1
|
Onuma H, Shimizu R, Suzuki Y, Sato M, Harashima H, Sato Y. Engineering branched ionizable lipid for hepatic delivery of clustered regularly interspaced short palindromic repeat-Cas9 ribonucleoproteins. iScience 2024; 27:110928. [PMID: 39381750 PMCID: PMC11459060 DOI: 10.1016/j.isci.2024.110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
The delivery of the CRISPR/Cas ribonucleoprotein (RNP) has received attention for clinical applications owing to its high efficiency with few off-target effects. Lipid nanoparticles (LNPs) are potential non-viral vectors for the delivery of RNPs. Herein, we report the engineering of a branched scaffold structure of ionizable lipids for the hepatic delivery of RNPs. Both the total carbon number and branching position were critical for the functional delivery of RNPs. The optimal ionizable lipid exhibited a more than 98% reduction in transthyretin protein after a single dose with no obvious signs of toxicity. The mechanistic study has revealed that optimal LNPs have a unique "flower-like structure" that depends on both the lipid structure and the payload and that these LNPs accumulate in hepatocytes in an apolipoprotein E-independent manner. These results represent a major step toward the realization of in vivo genome editing therapy via RNP delivery using chemically synthesizable LNP formulations.
Collapse
Affiliation(s)
- Haruno Onuma
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Rina Shimizu
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuichi Suzuki
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mina Sato
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Delgardo M, Tang AJ, Tudor T, Pascual-Leone A, Connolly ES. Role of gC1qR as a modulator of endothelial cell permeability and contributor to post-stroke inflammation and edema formation. Front Cell Neurosci 2023; 17:1123365. [PMID: 37383840 PMCID: PMC10294424 DOI: 10.3389/fncel.2023.1123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. A serious risk of acute ischemic stroke (AIS) arises after the stroke event, due to inflammation and edema formation. Inflammation and edema in the brain are mediated by bradykinin, the formation of which is dependent upon a multi-ligand receptor protein called gC1qR. There are currently no preventive treatments for the secondary damage of AIS produced by inflammation and edema. This review aims to summarize recent research regarding the role of gC1qR in bradykinin formation, its role in inflammation and edema following ischemic injury, and potential therapeutic approaches to preventing post-stroke inflammation and edema formation.
Collapse
|
3
|
Lei Y, Li X, Qin D, Zhang Y, Wang Y. gC1qR: A New Target for Cancer Immunotherapy. Front Immunol 2023; 14:1095943. [PMID: 36776869 PMCID: PMC9909189 DOI: 10.3389/fimmu.2023.1095943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Although breakthroughs in cancer treatment have been achieved, immunotherapy yields only modest benefits in most patients. There is still a gap in clarifying the immune evasiveness and immune-resistance mechanisms. Identifying other candidate targets for cancer immunotherapy is therefore a clear unmet clinical need. The complement system, a pillar of innate immunity, has recently entered the limelight due to its immunoregulatory functions in the tumor microenvironment (TME). In particular, gC1qR, a receptor for globular heads of C1q, serves as a promising new target and has attracted more attention. gC1qR, also named P32/C1qBP/HABP1, is a multifunctional protein that is overexpressed in various cancers and holds prognostic value. It regulates the tumorigenic, progression and metastatic properties of tumor cells through several downstream signaling pathways, including the Wnt/β-catenin, PKC-NF-κB and Akt/PKB pathways. A few preclinical experiments conducted through gC1qR interventions, such as monoclonal antibody, chimeric antigen receptor T-cell (CAR-T) therapy, and tumor vaccination, have shown encouraging results in anticancer activity. The efficacy may rely on the regulatory role on the TME, induction of tumor cells apoptosis and antiangiogenic activity. Nevertheless, the current understanding of the relationship between cancer immunotherapy and gC1qR remains elusive and often contradictory, posing both opportunities and challenges for therapeutic translation in the clinic. In this review, we focus on the current understanding of gC1qR function in cancer immunology and highlight the vital roles in regulating the TME. We also examines the rationale behind targeting gC1qR and discusses the potential for translating into clinical practice.
Collapse
Affiliation(s)
- Yanna Lei
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Diyuan Qin
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Egusquiza-Alvarez CA, Robles-Flores M. An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer. J Cancer Res Clin Oncol 2022; 148:1831-1854. [PMID: 35441886 DOI: 10.1007/s00432-022-04001-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.
Collapse
Affiliation(s)
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
5
|
Phan QT, Lin J, Solis NV, Eng M, Swidergall M, Wang F, Li S, Gaffen SL, Chou TF, Filler SG. The Globular C1q Receptor Is Required for Epidermal Growth Factor Receptor Signaling during Candida albicans Infection. mBio 2021; 12:e0271621. [PMID: 34724825 PMCID: PMC8561387 DOI: 10.1128/mbio.02716-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
During oropharyngeal candidiasis, Candida albicans activates the epidermal growth factor receptor (EGFR), which induces oral epithelial cells to endocytose the fungus and synthesize proinflammatory mediators. To elucidate EGFR signaling pathways that are stimulated by C. albicans, we used proteomics to identify 1,214 proteins that were associated with EGFR in C. albicans-infected cells. Seven of these proteins were selected for additional study. Among these proteins, WW domain-binding protein 2, Toll-interacting protein, interferon-induced transmembrane protein 3 (IFITM3), and the globular C1q receptor (gC1qR) were found to associate with EGFR in viable oral epithelial cells. Each of these proteins was required for maximal endocytosis of C. albicans, and all regulated fungus-induced production of interleukin-1β (IL-1β) and/or IL-8, either positively or negatively. gC1qR was found to function as a key coreceptor with EGFR. Interacting with the C. albicans Als3 invasin, gC1qR was required for the fungus to induce autophosphorylation of both EGFR and the ephrin type A receptor 2. The combination of gC1qR and EGFR was necessary for maximal endocytosis of C. albicans and secretion of IL-1β, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by human oral epithelial cells. In mouse oral epithelial cells, inhibition of gC1qR failed to block C. albicans-induced phosphorylation, and knockdown of IFITM3 did not inhibit C. albicans endocytosis, indicating that gC1qR and IFITM3 function differently in mouse versus human oral epithelial cells. Thus, this work provides an atlas of proteins that associate with EGFR and identifies several that play a central role in the response of human oral epithelial cells to C. albicans infection. IMPORTANCE Oral epithelial cells play a key role in the pathogenesis of oropharyngeal candidiasis. In addition to being target host cells for C. albicans adherence and invasion, they secrete proinflammatory cytokines and chemokines that recruit T cells and activated phagocytes to foci of infection. It is known that C. albicans activates EGFR on oral epithelial cells, which induces these cells to endocytose the organism and stimulates them to secrete proinflammatory mediators. To elucidate the EGFR signaling pathways that govern these responses, we analyzed the epithelial cell proteins that associate with EGFR in C. albicans-infected epithelial cells. We identified four proteins that physically associate with EGFR and that regulate different aspects of the epithelial response to C. albicans. One of these is gC1qR, which is required for C. albicans to activate EGFR, induce endocytosis, and stimulate the secretion of proinflammatory mediators, indicating that gC1qR functions as a key coreceptor with EGFR.
Collapse
Affiliation(s)
- Quynh T. Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Norma V. Solis
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Michael Eng
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Marc Swidergall
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Feng Wang
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Shan Li
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tsui-Fen Chou
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G. Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
6
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
7
|
Koo BH, Won MH, Kim YM, Ryoo S. Arginase II protein regulates Parkin-dependent p32 degradation that contributes to Ca2+-dependent eNOS activation in endothelial cells. Cardiovasc Res 2021; 118:1344-1358. [PMID: 33964139 PMCID: PMC8953445 DOI: 10.1093/cvr/cvab163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Aims Arginase II (ArgII) plays a key role in the regulation of Ca2+ between the cytosol and mitochondria in a p32-dependent manner. p32 contributes to endothelial nitric oxide synthase (eNOS) activation through the Ca2+/CaMKII/AMPK/p38MAPK/Akt signalling cascade. Therefore, we investigated a novel function of ArgII in the regulation of p32 stability. Methods and results mRNA levels were measured by quantitative reverse transcription-PCR, and protein levels and activation were confirmed by western blot analysis. Ca2+ concentrations were measured by FACS analysis and a vascular tension assay was performed. ArgII bound to p32, and ArgII protein knockdown using siArgII facilitated the ubiquitin-dependent proteasomal degradation of p32. β-lactone, a proteasome inhibitor, inhibited the p32 degradation associated with endothelial dysfunction in a Ca2+-dependent manner. The amino acids Lys154, Lys 180, and Lys220 of the p32 protein were identified as putative ubiquitination sites. When these sites were mutated, p32 was resistant to degradation in the presence of siArgII, and endothelial function was impaired. Knockdown of Pink/Parkin as an E3-ubiquitin ligase with siRNAs resulted in increased p32, decreased [Ca2+]c, and attenuated CaMKII-dependent eNOS activation by siArgII. siArgII-dependent Parkin activation was attenuated by KN93, a CaMKII inhibitor. Knockdown of ArgII mRNA and its gene, but not inhibition of its activity, accelerated the interaction between p32 and Parkin and reduced p32 levels. In aortas of ArgII−/− mice, p32 levels were reduced by activated Parkin and inhibition of CaMKII attenuated Parkin-dependent p32 lysis. siParkin blunted the phosphorylation of the activated CaMKII/AMPK/p38MAPK/Akt/eNOS signalling cascade. However, ApoE−/− mice fed a high-cholesterol diet had greater ArgII activity, significantly attenuated phosphorylation of Parkin, and increased p32 levels. Incubation with siArgII augmented p32 ubiquitination through Parkin activation, and induced signalling cascade activation. Conclusion The results suggest a novel function for ArgII protein in Parkin-dependent ubiquitination of p32 that is associated with Ca2+-mediated eNOS activation in endothelial cells.
Collapse
Affiliation(s)
| | | | - Young-Myeong Kim
- Molecular and Cellular Biochemistry, Kangwon National University, Chuncheon, 24341, Korea
| | | |
Collapse
|
8
|
Choi K, Koo BH, Yoon BJ, Jung M, Yun HY, Jeon BH, Won MH, Kim YM, Mun JY, Lim HK, Ryoo S. Overexpressed p32 localized in the endoplasmic reticulum and mitochondria negatively regulates calcium‑dependent endothelial nitric oxide synthase activit. Mol Med Rep 2020; 22:2395-2403. [PMID: 32705193 PMCID: PMC7411372 DOI: 10.3892/mmr.2020.11307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022] Open
Abstract
The p32 protein plays a crucial role in the regulation of cytosolic Ca2+ concentrations ([Ca2+]c) that contributes to the Ca2+-dependent signaling cascade. Using an adenovirus and plasmid p32-overexpression system, the aim of the study was to evaluate the role of p32 in the regulation of [Ca2+] and its potential associated with Ca2+-dependent endothelial nitric oxide synthase (eNOS) activation in endothelial cells. Using electron and confocal microscopic analysis, p32 overexpression was observed to be localized to mitochondria and the endoplasmic reticulum and played an important role in Ca2+ translocation, resulting in increased [Ca2+] in these organelles and reducing cytosolic [Ca2+] ([Ca2+]c). This decreased [Ca2+]c following p32 overexpression attenuated the Ca2+-dependent signaling cascade of calcium/calmodulin dependent protein kinase II (CaMKII)/AKT/eNOS phosphorylation. Moreover, in aortic endothelia of wild-type mice intravenously administered adenovirus encoding the p32 gene, increased p32 levels reduced NO production and accelerated reactive oxygen species (ROS) generation. In a vascular tension assay, p32 overexpression decreased acetylcholine (Ach)-induced vasorelaxation and augmented phenylephrine (PE)-dependent vasoconstriction. Notably, decreased levels of arginase II (ArgII) protein using siArgII were associated with downregulation of overexpressed p32 protein, which contributed to CaMKII-dependent eNOS phosphorylation at Ser1177. These results indicated that increased protein levels of p32 caused endothelial dysfunction through attenuation of the Ca2+-dependent signaling cascade and that ArgII protein participated in the stability of p32. Therefore, p32 may be a novel target for the treatment of vascular diseases associated with endothelial disorders.
Collapse
Affiliation(s)
- Kwanhoon Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Bon-Hyeock Koo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Byeong Jun Yoon
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Minkyo Jung
- Department of Neural Circuits Research, Korea Brain Research Institute, Dong, Daegu 41068, Republic of Korea
| | - Hye Young Yun
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Byung Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Young Mun
- Department of Neural Circuits Research, Korea Brain Research Institute, Dong, Daegu 41068, Republic of Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
9
|
Vikramdeo KS, Saha P, Dutta S, Kumar N, Roy Chowdhury A, Kumar S, Tyagi RK, Ghosh I, Datta K. Hyaluronan-binding protein 1 (HABP1) overexpression triggers induction of senescence in fibroblasts cells. Cell Biol Int 2020; 44:1312-1330. [PMID: 32068317 DOI: 10.1002/cbin.11326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/16/2020] [Indexed: 01/01/2023]
Abstract
Hyaluronan-binding protein 1 (HABP1), a multi-compartmental, multi-functional protein has a wide range of functions, which can be attributed to its ability to associate with a variety of cellular ligands. Earlier we have reported that HABP1 overexpression in rat normal fibroblasts (F-HABP07) shows chronic generation of reactive oxygen species (ROS), induction of autophagy, and apoptosis. However, a significant proportion of cells remained viable after the majority went through apoptosis from 60 to 72 h. In this study, an attempt has been made to delineate the cellular events in the declined population of surviving cells. It has been elucidated here that, these cells at later time points of growth, that is, 72 and 84 h, not only appeared to shrink but also are devoid of autophagic vacuoles and displayed polyploidy. F-HABP07 cells exhibited an altered cytoskeletal structure from their parental cell line F111, assumed to be caused upon inhibition of actin polymerization and decrease in IQ motif-containing GTPase activating protein 1 (IQGAP1), a key protein associated with maintenance of cytoskeletal integrity. Enhanced expression and nuclear localization of AKT observed in F-HABP07 cells appears to be contributing toward the maintenance of high ROS levels in these cells and also potentially modulating the IQGAP1 activity. These observations, in fact have been considered to result in sustained DNA damage, which then leads to increased expression of p53 and activation of p21 and carry out the cellular events responsible for senescence. Subsequent assessment of the presence of positive β-gal staining and enhanced expression of p16INK4a in F-HABP07, confirmed that HABP1 overexpressing fibroblasts undergo senescence.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Molecular Endocrinology Laboratory, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shubhra Dutta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Naveen Kumar
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anindya Roy Chowdhury
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir Kumar
- Molecular Endocrinology Laboratory, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh Kumar Tyagi
- Molecular Endocrinology Laboratory, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilora Ghosh
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
10
|
Ghebrehiwet B, Geisbrecht BV, Xu X, Savitt AG, Peerschke EIB. The C1q Receptors: Focus on gC1qR/p33 (C1qBP, p32, HABP-1) 1. Semin Immunol 2019; 45:101338. [PMID: 31744753 DOI: 10.1016/j.smim.2019.101338] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
In the past several years, a number of C1q binding surface proteins or receptors have been described. This is not of course surprising considering the complexity of the C1q molecule and its ability to bind to a wide range of cellular and plasma proteins via both its collagen-like [cC1q] region and its heterotrimeric globular heads [gC1q] each of which in turn is capable of binding a specific ligand. However, while each of these "receptor" molecules undoubtedly plays a specific function within its restricted microenvironment, and therefore merits full attention, this review nonetheless, will singularly focus on the structure and function of gC1qR-a multi-functional and multi-compartmental protein, which plays an important role in inflammation, infection, and cancer. Although first identified as a receptor for C1q, gC1qR has been shown to bind to a plethora of proteins found in plasma, on the cell surface and on pathogenic microorganisms. The plasma proteins that bind to gC1qR are mostly blood coagulation proteins and include high molecular weight kininogen [HK], Factor XII [Hageman factor], fibrinogen, thrombin [FII], and multimeric vitronectin. This suggests that gC1qR can play an important role in modulating not only of fibrin formation, particularly at local sites of immune injury and/or inflammation, but by activating the kinin/kallikrein system, it is also able to generate, bradykinin, a powerful vasoactive peptide that is largely responsible for the swelling seen in angioedema. Another important function of gC1qR is in cancer, where it has been shown to play a role in tumor cell survival, growth and metastatic invasion by interacting with critical molecules in the tumor cell microenvironment including those of the complement system and kinin system. Finally, by virtue of its ability to interact with a growing list of pathogen-associated molecules, including bacterial and viral ligands, gC1qR is becoming recognized as an important pathogen recognition receptor [PRR]. Given the numerous roles it plays in a growing list of disease settings, gC1qR has now become a potential target for the development of monoclonal antibody-based and/or small molecule-based therapies.
Collapse
Affiliation(s)
- Berhane Ghebrehiwet
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794-8161 USA.
| | - Brian V Geisbrecht
- Kansas State University, Department of Biochemistry and Molecular Biophysics Manhattan, KS 66506 USA
| | - Xin Xu
- Kansas State University, Department of Biochemistry and Molecular Biophysics Manhattan, KS 66506 USA
| | - Anne G Savitt
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794-8161 USA
| | - Ellinor I B Peerschke
- The Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, 10065, USA
| |
Collapse
|
11
|
Ghate NB, Kim J, Shin Y, Situ A, Ulmer TS, An W. p32 is a negative regulator of p53 tetramerization and transactivation. Mol Oncol 2019; 13:1976-1992. [PMID: 31293051 PMCID: PMC6717765 DOI: 10.1002/1878-0261.12543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/03/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023] Open
Abstract
p53 is a sequence-specific transcription factor, and proper regulation of p53 transcriptional activity is critical for orchestrating different tumor-suppressive mechanisms. p32 is a multifunctional protein which interacts with a large number of viral proteins and transcription factors. Here, we investigate the effect of p32 on p53 transactivation and identify a novel mechanism by which p32 alters the functional characteristics of p53. Specifically, p32 attenuates p53-dependent transcription through impairment of p53 binding to its response elements on target genes. Upon p32 expression, p53 levels bound at target genes are decreased, and p53 target genes are inactivated, strongly indicating that p32 restricts p53 occupancy and function at target genes. The primary mechanism contributing to the observed action of p32 is the ability of p32 to interact with the p53 tetramerization domain and to block p53 tetramerization, which in turn enhances nuclear export and degradation of p53, leading to defective p53 transactivation. Collectively, these data establish p32 as a negative regulator of p53 function and suggest the therapeutic potential of targeting p32 for cancer treatment.
Collapse
Affiliation(s)
- Nikhil Baban Ghate
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jinman Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Alan Situ
- Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Tobias S. Ulmer
- Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
12
|
Kim BC, Hwang HJ, An HT, Lee H, Park JS, Hong J, Ko J, Kim C, Lee JS, Ko YG. Antibody neutralization of cell-surface gC1qR/HABP1/SF2-p32 prevents lamellipodia formation and tumorigenesis. Oncotarget 2018; 7:49972-49985. [PMID: 27363031 PMCID: PMC5226562 DOI: 10.18632/oncotarget.10267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022] Open
Abstract
We previously demonstrated that cell-surface gC1qR is a key regulator of lamellipodia formation and cancer metastasis. Here, we screened a monoclonal mouse antibody against gC1qR to prevent cell migration by neutralizing cell-surface gC1qR. The anti-gC1qR antibody prevented growth factor-stimulated lamellipodia formation, cell migration and focal adhesion kinase activation by inactivating receptor tyrosine kinases (RTKs) in various cancer cells such as A549, MDA-MB-231, MCF7 and HeLa cells. The antibody neutralization of cell-surface gC1qR also inhibited angiogenesis because the anti-gC1qR antibody prevented growth factor-stimulated RTK activation, lamellipodia formation, cell migration and tube formation in HUVEC. In addition, we found that A549 tumorigenesis was reduced in a xenograft mouse model by following the administration of the anti-gC1qR antibody. With these data, we can conclude that the antibody neutralization of cell-surface gC1qR could be a good therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Beom-Chan Kim
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyun-Jung Hwang
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Hyoung-Tae An
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyun Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Jun-Sub Park
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Jin Hong
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Jesang Ko
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Chungho Kim
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Young-Gyu Ko
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| |
Collapse
|
13
|
Saha P, Datta K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis. Oncotarget 2018. [PMID: 29535843 PMCID: PMC5828189 DOI: 10.18632/oncotarget.24082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is a complex, multi-factorial, multi-stage disease and a global threat to human health. Early detection of nature and stage of cancer is highly crucial for disease management. Recent studies have proved beyond any doubt about the involvement of the ubiquitous, myriad ligand binding, multi-functional human protein, hyaluronan-binding protein 1 (HABP1), which is identical to the splicing factor associated protein (p32) and the receptor of the globular head of the complement component (gC1qR) in tumorigenesis and cancer metastasis. Simultaneously three laboratories have discovered and named this protein separately as mentioned. Subsequently, different scientists have worked on the distinct functions in cellular processes ranging from immunological response, splicing mechanism, sperm-oocyte interactions, cell cycle regulation to cancer and have concentrated in their respective area of interest, referring it as either p32 or gC1qR or HABP1. HABP1 overexpression has been reported in almost all the tissue-specific forms of cancer and correlated with stage and poor prognosis in patients. In order to tackle this deadly disease and for therapeutic intervention, it is imperative to focus on all the regulatory aspects of this protein. Hence, this work is an attempt to combine an assortment of information on this protein to have an overview, which suggests its use as a diagnostic marker for cancer. The knowledge might assist in the designing of drugs for therapeutic intervention of HABP1/p32/gC1qR regulated specific ligand mediated pathways in cancer.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Yenugonda V, Nomura N, Kouznetsova V, Tsigelny I, Fogal V, Nurmemmedov E, Kesari S, Babic I. A novel small molecule inhibitor of p32 mitochondrial protein overexpressed in glioma. J Transl Med 2017; 15:210. [PMID: 29047383 PMCID: PMC5648515 DOI: 10.1186/s12967-017-1312-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The mitochondrial protein p32 is a validated therapeutic target of cancer overexpressed in glioma. Therapeutic targeting of p32 with monoclonal antibody or p32-binding LyP-1 tumor-homing peptide can limit tumor growth. However, these agents do not specifically target mitochondrial-localized p32 and would not readily cross the blood-brain barrier to target p32-overexpressing gliomas. Identifying small molecule inhibitors of p32 overexpressed in cancer is a more rational therapeutic strategy. Thus, in this study we employed a pharmacophore modeling strategy to identify small molecules that could bind and inhibit mitochondrial p32. METHODS A pharmacophore model of C1q and LyP-1 peptide association with p32 was used to screen a virtual compound library. A primary screening assay for inhibitors of p32 was developed to identify compounds that could rescue p32-dependent glutamine-addicted glioma cells from glutamine withdrawal. Inhibitors from this screen were analyzed for direct binding to p32 by fluorescence polarization assay and protein thermal shift. Affect of the p32 inhibitor on glioma cell proliferation was assessed by Alamar Blue assay, and affect on metabolism was examined by measuring lactate secretion. RESULTS Identification of a hit compound (M36) validates the pharmacophore model. M36 binds directly to p32 and inhibits LyP-1 tumor homing peptide association with p32 in vitro. M36 effectively inhibits the growth of p32 overexpressing glioma cells, and sensitizes the cells to glucose depletion. CONCLUSIONS This study demonstrates a novel screening strategy to identify potential inhibitors of mitochondrial p32 protein overexpressed in glioma. High throughput screening employing this strategy has potential to identify highly selective, potent, brain-penetrant small molecules amenable for further drug development.
Collapse
Affiliation(s)
- Venkata Yenugonda
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Natsuko Nomura
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | | | - Igor Tsigelny
- University of California San Diego, La Jolla, CA, USA
| | | | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| | - Ivan Babic
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| |
Collapse
|
15
|
Chang YW, Huang YS. Midbody localization of vinexin recruits rhotekin to facilitate cytokinetic abscission. Cell Cycle 2017; 16:2046-2057. [PMID: 28118077 DOI: 10.1080/15384101.2017.1284713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Vinexin is a SH3 domain-containing adaptor protein that has diverse roles in cell adhesion, signal transduction, gene regulation and stress granule assembly. In this study, we found that vinexin localizes at the midbody during cell division and facilitates cytokinesis. Knockdown of vinexin in HeLa cells delayed the mitotic cell cycle progression and increased the time of cell abscission and the failure to resolve the cytoplasmic bridge. Midbody-localized vinexin is essential for recruiting rhotekin to this structure for cytokinesis because overexpression of a vinexin mutant without a rhotekin-binding motif or knockdown of rhotekin also impaired cytokinetic abscission and increased the number of cells arrested at the midbody stage. Aberrant expression of vinexin and rhotekin in various cancers has been implicated to promote metastasis because of their functions in cell adhesion and signaling. Our findings reveal a novel role of vinexin and rhotekin in cytokinetic abscission and provide another perspective of how both molecules may affect oncogenic transformation via this fundamental cell cycle process.
Collapse
Affiliation(s)
- Yu-Wei Chang
- a Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - Yi-Shuian Huang
- a Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| |
Collapse
|
16
|
Ghebrehiwet B, Kaplan AP, Joseph K, Peerschke EIB. The complement and contact activation systems: partnership in pathogenesis beyond angioedema. Immunol Rev 2017; 274:281-289. [PMID: 27782339 DOI: 10.1111/imr.12469] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The blood plasma contains four biologically important proteolytic cascades, which probably evolved from the same ancestral gene. This in part may explain why each cascade has very similar "initiating trigger" followed by sequential and cascade-like downstream enzymatic activation pattern. The four cascades are: the complement system, the blood clotting cascade, the fibrinolytic system, and the kallikrein-kinin system. Although much has been written about the interplay between all these enzymatic cascades, the cross-talk between the complement and the kinin generating systems has become particularly relevant as this interaction results in the generation of nascent molecules that have significant impact in various inflammatory diseases including angioedema and cancer. In this review, we will focus on the consequences of the interplay between the two systems by highlighting the role of a novel molecular link called gC1qR. Although this protein was first identified as a receptor for C1q, it is now recognized as a multiligand binding cellular protein, which serves not only as C1q receptor, but also as high affinity (KD ≤ 0.8 nM) binding site for both high molecular weight kininogen (HK) and factor XII (FXII). At inflammatory sites, where atherogenic factors such as immune complexes and/or pathogens can activate the endothelial cell into a procoagulant and proinflammatory surface, the two pathways are activated to generate vasoactive peptides that contribute in various ways to the inflammatory processes associated with numerous diseases. More importantly, since recent observations strongly suggest an important role for both pathways in cancer, we will focus on how a growing tumor cluster can employ the byproducts derived from the two activation systems to ensure not only its survival and growth, but also its escape into distal sites of colonization.
Collapse
Affiliation(s)
- Berhane Ghebrehiwet
- The Departments of Medicine and Pathology, Stony Brook University, Stony Brook, NY, USA.
| | - Allen P Kaplan
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kusumam Joseph
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ellinor I B Peerschke
- The Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA.,The Department of Pathology, Weill-Cornell Medical College, New York, NY, USA
| |
Collapse
|
17
|
Gao H, Yao Q, Lan X, Li S, Wu J, Zeng G, Xue Y. Elevated HABP1 protein expression correlates with progression and poor survival in patients with gastric cancer. Onco Targets Ther 2016; 9:6711-6718. [PMID: 27826197 PMCID: PMC5096779 DOI: 10.2147/ott.s114756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hyaluronic acid-binding protein 1 (HABP1/gC1qR/p32) has been recently implicated in oncogenesis and cancer progression in various malignancies; however, its clinical role in gastric cancer (GC) is still unclear. PATIENTS AND METHODS First, HABP1 expression was determined by Western blot analysis and immunohistochemistry. Then, we evaluated the expression of HABP1 and its clinical significance in tumor tissues from 181 patients with GC. RESULTS Expression of HABP1 protein in GC tissues was noticeably higher than that in adjacent nonneoplastic tissues (P=0.018). Increased HABP1 expression was significantly associated with tumor, node, and metastasis (TNM) stage (P=0.006), depth of invasion (P=0.001), lymph node metastasis (P=0.001), liver metastasis (P=0.024), and peritoneum metastasis (P=0.009). Patients with high expression of HABP1 had poor overall survival rate (P<0.001). In addition, histologic grade (P=0.017), TNM stage (P<0.001), Borrmann grouping (P<0.001), depth of invasion (P<0.001), lymph node metastasis (P<0.001), liver metastasis (P=0.010), and tumor size (P<0.001) were independent prognostic factors for overall survival. Multivariate Cox regression analysis revealed that HABP1 (P=0.004), histologic grade (P=0.047), TNM stage (P<0.001), Borrmann grouping (P<0.001), and liver metastasis (P=0.038) were independent factors for overall survival in patients with GC. CONCLUSION These findings demonstrated that HABP1 was an indicator for GC progression and poor survival, which highlighted its potential role as a therapeutic target for GCs.
Collapse
Affiliation(s)
| | - Qiang Yao
- Department of Gastroenterologic Surgery
| | | | - Sen Li
- Department of Gastroenterologic Surgery
| | - Junlong Wu
- Department of Pathology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Guangchun Zeng
- Department of Pathology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, People's Republic of China
| | | |
Collapse
|
18
|
Huang Y, Wang W, Ren Q. Function of gC1qR in innate immunity of Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:34-41. [PMID: 26993663 DOI: 10.1016/j.dci.2016.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/12/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
gC1qR is identified as the globular "head" binding protein of the C1q protein and performs an important function in innate immunity. A EsgC1qR gene was identified from the hepatopancreas of Eriocheir sinensis. EsgC1qR encodes a protein with 275 amino acids. Phylogenetic analysis showed that, together with crustaceans gC1qRs, EsgC1qR belongs to one group. EsgC1qR mRNA was detected in hemocytes, intestine, hepatopancreas, gills, eyestalk, heart, muscle, and nerve. The expression of the EsgC1qR transcript in the hepatopancreas could be regulated by lipopolysaccharides (LPS), peptidoglycans (PGN), Staphyloccocus aureus, or Vibrio parahaemolyticus. Recombinant EsgC1qR (rEsgC1qR) protein could bind to various bacteria, LPS, and PGN. rEsgC1qR protein also presents direct bacteria inhibitory activity. rEsgC1qR could interact with EsCnx or EsCrt. Therefore, from the results, we could speculate that EsgC1qR is involved in the innate immunity of Chinese mitten crab, E. sinensis.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, PR China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, PR China.
| |
Collapse
|
19
|
Pednekar L, Pathan AA, Paudyal B, Tsolaki AG, Kaur A, Abozaid SM, Kouser L, Khan HA, Peerschke EI, Shamji MH, Stenbeck G, Ghebrehiwet B, Kishore U. Analysis of the Interaction between Globular Head Modules of Human C1q and Its Candidate Receptor gC1qR. Front Immunol 2016; 7:567. [PMID: 28018340 PMCID: PMC5153404 DOI: 10.3389/fimmu.2016.00567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
The heterotrimeric globular head (gC1q) domain of human C1q is made up of the C-terminal ends of the three individual chains, ghA, ghB, and ghC. A candidate receptor for the gC1q domain is a multi-functional pattern recognition protein, gC1qR. Since understanding of gC1qR and gC1q interaction could provide an insight into the pleiotropic functions of gC1qR, this study was undertaken to identify the gC1qR-binding site on the gC1q domain, using the recombinant ghA, ghB, and ghC modules and their substitution mutants. Our results show that ghA, ghB, and ghC modules can interact with gC1qR independently, thus reinforcing the notion of modularity within the gC1q domain of human C1q. Mutational analysis revealed that while Arg162 in the ghA module is central to interaction between gC1qR and C1q, a single amino acid substitution (arginine to glutamate) in residue 114 of the ghB module resulted in enhanced binding. Expression of gC1qR and C1q in adherent monocytes with or without pro-inflammatory stimuli was also analyzed by qPCR; it showed an autocrine/paracrine basis of C1q and gC1qR interaction. Microscopic studies revealed that C1q and gC1qR are colocalized on PBMCs. Cell proliferation assays indicated that ghA, ghB, and ghC modules were able to attenuate phytohemagglutinin-stimulated proliferation of PBMCs. Addition of gC1qR had an additive effect on the anti-proliferative effect of globular head modules. In summary, our results identify residues involved in C1q-gC1qR interaction and explain, to a certain level, their involvement on the immune cell surface, which is relevant for C1q-induced functions including inflammation, infection, and immunity.
Collapse
Affiliation(s)
- Lina Pednekar
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Ansar A. Pathan
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Basudev Paudyal
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Anthony G. Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Anuvinder Kaur
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Suhair M. Abozaid
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Lubna Kouser
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ellinor I. Peerschke
- Department of Laboratory Medicine, Memorial Sloan-Kettering, Cancer Center, New York, NY, USA
| | - Mohamed H. Shamji
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gudrun Stenbeck
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Berhane Ghebrehiwet
- Department of Medicine, State University of New York, Stony Brook, NY, USA
- *Correspondence: Berhane Ghebrehiwet, ; Uday Kishore, ,
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
- *Correspondence: Berhane Ghebrehiwet, ; Uday Kishore, ,
| |
Collapse
|
20
|
Peerschke EIB, Brandwijk RJMGE, Dembitzer FR, Kinoshita Y, Ghebrehiwet B. Soluble gC1qR in Blood and Body Fluids: Examination in a Pancreatic Cancer Patient Cohort. INTERNATIONAL JOURNAL OF CANCER RESEARCH AND MOLECULAR MECHANISMS 2015; 1:10.16966/ijcrmm.110. [PMID: 26973884 PMCID: PMC4786181 DOI: 10.16966/ijcrmm.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND gC1qR is a multifunctional cellular protein that has been linked to inflammation and cancer. gC1qR is highly upregulated in adenocarcinomas as compared to normal tissue counterparts, and soluble gC1qR (sgC1qR) has been detected in vitro in the pericellular milieu of proliferating malignant cells. AIM The present study explored the tissue expression of gC1qR in pancreatic cancer by immunohistochemistry, and the presence of sgC1qR in vivo, by examining blood and malignant effusions from patients with metastatic pancreatic adenocarcinoma. METHODS Tissue expression of gC1qR by pancreatic adenocarcinoma was visualized by immunohistochemistry. SgC1qR was quantified in serum from healthy volunteers (n=20) and pancreatic cancer patients (n=34), as well as in malignant pleural (n=23) and peritoneal effusions (n=27), using a newly developed, sensitive immunocapture sandwich ELISA. RESULTS Overexpression of gC1qR was confirmed in pancreatic adenocarcinoma compared to nonmalignant pancreatic tissue. Moreover, increased serum levels of sgC1qR (0.29 ± 0.22 ng/ml) were noted in patients with metastatic pancreatic cancer compared to healthy controls (0.15 ± 0.10 ng/ml) (mean ± S.D.) (p=0.035). In 11 of 16 patients for whom sequential samples were available, serum sgC1qR levels rose with disease progression, and paralleled changes in tumor biomarkers, CEA and CA19.9. In addition to blood, sgC1qR was detected in malignant pleural (0.55 ± 0.47 ng/ml) and peritoneal effusions (0.57 ± 0.38 ng/ml). CONCLUSION This study provides the first evidence for the presence of sgC1qR in vivo. The ability to detect sgC1qR in blood and body fluids will enable further studies to elucidate its pathophysiology in malignancy.
Collapse
Affiliation(s)
- Ellinor IB Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center and Department of Laboratory Medicine and Pathology, Weill Cornell Medical Center, NY, NY, USA
| | | | | | - Yayoi Kinoshita
- Department of Pathology, Mount Sinai School of Medicine, NY, NY, USA
| | | |
Collapse
|
21
|
In-depth analysis of site-specific N-glycosylation in vitronectin from human plasma by tandem mass spectrometry with immunoprecipitation. Anal Bioanal Chem 2014; 406:7999-8011. [DOI: 10.1007/s00216-014-8226-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/11/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
22
|
Ghebrehiwet B, Ji Y, Valentino A, Pednekar L, Ramadass M, Habiel D, Kew RR, Hosszu KH, Galanakis DK, Kishore U, Peerschke EIB. Soluble gC1qR is an autocrine signal that induces B1R expression on endothelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:377-84. [PMID: 24319267 DOI: 10.4049/jimmunol.1302031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein-coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1β. The C1q receptor, receptor for the globular heads of C1q (gC1qR), which plays a role in BK generation, is expressed on activated ECs and is also secreted as soluble gC1qR (sgC1qR). Because sgC1qR can bind to ECs, we hypothesized that it may also serve as an autocrine/paracrine signal for the induction of B1R expression. In this study, we show that gC1qR binds to ECs via a highly conserved domain consisting of residues 174-180, as assessed by solid-phase binding assay and deconvolution fluorescence microscopy. Incubation of ECs (24 h, 37 °C) with sgC1qR resulted in enhancement of B1R expression, whereas incubation with gC1qR lacking aa 174-180 and 154-162 had a diminished effect. Binding of sgC1qR to ECs was through surface-bound fibrinogen and was inhibited by anti-fibrinogen. In summary, our data suggest that, at sites of inflammation, sgC1qR can enhance vascular permeability by upregulation of B1R expression through de novo synthesis, as well as rapid translocation of preformed B1R.
Collapse
|
23
|
Ghebrehiwet B, Jesty J, Vinayagasundaram R, Vinayagasundaram U, Ji Y, Valentino A, Tumma N, Hosszu KH, Peerschke EIB. Targeting gC1qR Domains for Therapy Against Infection and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:97-110. [DOI: 10.1007/978-1-4614-4118-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Dembitzer FR, Kinoshita Y, Burstein D, Phelps RG, Beasley MB, Garcia R, Harpaz N, Jaffer S, Thung SN, Unger PD, Ghebrehiwet B, Peerschke EI. gC1qR expression in normal and pathologic human tissues: differential expression in tissues of epithelial and mesenchymal origin. J Histochem Cytochem 2012; 60:467-74. [PMID: 22638269 DOI: 10.1369/0022155412440882] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gC1qR (i.e., gC1q receptor, gC1q binding protein, p32, p33) is a multifunctional cellular protein that interacts with components of the complement, kinin, and coagulation cascades and select microbial pathogens. Enhanced gC1qR expression has been reported in adenocarcinomas arising in a variety of organs. The present study compared gC1qR expression in normal, inflammatory, dysplastic, and malignant tissue of epithelial and mesenchymal origin. gC1qR expression was visualized in tissue sections by immunohistochemistry using the 60.11 monoclonal antibody (i.e., IgG(1) mouse monoclonal antibody directed against gC1qR) and the UltraVision LP Detection System. Sections were counterstained with hematoxylin and examined by light microscopy. Strongest gC1qR expression was noted in epithelial tumors of breast, prostate, liver, lung, and colon, as well as in squamous and basal cell carcinoma of the skin. However, increased gC1qR staining was appreciated also in inflammatory and proliferative lesions of the same cell types, as well as in normal continuously dividing cells. In contrast, tumors of mesenchymal origin generally stained weakly, with the exception of osteoblasts, which stained in both benign and malignant tissues. The data suggest that increased gC1qR expression may be a marker of benign and pathologic cell proliferation, particularly in cells of epithelial origin, with potential diagnostic and therapeutic applications.
Collapse
|
25
|
Wang Y, Tong X, Zhang J, Ye X. The complement C1qA enhances retinoic acid-inducible gene-I-mediated immune signalling. Immunology 2012; 136:78-85. [PMID: 22260551 PMCID: PMC3372759 DOI: 10.1111/j.1365-2567.2012.03561.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 12/24/2022] Open
Abstract
The cellular innate immune response is essential for recognizing and defending against viral infection. Retinoic acid-inducible gene-I (RIG-I) and virus-induced signaling adaptor (VISA) mediated immune signalling is critically involved in RNA-virus-induced innate immune responses. Here we demonstrate that the complement C1qA interacts with different RIG-I pathway components and enhances RIG-I-VISA-mediated signalling pathway as well as TBK1-mediated activation of interferon-β (IFN-β) promoter. Our data show that over-expression of C1qA up-regulates RIG-I-mediated activation of IFN-stimulated responsive element (ISRE) and nuclear factor-κB reporters and IFN-β transcription, but not IFN regulatory factor-3-mediated and inhibitor of κB kinase-mediated activation of ISRE and nuclear factor-κB promoter. In addition, C1qA can counteract the function of the C1q receptor gC1qR in RIG-I-mediated signalling. Our results reveal the important role of complement C1qA in the innate immune response.
Collapse
Affiliation(s)
- Yetao Wang
- Centre for Molecular Immunology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
26
|
Tahtouh M, Garçon-Bocquet A, Croq F, Vizioli J, Sautière PE, Van Camp C, Salzet M, Nagnan-le Meillour P, Pestel J, Lefebvre C. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis. J Neuroinflammation 2012; 9:37. [PMID: 22356764 PMCID: PMC3298539 DOI: 10.1186/1742-2094-9-37] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/22/2012] [Indexed: 01/24/2023] Open
Abstract
Background In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Methods Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. Results rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. Conclusions A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech.
Collapse
Affiliation(s)
- Muriel Tahtouh
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Microglial activation group, Université Lille Nord de France, Université Lille 1, IFR 147, bâtiment SN3, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim KB, Yi JS, Nguyen N, Lee JH, Kwon YC, Ahn BY, Cho H, Kim YK, Yoo HJ, Lee JS, Ko YG. Cell-surface receptor for complement component C1q (gC1qR) is a key regulator for lamellipodia formation and cancer metastasis. J Biol Chem 2011; 286:23093-101. [PMID: 21536672 DOI: 10.1074/jbc.m111.233304] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We previously demonstrated that the receptor for the complement component C1q (gC1qR) is a lipid raft protein that is indispensable for adipogenesis and insulin signaling. Here, we provide the first report that gC1qR is an essential component of lamellipodia in human lung carcinoma A549 cells. Cell-surface gC1qR was concentrated in the lamellipodia along with CD44, monosialoganglioside, actin, and phosphorylated focal adhesion kinase in cells stimulated with insulin, IGF-1, EGF, or serum. The growth factor-induced lamellipodia formation and cell migration were significantly decreased in gC1qR-depleted cells, with a concomitant blunt activation of the focal adhesion kinase and the respective receptor tyrosine kinases. Moreover, the gC1qR-depleted cells exhibited a reduced proliferation rate in culture as well as diminished tumorigenic and metastatic activities in grafted mice. We therefore conclude that cell-surface gC1qR regulates lamellipodia formation and metastasis via receptor tyrosine kinase activation.
Collapse
Affiliation(s)
- Ki-Bum Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Complement and non-complement activating functions of C1q: A prototypical innate immune molecule. Innate Immun 2011; 18:350-63. [DOI: 10.1177/1753425910396252] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
C1q is a versatile innate immune molecule that serves as the initiation subcomponent of the classical complement pathway. In addition, it is also a potent pattern recognition molecule, the versatility of which has fuelled its functional flexibility. C1q recognises an array of self, non-self and altered-self ligands. The broad-spectrum ligand-binding potential of C1q is facilitated by the modular organisation of the heterotrimeric globular head region, its ability to change its conformation in a very subtle way, and the manner in which this ancient molecule appears to have evolved to deal with the different types of ligands. Over recent years, molecules that resemble C1q have been put together to form the C1q family. In this review, we briefly summarise complement-dependent and complement-independent functions of C1q, its cognate receptors and key members of the rapidly growing C1q family.
Collapse
|
29
|
Ghebrehiwet B, Jesty J, Xu S, Vinayagasundaram R, Vinayagasundaram U, Ji Y, Valentino A, Hosszu KK, Mathew S, Joseph K, Kaplan AP, Peerschke EIB. Structure-function studies using deletion mutants identify domains of gC1qR/p33 as potential therapeutic targets for vascular permeability and inflammation. Front Immunol 2011; 2. [PMID: 22282702 PMCID: PMC3265123 DOI: 10.3389/fimmu.2011.00058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The endothelial cell receptor complex for kininogen (HK) comprises gC1qR, cytokeratin 1, and urokinase-type plasminogen activator receptor and is essential for activation of the kinin system that leads to bradykinin (BK) generation. Of these, gC1qR/p33 constitutes a high affinity site for HK – the BK precursor – and is therefore critical for the assembly of the kinin-generating cascade. Previous studies have identified a putative HK site within the C-terminal domain (residues 204–218) of gC1qR recognized by mAb 74.5.2. In these studies, we used information from the crystal structure of gC1qR, to engineer several deletion (Δ) mutants and test their ability to bind and/or support BK generation. While deletion of residues 204–218 (gC1qRΔ204–218), showed significantly reduced binding to HK, BK generation was not affected when tested by a sensitive bradykinin immunoassay. In fact, all of the gC1qR deletion mutants supported BK generation with the exception of gC1qRΔ154–162 and a point mutation in which Trp 233 was substituted with Gly. Binding studies also identified the existence of two additional sites at residues 144–162 and 190–202. Moreover, binding of HK to a synthetic peptide 190–202 was inhibited by mAbs 48 and 83, but not by mAb 74.5.2. Since a single residue separates domains 190–202 and 204–218, they may be part of a highly stable HK binding pocket and therefore a potential target for drug design to prevent vascular permeability and inflammation.
Collapse
|
30
|
A gC1qR prevents white spot syndrome virus replication in the freshwater crayfish Pacifastacus leniusculus. J Virol 2010; 84:10844-51. [PMID: 20686021 DOI: 10.1128/jvi.01045-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gC1qR/p32 protein is a multiple receptor for several proteins and pathogens. We cloned a gC1qR homologue in a crustacean, Pacifastacus leniusculus, and analyzed the expression of P. leniusculus C1qR (PlgC1qR) in various tissues. The gC1qR/p32 transcript was significantly enhanced by white spot syndrome virus (WSSV) infection 6 h after viral infection both in vitro in a hematopoietic tissue cell culture (Hpt) and in vivo compared to appropriate controls. Moreover, PlgC1qR silencing in both the Hpt cell culture and live crayfish enhanced the WSSV replication. In addition, by making a recombinant PlgC1qR protein we could show that if this recombinant protein was injected in a crayfish, Pacifastacus leniusculus, followed by injection of WSSV, this significantly reduced viral replication in vivo. Furthermore, if the recombinant PlgC1qR was incubated with Hpt cells and then WSSV was added, this also reduced viral replication. These experiments clearly demonstrate that recombinant PlgC1qR reduce WSSV replication both in vivo and in vitro. The results from a far-Western overlay and glutathione S-transferase pull-down assays showed that PlgC1qR could bind to VP15, VP26, and VP28. Altogether, these results demonstrate a role for PlgC1qR in antiviral activity against WSSV.
Collapse
|
31
|
Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol 2010; 30:1303-18. [PMID: 20100866 DOI: 10.1128/mcb.01101-09] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
p32/gC1qR/C1QBP/HABP1 is a mitochondrial/cell surface protein overexpressed in certain cancer cells. Here we show that knocking down p32 expression in human cancer cells strongly shifts their metabolism from oxidative phosphorylation (OXPHOS) to glycolysis. The p32 knockdown cells exhibited reduced synthesis of the mitochondrial-DNA-encoded OXPHOS polypeptides and were less tumorigenic in vivo. Expression of exogenous p32 in the knockdown cells restored the wild-type cellular phenotype and tumorigenicity. Increased glucose consumption and lactate production, known as the Warburg effect, are almost universal hallmarks of solid tumors and are thought to favor tumor growth. However, here we show that a protein regularly overexpressed in some cancers is capable of promoting OXPHOS. Our results indicate that high levels of glycolysis, in the absence of adequate OXPHOS, may not be as beneficial for tumor growth as generally thought and suggest that tumor cells use p32 to regulate the balance between OXPHOS and glycolysis.
Collapse
|
32
|
Sansonno D, Tucci FA, Ghebrehiwet B, Lauletta G, Peerschke EIB, Conteduca V, Russi S, Gatti P, Sansonno L, Dammacco F. Role of the receptor for the globular domain of C1q protein in the pathogenesis of hepatitis C virus-related cryoglobulin vascular damage. THE JOURNAL OF IMMUNOLOGY 2009; 183:6013-20. [PMID: 19828637 DOI: 10.4049/jimmunol.0902038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mixed cryoglobulinemia (MC) is a lymphoproliferative disorder observed in approximately 10 to 15% of hepatitis C virus (HCV)-infected patients. Circulating, nonenveloped HCV core protein, which has been detected in cryoprecipitable immune complexes, interacts with immunocytes through the receptor for the globular domain of C1q protein (gC1q-R). In this study, we have evaluated circulating gC1q-R levels in chronically HCV-infected patients, with and without MC. These levels were significantly higher in MC patients than in those without MC and in healthy controls and paralleled specific mRNA expression in PBL. Soluble gC1q-R circulates as a complexed form containing both C1q and HCV core proteins. Higher serum gC1q-R levels negatively correlated with circulating concentrations of the C4d fragment. The presence of sequestered C4d in the vascular bed of skin biopsies from MC patients was indicative of in situ complement activation. In vitro studies showed that release of soluble gC1q-R is regulated by HCV core-mediated inhibition of cell proliferation. Our results indicate that up-regulation of gC1q-R expression is a distinctive feature of MC, and that dysregulated shedding of C1q-R molecules contributes to vascular cryoglobulin-induced damage via the classic complement-mediated pathway.
Collapse
Affiliation(s)
- Domenico Sansonno
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Seo M, Lee WH, Suk K. Identification of novel cell migration-promoting genes by a functional genetic screen. FASEB J 2009; 24:464-78. [PMID: 19812375 DOI: 10.1096/fj.09-137562] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we describe the identification of novel cell migration-promoting genes based on an unbiased functional genetic screen in cultured cells. After the introduction of the retroviral mouse brain cDNA library into NIH3T3 mouse fibroblast cells, migration-promoted cells were selected by a 3-dimensional migration assay using cell culture inserts. After 5 rounds of enrichment, cDNAs were retrieved from the cells with a selected phenotype. Cell migration-promoting activity was confirmed by independent migration assays for the retrieved cDNAs, among which further investigation was focused on coiled-coil-helix-coiled-coil-helix domain-containing protein 2 (chchd2). Whereas overexpression of chchd2 promoted cell migration, knockdown of endogenous chchd2 expression reduced cell migration. Chchd2-induced cell migration was associated with augmented formation of actin stress fibers and focal adhesion, which was mediated through Akt, RhoA/ROCK, and Jnk pathways. CHCHD2 protein directly interacted with hyaluronic acid-binding protein 1 (HABP1) that possessed migration-suppressing activity. Intracellular localization and further functional studies suggested that CHCHD2 and HABP1 may mutually regulate each other to balance cell migration. Thus, chchd2 is a novel cell migration determinant identified by an in vitro functional genetic selection strategy. The selection method can also be useful for the isolation of genes that give other phenotypes of interest.
Collapse
Affiliation(s)
- Minchul Seo
- Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | | | | |
Collapse
|
34
|
Involvement of aquaporin in thromboxane A2 receptor-mediated, G 12/13/RhoA/NHE-sensitive cell swelling in 1321N1 human astrocytoma cells. Cell Signal 2009; 22:41-6. [PMID: 19772916 DOI: 10.1016/j.cellsig.2009.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
The physiological role of the thromboxane A(2) (TXA(2)) receptor expressed on glial cells remains unclear. We previously reported that 1321N1 human astrocytoma cells pretreated with dibutyryl cyclic AMP (dbcAMP) became swollen in response to U46619, a TXA(2) analogue. In the present study, we examined the detailed mechanisms of TXA(2) receptor-mediated cell swelling in 1321N1 cells. The cell swelling caused by U46619 was suppressed by expression of p115-RGS, an inhibitory peptide of G alpha(12/13) pathway and C3 toxin, an inhibitory protein for RhoA. The swelling was also inhibited by treatment with Y27632, a Rho kinase inhibitor and 5-(ethyl-N-isopropyl)amiloride (EIPA), a Na(+)/H(+)-exchanger inhibitor. Furthermore, cell swelling was suppressed by the pretreatment with aquaporin inhibitors mercury chloride or phloretin in a concentration-dependent manner, suggesting that aquaporins are involved in U46619-induced 1321N1 cell swelling. In fact, U46619 caused [(3)H]H(2)O influx into the cells, which was inhibited by p115-RGS, C3 toxin, EIPA, mercury chloride and phloretin. This is the first report that the TXA(2) receptor mediates water influx through aquaporins in astrocytoma cells via TXA(2) receptor-mediated activation of G alpha(12/13), Rho A, Rho kinase and Na(+)/H(+)-exchanger.
Collapse
|
35
|
Kim KB, Kim BW, Choo HJ, Kwon YC, Ahn BY, Choi JS, Lee JS, Ko YG. Proteome analysis of adipocyte lipid rafts reveals that gC1qR plays essential roles in adipogenesis and insulin signal transduction. Proteomics 2009; 9:2373-82. [DOI: 10.1002/pmic.200800811] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Tahtouh M, Croq F, Vizioli J, Sautiere PE, Van Camp C, Salzet M, Daha MR, Pestel J, Lefebvre C. Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord. Mol Immunol 2009; 46:523-31. [DOI: 10.1016/j.molimm.2008.07.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
37
|
Choi Y, Kwon YC, Kim SI, Park JM, Lee KH, Ahn BY. A hantavirus causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient cell binding and infection. Virology 2008; 381:178-83. [PMID: 18834607 DOI: 10.1016/j.virol.2008.08.035] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/09/2008] [Accepted: 08/19/2008] [Indexed: 11/18/2022]
Abstract
Hantaan virus (HTNV) is a pathogenic hantavirus that causes hemorrhagic fever with renal syndrome (HFRS). HTNV infection is mediated by alpha v beta3 integrin. We used protein blots of Vero E6 cell homogenates to demonstrate that radiolabeled HTNV virions bind to gC1qR/p32, the acidic 32-kDa protein known as the receptor for the globular head domain of complement C1q. RNAi-mediated suppression of gC1qR/p32 markedly reduced HTNV binding and infection in human lung epithelial A549 cells. Conversely, transient expression of either simian or human gC1qR/p32 rendered non-permissive CHO cells susceptible to HTNV infection. These results suggest an important role for gC1qR/p32 in HTNV infection and pathogenesis.
Collapse
Affiliation(s)
- Yun Choi
- Mogam Research Institute, 341 Pojungdong, Yongin, 449-910, Republic of Korea
| | | | | | | | | | | |
Collapse
|
38
|
Sheikh MA, Potter JA, Johnson KA, Sim RB, Boyd EF, Taylor GL. Crystal structure of VC1805, a conserved hypothetical protein from a Vibrio cholerae pathogenicity island, reveals homology to human p32. Proteins 2008; 71:1563-71. [PMID: 18300248 DOI: 10.1002/prot.21993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Md Arif Sheikh
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife, KY16 9ST, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Tacnet P, Cheong ECC, Goeltz P, Ghebrehiwet B, Arlaud GJ, Liu XY, Lesieur C. Trimeric reassembly of the globular domain of human C1q. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1784:518-29. [PMID: 18179779 PMCID: PMC2707929 DOI: 10.1016/j.bbapap.2007.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/19/2007] [Accepted: 12/03/2007] [Indexed: 11/25/2022]
Abstract
C1q is a versatile recognition protein which binds to a variety of targets and consequently triggers the classical pathway of complement. C1q is a hetero-trimer composed of three chains (A, B and C) arranged in three domains, a short N-terminal region, followed by a collagenous repeat domain that gives rise to the formation of (ABC) triple helices, each ending in a C-terminal hetero-trimeric globular domain, called gC1q, which is responsible for the recognition properties of C1q. The mechanism of the trimeric assembly of C1q and in particular the role of each domain in the process is unknown. Here, we have investigated if the gC1q domain was able to assemble into functional trimers, in vitro, in the absence of the collagenous domain, a motif known to promote obligatory trimers in other proteins. Acid-mediated gC1q protomers reassembled into functional trimers, once neutralized, indicating that it is the gC1q domain which possesses the information for trimerization. However, reassembly occurred after neutralization, only if the gC1q protomers had preserved a residual tertiary structure at the end of the acidic treatment. Thus, the collagenous domain of C1q might initialize the folding of the gC1q domain so that subsequent assembly of the entire molecule can occur.
Collapse
Affiliation(s)
- Pascale Tacnet
- Laboratoire d’Enzymologie Moléculaire, Institut de Biologie Structurale, CEA-CNRS-Université Joseph Fourier, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Eric Chung Chee Cheong
- National University of Singapore, Physics Department, 2 Science Drive 3, 117542, Singapore
| | - Pierrette Goeltz
- Laboratoire d’Enzymologie Moléculaire, Institut de Biologie Structurale, CEA-CNRS-Université Joseph Fourier, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Berhane Ghebrehiwet
- Department of Medicine, State University of New York, Stony Brook, New York, USA
| | - Gérard J. Arlaud
- Laboratoire d’Enzymologie Moléculaire, Institut de Biologie Structurale, CEA-CNRS-Université Joseph Fourier, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Xiang-Yang Liu
- National University of Singapore, Physics Department, 2 Science Drive 3, 117542, Singapore
| | - Claire Lesieur
- National University of Singapore, Physics Department, 2 Science Drive 3, 117542, Singapore
- iRTSV/BBSI, CEA-CNRS-Université Joseph Fourier, 17 rue des Martyrs, 38054 Grenoble, France
| |
Collapse
|
40
|
Reef S, Shifman O, Oren M, Kimchi A. The autophagic inducer smARF interacts with and is stabilized by the mitochondrial p32 protein. Oncogene 2007; 26:6677-83. [PMID: 17486078 DOI: 10.1038/sj.onc.1210485] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative reading frame (ARF) mRNA encodes two pro-death proteins, the nucleolar p19ARF and a shorter mitochondrial isoform, named smARF (hsmARF in human). While p19ARF can inhibit cell growth by causing cell cycle arrest or type I apoptotic cell death, smARF is able to induce type II autophagic cell death. Inappropriate proliferative signals generated by proto-oncogenes, such as c-Myc and E2F1, can elevate both p19ARF and smARF proteins. Here, we reveal a novel means of regulation of smARF protein steady state levels through its interactions with the mitochondrial p32. The p32 protein physically interacts with both human and murine smARF, and colocalizes with these short isoforms to the mitochondria. Remarkably, knocking down p32 protein levels significantly reduced the steady state levels of smARF by increasing its turn over. As a consequence, the ability of ectopically expressed smARF to induce autophagy and to cause mitochondrial membrane dissipation was significantly reduced. In contrast, the protein levels of full-length p19ARF, which mainly resides in the nucleolus, were not influenced by p32 depletion, suggesting that p32 exclusively stabilizes the mitochondrial smARF protein. Thus the interaction with p32 provides a means of specifically regulating the expression of the recently identified autophagic inducer, smARF, and adds yet another layer of complexity to the multifaceted regulation of the ARF gene.
Collapse
Affiliation(s)
- S Reef
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
41
|
Ghebrehiwet B, CebadaMora C, Tantral L, Jesty J, Peerschke EIB. gC1qR/p33 serves as a molecular bridge between the complement and contact activation systems and is an important catalyst in inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:95-105. [PMID: 16893067 DOI: 10.1007/0-387-34134-x_7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The receptor for the globular heads of C1q, gC1qR/p33, is a ubiquitously expressed protein, which is distributed both intracellularly and on the cell-surface protein. In addition to C1q, this molecule also is able to bind several other biologically important plasma ligands, including high-molecular-weight kininogen (HK), factor XII (FXII), and multimeric vitronectin. Previous studies have shown that incubation of FXII, prekallikrein, and HK with gC1qR leads to a zinc-dependent and FXII-dependent conversion of prekallikrein to kallikrein, a requisite for kinin generation. In addition, these studies showed that normal plasma, but not plasma deficient in FXII, PK, or HK, activate upon binding to endothelial cells (EC), and that this activation could be inhibited by antibody to gClqR. In these studies, we show that incubation of serum with microtiter plate bound gC1qR results in complement activation, as evidenced by the binding and activation of C1 and generation of C4d. However, neither Clq-deficient serum nor a truncated form of gC1qR (gC1qRA74-96), supported complement activation. Taken together, the data strongly suggest that at sites of inflammation, such as vasculitis and atherosclerosis, where gC1qR as well as its two important plasma ligands, C1q and HK, have been shown to be simultaneously present, soluble or cell-surface-expressed gC1qR may contribute to the inflammatory process by modulating complement activation, kinin generation, and perhaps even initiation of clotting via the contact system. Based on these and other published data, we propose a model of inflammation in which atherogenic factors (e.g., immune complexes, virus, or bacteria) are perceived not only to convert the endothelium into a procoagulant and proinflammatory surface, but also to induce enhanced expression of cell surface molecules such as gC1qR. Enhanced expression of gC1qR in turn leads to: (i) high-affinity C1q binding and cell production of proinflammatory factors, and (ii) high-affinity HK binding and facilitation of the assembly of contact activation proteins leading to generation of bradykinin and possibly coagulation through activation of FXI.
Collapse
|
42
|
Peerschke EIB, Ghebrehiwet B. The contribution of gC1qR/p33 in infection and inflammation. Immunobiology 2007; 212:333-42. [PMID: 17544818 PMCID: PMC2001281 DOI: 10.1016/j.imbio.2006.11.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 12/24/2022]
Abstract
Human gC1qR/p33 is a multi-compartmental and multi-functional cellular protein expressed on a wide range of tissues and cell types including lymphocytes, endothelial cells, dendritic cells, and platelets. Although originally isolated as a receptor for C1q by virtue of its affinity (K(d)=15-50 nM), and specificity for the globular heads of this molecule, a large body of evidence has now been accumulated which shows that in addition to C1q, gC1qR can serve as a receptor for diverse proinflammatory ligands including proteins of the plasma kinin-forming system, most notably high molecular weight kininogen (HK; K(d)=9 nM). In addition, gC1qR has been reported to recognize and bind a number of functional antigens of viral and bacterial origin. It is its ability to interact with microbial antigens and its potential to serve as a cellular protein for bacterial attachment and/or entry that has been the focus of our laboratory in the past few years. On the surface of activated platelets, gC1qR has been shown to serve as a binding site for Staphylococcus aureus and this binding is mediated by protein A. Since the binding of S. aureus to platelets is postulated to play a major role in the pathogenesis of endocarditis, gC1qR may provide a suitable surface for the initial adhesion of the bacterium. Recent data also demonstrate that the exosporium of Bacillus cereus, a member of a genus of aerobic, Gram-positive, spore-forming rod-like bacilli, which includes the deadly Bacillus anthracis, contains a binding site for gC1qR. Therefore, by virtue of its ability to recognize plasma proteins such as C1q and HK, as well as bacterial and viral antigens, cell-surface gC1qR not only is able to generate proinflammatory byproducts from the complement and kinin/kallikrein systems, but also can be an efficient vehicle and platform for a plethora of pathogenic microorganisms.
Collapse
Affiliation(s)
- Ellinor I B Peerschke
- Department of Pathology, Weill Medical College of Cornell University, New York Presbyterian Hospital, 525 East 68th Street, Room F715, NY 10021, USA.
| | | |
Collapse
|
43
|
Dupré DJ, Hébert TE. Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cell Signal 2006; 18:1549-59. [PMID: 16677801 DOI: 10.1016/j.cellsig.2006.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/21/2006] [Indexed: 12/16/2022]
Abstract
Recent studies have shown that 7-transmembrane receptors (7TM-Rs), their associated signalling molecules and scaffolding proteins are often constitutively associated under basal conditions. These studies highlight that receptor ontogeny and trafficking are likely to play key roles in the determination of both signalling specificity and efficacy. This review highlights information about how 7TM-Rs and their associated signalling molecules are trafficked to the cell surface as well as other intracellular destinations.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology and Therapeutics, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| | | |
Collapse
|
44
|
Kamal A, Datta K. Upregulation of hyaluronan binding protein 1 (HABP1/p32/gC1qR) is associated with Cisplatin induced apoptosis. Apoptosis 2006; 11:861-74. [PMID: 16544101 DOI: 10.1007/s10495-006-5396-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have earlier reported that overexpression of HABP1 in fibroblast cells causes perturbed cell growth, extensive vacuolation and restricted entry to the S-phase, finally leading to apoptosis (Biochem Biophys Res Commun 2003; 300: 686-693). In the present study, we investigate the regulation of HABP1 expression in cisplatin induced apoptosis in HeLa cells. Apoptosis induced in HeLa cells at 24 h of cisplatin treatment was confirmed by nuclear fragmentation, increase in subdiploid population and the enhanced activation of ERK and upregulation of p53. In association with apoptosis induction, an upregulation of HABP1 expression was observed in HeLa cells at 18 and 24 h of cisplatin treatment. Quantification of HABP1 expression by flow cytometry confirmed a two-fold increase in total intracellular HABP1 expression at 24 h of cisplatin treatment. Under the same condition the HABP1 transcript level measured by semi quantitative RT PCR showed 2.5-fold increase ascertaining transcriptional regulation of HABP1 during cisplatin induced apoptosis. Further, in normal HeLa cells though a small amount of HABP1 can be detected in nucleus, but with apoptosis induction the protein is mainly concentrating around the nuclear periphery at 18 h of cisplatin treatment and is present both in the nucleus as well as in the cytosol at 24 h of treatment, suggesting its nuclear translocation during apoptosis. To substantiate our findings prior to the cisplatin treatment, the expression of HABP1 was reduced by small interfering RNA mediated knockdown. We observed a reduction in apoptotic cell population in cisplatin treated HeLa cells with disrupted HABP1 conferring resistance to cisplatin induced apoptosis. We report here that HABP1 upregulation in the cell is important for cisplatin induced apoptosis.
Collapse
Affiliation(s)
- Anupama Kamal
- Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | |
Collapse
|
45
|
Kitazawa S, Takenaka A, Kondo T, Mizoguchi A, Kitazawa R. Protruding disordered loop of gC1qR is specifically exposed and related to antiapoptotic property in germ cell lineage. Histochem Cell Biol 2006; 126:665-77. [PMID: 16871385 DOI: 10.1007/s00418-006-0225-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
We established a monoclonal antibody (MAb), 5G9, with the use of a fixed seminoma tissue from an archival paraffin-embedded specimen, as an immunogen. Without antigen retrieval, positive 5G9-immunohistochemical staining was confined mostly to primordial germ cells, spermatogonia and various germ cell tumors. 5G9 recognized a mitochondrial 32-kD protein with an isoelectric point of pH 4.2, identified as a multifunctional ubiquitous protein, receptor for globular head of C1q (gC1qR), whose epitope was mapped in a disordered loop connecting the beta3 and the beta4 strands. Reflecting the ubiquitous distribution of gC1qR, with antigen retrieval, 5G9 was found reactive to a wide range of normal and tumor tissues. Since several co-precipitated and phosphorylated bands were observed in various human cell lines but not in germ cell tumor cell lines by in vitro phosphorylation assay, we speculate that the epitope of gC1qR is specifically unmasked in the germ cell lineage. By reducing gC1qR by siRNA, a significant increase was observed in the number of apoptotic cells in ITO-II and TCam-2 cell lines, but to a lesser extent in the Colo201 colon cancer cell line, showing an antiapoptotic property of gC1qR in the germ cells. Since protein-protein interaction is partially preserved by fixation, archival paraffin-embedded specimens can be a valuable source of immunogens for generating monoclonal antibodies (MAbs) that recognize tissue-specific protein conformation.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Division of Molecular Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | | | |
Collapse
|
46
|
Ekmekçi OB, Ekmekçi H. Vitronectin in atherosclerotic disease. Clin Chim Acta 2006; 368:77-83. [PMID: 16460719 DOI: 10.1016/j.cca.2005.12.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 12/13/2005] [Accepted: 12/19/2005] [Indexed: 11/17/2022]
Abstract
Atherosclerosis is characterized by the development of an intimal thickening that contains monocytes, T lymphocytes, and smooth muscle cells within an accumulation of lipid and extracellular matrix proteins. Vitronectin is a plasma glycoprotein implicated as a regulator of diverse physiological process, including blood coagulation, fibrinolysis, pericellular proteolysis, complement dependent immune responses, and cell attachment and spreading. Because of its ability to bind platelet glycoproteins and mediate platelet adhesion and aggregation at sites of vascular injury, vitronectin has become an important mediator in the pathogenesis of coronary atherosclerosis.
Collapse
Affiliation(s)
- Ozlem Balci Ekmekçi
- Istanbul University, Istanbul Medical Faculty, Department of Pediatric Heamatology/Oncology, Bone Marrow Transplantation Unit, Istanbul, Turkey
| | | |
Collapse
|
47
|
Immunologically Mediated Male and Female Reproductive Failure. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Sengupta A, Tyagi RK, Datta K. Truncated variants of hyaluronan-binding protein 1 bind hyaluronan and induce identical morphological aberrations in COS-1 cells. Biochem J 2004; 380:837-44. [PMID: 15005653 PMCID: PMC1224209 DOI: 10.1042/bj20040264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 03/03/2004] [Indexed: 01/29/2023]
Abstract
Hyaluronan (HA)-binding protein 1 (HABP1) is multifunctional in nature and exists as a trimer through coiled-coil interaction between alpha-helices at its N- and C-termini. To investigate the importance of trimeric assemblage and HA-binding ability of HABP1, we generated and overexpressed variants of HABP1 by truncating the alpha-helices at its termini. Subsequently, these variants were transiently expressed in COS-1 cells to examine the influence of these structural variations on normal cell morphology, as compared with those imparted by HABP1. Substantiating the centrality of coiled-coil interaction for maintaining the trimeric assembly of HABP1, we demonstrate that disruption of trimerization does not alter the affinity of variants towards its ligand HA. Transient expression of HABP1 altered the morphology of COS-1 cells by generating numerous cytoplasmic vacuoles along with disruption of the f-actin network. Interestingly, the truncated variants also imparted identical morphological changes. Characterization of the cytoplasmic vacuoles revealed that most of these vacuoles were autophagic in nature, resembling those generated under stress conditions. The identical morphological changes manifested in COS-1 cells on transient expression of HABP1 or its variants is attributed to their comparable HA-binding ability, which in concert with endogenous HABP1, may deplete the cellular HA pool. Such quenching of HA below a threshold level in the cellular milieu could generate a stress condition, manifested through cytoplasmic vacuoles and a disassembly of the f-actin network.
Collapse
Affiliation(s)
- Aniruddha Sengupta
- Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
49
|
Rubinstein DB, Stortchevoi A, Boosalis M, Ashfaq R, Ghebrehiwet B, Peerschke EIB, Calvo F, Guillaume T. Receptor for the globular heads of C1q (gC1q-R, p33, hyaluronan-binding protein) is preferentially expressed by adenocarcinoma cells. Int J Cancer 2004; 110:741-50. [PMID: 15146564 DOI: 10.1002/ijc.20105] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Combinatorial Ig libraries with phage display allow in vitro generation of human Ig fragments without the need to maintain hybridomas in ongoing cell culture or to select circulating Ig from human serum. Identifying tumor-associated antigens on the surface of intact tumor cells, as opposed to purified proteins, presents a challenge due to the difficulty of preserving complex 3-D epitopic sites on the cell surface, the variable expression of antigens on different malignant cell types and the stereotactic interference of closely associated proteins on the intact membrane surface limiting accessibility to antigenic sites. A combinatorial Ig library of 10(10) clones was generated from the cDNA of PBMCs derived from patients with breast adenocarcinoma. Following subtractive panning, the library was enriched for Ig (Fab fragment) binding to intact adenocarcinoma cells and the resultant Fabs were screened against a cDNA expression library, itself generated from breast cancer cells. Using this approach, we isolated clones from the cDNA library expressing gC1q-R, a glycoprotein comprising the major structure of C1, the first component of the complement system. gC1q-R is a 33 kDa glycoprotein expressed not only on the cell surface but also intracellularly, with motifs that target it to mitochondria and complete homology with HABP and human HeLa cell protein p32, which is copurified with pre-mRNA SF2. Sequencing of the gene encoding tumor-associated gC1q-R did not reveal any consistent tumor-specific mutations. However, histochemical staining with anti-gC1q-R MAb demonstrated marked differential expression of gC1q-R in thyroid, colon, pancreatic, gastric, esophageal and lung adenocarcinomas compared to their nonmalignant histologic counterparts. In contrast, differential expression was not seen in endometrial, renal and prostate carcinomas. Despite high expression in breast carcinoma, gC1q-R was also expressed in nonmalignant breast tissue. Although the precise relation of gC1q-R to carcinogenesis remains unclear, our finding of tumor overexpression and the known multivalent binding of gC1q-R to not only C1q itself but also a variety of circulating plasma proteins as well as its involvement in cell-to-cell interactions suggest that gC1q-R may have a role in tumor metastases and potentially serve in molecule-specific targeting of malignant cells.
Collapse
Affiliation(s)
- Daniel B Rubinstein
- Section of Hematology/Oncology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
G protein-coupled receptors (GPCRs) modulate diverse physiological and behavioral signaling pathways by virtue of changes in receptor activation and inactivation states. Functional changes in receptor properties include dynamic interactions with regulatory molecules and trafficking to various cellular compartments at various stages of the life cycle of a GPCR. This review focuses on trafficking of GPCRs to the cell surface, stabilization there, and agonist-regulated turnover. GPCR interactions with a variety of newly revealed partners also are reviewed with the intention of provoking further analysis of the relevance of these interactions in GPCR trafficking, signaling, or both. The disease consequences of mislocalization of GPCRs also are described.
Collapse
Affiliation(s)
- Christopher M Tan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|