1
|
Wang L, O'Mara ML. Effect of the Force Field on Molecular Dynamics Simulations of the Multidrug Efflux Protein P-Glycoprotein. J Chem Theory Comput 2021; 17:6491-6508. [PMID: 34506133 DOI: 10.1021/acs.jctc.1c00414] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular dynamics (MD) simulations have been used extensively to study P-glycoprotein (P-gp), a flexible multidrug transporter that is a key player in the development of multidrug resistance to chemotherapeutics. A substantial body of literature has grown from simulation studies that have employed various simulation conditions and parameters, including AMBER, CHARMM, OPLS, GROMOS, and coarse-grained force fields, drawing conclusions from simulations spanning hundreds of nanoseconds. Each force field is typically parametrized and validated on different data and observables, usually of small molecules and peptides; there have been few comparisons of force field performance on large protein-membrane systems. Here we compare the conformational ensembles of P-gp embedded in a POPC/cholesterol bilayer generated over 500 ns of replicate simulation with five force fields from popular biomolecular families: AMBER 99SB-ILDN, CHARMM 36, OPLS-AA/L, GROMOS 54A7, and MARTINI. We find considerable differences among the ensembles with little conformational overlap, although they correspond to similar extents to structural data obtained from electron paramagnetic resonance and cross-linking studies. Moreover, each trajectory was still sampling new conformations at a high rate after 500 ns of simulation, suggesting the need for more sampling. This work highlights the need to consider known limitations of the force field used (e.g., biases toward certain secondary structures) and the simulation itself (e.g., whether sufficient sampling has been achieved) when interpreting accumulated results of simulation studies of P-gp and other transport proteins.
Collapse
Affiliation(s)
- Lily Wang
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Cai T, Tomita T. Sequential conformational changes in transmembrane domains of presenilin 1 in Aβ42 downregulation. J Biochem 2021; 170:215-227. [PMID: 33739423 DOI: 10.1093/jb/mvab033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disease worldwide. AD is pathologically characterized by the deposition of senile plaques in the brain, which are composed of an amyloid-β peptide (Aβ) that is produced through the multistep cleavage of amyloid precursor protein (APP) by γ-secretase. γ-Secretase is a membrane protein complex, which includes its catalytic subunit presenilin 1 (PS1). However, much about the structural dynamics of this enzyme remain unclear. We have previously demonstrated that movements of the transmembrane domain (TMD) 1 and TMD3 of PS1 are strongly associated with decreased production of the Aβ peptide ending at the 42nd residue (i.e., Aβ42), which is the aggregation-prone, toxic species. However, the association between these movements as well as the sequence of these TMDs remains unclear. In this study, we raised the possibility that the vertical movement of TMD1 is a prerequisite for expansion of the catalytic cavity around TMD3 of PS1, resulting in reduced Aβ42 production. Our results shed light on the association between the conformational changes of TMDs and the regulation of γ-secretase activity.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Kadioglu O, Saeed MEM, Munder M, Spuller A, Greten HJ, Efferth T. Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed Pharmacother 2020; 131:110718. [PMID: 32932043 DOI: 10.1016/j.biopha.2020.110718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) transporters mediate multidrug resistance in cancer. In contrast to DNA single nucleotide polymorphisms in normal tissues, the role of mutations in tumors is unknown. Furthermore, the significance of their expression for prediction of chemoresistance and survival prognosis is still under debate. We investigated 18 tumors by RNA-sequencing. The mutation rate varied from 27,507 to 300885. In ABCB1, three hotspots with novel mutations were in transmembrane domains 3, 8, and 9. We also mined the cBioPortal database with 11,814 patients from 23 different tumor entities. We performed Kaplan-Meier survival analyses to investigate the effect of ABC transporter expression on survival rates of cancer patients. Novel mutations were also found in ABCA2, ABCA3, ABCB2, ABCB5, ABCC1-6, and ABCG2. Mining the cBioPortal database with 11,814 patients from 23 different tumor entities validated our results. Missense and in-frame mutations led to altered binding of anticancer drugs in molecular docking approaches. The ABCB1 nonsense mutation Q856* led to a truncated P-glycoprotein, which may sensitize tumors to anticancer drugs. The search for ABC transporter nonsense mutations represents a novel approach for precision medicine.. Low ABCB1 mRNA expression correlated with significantly longer survival in ovarian or kidney cancer and thymoma. In cancers of breast, kidney or lung, ABC transporter expression correlated with different tumor stages and human populations as further parameters to refine strategies for more individualized chemotherapy.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Markus Munder
- Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Henry Johannes Greten
- Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal; Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Cai T, Tomita T. Structural Analysis of Target Protein by Substituted Cysteine Accessibility Method. Bio Protoc 2018; 8:e2470. [PMID: 34395783 DOI: 10.21769/bioprotoc.2470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/28/2017] [Accepted: 12/10/2017] [Indexed: 11/02/2022] Open
Abstract
Substituted Cysteine Accessibility Method (SCAM) is a biochemical approach to investigate the water accessibility or the spatial distance of particular cysteine residues substituted in the target protein. Protein topology and structure can be annotated by labeling with methanethiosulfonate reagents that specifically react with the cysteine residues facing the hydrophilic environment, even within the transmembrane domain. Cysteine crosslinking experiments provide us with information about the distance between two cysteine residues. The combination of these methods enables us to obtain information about the structural changes of the target protein. Here, we describe the detailed protocol for structural analysis using SCAM.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Trofimova DN, Deeley RG. Structural Studies of Multidrug Resistance Protein 1 Using “Almost” Cysless Template. Drug Metab Dispos 2018; 46:794-804. [DOI: 10.1124/dmd.117.078709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/21/2018] [Indexed: 11/22/2022] Open
|
6
|
Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin. Sci Rep 2016; 6:32244. [PMID: 27572343 PMCID: PMC5004175 DOI: 10.1038/srep32244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 08/04/2016] [Indexed: 01/29/2023] Open
Abstract
P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp.
Collapse
|
7
|
Ledwitch KV, Gibbs ME, Barnes RW, Roberts AG. Cooperativity between verapamil and ATP bound to the efflux transporter P-glycoprotein. Biochem Pharmacol 2016; 118:96-108. [PMID: 27531061 DOI: 10.1016/j.bcp.2016.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022]
Abstract
The P-glycoprotein (Pgp) transporter plays a central role in drug disposition by effluxing a chemically diverse range of drugs from cells through conformational changes and ATP hydrolysis. A number of drugs are known to activate ATP hydrolysis of Pgp, but coupling between ATP and drug binding is not well understood. The cardiovascular drug verapamil is one of the most widely studied Pgp substrates and therefore, represents an ideal drug to investigate the drug-induced ATPase activation of Pgp. As previously noted, verapamil-induced Pgp-mediated ATP hydrolysis kinetics was biphasic at saturating ATP concentrations. However, at subsaturating ATP concentrations, verapamil-induced ATPase activation kinetics became monophasic. To further understand this switch in kinetic behavior, the Pgp-coupled ATPase activity kinetics was checked with a panel of verapamil and ATP concentrations and fit with the substrate inhibition equation and the kinetic fitting software COPASI. The fits suggested that cooperativity between ATP and verapamil switched between low and high verapamil concentration. Fluorescence spectroscopy of Pgp revealed that cooperativity between verapamil and a non-hydrolyzable ATP analog leads to distinct global conformational changes of Pgp. NMR of Pgp reconstituted in liposomes showed that cooperativity between verapamil and the non-hydrolyzable ATP analog modulate each other's interactions. This information was used to produce a conformationally-gated model of drug-induced activation of Pgp-mediated ATP hydrolysis.
Collapse
Affiliation(s)
- Kaitlyn V Ledwitch
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Morgan E Gibbs
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Robert W Barnes
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
8
|
Equilibrated atomic models of outward-facing P-glycoprotein and effect of ATP binding on structural dynamics. Sci Rep 2015; 5:7880. [PMID: 25600711 PMCID: PMC4389535 DOI: 10.1038/srep07880] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2014] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that alternates between inward- and outward-facing conformations to capture and force substrates out of cells like a peristaltic pump. The high degree of similarity in outward-facing structures across evolution of ABC transporters allowed construction of a high-confidence outward-facing Pgp atomic model based on crystal structures of outward-facing Sav1866 and inward-facing Pgp. The model adhered to previous experimentally determined secondary- and tertiary- configurations during all-atom molecular dynamics simulations in the presence or absence of MgATP. Three long lasting (>100 ns) meta-stable states were apparent in the presence of MgATP revealing new insights into alternating access. The two ATP-binding pockets are highly asymmetric resulting in differential control of overall structural dynamics and allosteric regulation of the drug-binding pocket. Equilibrated Pgp has a considerably different electrostatic profile compared to Sav1866 that implicates significant kinetic and thermodynamic differences in transport mechanisms.
Collapse
|
9
|
O’Mara ML, Mark AE. Structural characterization of two metastable ATP-bound states of P-glycoprotein. PLoS One 2014; 9:e91916. [PMID: 24632881 PMCID: PMC3954865 DOI: 10.1371/journal.pone.0091916] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/18/2014] [Indexed: 12/30/2022] Open
Abstract
ATP Binding Cassette (ABC) transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs), the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg(2+) with each NBD indicates that the coordination of ATP and Mg(2+) differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation of the simulations.
Collapse
Affiliation(s)
- Megan L. O’Mara
- School of Chemistry and Molecular Biosciences (SCMB), The Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Mathematics and Physics (SMP), The Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, Queensland, Australia
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences (SCMB), The Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, Queensland, Australia
- The Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Gozalpour E, Wittgen HGM, van den Heuvel JJMW, Greupink R, Russel FGM, Koenderink JB. Interaction of digitalis-like compounds with p-glycoprotein. Toxicol Sci 2012; 131:502-11. [PMID: 23104431 DOI: 10.1093/toxsci/kfs307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Digitalis-like compounds (DLCs), or cardiac glycosides, are produced and sequestered by certain plants and animals as a protective mechanism against herbivores or predators. Currently, the DLCs digoxin and digitoxin are used in the treatment of cardiac congestion and some types of cardiac arrhythmia, despite a very narrow therapeutic index. P-glycoprotein (P-gp; ABCB1) is the only known ATP-dependent efflux transporter that handles digoxin as a substrate. Ten alanine mutants of human P-gp drug-binding amino acids-Leu(65), Ile(306), Phe(336), Ile(340), Phe(343), Phe(728), Phe(942), Thr(945), Leu(975), and Val(982)-were generated and expressed in HEK293 cells with a mammalian baculovirus system. The uptake of [(3)H]-N-methyl-quinidine (NMQ), the P-gp substrate in vesicular transport assays, was determined. The mutations I306A, F343A, F728A, T945A, and L975A abolished NMQ transport activity of P-gp. For the other mutants, the apparent affinities for six DLCs (cymarin, digitoxin, digoxin, peruvoside, proscillaridin A, and strophanthidol) were determined. The affinities of digoxin, proscillaridin A, peruvoside, and cymarin for mutants F336A and I340A were decreased two- to fourfold compared with wild type, whereas that of digitoxin and strophanthidol did not change. In addition, the presence of a hydroxyl group at position 12β seems to reduce the apparent affinity when the side chain of Phe(336) and Phe(942) is absent. Our results showed that a δ-lactone ring and a sugar moiety at 3β of the steroid body are favorable for DLC binding to P-gp. Moreover, DLC inhibition is increased by hydroxyl groups at positions 5β and 19, whereas inhibition is decreased by those at positions 1β, 11α, 12β, and 16β. The understanding of the P-gp-DLC interaction improves our insight into DLCs toxicity and might enhance the replacement of digoxin with other DLCs that have less adverse drug effects.
Collapse
Affiliation(s)
- Elnaz Gozalpour
- Department of Pharmacology and Toxicology, 149, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Germann UA, Chambers TC. Molecular analysis of the multidrug transporter, P-glycoprotein. Cytotechnology 2012; 27:31-60. [PMID: 19002782 DOI: 10.1023/a:1008023629269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity.
Collapse
Affiliation(s)
- U A Germann
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, MA, 02139-4242, U.S.A.,
| | | |
Collapse
|
12
|
Gyimesi G, Ramachandran S, Kota P, Dokholyan NV, Sarkadi B, Hegedus T. ATP hydrolysis at one of the two sites in ABC transporters initiates transport related conformational transitions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2954-64. [PMID: 21840296 DOI: 10.1016/j.bbamem.2011.07.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/23/2011] [Accepted: 07/25/2011] [Indexed: 12/23/2022]
Abstract
ABC transporters play important roles in all types of organisms by participating in physiological and pathological processes. In order to modulate the function of ABC transporters, detailed knowledge regarding their structure and dynamics is necessary. Available structures of ABC proteins indicate three major conformations, a nucleotide-bound "bottom-closed" state with the two nucleotide binding domains (NBDs) tightly closed, and two nucleotide-free conformations, the "bottom-closed" and the "bottom-open", which differ in the extent of separation of the NBDs. However, it remains a question how the widely open conformation should be interpreted, and whether hydrolysis at one of the sites can drive conformational transitions while the NBDs remain in contact. To extend our knowledge, we have investigated the dynamic properties of the Sav1866 transporter using molecular dynamics (MD) simulations. We demonstrate that the replacement of one ATP by ADP alters the correlated motion patterns of the NBDs and the transmembrane domains (TMD). The results suggest that the hydrolysis of a single nucleotide could lead to extracellular closure, driving the transport cycle. Essential dynamics analysis of simulations suggests that single nucleotide hydrolysis can drive the system toward a "bottom-closed" apo conformation similar to that observed in the structure of the MsbA transporter. We also found significant structural instability of the "bottom-open" form of the transporters in simulations. Our results suggest that ATP hydrolysis at one of the sites promotes transport related conformational changes leading to the "bottom-closed" apo conformation, which could thus be physiologically more relevant for describing the structure of the apo state.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
13
|
Loo TW, Bartlett MC, Clarke DM. The W232R suppressor mutation promotes maturation of a truncation mutant lacking both nucleotide-binding domains and restores interdomain assembly and activity of P-glycoprotein processing mutants. Biochemistry 2011; 50:672-85. [PMID: 21182301 DOI: 10.1021/bi1016809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ATP-binding cassette (ABC) proteins contain two nucleotide-binding domains (NBDs) and two transmembrane (TM) domains (TMDs). Interdomain interactions and packing of the TM segments are critical for function, and disruption by genetic mutations contributes to disease. P-glycoprotein (P-gp) is a useful model to identify mechanisms that repair processing defects because numerous arginine suppressor mutations have been identified in the TM segments. Here, we tested the prediction that a mechanism of arginine rescue was to promote intradomain interactions between TM segments and restore interdomain assembly. We found that suppressor W232R(TM4/TMD1) rescued mutants with processing mutations in any domain and restored defective NBD1-NBD2, NBD1-TMD2, and TMD1-TMD2 interactions. W232R also promoted packing of the TM segments because it rescued a truncation mutant lacking both NBDs. The mechanism of W232R rescue likely involved intradomain hydrogen bond interactions with Asn296(TM5) since only N296A abolished rescue by W232R and rescue was only observed when Trp232 was replaced with hydrogen-bonding residues. In TMD2, suppressor T945R(TM11) also promoted packing of the TM segments because it rescued the truncation mutant lacking the NBDs and suppressed formation of alternative topologies. We propose that T945R rescue was mediated by interactions with Glu875(TM10) since T945E/E875R promoted maturation while T945R/E875A did not.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
14
|
Crowley E, O'Mara ML, Reynolds C, Tieleman DP, Storm J, Kerr ID, Callaghan R. Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1. Biochemistry 2009; 48:6249-58. [PMID: 19456124 DOI: 10.1021/bi900373x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multidrug efflux pumps, such as P-glycoprotein (ABCB1), present major barriers to the success of chemotherapy in a number of clinical settings. Molecular details of the multidrug efflux process by ABCB1 remain elusive, in particular, the interdomain communication associated with bioenergetic coupling. The present investigation has focused on the role of transmembrane helix 12 (TM12) in the multidrug efflux process of ABCB1. Cysteine residues were introduced at various positions within TM12, and their effect on ATPase activity, nucleotide binding, and drug interaction were assessed. Mutation of several residues within TM12 perturbed the maximal ATPase activity of ABCB1, and the underlying cause was a reduction in basal (i.e., drug-free) hydrolysis of the nucleotide. Two of the mutations (L976C and F978C) were found to reduce the binding of [gamma-(32)P]-azido-ATP to ABCB1. In contrast, the A980C mutation within TM12 enhanced the rate of ATP hydrolysis; once again, this was due to modified basal activity. Several residues also caused reductions in the potency of stimulation of ATP hydrolysis by nicardipine and vinblastine, although the effects were independent of changes in drug binding per se. Overall, the results indicate that TM12 plays a key role in the progression of the ATP hydrolytic cycle in ABCB1, even in the absence of the transported substrate.
Collapse
Affiliation(s)
- Emily Crowley
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Loo TW, Bartlett MC, Clarke DM. Processing mutations disrupt interactions between the nucleotide binding and transmembrane domains of P-glycoprotein and the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 2008; 283:28190-7. [PMID: 18708637 PMCID: PMC2661390 DOI: 10.1074/jbc.m805834200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 08/13/2008] [Indexed: 12/22/2022] Open
Abstract
P-glycoprotein (P-gp, ABCB1) is an ATP-dependent drug pump. Each of its two homologous halves contains a transmembrane domain (TMD) that has six transmembrane (TM) segments and a nucleotide-binding domain (NBD). Determining how the two halves interact may provide insight into the folding of P-gp as the drug-binding pocket and nucleotide-binding sites are predicted to be at the interface between the two halves. Here, we present evidence for NBD1-TMD2 and NBD2-TMD1 interactions. We also show that TMD-NBD interactions in immature and mature P-gp can be affected by the presence of a processing mutation. We found that the NBD-TMD mutants L443C(NBD1)/S909C(TMD2) and A266C(TMD1)/F1086C(NBD2) could be cross-linked at 0 degrees C with oxidant (copper phenanthroline). Cross-linking was inhibited by vanadate-trapping of nucleotide. The presence of a processing mutation (G268V/L443C(NBD1)/S909C(TMD2); L1260A/A266C(TMD1)/F1086C(NBD2)) resulted in the synthesis of the immature (150 kDa) protein as the major product and the mutants could not be cross-linked with copper phenanthroline. Expression of the processing mutants in the presence of a pharmacological chaperone (cyclosporin A), however, resulted in the expression of mature (170 kDa) protein at the cell surface that could be cross-linked. Similarly, CFTR mutants A274C(TMD1)/L1260C(NBD2) and V510C(NBD1)/A1067C(TMD2) could be cross-linked at 0 degrees C with copper phenanthroline. Introduction of DeltaF508 mutation in these mutants, however, resulted in the synthesis of immature CFTR that could not be cross-linked. These results suggest that establishment of NBD interactions with the opposite TMD is a key step in folding of ABC transporters.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
16
|
Loo TW, Clarke DM. Mutational analysis of ABC proteins. Arch Biochem Biophys 2008; 476:51-64. [DOI: 10.1016/j.abb.2008.02.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/14/2008] [Accepted: 02/17/2008] [Indexed: 01/06/2023]
|
17
|
Storm J, Modok S, O’Mara ML, Tieleman DP, Kerr ID, Callaghan R. Cytosolic Region of TM6 in P-Glycoprotein: Topographical Analysis and Functional Perturbation by Site Directed Labeling. Biochemistry 2008; 47:3615-24. [DOI: 10.1021/bi7023089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janet Storm
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, United Kingdom, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada, and Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, United Kingdom
| | - Szabolcs Modok
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, United Kingdom, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada, and Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, United Kingdom
| | - Megan L. O’Mara
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, United Kingdom, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada, and Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, United Kingdom
| | - D. Peter Tieleman
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, United Kingdom, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada, and Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, United Kingdom
| | - Ian D. Kerr
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, United Kingdom, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada, and Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, United Kingdom
| | - Richard Callaghan
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, United Kingdom, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada, and Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, United Kingdom
| |
Collapse
|
18
|
Borbat PP, Surendhran K, Bortolus M, Zou P, Freed JH, Mchaourab HS. Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis. PLoS Biol 2007; 5:e271. [PMID: 17927448 PMCID: PMC2001213 DOI: 10.1371/journal.pbio.0050271] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 08/15/2007] [Indexed: 11/24/2022] Open
Abstract
We measured the amplitude of conformational motion in the ATP-binding cassette (ABC) transporter MsbA upon lipopolysaccharide (LPS) binding and following ATP turnover by pulse double electron-electron resonance and fluorescence homotransfer. The distance constraints from both methods reveal large-scale movement of opposite signs in the periplasmic and cytoplasmic part of the transporter upon ATP hydrolysis. LPS induces distinct structural changes that are inhibited by trapping of the transporter in an ATP post-hydrolysis intermediate. The formation of this intermediate involves a 33-Å distance change between the two ABCs, which is consistent with a dimerization-dissociation cycle during transport that leads to their substantial separation in the absence of nucleotides. Our results suggest that ATP-powered transport entails LPS sequestering into the open cytoplasmic chamber prior to its translocation by alternating access of the chamber, made possible by 10–20-Å conformational changes. Clinical multidrug resistance in the treatment of bacterial and fungal infections and cancer chemotherapy can result from the expression of pumps that extrude toxic molecules from the cell. A subclass of these pumps—ATP-binding cassette (ABC) transporters—use energy from ATP to remove a wide range of molecules. MsbA is a conserved ABC transporter from Gram-negative bacteria with sequence similarity to human multi-drug ABC transporters. MsbA flips the building block of the outer membrane, lipid A, across the inner membrane. The input of ATP energy occurs in two dedicated nucleotide-binding domains (NBDs), whose configuration in intact transporters is controversial. We determined the amplitude of MsbA conformational motion that couples energy expenditure to substrate movement across the membrane. Using molecular probes introduced into the protein sequence, we found that ATP hydrolysis fuels a relative motion of the NBDs close to 30 Å. The movement of the NBDs is coupled to reorientation of the chamber, which binds the lipid substrate from cytoplasmic-facing to extracellular-facing through large amplitude motion on either side of the transporters. In addition to revealing the structural mechanics of transport, these results challenge current models deduced from studies of substrate-specific ABC importers that envisions the two NBDs in contact throughout the ATP hydrolysis cycle. Analysis of the conformational changes that occur in a conserved ATP-binding cassette (ABC) transporter challenges current models of this clinically important class of molecules.
Collapse
Affiliation(s)
- Peter P Borbat
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, United States of America
| | - Kavitha Surendhran
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Marco Bortolus
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ping Zou
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, United States of America
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Wang Y, Loo TW, Bartlett MC, Clarke DM. Correctors Promote Maturation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)-processing Mutants by Binding to the Protein. J Biol Chem 2007; 282:33247-33251. [PMID: 17911111 DOI: 10.1074/jbc.c700175200] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The most common cause of cystic fibrosis (CF) is defective folding of a cystic fibrosis transmembrane conductance regulator (CFTR) mutant lacking Phe(508) (DeltaF508). The DeltaF508 protein appears to be trapped in a prefolded state with incomplete packing of the transmembrane (TM) segments, a defect that can be repaired by expression in the presence of correctors such as corr-4a, VRT-325, and VRT-532. To determine whether the mechanism of correctors involves direct interactions with CFTR, our approach was to test whether correctors blocked disulfide cross-linking between cysteines introduced into the two halves of a Cys-less CFTR. Although replacement of the 18 endogenous cysteines of CFTR with Ser or Ala yields a Cys-less mutant that does not mature at 37 degrees C, we found that maturation could be restored if Val(510) was changed to Ala, Cys, Ser, Thr, Gly, Ala, or Asp. The V510D mutation also promoted maturation of DeltaF508 CFTR. The Cys-less/V510A mutant was used for subsequent cross-linking analysis as it yielded relatively high levels of mature protein that was functional in iodide efflux assays. We tested for cross-linking between cysteines introduced into TM6 and TM7 of Cys-less CFTR/V510A because cross-linking between TM6 and TM7 of P-glycoprotein, the sister protein of CFTR, was inhibited with the corrector VRT-325. Cys-less CFTR/V510A mutant containing cysteines at I340C(TM6) and S877C(TM7) could be cross-linked with a homobifunctional cross-linker. Correctors and the CFTR channel blocker benzbromarone, but not P-glycoprotein substrates, inhibited cross-linking of mutant I340C(TM6)/S877C(TM7). These results suggest that corrector molecules such as corr-4a interact directly with CFTR.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - M Claire Bartlett
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
20
|
Loo T, Bartlett M, Clarke D. Transmembrane segment 7 of human P-glycoprotein forms part of the drug-binding pocket. Biochem J 2006; 399:351-9. [PMID: 16813563 PMCID: PMC1609921 DOI: 10.1042/bj20060715] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
P-gp (P-glycoprotein; ABCB1) protects us by transporting a broad range of structurally unrelated compounds out of the cell. Identifying the regions of P-gp that make up the drug-binding pocket is important for understanding the mechanism of transport. The common drug-binding pocket is at the interface between the transmembrane domains of the two homologous halves of P-gp. It has been shown in a previous study [Loo, Bartlett and Clarke (2006) Biochem. J. 396, 537-545] that the first transmembrane segment (TM1) contributed to the drug-binding pocket. In the present study, we used cysteine-scanning mutagenesis, reaction with an MTS (methanethiosulfonate) thiol-reactive analogue of verapamil (termed MTS-verapamil) and cross-linking analysis to test whether the equivalent transmembrane segment (TM7) in the C-terminal-half of P-gp also contributed to drug binding. Mutation of Phe728 to cysteine caused a 4-fold decrease in apparent affinity for the drug substrate verapamil. Mutant F728C also showed elevated ATPase activity (11.5-fold higher than untreated controls) after covalent modification with MTS-verapamil. The activity returned to basal levels after treatment with dithiothreitol. The substrates, verapamil and cyclosporin A, protected the mutant from labelling with MTS-verapamil. Mutant F728C could be cross-linked with a homobifunctional thiol-reactive cross-linker to cysteines I306C(TM5) and F343C(TM6) that are predicted to line the drug-binding pocket. Disulfide cross-linking was inhibited by some drug substrates such as Rhodamine B, calcein acetoxymethyl ester, cyclosporin, verapamil and vinblastine or by vanadate trapping of nucleotides. These results indicate that TM7 forms part of the drug-binding pocket of P-gp.
Collapse
Affiliation(s)
- Tip W. Loo
- *Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- †Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - M. Claire Bartlett
- *Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- †Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - David M. Clarke
- *Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- †Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- To whom correspondence should be addressed, at Department of Medicine, University of Toronto, Ontario, Canada M5S 1A8 (email )
| |
Collapse
|
21
|
Loo TW, Clarke DM. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol 2006; 206:173-85. [PMID: 16456713 DOI: 10.1007/s00232-005-0792-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/08/2005] [Indexed: 10/25/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent drug pump that can transport a broad range of hydrophobic compounds out of the cell. The protein is clinically important because of its contribution to the phenomenon of multidrug resistance during AIDS/HIV and cancer chemotherapy. P-gp is a member of the ATP-binding cassette (ABC) family of proteins. It is a single polypeptide that contains two repeats joined by a linker region. Each repeat has a transmembrane domain consisting of six transmembrane segments followed by a hydrophilic domain containing the nucleotide-binding domain. In this mini-review, we discuss recent progress in determining the structure and mechanism of human P-glycoprotein.
Collapse
Affiliation(s)
- T W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Tutulan-Cunita AC, Mikoshi M, Mizunuma M, Hirata D, Miyakawa T. Mutational analysis of the yeast multidrug resistance ABC transporter Pdr5p with altered drug specificity. Genes Cells 2005; 10:409-20. [PMID: 15836770 DOI: 10.1111/j.1365-2443.2005.00847.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Multidrug resistance ABC transporter Pdr5p of Saccharomyces cerevisiae is particularly important due to its ability to export a wide range of unrelated substrates. To clarify its function, we generated Pdr5p mutants by random mutagenesis and screened for mutants with altered drug specificity in vivo by using 5 drug compounds. Nine point mutations that caused significant changes in drug specificity distributed throughout the length of Pdr5p, namely, in the extracellular, transmembrane or cytoplasmic regions of the transporter. We then investigated their effects upon drug resistance, using 36 chemically related or distinct substrates. From this study, overall geometry of the Pdr5p was suggested to contribute in acquiring the enormous range of drug specificity. Based on their ability to inhibit the growth of the mutant strains, the 36 tested drugs were classified into: drugs to which the mutants responded differently (Group 1), drugs to which all the mutants showed sensitivity (Group 2), and drugs to which all the mutants exhibited resistance (Group 3). The ability of the compounds to be partitioned to the plasma membrane seemed an important factor for recognition by Pdr5p.
Collapse
Affiliation(s)
- Andreea Cristina Tutulan-Cunita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | |
Collapse
|
23
|
Saini P, Prasad T, Gaur NA, Shukla S, Jha S, Komath SS, Khan LA, Haq QMR, Prasad R. Alanine scanning of transmembrane helix 11 of Cdr1p ABC antifungal efflux pump of Candida albicans: identification of amino acid residues critical for drug efflux. J Antimicrob Chemother 2005; 56:77-86. [PMID: 15937063 DOI: 10.1093/jac/dki183] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the role of transmembrane segment 11 (TMS11) of Candida albicans drug resistance protein (Cdr1p) in drug extrusion. METHODS We replaced each of the 21 putative residues of TMS11 with alanine by site-directed mutagenesis. The Saccharomyces cerevisiae AD1-8u(-) strain was used to overexpress the green fluorescent protein tagged wild-type and mutant variants of TMS11 of Cdr1p. The cells expressing mutant variants were functionally characterized. RESULTS Out of 21 residues of TMS11, substitution of seven residues, i.e. A1346G, A1347G, T1351A, T1355A, L1358A, F1360A and G1362A, affected differentially the substrate specificity of Cdr1p, while 14 mutants had no significant effect on Cdr1p function. TMS11 projection in an alpha-helical configuration revealed with few exceptions (A1346 and F1360), a distinct segregation of mutation-sensitive residues (A1347, T1351, T1355, L1358 and G1362) towards the more hydrophilic face. Interestingly, mutation-insensitive residues seem to cluster towards the hydrophobic side of the helix. Competition of rhodamine 6G efflux, in the presence of excess of various substrates in the cells expressing native Cdr1p, revealed for the first time the overlapping binding site between azoles (such as ketoconazole, miconazole and itraconazole) and rhodamine 6G. The ability of these azoles to compete with rhodamine 6G was completely lost in mutants F1360A and G1362A, while it was selectively lost in other variants of Cdr1p. We further confirmed that fungicidal synergism of calcineurin inhibitor FK520 with azoles is mediated by Cdr1p; wherein in addition to conserved T1351, substitution of T1355, L1358 and G1362 of TMS11 also resulted in abrogation of synergism. CONCLUSIONS Our study for the first time provides an insight into the possible role of TMS11 of Cdr1p in drug efflux.
Collapse
Affiliation(s)
- Preeti Saini
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dong J, Yang G, McHaourab HS. Structural basis of energy transduction in the transport cycle of MsbA. Science 2005; 308:1023-8. [PMID: 15890883 DOI: 10.1126/science.1106592] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We used site-directed spin-labeling and electron paramagnetic resonance spectroscopy to characterize the conformational motion that couples energy expenditure to substrate translocation in the multidrug transporter MsbA. In liposomes, ligand-free MsbA samples conformations that depart from the crystal structures, including looser packing and water penetration along the periplasmic side. Adenosine triphosphate (ATP) binding closes the substrate chamber to the cytoplasm while increasing hydration at the periplasmic side, consistent with an alternating access model. Accentuated by ATP hydrolysis, the changes in the chamber dielectric environment and its geometry provide the likely driving force for flipping amphipathic substrates and a potential exit pathway. These results establish the structural dynamic basis of the power stroke in multidrug-resistant ATP-binding cassette (MDR ABC) transporters.
Collapse
Affiliation(s)
- Jinhui Dong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
25
|
Chen EY, Bartlett MC, Loo TW, Clarke DM. The ΔF508 Mutation Disrupts Packing of the Transmembrane Segments of the Cystic Fibrosis Transmembrane Conductance Regulator. J Biol Chem 2004; 279:39620-7. [PMID: 15272010 DOI: 10.1074/jbc.m407887200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most common mutation in cystic fibrosis (deletion of Phe-508 in the first nucleotide binding domain (DeltaF508)) in the cystic fibrosis transmembrane conductance regulator (CFTR) causes retention of the mutant protein in the endoplasmic reticulum. We previously showed that the DeltaF508 mutation causes the CFTR protein to be retained in the endoplasmic reticulum in an inactive and structurally altered state. Proper packing of the transmembrane (TM) segments is critical for function because the TM segments form the chloride channel. Here we tested whether the DeltaF508 mutation altered packing of the TM segments by disulfide cross-linking analysis between TM6 and TM12 in wild-type and DeltaF508 CFTRs. These TM segments were selected because TM6 appears to line the chloride channel, and cross-linking between these TM segments has been observed in the CFTR sister protein, the multidrug resistance P-glycoprotein. We first mapped potential contact points in wild-type CFTR by cysteine mutagenesis and thiol cross-linking analysis. Disulfide cross-linking was detected in CFTR mutants M348C(TM6)/T1142C(TM12), T351C(TM6)/T1142C(TM12), and W356C(TM6)/W1145C(TM12) in a wild-type background. The disulfide cross-linking occurs intramolecularly and was reducible by dithiothreitol. Introduction of the DeltaF508 mutation into these cysteine mutants, however, abolished cross-linking. The results suggest that the DeltaF508 mutation alters interactions between the TM domains. Therefore, a potential target to correct folding defects in the DeltaF508 mutant of CFTR is to identify compounds that promote correct folding of the TM domains.
Collapse
Affiliation(s)
- Eva Y Chen
- Canadian Institutes of Health Research Group in Membrane Biology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
26
|
Rothnie A, Storm J, Campbell J, Linton KJ, Kerr ID, Callaghan R. The topography of transmembrane segment six is altered during the catalytic cycle of P-glycoprotein. J Biol Chem 2004; 279:34913-21. [PMID: 15192095 DOI: 10.1074/jbc.m405336200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural evidence has demonstrated that P-glycoprotein (P-gp) undergoes considerable conformational changes during catalysis, and these alterations are important in drug interaction. Knowledge of which regions in P-gp undergo conformational alterations will provide vital information to elucidate the locations of drug binding sites and the mechanism of coupling. A number of investigations have implicated transmembrane segment six (TM6) in drug-P-gp interactions, and a cysteine-scanning mutagenesis approach was directed to this segment. Introduction of cysteine residues into TM6 did not disturb basal or drug-stimulated ATPase activity per se. Under basal conditions the hydrophobic probe coumarin maleimide readily labeled all introduced cysteine residues, whereas the hydrophilic fluorescein maleimide only labeled residue Cys-343. The amphiphilic BODIPY-maleimide displayed a more complex labeling profile. The extent of labeling with coumarin maleimide did not vary during the catalytic cycle, whereas fluorescein maleimide labeling of F343C was lost after nucleotide binding or hydrolysis. BODIPY-maleimide labeling was markedly altered during the catalytic cycle and indicated that the adenosine 5'-(beta,gamma-imino)triphosphate-bound and ADP/vanadate-trapped intermediates were conformationally distinct. Our data are reconciled with a recent atomic scale model of P-gp and are consistent with a tilting of TM6 in response to nucleotide binding and ATP hydrolysis.
Collapse
Affiliation(s)
- Alice Rothnie
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | | | | | | | | | |
Collapse
|
27
|
Loo TW, Bartlett MC, Clarke DM. Val133 and Cys137 in transmembrane segment 2 are close to Arg935 and Gly939 in transmembrane segment 11 of human P-glycoprotein. J Biol Chem 2004; 279:18232-8. [PMID: 14749322 DOI: 10.1074/jbc.m400229200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
P-glycoprotein (P-gp; ABCB1) transports a wide variety of structurally diverse compounds out of the cell. The protein has two homologous halves joined by a linker region. Each half consists of a transmembrane (TM) domain with six TM segments and a nucleotide-binding domain. The drug substrate-binding pocket is at the interface between the TM segments in each half of the protein. Preliminary studies suggested that the arrangement of the two halves of P-gp shows rotational symmetry (i.e. "head-to-tail" arrangement). Here, we tested this model by determining whether the cytoplasmic ends of TM2 and TM3 in the N-terminal half are in close contact with TM11 in the C-terminal half. Mutants containing a pair of cysteines in TM2/TM11 or TM3/TM11 were subjected to oxidative cross-linking with copper phenanthroline. Two of the 110 TM2/TM11 mutants, V133C(TM2)/G939C(TM11) and C137C(TM2)/A935C (TM11), were cross-linked at 4 degrees C, when thermal motion is reduced. Cross-linking was specific since no cross-linked product was detected in the 100 double Cys TM3/TM11 mutants. Vanadate trapping of nucleotide or the presence of some drug substrates inhibited cross-linking of mutants V133C(TM2)/G939C(TM11) and C137C(TM2)/A935C(TM11). Cross-linking of TM2 and TM11 also blocked drug-stimulated ATPase activity. The close proximity of TM2/TM11 and TM5/TM8 (Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2004) J. Biol. Chem. 279, 7692-7697) indicates that these regions between the two halves must enclose the drug-binding pocket at the cytoplasmic side of P-gp. They may form the "hinges" required for conformational changes during the transport cycle.
Collapse
Affiliation(s)
- Tip W Loo
- Canadian Institutes of Health Research Group in Membrane Biology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
28
|
Loo TW, Bartlett MC, Clarke DM. Disulfide cross-linking analysis shows that transmembrane segments 5 and 8 of human P-glycoprotein are close together on the cytoplasmic side of the membrane. J Biol Chem 2003; 279:7692-7. [PMID: 14670948 DOI: 10.1074/jbc.m311825200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human P-glycoprotein (P-gp) transports a wide variety of structurally diverse compounds out of the cell. Knowledge about the packing of the transmembrane (TM) segments is essential for understanding the mechanism of drug recognition and transport. We used cysteine-scanning mutagenesis and disulfide cross-linking analysis to determine which TM segment in the COOH half of P-gp was close to TMs 5 and 6 since these segments in the NH(2) half are important for drug binding. An active Cys-less P-gp mutant cDNA was used to generate 240 double cysteine mutants that contained 1 cysteine in TMs 5 or 6 and another in TMs 7 or 8. The mutants were subjected to oxidative cross-linking analysis. No disulfide cross-linking was observed in the 140 TM6/TM7 or TM6/TM8 mutants. By contrast, cross-linking was detected in several P-gp TM5/TM8 mutants. At 4 degrees C, when thermal motion is low, P-gp mutants N296C(TM5)/G774C(TM8), I299C(TM5)/F770C(TM8), I299C(TM5)/G774C(TM8), and G300C(TM5)/F770C(TM8) showed extensive cross-linking with oxidant. These mutants retained drug-stimulated ATPase activity, but their activities were inhibited after treatment with oxidant. Similarly, disulfide cross-linking was inhibited by vanadate trapping of nucleotide. These results indicate that significant conformational changes must occur between TMs 5 and 8 during ATP hydrolysis. We revised the rotational symmetry model for TM packing based on our results and by comparison to the crystal structure of MsbA (Chang, G. (2003) J. Mol. Biol. 330, 419-430) such that TM5 is adjacent to TM8, TM2 is adjacent to TM11, and TMs 1 and 7 are next to TMs 6 and 12, respectively.
Collapse
Affiliation(s)
- Tip W Loo
- Canadian Institutes for Health Research Group in Membrane Biology, Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
29
|
Loo TW, Bartlett MC, Clarke DM. Methanethiosulfonate Derivatives of Rhodamine and Verapamil Activate Human P-glycoprotein at Different Sites. J Biol Chem 2003; 278:50136-41. [PMID: 14522974 DOI: 10.1074/jbc.m310448200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) actively extrudes a broad range of potentially cytotoxic compounds out of the cell. Key steps in understanding the transport process are binding of drug substrates in the transmembrane domains, initiation of ATPase activity, and subsequent drug efflux. We used cysteine-scanning mutagenesis of the transmembrane segment residues and reaction with the thiol-reactive drug substrate analog of rhodamine, methane-thiosulfonate-rhodamine (MTS-rhodamine), to test whether P-gp could be trapped in an activated state with high levels of ATPase activity. The presence of such an activated P-gp could be used to further investigate P-gp-drug substrate interactions. Single cysteine mutants (149) were treated with MTS-rhodamine, and ATPase activities were determined after removal of unreacted MTS-rhodamine. One mutant, F343C(TM6), showed a 5.8-fold increase in activity after reaction with MTS-rhodamine. Pre-treatment of mutant F343C with rhodamine B protected it from activation by MTS-rhodamine, indicating that residue Cys-343 contributes to the rhodamine-binding site. The ATPase activity of MTS-rhodamine-treated mutant F343C, however, was not stimulated further by colchicine or calcein-AM. By contrast, verapamil and Hoechst 33342 stimulated and inhibited, respectively, the ATPase activity of the MTS-rhodamine-treated mutant F343C. These results indicate that the MTS-rhodamine binding site overlaps that of colchicine and calcein-AM but not that of verapamil and Hoechst 33342 within the common drug-binding pocket.
Collapse
Affiliation(s)
- Tip W Loo
- Canadian Institutes of Health Research Group in Membrane Biology, Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
30
|
Loo TW, Bartlett MC, Clarke DM. Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. J Biol Chem 2003; 278:39706-10. [PMID: 12909621 DOI: 10.1074/jbc.m308559200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) transports a wide variety of structurally diverse compounds out of the cell. The drug-binding pocket of P-gp is located in the transmembrane domains. Although occupation of the drug-binding pocket by one molecule is sufficient to activate the ATPase activity of P-gp, the drug-binding pocket may be large enough to accommodate two different substrates at the same time. In this study, we used cysteine-scanning mutagenesis to test whether P-gp could simultaneously interact with the thiol-reactive drug substrate, Tris-(2-maleimidoethyl)amine (TMEA) and a second drug substrate. TMEA is a cross-linker substrate of P-gp that allowed us to test for stimulation of cross-linking by a second substrate such as calcein-acetoxymethyl ester, colchicine, demecolcine, cyclosporin A, rhodamine B, progesterone, and verapamil. We report that verapamil induced TMEA cross-linking of mutant F343C(TM6)/V982C(TM12). By contrast, no cross-linked product was detected in mutants F343C(TM6), V982C(TM12), or F343C(TM6)/V982C(TM12) in the presence of TMEA alone. The verapamil-stimulated ATPase activity of mutant F343C(TM6)/V982C(TM12) in the presence of TMEA decreased with increased cross-linking of the mutant protein. These results show that binding of verapamil must induce changes in the drug-binding pocket (induced-fit mechanism) resulting in exposure of residues F343C(TM6)/V982C(TM12) to TMEA. The results also indicate that the common drug-binding pocket in P-gp is large enough to accommodate both verapamil and TMEA simultaneously and suggests that the substrates must occupy different regions in the common drug-binding pocket.
Collapse
Affiliation(s)
- Tip W Loo
- Canadian Institutes of Health Research Group in Membrane Biology, and Department of Medicine and, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
31
|
Loo TW, Bartlett MC, Clarke DM. Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. Direct evidence for the substrate-induced fit mechanism for drug binding. J Biol Chem 2003; 278:13603-6. [PMID: 12609990 DOI: 10.1074/jbc.c300073200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) is quite promiscuous in that it can transport a broad range of structurally diverse compounds out of the cell. We hypothesized that the transmembrane (TM) segments that constitute the drug-binding site are quite mobile such that drug binding occurs through a "substrate-induced fit" mechanism. Here, we used cysteine-scanning mutagenesis and oxidative cross-linking to test for substrate-induced changes in the TM segments. Pairs of cysteines were introduced into a Cys-less P-gp and the mutants treated with oxidant (copper phenanthroline) in the presence or absence of various drug substrates. We show that cyclosporin A promoted cross-linking between residues P350C(TM6)/G939C(TM11), while colchicine and demecolcine promoted cross-linking between residues P350C(TM6)/V991C(TM12). Progesterone promoted cross-linking between residues P350C(TM6)/A935C(TM11), P350C(TM6)/G939C(TM11), as well as between residues P350C(TM6)/V991C(TM12). Other substrates such as vinblastine, verapamil, cis-(Z)-flupenthixol or trans-(E)-flupenthixol did not induce cross-linking at these sites. These results provide direct evidence that the packing of the TM segments in the drug-binding site is changed when P-gp binds to a particular substrate. The induced-fit mechanism explains how P-gp can accommodate a broad range of compounds.
Collapse
Affiliation(s)
- Tip W Loo
- Canadian Institutes of Health Research Group in Membrane Biology, Department of Medicine, University of Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
32
|
Rosenberg MF, Kamis AB, Callaghan R, Higgins CF, Ford RC. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J Biol Chem 2003; 278:8294-9. [PMID: 12501241 DOI: 10.1074/jbc.m211758200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein is an ATP-binding cassette transporter that is associated with multidrug resistance and the failure of chemotherapy in human patients. We have previously shown, based on two-dimensional projection maps, that P-glycoprotein undergoes conformational changes upon binding of nucleotide to the intracellular nucleotide binding domains. Here we present the three-dimensional structures of P-glycoprotein in the presence and absence of nucleotide, at a resolution limit of approximately 2 nm, determined by electron crystallography of negatively stained crystals. The data reveal a major reorganization of the transmembrane domains throughout the entire depth of the membrane upon binding of nucleotide. In the absence of nucleotide, the two transmembrane domains form a single barrel 5-6 nm in diameter and about 5 nm deep with a central pore that is open to the extracellular surface and spans much of the membrane depth. Upon binding nucleotide, the transmembrane domains reorganize into three compact domains that are each 2-3 nm in diameter and 5-6 nm deep. This reorganization opens the central pore along its length in a manner that could allow access of hydrophobic drugs (transport substrates) directly from the lipid bilayer to the central pore of the transporter.
Collapse
Affiliation(s)
- Mark F Rosenberg
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Cai J, Gros P. Overexpression, purification, and functional characterization of ATP-binding cassette transporters in the yeast, Pichia pastoris. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:63-76. [PMID: 12586381 DOI: 10.1016/s0005-2736(02)00718-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is a large gene family that has been highly conserved throughout evolution. The physiological importance of these membrane transporters is highlighted by the large variety of substrates they transport, and by the observation that mutations in many of them cause heritable diseases in human. Likewise, overexpression of certain ABC transporters, such as P-glycoprotein and members of the multidrug resistance associated protein (MRP) family, is associated with multidrug resistance in various cells and organisms. Understanding the structure and molecular mechanisms of transport of the ABC transporters in normal tissues and their possibly altered function in human diseases requires large amounts of purified and active proteins. For this, efficient expression systems are needed. The methylotrophic yeast Pichia pastoris has proven to be an efficient and inexpensive experimental model for high-level expression of many proteins, including ABC transporters. In the present review, we will summarize recent advances on the use of this system for the expression, purification, and functional characterization of P-glycoprotein and two members of the MRP subfamily.
Collapse
Affiliation(s)
- Jie Cai
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
34
|
Loo TW, Bartlett MC, Clarke DM. Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains. J Biol Chem 2003; 278:1575-8. [PMID: 12421806 DOI: 10.1074/jbc.m211307200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) uses ATP to transport many structurally diverse compounds out of the cell. It is an ABC transporter with two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Recently, we showed that the "LSGGQ" motif in one NBD ((531)LSGGQ(535) in NBD1; (1176)LSGGQ(1180) in NBD2) is adjacent to the "Walker A" sequence ((1070)GSSGCGKS(1077) in NBD2; (427)GNSGCGKS(434) in NBD1) in the other NBD (Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2002) J. Biol. Chem. 277, 41303-41306). Drug substrates can stimulate or inhibit the ATPase activity of P-gp. Here, we report the effect of drug binding on cross-linking between the LSGGQ signature and Walker A sites (Cys(431)(NBD1)/C1176C(NBD2) and Cys(1074)(NBD2)/L531C(NBD1), respectively). Seven drug substrates (calcein-AM, demecolcine, cis(Z)-flupentixol, verapamil, cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) were tested for their effect on oxidative cross-linking. Substrates that stimulated the ATPase activity of P-gp (calcein-AM, demecolcine, cis(Z)-flupentixol, and verapamil) increased the rate of cross-linking between Cys(431)(NBD1-Walker A)/C1176C(NBD2-LSGGQ) and between Cys(1074)(NBD2-Walker A)/L531C(NBD1-LSGGQ) when compared with cross-linking in the absence of drug substrate. By contrast, substrates that inhibited ATPase activity (cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) decreased the rate of cross-linking. These results indicate that interaction between the LSGGQ motifs and Walker A sites must be essential for coupling drug binding to ATP hydrolysis. Drug binding in the transmembrane domains can induce long range conformational changes in the NBDs, such that compounds that stimulate or inhibit ATPase activity must decrease and increase, respectively, the distance between the Walker A and LSGGQ sequences.
Collapse
Affiliation(s)
- Tip W Loo
- Canadian Institutes for Health Research Group in Membrane Biology, Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
35
|
Abstract
In view of the increasing threat posed by fungal infections in immunocompromised patients and due to the non-availability of effective treatments, it has become imperative to find novel antifungals and vigorously search for new drug targets. Fungal pathogens acquire resistance to drugs (antifungals), a well-established phenomenon termed multidrug resistance (MDR), which hampers effective treatment strategies. The MDR phenomenon is spread throughout the evolutionary scale. Accordingly, a host of responsible genes have been identified in the genetically tractable budding yeast Saccharomyces cerevisiae, as well as in a pathogenic yeast Candida albicans. Studies so far suggest that, while antifungal resistance is the culmination of multiple factors, there may be a unifying mechanism of drug resistance in these pathogens. ABC (ATP binding cassette) and MFS (major facilitator superfamily) drug transporters belonging to two different superfamilies, are the most prominent contributors to MDR in yeasts. Considering the abundance of the drug transporters and their wider specificity, it is believed that these drug transporters may not exclusively export drugs in fungi. It has become apparent that the drug transporters of the ABC superfamily of S. cerevisiae and C. albicans are multifunctional proteins, which mediate important physiological functions. This review summarizes current research on the molecular mechanisms underlying drug resistance, the emerging regulatory circuits of MDR genes, and the physiological relevance of drug transporters.
Collapse
Affiliation(s)
- Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | |
Collapse
|
36
|
Loo TW, Clarke DM. Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein. J Biol Chem 2002; 277:44332-8. [PMID: 12223492 DOI: 10.1074/jbc.m208433200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance P-glycoprotein (P-gp) pumps a wide variety of structurally diverse compounds out of the cell. It is an ATP-binding cassette transporter with two nucleotide-binding domains and two transmembrane (TM) domains. One class of compounds transported by P-gp is the rhodamine dyes. A P-gp deletion mutant (residues 1-379 plus 681-1025) with only the TM domains retained the ability to bind rhodamine. Therefore, to identify the residues involved in rhodamine binding, 252 mutants containing a cysteine in the predicted TM segments were generated and reacted with a thiol-reactive analog of rhodamine, methanethiosulfonate (MTS)-rhodamine. The activities of 28 mutants (in TMs 2-12) were inhibited by at least 50% after reaction with MTS-rhodamine. The activities of five mutants, I340C(TM6), A841C(TM9), L975C(TM12), V981C(TM12), and V982C(TM12), however, were significantly protected from inhibition by MTS-rhodamine by pretreatment with rhodamine B, indicating that residues in TMs 6, 9, and 12 contribute to the binding of rhodamine dyes. These results, together with those from previous labeling studies with other thiol-reactive compounds, dibromobimane, MTS-verapamil, and MTS-cross-linker substrates, indicate that common residues are involved in the binding of structurally different drug substrates and that P-gp has a common drug-binding site. The results support the "substrate-induced fit" hypothesis for drug binding.
Collapse
Affiliation(s)
- Tip W Loo
- Canadian Institutes of Health Research Group in Membrane Biology, Department of Medicine, University of Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
37
|
Loo TW, Bartlett MC, Clarke DM. The "LSGGQ" motif in each nucleotide-binding domain of human P-glycoprotein is adjacent to the opposing walker A sequence. J Biol Chem 2002; 277:41303-6. [PMID: 12226074 DOI: 10.1074/jbc.c200484200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance P-glycoprotein (P-gp, ABCB1), a member of the ATP-binding cassette (ABC) family of transport proteins, actively transports many cytotoxic compounds out of the cell. ABC transporters have two nucleotide-binding domains (NBD) and two transmembrane domains. The presence of the conserved "signature" sequence (LSGGQ) in each NBD is a unique feature in these transporters. The function of the signature sequences is unknown. In this study, we tested whether the signature sequences ((531)LSGGQ(535) in NBD1; (1176)LSGGQ(1180) in NBD2) in P-gp are in close proximity to the opposing Walker A consensus nucleotide-binding sequences ((1070)GSSGCGKS(1077) in NBD2; (427)GNSGCGKS(434) in NBD1). Pairs of cysteines were introduced into a Cys-less P-gp at the signature and "Walker A" sites and the mutant P-gps were subjected to oxidative cross-linking. At 4 degrees C, when thermal motion is low, P-gp mutants (L531C(Signature)/C1074(Walker A) and C431(Walker A)/L1176C(Signature) were cross-linked. Cross-linking inhibited the drug-stimulated ATPase activities of these two mutants. Their activities were restored, however, after addition of the reducing agent, dithiothreitol. Vanadate trapping of nucleotide at the ATP-binding sites prevented cross-linking of the mutants. These results indicate that the signature sequences are adjacent to the opposing Walker A site. They likely participate in forming the ATP-binding sites and are displaced upon ATP hydrolysis. The resulting conformational change may be the signal responsible for coupling ATP hydrolysis to drug transport by inducing conformational changes in the transmembrane segments.
Collapse
Affiliation(s)
- Tip W Loo
- Canadian Institutes for Health Research Group in Membrane Biology, Department of Medicine, University of Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
38
|
Loo TW, Bartlett MC, Clarke DM. Introduction of the most common cystic fibrosis mutation (Delta F508) into human P-glycoprotein disrupts packing of the transmembrane segments. J Biol Chem 2002; 277:27585-8. [PMID: 12070134 DOI: 10.1074/jbc.c200330200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most common mutation in cystic fibrosis (deletion of phenylalanine 508 (DeltaF508) in the cystic fibrosis conductance transmembrane regulator (CFTR) gene) causes defective synthesis of CFTR protein. To understand how this deletion interferes with protein folding, we made the equivalent deletion (DeltaY490) in P-glycoprotein (P-gp). A Cys-less P-gp with cysteines in transmembrane (TM) 4 or TM5 can be cross-linked with a cysteine in TM12. Deleting Tyr(490) in P-gp resulted in an inactive and defectively processed mutant in which no cross-linking between TM4 or TM5 and TM12 was detected. Expression of the DeltaY490 mutant in the presence of a chemical chaperone corrected the processing defect and yielded active P-gp mutants that could be cross-linked between TM4 or TM5 and TM12. Cross-linking between TM4 or TM5 and TM12 was also detected when residues (483)TIAENIRYG(491) in P-gp were replaced with residues (501)TIKENIIFG(509) from CFTR (P-gp/CFTR). Deleting Phe(508) in the P-gp/CFTR chimera, however, caused defective processing of the mutant protein and no detectable cross-linking between TM4 or TM5 and TM12. The processing defect was corrected with a chemical chaperone and yielded active P-gp/CFTR mutant proteins that could be cross-linked. These results show that deletion at residue 490 disrupts packing of the TM segments possibly by affecting interaction between the first nucleotide-binding domain (Tyr(490)) and the first cytoplasmic loop (Glu(184)).
Collapse
Affiliation(s)
- Tip W Loo
- Canadian Institutes for Health Research (CIHR) Group in Membrane Biology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
39
|
Loo TW, Clarke DM. Vanadate trapping of nucleotide at the ATP-binding sites of human multidrug resistance P-glycoprotein exposes different residues to the drug-binding site. Proc Natl Acad Sci U S A 2002; 99:3511-6. [PMID: 11891276 PMCID: PMC122554 DOI: 10.1073/pnas.022049799] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human multidrug resistance P-glycoprotein uses ATP to transport a wide variety of structurally unrelated cytotoxic compounds out of the cell. In this study, we used cysteine-scanning mutagenesis and cross-linking studies to identify residues that are exposed to the drug-binding site upon vanadate trapping. In the absence of nucleotides, C222(TM4) was cross-linked to C868(TM10) and C872(TM10); C306(TM5) was cross-linked to C868(TM10), C872(TM10), C945(TM11), C982(TM12), and C984(TM12); and C339(TM6) was cross-linked to C868(TM10), C872(TM10), C942(TM11), C982(TM12), and C985(TM12). These cysteines are in the middle of the predicted transmembrane (TM) segments and form the drug-binding site. Cross-linking between 332C(TM6) and cysteines introduced at the extracellular side of other TM segments was also done. In the absence of nucleotides, residues 332C and 856C on the extracellular side of TMs 6 and 10, respectively, were cross-linked with a 13-A cross-linker (M8M, 3,6-dioxaoctane-1,8-diyl bismethanethiosulfonate). ATP plus vanadate inhibited cross-linking between 332C(TM6) and 856C(TM10) as well as those in the drug-binding site. Instead, vanadate trapping promoted cross-linking between 332C(TM6) and 976C(TM12) with a 10-A cross-linker (M6M, 1,6-hexanediyl bismethanethiosulfonate). When ATP hydrolysis was allowed to proceed, then 332C(TM12) could form a disulfide bond with 975C(TM12). The cross-linking pattern of 332C(TM6) with residues in TM10 and TM12 indicates that the drug-binding site undergoes dynamic and relatively large conformational changes, and that different residues are exposed to the drug-binding site during the resting phase, upon vanadate trapping and at the completion of the catalytic cycle.
Collapse
Affiliation(s)
- Tip W Loo
- Canadian Institutes for Health Research Group in Membrane Biology, Departments of Medicine and Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | |
Collapse
|
40
|
Diociaiuti M, Molinari A, Ruspantini I, Gaudiano MC, Ippoliti R, Lendaro E, Bordi F, Chistolini P, Arancia G. P-glycoprotein inserted in planar lipid bilayers formed by liposomes opened on amorphous carbon and Langmuir-Blodgett monolayer. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1559:21-31. [PMID: 11825585 DOI: 10.1016/s0005-2736(01)00425-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The insertion of proteins into planar lipid layers is of outstanding interest as the resulting films are suitable for the investigation of protein structure and aggregation in a lipid environment and/or the development of biotechnological applications as biosensors. In this study, purified P-glycoprotein (P-gp), a membrane drug pump, was incorporated in model membranes deposited on solid supports according to the method by Puu and Gustafson, Biochim. Biophys. Acta 1327 (1997) 149-161. The models were formed by a double lipid layer obtained by opening P-gp-containing liposomes onto two hydrophobic supports: amorphous carbon films and Langmuir-Blodgett (L-B) lipid monolayers, which were then observed by transmission electron microscopy and atomic force microscopy, respectively. Before the opening of liposomes, the P-gp structure and functionality were verified by circular dichroism spectroscopy and enzymatic assay. Our micrographs showed that liposomes containing P-gp fuse to the substrates more easily than plain liposomes, which keep their rounded shape. This suggests that the protein plays an essential role in the fusion of liposomes. To localize P-gp, the immunogold labeling of two externally exposed protein epitopes was carried out. Both imaging techniques confirmed that P-gp was successfully incorporated in the model membranes and that the two epitopes preserved the reactivity with specific mAbs, after sample preparation. Model membranes obtained on L-B monolayer incorporated few molecules with respect to those incorporated in the model membrane deposited onto amorphous carbon, probably because of the different mechanism of proteoliposome opening. Finally, all particles appeared as isolated units, suggesting that P-gp molecules were present as monomers.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Laboratorio di Ultrastrutture, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Loo TW, Clarke DM. Determining the dimensions of the drug-binding domain of human P-glycoprotein using thiol cross-linking compounds as molecular rulers. J Biol Chem 2001; 276:36877-80. [PMID: 11518701 DOI: 10.1074/jbc.c100467200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance P-glycoprotein (P-gp) interacts with a broad range of compounds with diverse structures and sizes. There is considerable evidence indicating that residues in transmembrane segments 4-6 and 10-12 form the drug-binding site. We attempted to measure the size of the drug-binding site by using thiol-specific methanethiosulfonate (MTS) cross-linkers containing spacer arms of 2 to 17 atoms. The majority of these cross-linkers were also substrates of P-gp, because they stimulated ATPase activity (2.5- to 10.1-fold). 36 P-gp mutants with pairs of cysteine residues introduced into transmembrane segments 4-6 and 10-12 were analyzed after reaction with 0.2 mm MTS cross-linker at 4 degrees C. The cross-linked product migrated with lower mobility than native P-gp in SDS gels. 13 P-gp mutants were cross-linked by MTS cross-linkers with spacer arms of 9-25 A. Vinblastine and cyclosporin A inhibited cross-linking. The emerging picture from these results and other studies is that the drug-binding domain is large enough to accommodate compounds of different sizes and that the drug-binding domain is "funnel" shaped, narrow at the cytoplasmic side, at least 9-25 A in the middle, and wider still at the extracellular surface.
Collapse
Affiliation(s)
- T W Loo
- Department of Medicine, Canadian Institutes for Health Research Group in Membrane Biology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
42
|
Affiliation(s)
- C F Higgins
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, DuCane Road, London W12 0NN, UK.
| | | |
Collapse
|
43
|
Loo TW, Clarke DM. Cross-linking of human multidrug resistance P-glycoprotein by the substrate, tris-(2-maleimidoethyl)amine, is altered by ATP hydrolysis. Evidence for rotation of a transmembrane helix. J Biol Chem 2001; 276:31800-5. [PMID: 11429407 DOI: 10.1074/jbc.m103498200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified a thiol-reactive substrate, Tris-(2-maleimidoethyl)amine (TMEA), to explore the contribution of the TM segments 6 and 12 of the human multidrug resistance P-glycoprotein (P-gp) during transport. TMEA is a trifunctional maleimide and stimulated the ATPase activity of Cys-less P-gp about 7-fold. Cysteine-scanning mutagenesis of TM12 showed that the activity of mutant V982C was inhibited by TMEA. P-gp mutants containing V982C (TM12) and another cysteine in TM6 were constructed and tested for cross-linking with TMEA. A cross-linked product was observed in SDS-polyacrylamide gel electrophoresis for mutant L339C(TM6)/V982C(TM12). Cross-linking by TMEA also inhibited the ATPase activity of the mutant protein. Substrates such as cyclosporin A, vinblastine, colchicine, or verapamil inhibited cross-linking by TMEA. In the presence of ATP at 37 degrees C, cross-linking of mutant L339C/V982C was decreased. In contrast, there was enhanced cross-linking of mutant F343C(TM6)/V982C(TM12) in the presence of ATP. These results show that cross-linking must be within the drug-binding domain, that residues L339C(TM6)/V982C(TM12) must be at least 10 A apart, and that ATP hydrolysis promotes rotation of one or both TM helices.
Collapse
Affiliation(s)
- T W Loo
- Canadian Institutes for Health Research Group in Membrane Biology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
44
|
Song J, Melera PW. Transmembrane domain (TM) 9 represents a novel site in P-glycoprotein that affects drug resistance and cooperates with TM6 to mediate [125I]iodoarylazidoprazosin labeling. Mol Pharmacol 2001; 60:254-61. [PMID: 11455011 DOI: 10.1124/mol.60.2.254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The multidrug resistant cell line DC-3F/ADII was obtained by stepwise selection for growth in actinomycin D (ActD). Compared with parental cells, it displays high resistance to ActD and vincristine and low resistance to colchicine and daunorubicin. These cells overexpress a form of P-glycoprotein (Pgp1) containing a double mutation, I837L and N839I, in transmembrane domain (TM) 9; when transfected into DC-3F, this mutation confers the DC-3F/ADII phenotype. We have shown previously that another cell line, DC-3F/ADX, also displays this phenotype and overexpresses a mutant form of Pgp1 containing a double mutation in TM6 (G338A, A339P). Hence, mutations in TM9 and TM6 are independently capable of conferring the same cross-resistance phenotype. The TM6 mutations inhibit the ability of cyclosporin A to reverse cross-resistance and to block labeling of the protein by [125I]iodoarylazidoprazosin (IAAP), whereas the TM9 mutations do not show similar effects. A chimeric protein containing both pairs of mutations confers twice the level of resistance to ActD than expected from the sum of the individual mutations, but it cannot be labeled to detectable levels with [125I]IAAP. Thus, TM9 represents a novel site that cooperates with TM6 to mediate drug resistance and [125I]IAAP labeling.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adenosine Triphosphatases/metabolism
- Animals
- Azides/metabolism
- Binding, Competitive
- Cells, Cultured
- Cricetinae
- Cyclosporine/pharmacology
- Drug Interactions
- Drug Resistance/physiology
- Drug Resistance, Multiple/physiology
- Iodine Radioisotopes
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mutagenesis, Site-Directed
- Prazosin/analogs & derivatives
- Prazosin/metabolism
- Protein Structure, Tertiary
- Transfection
- Verapamil/pharmacology
Collapse
Affiliation(s)
- J Song
- Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
45
|
Bragg PD, Hou C. Characterization of mutants of beta histidine91, beta aspartate213, and beta asparagine222, possible components of the energy transduction pathway of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli. Arch Biochem Biophys 2001; 388:299-307. [PMID: 11368169 DOI: 10.1006/abbi.2001.2298] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles of three residues (betaHis91, betaAsp213, and betaAsn222) implicated in energy transduction in the membrane-spanning domain II of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli have been examined using site-directed mutagenesis. All mutations affected transhydrogenation and proton pumping activities, although to various extents. Replacing betaHis91 or betaAsn222 of domain II by the basic residues lysine or arginine resulted in occlusion of NADP(H) at the NADP(H)-binding site of domain III. This was not seen with betaD213K or betaD213R mutants. It is suggested that betaHis91 and betaAsn222 interact with betaAsp392, a residue probably involved in initiating conformational changes at the NADP(H)-binding site in the normal catalytic cycle of the enzyme (M. Jeeves et al. (2000) Biochim. Biophys. Acta 1459, 248-257). The introduced positive charges in the betaHis91 and betaAsn222 mutants might stabilize the carboxyl group of betaAsp392 in its anionic form, thus locking the NADP(H)-binding site in the occluded conformation. In comparison with the nonmutant enzyme, and those of mutants of betaAsp213, most mutant enzymes at betaHis91 and betaAsn222 bound NADP(H) more slowly at the NADP(H)-binding site. This is consistent with the effect of these two residues on the binding site. We could not demonstrate by mutation or crosslinking or through the formation of eximers with pyrene maleimide that betaHis91 and betaAsn222 were in proximity in domain II.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
46
|
Jones PM, George AM. Symmetry and structure in P-glycoprotein and ABC transporters what goes around comes around. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5298-305. [PMID: 10951188 DOI: 10.1046/j.1432-1327.2000.01628.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ABC superfamily of membrane transporters is one of the largest classes of proteins across all species and one of the most intensely researched. ABC proteins are involved in the trafficking of a diverse variety of biological molecules across cell membranes, with some members implicated in medical syndromes such as cystic fibrosis and multidrug resistance to anti-cancer drugs. In the absence of X-ray crystallographic data, structural information has come from spectroscopy, electron microscopy, secondary structure prediction algorithms and residue substitution, epitope labelling and cysteine cross-linking studies. These have generally supported a model for the topology of the transmembrane domains of ABC transporters in which a single aqueous pore is formed by a toroidal ring of 12 alpha helices, deployed in two arcs of six helices each. Although this so-called 6 + 6 helix model can be arranged in either mirror or rotational symmetry configurations, experimental data supports the former. In this review, we put forward arguments against both configurations of this 6 + 6 helix model, based on what is known generally about symmetry relationships in proteins. We relate these arguments to P-glycoprotein, in particular, and discuss alternative models for the structure of ABC transporters in the light of the most recent research.
Collapse
Affiliation(s)
- P M Jones
- Department of Cell and Molecular Biology, Faculty of Science, University of Technology Sydney, NSW, Australia
| | | |
Collapse
|
47
|
Loo TW, Clarke DM. Drug-stimulated ATPase activity of human P-glycoprotein is blocked by disulfide cross-linking between the nucleotide-binding sites. J Biol Chem 2000; 275:19435-8. [PMID: 10806188 DOI: 10.1074/jbc.c000222200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is an ATP-dependent drug pump that contains two nucleotide-binding domains (NBDs). Disulfide cross-linking analysis was done to determine if the two NBDs are close to each other. Residues within or close to the Walker A (GNSGCGKS in NDB1 and GSSGCGKS in NBD2) sequences for nucleotide binding were replaced with cysteine, and the mutant P-gps were subjected to oxidative cross-linking. Cross-linking was detected in two mutants, G427C(NBD1)/Cys-1074(NBD2) and L439C(NBD1)/Cys-1074(NBD2), because the cross-linked proteins migrated slower in SDS gels. Mutants G427C(NBD1)/Cys-1074(NBD2) and L439C(NBD1)/Cys-1074(NBD2) retained 10% and 82%, respectively, of the drug-stimulated ATPase activity relative to that of Cys-less P-gp. The cross-linking properties of the more active mutant L439C(NBD1)/Cys-1074(NBD2) were then studied. Cross-linking was reversed by addition of dithiothreitol and could be prevented by pretreatment of the mutant with N-ethylmaleimide. Cross-linking was also inhibited by MgATP, but not by the verapamil. Oxidative cross-linking of mutant L439C(NBD1)/Cys-1074(NBD2) resulted in almost complete inhibition of drug-stimulated ATPase activity. More than 60% of the drug-stimulated ATPase activity, however, was recovered after treatment with dithiothreitol. The results indicate that the two predicted nucleotide-binding sites are close to each other and that cross-linking inhibits ATP hydrolysis.
Collapse
Affiliation(s)
- T W Loo
- Medical Research Council Group in Membrane Biology, Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
48
|
Egner R, Bauer BE, Kuchler K. The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Mol Microbiol 2000; 35:1255-63. [PMID: 10712705 DOI: 10.1046/j.1365-2958.2000.01798.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that a S1360F mutation in transmembrane domain 10 (TMD10) of the Pdr5p ABC transporter modulates substrate specificity and simultaneously leads to a loss of FK506 inhibition. In this study, we have constructed and characterized the S1360F/A/T and T1364F/A/S mutations located in the hydrophilic face of the amphipatic Pdr5p TMD10. A T1364F mutation leads to a reduction in Pdr5p-mediated azole and rhodamine 6G resistance. Like S1360F, the T1364F and T1364A mutants were nearly non-responsive to FK506 inhibition. Most remarkably, however, the S1360A mutation increases FK506 inhibitor susceptibility, because Pdr5p-S1360A is hypersensitive to FK506 inhibition when compared with either wild-type Pdr5p or the non-responsive S1360F variant. Hence, the Pdr5p TMD10 determines both azole substrate specificity and susceptibility to reversal agents. This is the first demonstration of a eukaryotic ABC transporter where a single residue change causes either a loss or a gain in inhibitor susceptibility, depending on the nature of the mutational change. These results have important implications for the design of efficient reversal agents that could be used to overcome multidrug resistance mediated by ABC transporter overexpression.
Collapse
Affiliation(s)
- R Egner
- Department of Medical Biochemistry, University and Bio Center of Vienna, A-1030 Vienna, Austria
| | | | | |
Collapse
|
49
|
Loo TW, Clarke DM. The packing of the transmembrane segments of human multidrug resistance P-glycoprotein is revealed by disulfide cross-linking analysis. J Biol Chem 2000; 275:5253-6. [PMID: 10681495 DOI: 10.1074/jbc.275.8.5253] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Residues from several transmembrane (TM) segments of P-glycoprotein (P-gp) likely form the drug-binding site(s). To determine the organization of the TM segments, pairs of cysteine residues were introduced into the predicted TM segments of a Cys-less P-gp, and the mutant protein was subjected to oxidative cross-linking. In SDS gels, the cross-linked product migrated with a slower mobility than the native protein. The cross-linked products were not detected in the presence of dithiothreitol. Cross-linking was observed in 12 of 125 mutants. The pattern of cross-linking suggested that TM6 is close to TMs 10, 11, and 12, while TM12 is close to TMs 4, 5, and 6. In some mutants the presence of drug substrate colchicine, verapamil, cyclosporin A, or vinblastine either enhanced or inhibited cross-linking. Cross-linking was inhibited in the presence of ATP plus vanadate. These results suggest that the TM segments critical for drug binding must be close to each other and exhibit different conformational changes in response to binding of drug substrate or vanadate trapping of nucleotide. Based on these results, we propose a model for the arrangement of the TM segments.
Collapse
Affiliation(s)
- T W Loo
- Medical Research Council Group in Membrane Biology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
50
|
Vos JC, Reits EA, Wojcik-Jacobs E, Neefjes J. Head-head/tail-tail relative orientation of the pore-forming domains of the heterodimeric ABC transporter TAP. Curr Biol 2000; 10:1-7. [PMID: 10660295 DOI: 10.1016/s0960-9822(99)00257-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The transporter associated with antigen processing (TAP) is a heterodimeric member of the large family of ABC transporters. The study of interactions between the subunits TAP1 and TAP2 can reveal the relative orientation of the transmembrane segments, which form a translocation pore for peptides. This is essential for understanding the architecture of TAP and other ABC transporters. RESULTS The amino-terminal six transmembrane segments (TMs) of human TAP1, TAP1 (1-6), and the amino-terminal five TMs of TAP2, TAP2(1-5), are thought to constitute the pore of TAP. Two new approaches are used to define dimer interactions. We show that TM6 of TAP1 (1-6) is able to change topology post-translationally. This TM, along with a cytoplasmic tail, is translocated into the endoplasmic reticulum lumen, unless TAP2 is expressed. Coexpression of TM(4-5) of TAP2 stabilizes the topology of TAP1 (1-6), even when the TM1 of TAP1 is subsitituted with another sequence. This suggests that the carboxy-terminal TMs of the pore-forming domains TAP1 (1-6) and TAP2(1-5) interact. An alternative assay uses photobleaching in living cells using TAP1 (1-6) tagged with the green fluorescent protein (GFP). Coexpression with TAP2(1-5) results in reduced movement of the heterodimer within the endoplasmic reticulum membrane, as compared with the single TAP1 (1-6) molecule. In contrast, TAP2(1-4) has no effect on the mobility of TAP1 (1-6)-GFP, indicating the importance of TM5 of TAP2 for dimer formation. Also, TM1 of both TAP1 and TAP2 is essential for formation of a complex with low mobility. CONCLUSIONS Dimerization of the pore-forming transmembrane domains of TAP1 (TM1-6) with its TAP2 counterpart (TM1-5) prevents the post-translational translocation of TM6 of TAP1 and results in a complex with reduced mobility within the endoplasmic reticulum membrane compared with the free subunit. These techniques are used to show that the pore-forming domains of TAP are aligned in a head-head/tail-tail orientation. This positions the following peptide-binding segments of the two TAP subunits to one side of the pore.
Collapse
Affiliation(s)
- J C Vos
- Division of Tumor Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|