turku, Turku, Finland(RJL, SV)
| | | | - Hannu T Järveläinen
- Division of Medicine, Department of Endocrinology, Turku University Hospital, Turku, Finland (HTJ)
| |
Collapse
|
32
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 804] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
33
|
Vallen MJ, van der Steen SC, van Tilborg AA, Massuger LF, van Kuppevelt TH. Sulfated sugars in the extracellular matrix orchestrate ovarian cancer development: ‘When sweet turns sour’. Gynecol Oncol 2014; 135:371-81. [DOI: 10.1016/j.ygyno.2014.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 01/14/2023]
|
34
|
Scott R, Panitch A. Decorin mimic regulates platelet-derived growth factor and interferon-γ stimulation of vascular smooth muscle cells. Biomacromolecules 2014; 15:2090-103. [PMID: 24806357 PMCID: PMC4052849 DOI: 10.1021/bm500224f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/15/2014] [Indexed: 01/24/2023]
Abstract
Following balloon injury, smooth muscle cells (SMCs) serve as targets for many of the pro-inflammatory and pro-fibrotic factors, including platelet-derived growth factor (PDGF) and interferon-γ (IFN-γ) released from activated inflammatory cells and platelets. Previously, our lab designed a mimic of the proteoglycan decorin, termed DS-SILY20, that suppressed vascular SMC proliferation, migration, and protein synthesis in vitro, and injured vessels treated with DS-SILY20 demonstrated reduced hyperplasia in vivo. Here we characterize the effects of DS-SILY20 on modulating PDGF and IFN-γ stimulation in both proliferative and quiescent human SMCs to further evaluate the potential impact of DS-SILY20-SMC interaction on restenosis. Nanomolar dissociation constants were observed between DS-SILY20 and both PDGF and IFN-γ. PDGF significantly increased migration, proliferation, and protein and cytokine expression, as well as increased ERK-1/2 and p38 MAPK phosphorylation in both quiescent and proliferative cultures. However, DS-SILY20 inhibited these increases, presumably through sequestration of the PDGF. Consistent with the complex responses seen with IFN-γ in SMC physiology in the literature, the response of SMC cultures to IFN-γ was variable and complex. However, where increased activity was seen with IFN-γ, DS-SILY20 attenuated this activity. Overall, the results suggest that DS-SILY20 would be an ideal alternative to traditional therapeutics used and may be an effective therapy for the prevention of intimal hyperplasia after balloon angioplasty.
Collapse
Affiliation(s)
- Rebecca
A. Scott
- Weldon
School of Biomedical
Engineering Purdue University, West Lafayette, Indiana 47907, United States
| | - Alyssa Panitch
- Weldon
School of Biomedical
Engineering Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
35
|
Afroze T, Yang G, Khoshbin A, Tanwir M, Tabish T, Momen A, Husain M. Calcium efflux activity of plasma membrane Ca2+ ATPase-4 (PMCA4) mediates cell cycle progression in vascular smooth muscle cells. J Biol Chem 2014; 289:7221-7231. [PMID: 24448801 DOI: 10.1074/jbc.m113.533638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We explored the role played by plasma membrane calcium ATPase-4 (PMCA4) and its alternative splice variants in the cell cycle of vascular smooth muscle cells (VSMC). A novel variant (PMCA4e) was discovered. Quantitative real-time-PCR-quantified PMCA4 splice variant proportions differed in specific organs. The PMCA4a:4b ratio in uninjured carotid arteries (∼1:1) was significantly reduced by wire denudation injury (to ∼1:3) by modulation of alternative splicing, as confirmed by novel antibodies against PMCA4a/e and PMCA4b. Laser capture microdissection localized this shift to the media and adventitia. Primary carotid VSMC from PMCA4 knock-out (P4KO) mice showed impaired [(3)H]thymidine incorporation and G1 phase arrest as compared with wild type (P4WT). Electroporation of expression constructs encoding PMCA4a, PMCA4b, and a PMCA4b mutant lacking PDZ binding rescued this phenotype of P4KO cells, whereas a mutant with only 10% of normal Ca(2+) efflux activity could not. Microarray of early G1-synchronized VSMC showed 39-fold higher Rgs16 (NFAT (nuclear factor of activated T-cells) target; MAPK inhibitor) and 69-fold higher Decorin (G1 arrest marker) expression in P4KO versus P4WT. Validation by Western blot also revealed decreased levels of Cyclin D1 and NFATc3 in P4KO. Microarrays of P4KO VSMC rescued by PMCA4a or PMCA4b expression showed reversal of perturbed Rgs16, Decorin, and NFATc3 expression levels. However, PMCA4a rescue caused a 44-fold reduction in AP-2β, a known anti-proliferative transcription factor, whereas PMCA4b rescue resulted in a 50-fold reduction in p15 (Cyclin D1/Cdk4 inhibitor). We conclude that Ca(2+) efflux activity of PMCA4 underlies G1 progression in VSMC and that PMCA4a and PMCA4b differentially regulate specific downstream mediators.
Collapse
Affiliation(s)
- Talat Afroze
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Ge Yang
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amir Khoshbin
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Mansoor Tanwir
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Taha Tabish
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Abdul Momen
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Mansoor Husain
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5G 1L7; Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
36
|
Neill T, Torres A, Buraschi S, Owens RT, Hoek JB, Baffa R, Iozzo RV. Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitostatin. J Biol Chem 2014; 289:4952-68. [PMID: 24403067 DOI: 10.1074/jbc.m113.512566] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor cell mitochondria are key biosynthetic hubs that provide macromolecules for cancer progression and angiogenesis. Soluble decorin protein core, hereafter referred to as decorin, potently attenuated mitochondrial respiratory complexes and mitochondrial DNA (mtDNA) in MDA-MB-231 breast carcinoma cells. We found a rapid and dynamic interplay between peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and the decorin-induced tumor suppressor gene, mitostatin. This interaction stabilized mitostatin mRNA with concurrent accumulation of mitostatin protein. In contrast, siRNA-mediated abrogation of PGC-1α-blocked decorin-evoked stabilization of mitostatin. Mechanistically, PGC-1α bound MITOSTATIN mRNA to achieve rapid stabilization. These processes were orchestrated by the decorin/Met axis, as blocking the Met-tyrosine kinase or knockdown of Met abrogated these responses. Furthermore, depletion of mitostatin blocked decorin- or rapamycin-evoked mitophagy, increased vascular endothelial growth factor A (VEGFA) production, and compromised decorin-evoked VEGFA suppression. Collectively, our findings underscore the complexity of PGC-1α-mediated mitochondrial homeostasis and establish mitostatin as a key regulator of tumor cell mitophagy and angiostasis.
Collapse
Affiliation(s)
- Thomas Neill
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center and
| | | | | | | | | | | | | |
Collapse
|
37
|
Horváth Z, Kovalszky I, Fullár A, Kiss K, Schaff Z, Iozzo RV, Baghy K. Decorin deficiency promotes hepatic carcinogenesis. Matrix Biol 2013; 35:194-205. [PMID: 24361483 DOI: 10.1016/j.matbio.2013.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma represents one of the most-rapidly spreading cancers in the world. In the majority of cases, an inflammation-driven fibrosis or cirrhosis precedes the development of the tumor. During malignant transformation, the tumor microenvironment undergoes qualitative and quantitative changes that modulate the behavior of the malignant cells. A key constituent for the hepatic microenvironment is the small leucine-rich proteoglycan decorin, known to interfere with cellular events of tumorigenesis mainly by blocking various receptor tyrosine kinases (RTK) such as EGFR, Met, IGF-IR, PDGFR and VEGFR2. In this study, we characterized cell signaling events evoked by decorin deficiency in two experimental models of hepatocarcinogenesis using thioacetamide or diethyl nitrosamine as carcinogens. Genetic ablation of decorin led to enhanced tumor occurrence as compared to wild-type animals. These findings correlated with decreased levels of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) and a concurrent elevation in retinoblastoma protein phosphorylation via cyclin dependent kinase 4. Decreased steady state p21(Waf1/Cip1) levels correlated with enhanced expression of transcription factor AP4, a known transcriptional repressor of p21(Waf1/Cip1), and enhanced c-Myc protein levels. In addition, translocation of β-catenin was a typical event in diethyl nitrosamine-evoked tumors. In parallel, decreased phosphorylation of both c-Myc and β-catenin was observed in Dcn(-/-) livers likely due to the hindered GSK3β-mediated targeting of these proteins to proteasomal degradation. We discovered that in a genetic background lacking decorin, four RTKs were constitutively activated (phosphorylated), including three known targets of decorin such as PDGFRα, EGFR, IGF-IR, and a novel RTK MSPR/RON. Our findings provide powerful genetic evidence for a crucial in vivo role of decorin during hepatocarcinogenesis as lack of decorin in the liver and hepatic stroma facilitates experimental carcinogenesis by providing an environment devoid of this potent pan-RTK inhibitor. Thus, our results support future utilization of decorin as an antitumor agent in liver cancer.
Collapse
Affiliation(s)
- Zsolt Horváth
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Kiss
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
38
|
Yu X, Zou Y, Li Q, Mao Y, Zhu H, Huang G, Ji G, Luo X, Yu C, Zhang X. Decorin-mediated inhibition of cholangiocarcinoma cell growth and migration and promotion of apoptosis are associated with E-cadherin in vitro. Tumour Biol 2013; 35:3103-12. [PMID: 24272200 DOI: 10.1007/s13277-013-1402-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/06/2013] [Indexed: 01/09/2023] Open
Abstract
Emerging evidences have shown that decorin expression is significantly reduced in many cancer tissues and cancer cells. However, its biological role and clinical significance in cholangiocarcinoma development and progression are unknown. In this study, immunohistochemistry was conducted to investigate the expression of decorin in cholangiocarcinomas. The results showed that decorin levels markedly decreased in 44 cholangiocarcinoma tissues compared to 40 adjacent normal tissues. The analysis between decorin expression and clinicopathological characteristics in cholangiocarcinoma patients showed that patients with low levels of decorin expression had a relatively poor prognosis. Moreover, recombinant human decorin treatment and overexpression of decorin in cholangiocarcinoma cells could inhibit cell proliferation, migration, and invasion and promote apoptosis. Furthermore, the E-cadherin expression significantly increased after decorin overexpression or use of recombinant human decorin in cholangiocarcinoma cells. Our findings indicated that downregulation of decorin may be identified as a poor prognostic biomarker in cholangiocarcinomas. Also, decorin-mediated inhibition of cholangiocarcinoma cell growth, migration, and invasion and promotion of cell apoptosis might be through regulation of the expression of E-cadherin in vitro.
Collapse
Affiliation(s)
- Xiang Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Xiaguan District, Nanjing, 210000, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
El Behi M, Krumeich S, Lodillinsky C, Kamoun A, Tibaldi L, Sugano G, De Reynies A, Chapeaublanc E, Laplanche A, Lebret T, Allory Y, Radvanyi F, Lantz O, Eiján AM, Bernard-Pierrot I, Théry C. An essential role for decorin in bladder cancer invasiveness. EMBO Mol Med 2013; 5:1835-51. [PMID: 24142880 PMCID: PMC3914526 DOI: 10.1002/emmm.201302655] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
Muscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses. Furthermore, we unravel a parallel mechanism developed by MB49-I to subvert its environment: de novo secretion of the proteoglycan decorin. We show that decorin overexpression in the MB49/MB49-I model is required for efficient progression, by promoting angiogenesis and tumour cell invasiveness. Finally, we show that these results are relevant to muscle-invasive human bladder carcinomas, which overexpress decorin together with angiogenesis- and adhesion/migration-related genes, and that decorin overexpression in the human bladder carcinoma cell line TCCSUP is required for efficient invasiveness in vitro. We thus propose decorin as a new therapeutic target for these aggressive tumours.
Collapse
Affiliation(s)
- Mohamed El Behi
- Institut Curie Research Center, Paris, France; INSERM U932, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Skandalis SS, Afratis N, Smirlaki G, Nikitovic D, Theocharis AD, Tzanakakis GN, Karamanos NK. Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans. Matrix Biol 2013; 35:182-93. [PMID: 24063949 DOI: 10.1016/j.matbio.2013.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 02/07/2023]
Abstract
In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Nikolaos Afratis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dragana Nikitovic
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - George N Tzanakakis
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
41
|
Hamid AS, Li J, Wang Y, Wu X, Ali HAA, Du Z, Bo L, Zhang Y, Zhang G. Recombinant human decorin upregulates p57KIP² expression in HepG2 hepatoma cell lines. Mol Med Rep 2013; 8:511-6. [PMID: 23754492 DOI: 10.3892/mmr.2013.1510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/24/2013] [Indexed: 12/15/2022] Open
Abstract
Increasing the expression of cyclin-cyclin-dependent kinase inhibitors (cyclin-CDK) using small molecule inhibitors is a therapeutic strategy used to suppress cancer cell growth. Decorin (DCN), a functional component of the extracellular matrix, has been implicated in the suppression of cell proliferation by upregulating p21, a cyclin-CDK inhibitor. The purpose of this study was to examine the effect of recombinant decorin on the reactivation of p57KIP2, whose expression is silenced in hepatocellular carcinoma (HCC). Cell viability assay, cell cycle analysis, apoptosis assay and quantitative real time-PCR experiments were performed in three groups of HepG2 human cells: Uninfected HepG2 cells (control group), pcDNA3.1 vector-infected HepG2 cells (pcDNA3.1 group) and pcDNA3.1-DCN-infected HepG2 cells (pcDNA3.1‑DCN group). Our results revealed that recombinant human decorin inhibited cell proliferation, induced G0/G1 phase arrest and induced apoptosis by increasing the expression of caspase-3 in the pcDNA3.1-DCN group. The expression of p57KIP2 mRNA in the pcDNA3.1-DCN group was higher than in the pcDNA3.1 and control groups (P<0.05); however, there was no statistically significant difference between the control and pcDNA3.1 groups (P>0.05). In conclusion, recombinant human decorin reactivated p57KIP2 expression in HepG2 cells. As the expression level of p57KIP2 is downregulated in HCC, our finding may serve as a basis for the therapy and prognosis of HCC, although further studies are required.
Collapse
Affiliation(s)
- Abdu Selim Hamid
- Central Laboratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Baghy K, Horváth Z, Regős E, Kiss K, Schaff Z, Iozzo RV, Kovalszky I. Decorin interferes with platelet-derived growth factor receptor signaling in experimental hepatocarcinogenesis. FEBS J 2013; 280:2150-64. [PMID: 23448253 DOI: 10.1111/febs.12215] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 12/18/2022]
Abstract
Decorin, a secreted small leucine-rich proteoglycan, acts as a tumor repressor in a variety of cancers, mainly by blocking the action of several receptor tyrosine kinases such as the receptors for hepatocyte, epidermal and insulin-like growth factors. In the present study we investigated the effects of decorin in an experimental model of thioacetamide-induced hepatocarcinogenesis and its potential role in modulating the signaling of platelet-derived growth factor receptor-α (PDGFRα). Genetic ablation of decorin in mice led to enhanced tumor prevalence and a higher tumor count compared with wild-type mice. These findings correlated with decreased levels of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1) and concurrent activation (phosphorylation) of PDGFRα in the hepatocellular carcinomas generated in the decorin-null vis-à-vis wild-type mice. Notably, in normal liver PDGFRα localized primarily to the membrane of nonparenchymal cells, whereas in the malignant counterpart PDGFRα was expressed by the malignant cells at their cell surfaces. This process was facilitated by a genetic background lacking endogenous decorin. Double immunostaining of the proteoglycan and the receptor revealed only minor colocalization, leading to the hypothesis that decorin would bind to the natural ligand PDGF rather than to the receptor itself. Indeed, we found, using purified proteins and immune-blot assays, that decorin binds to PDGF. Collectively, our findings support the idea that decorin acts as a secreted tumor repressor during hepatocarcinogenesis by hindering the action of another receptor tyrosine kinase, such as the PDGFRα, and could be a novel therapeutic agent in the battle against liver cancer.
Collapse
Affiliation(s)
- Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
43
|
Neill T, Jones HR, Crane-Smith Z, Owens RT, Schaefer L, Iozzo RV. Decorin induces rapid secretion of thrombospondin-1 in basal breast carcinoma cells via inhibition of Ras homolog gene family, member A/Rho-associated coiled-coil containing protein kinase 1. FEBS J 2013; 280:2353-68. [PMID: 23350987 DOI: 10.1111/febs.12148] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/07/2013] [Accepted: 01/14/2013] [Indexed: 01/28/2023]
Abstract
Pathological neovascularization relies on an imbalance between potent proangiogenic agents and equally effective antiangiogenic cues. Collectively, these factors contribute to an angiogenic niche within the tumor microenvironment. Oncogenic events and hypoxia contribute to augmented levels of angiokines, and thereby activate the so-called angiogenic switch to promote aggressive tumorigenic and metastatic growth. Soluble decorin functions as a paracrine pan-inhibitor of receptor tyrosine kinases, such as Met and epidermal growth factor receptor, and thus is capable of suppressing angiogenesis under normoxia. This leads to noncanonical repression of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor A (VEGFA), and concurrent induction of thrombospondin-1. The substantial induction of endogenous tumor cell-derived thrombospondin-1, a potent antiangiogenic effector, led us to the discovery of an unexpected secretory phenotype occurring very rapidly (within 5 min) after decorin treatment of the triple-negative basal breast carcinoma cell line MDA-MB-231. Surprisingly, the effect was not mediated by Met receptor antagonism, as initially hypothesized, but required epidermal growth factor receptor signaling to achieve swift and robust thrombospondin-1 release. Furthermore, this effect was ultimately dependent on the prompt degradation of Ras homolog gene family member A, via the 26S proteasome, leading to direct inactivation of Rho-associated coiled-coil containing protein kinase 1. The latter led to derepression of thrombospondin-1 secretion. Collectively, these data provide a novel mechanistic role for Rho-associated coiled-coil containing protein kinase 1, in addition to providing the first conclusive evidence of decorin exclusively targeting a receptor tyrosine kinase to achieve a specific effect. The overall effects of soluble decorin on the tumor microenvironment would cause an immediately-early as well as a sustained antiangiogenic response in vivo.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
44
|
Byrum SD, Larson SK, Avaritt NL, Moreland LE, Mackintosh SG, Cheung WL, Tackett AJ. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma. ACTA ACUST UNITED AC 2013; 6:43-50. [PMID: 23976835 DOI: 10.4172/jpb.1000260] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.
Collapse
Affiliation(s)
- Stephanie D Byrum
- University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Wang LN, Tong SW, Hu HD, Ye F, Li SL, Ren H, Zhang DZ, Xiang R, Yang YX. Quantitative proteome analysis of ovarian cancer tissues using a iTRAQ approach. J Cell Biochem 2012; 113:3762-72. [DOI: 10.1002/jcb.24250] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Buraschi S, Neill T, Owens RT, Iniguez LA, Purkins G, Vadigepalli R, Evans B, Schaefer L, Peiper SC, Wang ZX, Iozzo RV. Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model. PLoS One 2012; 7:e45559. [PMID: 23029096 PMCID: PMC3446891 DOI: 10.1371/journal.pone.0045559] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/21/2012] [Indexed: 12/21/2022] Open
Abstract
Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties.
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rick T. Owens
- LifeCell Corporation, Branchburg, New Jersey, United States of America
| | - Leonardo A. Iniguez
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - George Purkins
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Barry Evans
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Liliana Schaefer
- Department of Pharmacology, Goethe University, Frankfurt, Germany
| | - Stephen C. Peiper
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
47
|
Zhang Y, Wang Y, Du Z, Wang Q, Wu M, Wang X, Wang L, Cao L, Hamid AS, Zhang G. Recombinant human decorin suppresses liver HepG2 carcinoma cells by p21 upregulation. Onco Targets Ther 2012; 5:143-52. [PMID: 22927763 PMCID: PMC3422087 DOI: 10.2147/ott.s32918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Decorin is a multifunctional molecule of the extracellular matrix and impedes different kinds of tumor cell growth, but the role and molecular mechanism by which decorin inhibits HepG2 cells is not fully understood. Our objective was to construct recombinant human decorin (pcDNA3.1-DCN) and to explore the mechanism by which it inhibits HepG2 cells. Methods This experiment was divided into three groups, ie, a control group, an empty vector group, and a pcDNA3.1-DCN group. pcDNA3.1-DCN was constructed using recombinant DNA technology, and the vector for pcDNA3.1-DCN and pcDNA3.1 was then transfected into HepG2 cells using Lipofectamine 2000. Results Compared with cells in the control group and in the empty vector group, growth of cells in the pcDNA3.1-DCN group was significantly suppressed, the ratios of cells in the G0/G1 phases and proportion of early apoptotic cells were significantly increased, and the level of p21WAF1/CIP1 (p21) protein was markedly upregulated (P < 0.05). However, there was no significant difference among the three groups in p53 protein expression (P > 0.05). Conclusion The pcDNA3.1-DCN vector was successfully constructed and transfected into HepG2 cells, and decorin overexpression suppressed the growth of HepG2 cells by upregulation of p21 via a p53-independent pathway.
Collapse
Affiliation(s)
- Yucheng Zhang
- Central Laboratory, China-Japan Union Hospital, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nikitovic D, Aggelidakis J, Young MF, Iozzo RV, Karamanos NK, Tzanakakis GN. The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem 2012; 287:33926-33. [PMID: 22879588 DOI: 10.1074/jbc.r112.379602] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The class of small leucine-rich proteoglycans (SLRPs) is a family of homologous proteoglycans harboring relatively small (36-42 kDa) protein cores compared with the larger cartilage and mesenchymal proteoglycans. SLRPs have been localized to most skeletal regions, with specific roles designated during all phases of bone formation, including periods relating to cell proliferation, organic matrix deposition, remodeling, and mineral deposition. This is mediated by key signaling pathways regulating the osteogenic program, including the activities of TGF-β, bone morphogenetic protein, Wnt, and NF-κB, which influence both the number of available osteogenic precursors and their subsequent development, differentiation, and function. On the other hand, SLRP depletion is correlated with degenerative diseases such as osteoporosis and ectopic bone formation. This minireview will focus on the SLRP roles in bone physiology and pathology.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, Greece
| | | | | | | | | | | |
Collapse
|
49
|
Velleman SG, Shin J, Li X, Song Y. Review: The skeletal muscle extracellular matrix: Possible roles in the regulation of muscle development and growth. CANADIAN JOURNAL OF ANIMAL SCIENCE 2012. [DOI: 10.4141/cjas2011-098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Velleman, S. G., Shin, J., Li, X. and Song, Y. 2012. Review: The skeletal muscle extracellular matrix: Possible roles in the regulation of muscle development and growth. Can. J. Anim. Sci. 92: 1–10. Skeletal muscle fibers are surrounded by an extrinsic extracellular matrix environment. The extracellular matrix is composed of collagens, proteoglycans, glycoproteins, growth factors, and cytokines. How the extracellular matrix influences skeletal muscle development and growth is an area that is not completely understood at this time. Studies on myogenesis have largely been directed toward the cellular components and overlooked that muscle cells secrete a complex extracellular matrix network. The extracellular matrix modulates muscle development by acting as a substrate for muscle cell migration, growth factor regulation, signal transduction of information from the extracellular matrix to the intrinsic cellular environment, and provides a cellular structural architecture framework necessary for tissue function. This paper reviews extracellular matrix regulation of muscle growth with a focus on secreted proteoglycans, cell surface proteoglycans, growth factors and cytokines, and the dynamic nature of the skeletal muscle extracellular matrix, because of its impact on the regulation of muscle cell proliferation and differentiation during myogenesis.
Collapse
Affiliation(s)
- Sandra G. Velleman
- Ohio Agricultural Research and Development Center/The Ohio State University, Department of Animal Sciences, Wooster, OH 44691, USA
| | - Jonghyun Shin
- Ohio Agricultural Research and Development Center/The Ohio State University, Department of Animal Sciences, Wooster, OH 44691, USA
| | - Xuehui Li
- University of Florida, Department of Anatomy and Cell Biology, Gainesville, FL 32610, USA
| | - Yan Song
- Ohio Agricultural Research and Development Center/The Ohio State University, Department of Animal Sciences, Wooster, OH 44691, USA
| |
Collapse
|
50
|
Garusi E, Rossi S, Perris R. Antithetic roles of proteoglycans in cancer. Cell Mol Life Sci 2012; 69:553-79. [PMID: 21964924 PMCID: PMC11114698 DOI: 10.1007/s00018-011-0816-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs), a family of complex post-translationally sculptured macromolecules, are fundamental regulators of most normal and aberrant cellular functions. The unparalleled structural-functional diversity of PGs endows them with the ability to serve as critical mediators of the tumor cells' interaction with the host microenvironment, while directly contributing to the organization and dynamic remodeling of this milieu. Despite their indisputable importance during embryonic development and in the adult organism, and their frequent dysregulation in tumor lesions, their precise involvement in tumorigenesis awaits a more decisive demonstration. Particularly challenging is to ascertain to what extent selected PGs may catalyze tumor progression and to what extent they may inhibit it, implying antithetic functions of individual PGs. Integrated efforts are needed to consolidate the routine use of PGs in the clinical monitoring of cancer patients and to broaden the exploitation of these macromolecules as therapeutic targets. Several PGs have the required attributes to be contemplated as effective antigens for immunotherapeutic approaches, while the tangible results obtained in recent clinical trials targeting the NG2/CSPG4 transmembrane PG urge further development of PG-based cancer treatment modalities.
Collapse
Affiliation(s)
- Elena Garusi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Silvia Rossi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Roberto Perris
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- S.O.C. of Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Via Franco Gallini, 2, 33081 Aviano, PN Italy
| |
Collapse
|