1
|
Zhang J, Zhang L, Nie J, Lin Y, Li Y, Xu W, Zhao JY, Zhao SM, Wang C. Calcineurin inactivation inhibits pyruvate dehydrogenase complex activity and induces the Warburg effect. Oncogene 2021; 40:6692-6702. [PMID: 34667275 DOI: 10.1038/s41388-021-02065-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022]
Abstract
Calcineurin is a calcium- and calmodulin-dependent serine/threonine protein phosphatase that connects the Ca2+-dependent signalling to multiple cellular responses. Calcineurin inhibitors (CNIs) have been widely used to suppress immune response in allograft patients. However, CNIs significantly increase cancer incidence in transplant recipients compared with the general population. Accumulating evidence suggests that CNIs may promote the malignant transformation of cancer cells in addition to its role in immunosuppression, but the underlying mechanisms remain poorly understood. Here, we show that calcineurin interacts with pyruvate dehydrogenase complex (PDC), a mitochondrial gatekeeper enzyme that connects two key metabolic pathways of cells, glycolysis and the tricarboxylic acid cycle. Mitochondrial-localized calcineurin dephosphorylates PDHA1 at Ser232, Ser293 and Ser300, and thus enhances PDC enzymatic activity, remodels cellular glycolysis and oxidative phosphorylation, and suppresses cancer cell proliferation. Hypoxia attenuates mitochondrial translocation of calcineurin to promote PDC inactivation. Moreover, CNIs promote metabolic remodelling and the Warburg effect by blocking calcineurin-mediated PDC activation in cancer cells. Our findings indicate that calcineurin is a critical regulator of mitochondrial metabolism and suggest that CNIs may promote tumorigenesis through inhibition of the calcineurin-PDC pathway.
Collapse
Affiliation(s)
- Jianong Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liang Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ji Nie
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yao Li
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wei Xu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jian-Yuan Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Chenji Wang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Synthesis, biological evaluation and structure-activity relationship of novel dichloroacetophenones targeting pyruvate dehydrogenase kinases with potent anticancer activity. Eur J Med Chem 2021; 214:113225. [PMID: 33550182 DOI: 10.1016/j.ejmech.2021.113225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 01/25/2023]
Abstract
Pyruvate dehydrogenase kinases (PDKs) are promising therapeutic targets that have received increasing attentions in cancer metabolism. In this paper, we report the synthesis and biological evaluation of a series of novel dichloroacetophenones as potent PDKs inhibitors. Structure-activity relationship analysis enabled us to identify a potent compound 6u, which inhibited PDKs with an EC50 value of 0.09 μM, and reduced various cancer cells proliferation with IC50 values ranging from 1.1 to 3.8 μM, while show weak effect against non-cancerous L02 cell (IC50 > 10 μM). In the A375 xenograft model, 6u displayed an obvious antitumor activity at a dose of 5 mg/kg, but with no negative effect to the mice weight. Molecular docking suggested that 6u formed direct hydrogen bond interactions with Ser75 and Gln61 in PDK1, and meanwhile the aniline skeleton in 6u was sandwiched by the conserved hydrophobic residues Phe78 and Phe65, which contribute to the biochemical activity improvement. Moreover, 6u induced A375 cell apoptosis and cell arrest in G1 phase, and inhibited cancer cell migration. In addition, 6u altered glucose metabolic pathway in A375 cell by decreasing lactate formation and increasing ROS production and OCR consumption, which could serve as a potential modulator to reprogram the glycolysis pathway in cancer cell.
Collapse
|
3
|
Guo Y, Qiu W, Roche TE, Hackert ML. Crystal structure of the catalytic subunit of bovine pyruvate dehydrogenase phosphatase. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2020; 76:292-301. [PMID: 32627744 DOI: 10.1107/s2053230x20007943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/11/2020] [Indexed: 11/11/2022]
Abstract
Mammalian pyruvate dehydrogenase (PDH) activity is tightly regulated by phosphorylation and dephosphorylation, which is catalyzed by PDH kinase isomers and PDH phosphatase isomers, respectively. PDH phosphatase isomer 1 (PDP1) is a heterodimer consisting of a catalytic subunit (PDP1c) and a regulatory subunit (PDP1r). Here, the crystal structure of bovine PDP1c determined at 2.1 Å resolution is reported. The crystals belonged to space group P3221, with unit-cell parameters a = b = 75.3, c = 173.2 Å. The structure was solved by molecular-replacement methods and refined to a final R factor of 21.9% (Rfree = 24.7%). The final model consists of 402 of a possible 467 amino-acid residues of the PDP1c monomer, two Mn2+ ions in the active site, an additional Mn2+ ion coordinated by His410 and His414, two MnSO4 ion pairs at special positions near the crystallographic twofold symmetry axis and 226 water molecules. Several new features of the PDP1c structure are revealed. The requirements are described and plausible bases are deduced for the interaction of PDP1c with PDP1r and other components of the pyruvate dehydrogenase complex.
Collapse
Affiliation(s)
- Youzhong Guo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Weihua Qiu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas E Roche
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Marvin L Hackert
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Li Y, Lou W, Raja V, Denis S, Yu W, Schmidtke MW, Reynolds CA, Schlame M, Houtkooper RH, Greenberg ML. Cardiolipin-induced activation of pyruvate dehydrogenase links mitochondrial lipid biosynthesis to TCA cycle function. J Biol Chem 2019; 294:11568-11578. [PMID: 31186346 DOI: 10.1074/jbc.ra119.009037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes. Although it has long been known that CL plays an important role in mitochondrial bioenergetics, recent evidence in the yeast model indicates that CL is also essential for intermediary metabolism. To gain insight into the function of CL in energy metabolism in mammalian cells, here we analyzed the metabolic flux of [U-13C]glucose in a mouse C2C12 myoblast cell line, TAZ-KO, which is CL-deficient because of CRISPR/Cas9-mediated knockout of the CL-remodeling enzyme tafazzin (TAZ). TAZ-KO cells exhibited decreased flux of [U-13C]glucose to [13C]acetyl-CoA and M2 and M4 isotopomers of tricarboxylic acid (TCA) cycle intermediates. The activity of pyruvate carboxylase, the predominant enzyme for anaplerotic replenishing of the TCA cycle, was elevated in TAZ-KO cells, which also exhibited increased sensitivity to the pyruvate carboxylase inhibitor phenylacetate. We attributed a decreased carbon flux from glucose to acetyl-CoA in the TAZ-KO cells to a ∼50% decrease in pyruvate dehydrogenase (PDH) activity, which was observed in both TAZ-KO cells and cardiac tissue from TAZ-KO mice. Protein-lipid overlay experiments revealed that PDH binds to CL, and supplementing digitonin-solubilized TAZ-KO mitochondria with CL restored PDH activity to WT levels. Mitochondria from TAZ-KO cells exhibited an increase in phosphorylated PDH, levels of which were reduced in the presence of supplemented CL. These findings indicate that CL is required for optimal PDH activation, generation of acetyl-CoA, and TCA cycle function, findings that link the key mitochondrial lipid CL to TCA cycle function and energy metabolism.
Collapse
Affiliation(s)
- Yiran Li
- Department of Biological Sciences, Wayne State University, Detroit Michigan 48202
| | - Wenjia Lou
- Department of Biological Sciences, Wayne State University, Detroit Michigan 48202
| | - Vaishnavi Raja
- Department of Biological Sciences, Wayne State University, Detroit Michigan 48202
| | - Simone Denis
- Laboratory of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit Michigan 48202
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit Michigan 48202
| | - Christian A Reynolds
- Department of Biological Sciences, Wayne State University, Detroit Michigan 48202
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York 10016, New York.,Department of Cell Biology, New York University School of Medicine, New York 10016, New York
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit Michigan 48202
| |
Collapse
|
5
|
Stacpoole PW. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. J Natl Cancer Inst 2017; 109:3871192. [PMID: 29059435 DOI: 10.1093/jnci/djx071] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
6
|
Saunier E, Benelli C, Bortoli S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer 2015; 138:809-17. [PMID: 25868605 DOI: 10.1002/ijc.29564] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells exhibit an altered metabolism which is characterized by a preference for aerobic glycolysis more than mitochondrial oxidation of pyruvate. This provides anabolic support and selective growth advantage for cancer cells. Recently, a new concept has arisen suggesting that these metabolic changes may be due, in part, to an attenuated mitochondrial function which results from the inhibition of the pyruvate dehydrogenase complex (PDC). This mitochondrial complex links glycolysis to the Krebs cycle and the current understanding of its regulation involves the cyclic phosphorylation and dephosphorylation by specific pyruvate dehydrogenase kinases (PDKs) and pyruvate dehydrogenase phosphatases (PDPs).
Collapse
Affiliation(s)
- Elise Saunier
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal Benelli
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvie Bortoli
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
7
|
Patel MS, Nemeria NS, Furey W, Jordan F. The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 2014; 289:16615-23. [PMID: 24798336 DOI: 10.1074/jbc.r114.563148] [Citation(s) in RCA: 428] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pyruvate dehydrogenase complexes (PDCs) from all known living organisms comprise three principal catalytic components for their mission: E1 and E2 generate acetyl-coenzyme A, whereas the FAD/NAD(+)-dependent E3 performs redox recycling. Here we compare bacterial (Escherichia coli) and human PDCs, as they represent the two major classes of the superfamily of 2-oxo acid dehydrogenase complexes with different assembly of, and interactions among components. The human PDC is subject to inactivation at E1 by serine phosphorylation by four kinases, an inactivation reversed by the action of two phosphatases. Progress in our understanding of these complexes important in metabolism is reviewed.
Collapse
Affiliation(s)
- Mulchand S Patel
- From the Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, Buffalo, New York 14214,
| | - Natalia S Nemeria
- the Department of Chemistry, Rutgers, the State University of New Jersey, Newark, New Jersey 07102
| | - William Furey
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and the Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | - Frank Jordan
- the Department of Chemistry, Rutgers, the State University of New Jersey, Newark, New Jersey 07102,
| |
Collapse
|
8
|
Denton RM. Regulation of mitochondrial dehydrogenases by calcium ions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1309-16. [PMID: 19413950 DOI: 10.1016/j.bbabio.2009.01.005] [Citation(s) in RCA: 625] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/24/2022]
Abstract
Studies in Bristol in the 1960s and 1970s, led to the recognition that four mitochondrial dehydrogenases are activated by calcium ions. These are FAD-glycerol phosphate dehydrogenase, pyruvate dehydrogenase, NAD-isocitrate dehydrogenase and oxoglutarate dehydrogenase. FAD-glycerol phosphate dehydrogenase is located on the outer surface of the inner mitochondrial membrane and is influenced by changes in cytoplasmic calcium ion concentration. The other three enzymes are located within mitochondria and are regulated by changes in mitochondrial matrix calcium ion concentration. These and subsequent studies on purified enzymes, mitochondria and intact cell preparations have led to the widely accepted view that the activation of these enzymes is important in the stimulation of the respiratory chain and hence ATP supply under conditions of increased ATP demand in many stimulated mammalian cells. The effects of calcium ions on FAD-isocitrate dehydrogenase involve binding to an EF-hand binding motif within this enzyme but the binding sites involved in the effects of calcium ions on the three intramitochondrial dehydrogenases remain to be fully established. It is also emphasised in this article that these three dehydrogenases appear only to be regulated by calcium ions in vertebrates and that this raises some interesting and potentially important developmental issues.
Collapse
Affiliation(s)
- Richard M Denton
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 ITD, UK.
| |
Collapse
|
9
|
Structures of the human pyruvate dehydrogenase complex cores: a highly conserved catalytic center with flexible N-terminal domains. Structure 2008; 16:104-14. [PMID: 18184588 DOI: 10.1016/j.str.2007.10.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 10/09/2007] [Accepted: 10/27/2007] [Indexed: 11/21/2022]
Abstract
Dihydrolipoyl acetyltransferase (E2) is the central component of pyruvate dehydrogenase complex (PDC), which converts pyruvate to acetyl-CoA. Structural comparison by cryo-electron microscopy (cryo-EM) of the human full-length and truncated E2 (tE2) cores revealed flexible linkers emanating from the edges of trimers of the internal catalytic domains. Using the secondary structure constraints revealed in our 8 A cryo-EM reconstruction and the prokaryotic tE2 atomic structure as a template, we derived a pseudo atomic model of human tE2. The active sites are conserved between prokaryotic tE2 and human tE2. However, marked structural differences are apparent in the hairpin domain and in the N-terminal helix connected to the flexible linker. These permutations away from the catalytic center likely impart structures needed to integrate a second component into the inner core and provide a sturdy base for the linker that holds the pyruvate dehydrogenase for access by the E2-bound regulatory kinase/phosphatase components in humans.
Collapse
|
10
|
White UA, Coulter AA, Miles TK, Stephens JM. The STAT5A-mediated induction of pyruvate dehydrogenase kinase 4 expression by prolactin or growth hormone in adipocytes. Diabetes 2007; 56:1623-9. [PMID: 17360981 DOI: 10.2337/db06-1286] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to determine whether pyruvate dehydrogenase kinase (PDK)4 was expressed in adipocytes and whether PDK4 expression was hormonally regulated in fat cells. Both Northern blot and Western blot analyses were conducted on samples isolated from 3T3-L1 adipocytes after various treatments with prolactin (PRL), growth hormone (GH), and/or insulin. Transfection of PDK4 promoter reporter constructs was performed. In addition, glucose uptake measurements were conducted. Our studies demonstrate that PRL and porcine GH can induce the expression of PDK4 in 3T3-L1 adipocytes. Our studies also show that insulin pretreatment can attenuate the ability of these hormones to induce PDK4 mRNA expression. In addition, we identified a hormone-responsive region in the murine PDK4 promoter and characterized a STAT5 binding site in this region that mediates the PRL (sheep) and GH (porcine) induction in PDK4 expression in 3T3-L1 adipocytes. PDK4 is a STAT5A target gene. PRL is a potent inducer of PDK4 protein levels, results in an inhibition of insulin-stimulated glucose transport in fat cells, and likely contributes to PRL-induced insulin resistance.
Collapse
Affiliation(s)
- Ursula A White
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
11
|
Jeoung N, Wu P, Joshi M, Jaskiewicz J, Bock C, Depaoli-Roach A, Harris R. Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation. Biochem J 2006; 397:417-25. [PMID: 16606348 PMCID: PMC1533314 DOI: 10.1042/bj20060125] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4-/- mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4-/- mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4-/- mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4-/- mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4-/- mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4-/- mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis.
Collapse
Affiliation(s)
- Nam Ho Jeoung
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A
| | - Pengfei Wu
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A
| | - Mandar A. Joshi
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A
| | - Jerzy Jaskiewicz
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A
| | - Cheryl B. Bock
- †Comprehensive Cancer Center, Duke University Medical Center, Durham, NC 27710, U.S.A
| | - Anna A. Depaoli-Roach
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A
| | - Robert A. Harris
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A
- To whom correspondence should be addressed, at Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Biotechnology Research and Training Center, 1345 W. 16th St., Indianapolis, IN 46202-2111, U.S.A. (email )
| |
Collapse
|
12
|
Hiromasa Y, Hu L, Roche TE. Ligand-induced effects on pyruvate dehydrogenase kinase isoform 2. J Biol Chem 2006; 281:12568-79. [PMID: 16517984 DOI: 10.1074/jbc.m513514200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tryptophan fluorescence was used to analyze binding of ligands to human pyruvate dehydrogenase isoform 2 (PDHK2) and to demonstrate effects of ligand binding on distal structure of PDHK2 that is required for binding to the inner lipoyl domain (L2) of the dihydrolipoyl acetyltransferase. Ligand-altered binding of PDHK2 to L2 and effects of specific ligands on PDHK2 oligomeric state were characterized by analytical ultracentrifugation. ATP, ADP, and pyruvate markedly quenched the tryptophan fluorescence of PDHK2 and gave maximum quenching/L0.5 estimates: approximately 53%/3 microM for ATP; approximately 49%/15 microM for ADP; and approximately 71%/approximately 590 microM for pyruvate. The conversion of Trp-383 to phenylalanine completely removed ATP- and ADP-induced quenching and > or = 80% of the absolute decrease in fluorescence due to pyruvate. The W383F-PDHK2 mutant retained high catalytic activity. Pyruvate, added after ADP, quenched Trp fluorescence with an L0.5 of 3.4 microM pyruvate, > or = 150-fold lower concentration than needed with pyruvate alone. ADP-enhanced binding of pyruvate was maintained with W383F-PDHK2. Binding of PDHK2 dimer to L2 is enhanced when L2 are housed in oligomeric structures, including the glutathione S-transferase (GST)-L2 dimer, and further strengthened by reduction of the lipoyl groups (GST-L2(red)) (Hiromasa and Roche (2003) J. Biol. Chem. 278, 33681-33693). Binding of PDHK2 to GST-L2(red) was modestly hindered by 200 microM level of ATP or ADP or 5.0 mM pyruvate; a marked change to nearly complete prevention of binding was observed with ATP or ADP plus pyruvate at only 100 microM levels, and these conditions caused PDHK2 dimer to associate to a tetramer. These changes should make major contributions to synergistic inhibition of PDHK2 activity by ADP and pyruvate. Ligand-induced changes that interfere with PDHK2 binding to GST-L2(red) may involve release of an interdomain cross arm between PDHK2 subunits in which Trp-383 plays a critical anchoring role.
Collapse
Affiliation(s)
- Yasuaki Hiromasa
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
13
|
Piccinini M, Mostert M, Alberto G, Ramondetti C, Novi RF, Dalmasso P, Rinaudo MT. Down-regulation of pyruvate dehydrogenase phosphatase in obese subjects is a defect that signals insulin resistance. ACTA ACUST UNITED AC 2005; 13:678-86. [PMID: 15897476 DOI: 10.1038/oby.2005.76] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The objective of this study was to determine whether down-regulation of pyruvate dehydrogenase phosphatase (PDP) is responsible for poorly active pyruvate dehydrogenase (PDH) in circulating lymphocytes (CLs) of obese subjects (ObS), and if so, whether it improves when their plasma insulin rises. RESEARCH METHODS AND PROCEDURES PDH activity was compared in lysed CLs of 10 euglycemic ObS and 10 sex- and age-matched controls before and during plasma insulin enhancement in an oral glucose tolerance test. It was evaluated without (PDHa) or with Mg/Ca or Mg at various concentrations to assess PDP1 or PDP2 activities or with Mg/Ca and exogenous PDP to determine total PDH activity (PDHt), which is an indirect measure of the amount of PDH. The insulin sensitivity index was calculated, and PDP1 and PDP2 mRNA was sought in the CLs. RESULTS At T0 in ObS, PDHt was normal, whereas PDHa and PDP1 activity was below normal at all Mg/Ca concentrations. PDP2 activity was undetectable in both groups. PDP1 and PDP2 mRNA was identified, and insulin sensitivity index and PDHa were directly correlated. During the oral glucose tolerance test, plasma insulin rose considerably more in ObS than in controls; PDHa and PDP1 activity also increased but remained significantly below normal, and PDHt was unvaried in both groups. DISCUSSION PDP1 is down-regulated in CLs of ObS because it is poorly sensitive to Mg/Ca; this defect is attenuated when plasma insulin is greatly enhanced.
Collapse
Affiliation(s)
- Marco Piccinini
- Dipartment of Medicine, Section of Biochemistry, University of Turin, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Karpova T, Danchuk S, Huang B, Popov KM. Probing a putative active site of the catalytic subunit of pyruvate dehydrogenase phosphatase 1 (PDP1c) by site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:43-51. [PMID: 15210124 DOI: 10.1016/j.bbapap.2004.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 03/17/2004] [Accepted: 03/19/2004] [Indexed: 11/19/2022]
Abstract
The catalytic subunit of pyruvate dehydrogenase phosphatase 1 (PDP1c) is a magnesium-dependent protein phosphatase that regulates the activity of mammalian pyruvate dehydrogenase complex. Based on the sequence analysis, it was hypothesized that PDP1c is related to the mammalian magnesium-dependent protein phosphatase type 1, with Asp54, Asp347, and Asp445 contributing to the binuclear metal-binding center, and Asn49 contributing to the phosphate-binding sites. In this study, we analyzed the functional significance of these amino acid residues using a site-directed mutagenesis. It was found that substitution of each of these residues had a significant impact on PDP1c activity toward the protein substrate. The activities of Asp54, Asp347, and Asp445 mutants were decreased more than 1000-fold. The activity of Asn49 mutant was 2.5-fold lower than the activity of wild-type PDP1c. The decrease in activity of Asp54 and Asp347 came about, most likely, as a result of impaired magnesium binding. Unexpectedly, it was found that the Asp445 mutant bound Mg(2+) ions similarly to the wild-type enzyme. Accordingly, the Asp445 mutant was found to be active with the artificial substrate p-nitrophenyl phosphate (pNPP). Asp54 and Asp347 mutants did not demonstrate any appreciable activity with pNPP. Together, these observations strongly suggest that Asn49, Asp54, and Asp347 are important for the catalysis of the phosphatase reaction, contributing to the phosphate- and metal-binding centers of PDP1c. In contrast, Asp445 is not required for catalysis. The exact role of Asp445 remains to be established, but indirect evidence suggests that it might be involved in the control of interactions between PDP1c and the protein substrate pyruvate dehydrogenase.
Collapse
Affiliation(s)
- Tatiana Karpova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 440A Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
15
|
Li S, Wu P, Yarlagadda P, Vadjunec NM, Proia AD, Harris RA, Portilla D. PPARα ligand protects during cisplatin-induced acute renal failure by preventing inhibition of renal FAO and PDC activity. Am J Physiol Renal Physiol 2004; 286:F572-80. [PMID: 14612380 DOI: 10.1152/ajprenal.00190.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies demonstrated that during cisplatin-induced acute renal failure, there is a significant reduction in proximal tubule fatty acid oxidation. We now report on the effects of peroxisome proliferator-activated receptor-α (PPARα) ligand Wy-14643 (WY) on the abnormalities of medium chain fatty acid oxidation and pyruvate dehydrogenase complex (PDC) activity in kidney tissue of cisplatin-treated mice. Cisplatin causes a significant reduction in mRNA levels and enzyme activity of mitochondrial medium chain acyl-CoA dehydrogenase (MCAD). PPARα ligand WY ameliorated cisplatin-induced acute renal failure and prevented cisplatin-induced reduction of mRNA levels and enzyme activity of MCAD. In contrast, in cisplatin-treated PPARα null mice, WY did not protect kidney function and did not reverse cisplatin-induced decreased expression of MCAD. Cisplatin inhibited renal PDC activity before the development of acute tubular necrosis, and PDC inhibition was reversed by pretreatment with PPARα agonist WY. Cisplatin also induced increased mRNA and protein levels of pyruvate dehydrogenase kinase-4 (PDK4), and PPARα ligand WY prevented cisplatin-induced increased expression of PDK4 protein levels in wild-type mice. We conclude that PPARα agonists have therapeutic potential for cisplatin-induced acute renal failure. Use of PPARα ligands prevents acute tubular necrosis by ameliorating cisplatin-induced inhibition of two distinct metabolic processes, MCAD-mediated fatty acid oxidation and PDC activity.
Collapse
Affiliation(s)
- Shenyang Li
- Department of Internal Medicine, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Karpova T, Danchuk S, Kolobova E, Popov KM. Characterization of the isozymes of pyruvate dehydrogenase phosphatase: implications for the regulation of pyruvate dehydrogenase activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2003; 1652:126-35. [PMID: 14644048 DOI: 10.1016/j.bbapap.2003.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The activity of mammalian pyruvate dehydrogenase complex (PDC) is regulated by a phosphorylation/dephosphorylation cycle. Dephosphorylation accompanied by activation is carried out by two genetically different isozymes of pyruvate dehydrogenase phosphatase, PDP1c and PDP2c. Here, we report data showing that PDP1c and PDP2c display marked biochemical differences. The activity of PDP1c strongly depends upon the simultaneous presence of calcium ions and the E2 component of PDC. In contrast, the activity of PDP2c displays little, if any, dependence upon either calcium ions or E2. Furthermore, PDP2c does not appreciably bind to PDC under the conditions when PDP1c exists predominantly in the PDC-bound state. The stimulatory effect of E2 on PDP1c can be partially mimicked by a monomeric construct consisting of the inner lipoyl-bearing domain and the E1-binding domain of E2 component. This strongly suggests that the E2-mediated activation of PDP1c largely reflects the effects of co-localization and mutual orientation of PDP1c and E1 component facilitated by their binding to E2. Both PDP1c and PDP2c can efficiently dephosphorylate all three phosphorylation sites located on the alpha chain of the E1 component. For PDC phosphorylated at a single site, the relative rates of dephosphorylation of individual sites are: 2>site 3>site 1. Phosphorylation of sites 2 or 3 in addition to site 1 does not have a significant effect on the rates of dephosphorylation of individual sites by PDP1c, suggesting a random mechanism of dephosphorylation. In contrast, there is a significant decrease in the overall rate of dephosphorylation of pyruvate dehydrogenase by PDP2c under these conditions. This indicates that the mechanism of dephosphorylation of PDC phosphorylated at multiple sites by PDP2c is not purely random. These marked differences in the site-specificity displayed by PDP1c and PDP2c should be particularly important under conditions such as starvation and diabetes, which are associated with a great increase in phosphorylation of sites 2 and 3 of pyruvate dehydrogenase.
Collapse
Affiliation(s)
- Tatiana Karpova
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5110 Rockhill Road, Kansas City, MO 64110-2499, USA
| | | | | | | |
Collapse
|
17
|
Roche TE, Hiromasa Y, Turkan A, Gong X, Peng T, Yan X, Kasten SA, Bao H, Dong J. Essential roles of lipoyl domains in the activated function and control of pyruvate dehydrogenase kinases and phosphatase isoform 1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1050-6. [PMID: 12631265 DOI: 10.1046/j.1432-1033.2003.03468.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four pyruvate dehydrogenase kinase and two pyruvate dehydrogenase phosphatase isoforms function in adjusting the activation state of the pyruvate dehydrogenase complex (PDC) through determining the fraction of active (nonphosphorylated) pyruvate dehydrogenase component. Necessary adaptations of PDC activity with varying metabolic requirements in different tissues and cell types are met by the selective expression and pronounced variation in the inherent functional properties and effector sensitivities of these regulatory enzymes. This review emphasizes how the foremost changes in the kinase and phosphatase activities issue from the dynamic, effector-modified interactions of these regulatory enzymes with the flexibly held outer domains of the core-forming dihydrolipoyl acetyl transferase component.
Collapse
Affiliation(s)
- Thomas E Roche
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Harris RA, Bowker-Kinley MM, Huang B, Wu P. Regulation of the activity of the pyruvate dehydrogenase complex. ADVANCES IN ENZYME REGULATION 2002; 42:249-59. [PMID: 12123719 DOI: 10.1016/s0065-2571(01)00061-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis 46202-5122, USA
| | | | | | | |
Collapse
|
19
|
LeBlanc PJ, Parolin ML, Jones NL, Heigenhauser GJF. Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise. J Physiol 2002; 544:303-13. [PMID: 12356901 PMCID: PMC2290561 DOI: 10.1113/jphysiol.2002.022764] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 07/10/2002] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (P(i)), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise.
Collapse
Affiliation(s)
- P J LeBlanc
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
20
|
Turkan A, Gong X, Peng T, Roche TE. Structural requirements within the lipoyl domain for the Ca2+-dependent binding and activation of pyruvate dehydrogenase phosphatase isoform 1 or its catalytic subunit. J Biol Chem 2002; 277:14976-85. [PMID: 11842080 DOI: 10.1074/jbc.m108434200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inner lipoyl domain (L2) of the dihydrolipoyl acetyltransferase (E2) 60-mer forms a Ca(2+)-dependent complex with the pyruvate dehydrogenase phosphatase 1 (PDP1) or its catalytic subunit, PDP1c, in facilitating large enhancements of the activities of PDP1 (10-fold) or PDP1c (6-fold). L2 binding to PDP1 or PDP1c requires the lipoyl-lysine prosthetic group and specificity residues that distinguish L2 from the other lipoyl domains (L1 in E2 and L3 in the E3-binding component). The L2-surface structure contributing to binding was mapped by comparing the capacities of well folded mutant or lipoyl analog-substituted L2 domains to interfere with E2 activation by competitively binding to PDP1 or PDP1c. Our results reveal the critical importance of a regional set of residues near the lipoyl group and of the octanoyl but not the dithiolane ring structure of the lipoyl group. At the other end of the lipoyl domain, substitution of Glu(182) by alanine or glutamine removed L2 binding to PDP1 or PDP1c, and these substitutions for the neighboring Glu(179) also greatly hindered complex formation (E179A > E179Q). Among 11 substitutions in L2 at sites of major surface residue differences between the L1 and L2 domains, only the conversion of Val-Gln(181) located between the critical Glu(179) and Glu(182) to the aligned Ser-Leu sequence of the L1 domain greatly reduced L2 binding. Certain modified L2 altered E2 activation of PDP1 differently than PDP1c, supporting significant impact of the regulatory PDP1r subunit on PDP1 binding to L2. Our results indicate hydrophobic binding via the extended aliphatic structure of the lipoyl group and required adjacent L2 structure anchor PDP1 by acting in concert with an acidic cluster at the other end of the domain.
Collapse
Affiliation(s)
- Ali Turkan
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
21
|
Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, Dong J, Turkan A, Kasten SA. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:33-75. [PMID: 11642366 DOI: 10.1016/s0079-6603(01)70013-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian pyruvate dehydrogenase complex (PDC) plays central and strategic roles in the control of the use of glucose-linked substrates as sources of oxidative energy or as precursors in the biosynthesis of fatty acids. The activity of this mitochondrial complex is regulated by the continuous operation of competing pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP) reactions. The resulting interconversion cycle determines the fraction of active (nonphosphorylated) pyruvate dehydrogenase (E1) component. Tissue-specific and metabolic state-specific control is achieved by the selective expression and distinct regulatory properties of at least four PDK isozymes and two PDP isozymes. The PDK isoforms are members of a family of serine kinases that are not structurally related to cytoplasmic Ser/Thr/Tyr kinases. The catalytic subunits of the PDP isoforms are Mg2+-dependent members of the phosphatase 2C family that has binuclear metal-binding sites within the active site. The dihydrolipoyl acetyltransferase (E2) and the dihydrolipoyl dehydrogenase-binding protein (E3BP) are multidomain proteins that form the oligomeric core of the complex. One or more of their three lipoyl domains (two in E2) selectively bind each PDK and PDP1. These adaptive interactions predominantly influence the catalytic efficiencies and effector control of these regulatory enzymes. When fatty acids are the preferred source of acetyl-CoA and NADH, feedback inactivation of PDC is accomplished by the activity of certain kinase isoforms being stimulated upon preferentially binding a lipoyl domain containing a reductively acetylated lipoyl group. PDC activity is increased in Ca2+-sensitive tissues by elevating PDP1 activity via the Ca2+-dependent binding of PDP1 to a lipoyl domain of E2. During starvation, the irrecoverable loss of glucose carbons is restricted by minimizing PDC activity due to high kinase activity that results from the overexpression of specific kinase isoforms. Overexpression of the same PDK isoforms deleteriously hinders glucose consumption in unregulated diabetes.
Collapse
Affiliation(s)
- T E Roche
- Department of Biochemistry, Kansas State University, Manhattan 66506-3702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Randle PJ. General Introduction: Reminiscences and Reflections on Fifty Years of the Endocrine Pancreas. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Soo Choi W, Yan J, McCarthy DB, Hee Park S, Reed LJ. One-step purification of the recombinant catalytic subunit of pyruvate dehydrogenase phosphatase. Protein Expr Purif 2000; 20:128-31. [PMID: 11035961 DOI: 10.1006/prep.2000.1294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A facile one-step affinity chromatographic purification of the recombinant catalytic subunit (PDPc) of bovine pyruvate dehydrogenase phosphatase (PDP) to near homogeneity is described. PDPc binds in the presence of Ca(2+) to the inner lipoyl domain (L2) of the dihydrolipoamide acetyltransferase component (E2) of the mammalian pyruvate dehydrogenase complex. The affinity column consists of a glutathione S-transferase (GST)-L2 fusion protein bound to glutathione-Sepharose 4B beads. An extract of transformed Escherichia coli cells containing 50 mM Tris buffer (pH 7.5), 2 mM CaCl(2), 5 mM MgCl(2,) 150 mM NaCl, 0.5 mM dithiothreitol, 1% Triton X-100, and l M urea was passed through the affinity column, and the column was washed extensively with this buffer mixture. PDPc was eluted with 50 mM Tris buffer (pH 7.5) containing 5 mM MgCl(2), 0.5 mM dithiothreitol, and 1 mM EGTA. Approximately 22 mg of highly purified PDPc was obtained from 10 g (wet weight) of transformed cells. The preparation contained a small amount of a "nicked" form of PDPc. The cleavage is between Arg-394 and Arg-395.
Collapse
Affiliation(s)
- W Soo Choi
- Department of Chemistry and Biochemistry, Biochemical Institute, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
24
|
Mann WR, Dragland CJ, Vinluan CC, Vedananda TR, Bell PA, Aicher TD. Diverse mechanisms of inhibition of pyruvate dehydrogenase kinase by structurally distinct inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:283-92. [PMID: 11004568 DOI: 10.1016/s0167-4838(00)00079-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mechanism of action of structurally distinct pyruvate dehydrogenase kinase (PDK) inhibitors was examined in assays with experimental contexts ranging from an intact pyruvate dehydrogenase complex (PDC) with and without supplemental ATP or ADP to a synthetic peptide substrate to PDK autophosphorylation. Some compounds directly inhibited the catalytic activity of PDKs. Some of the inhibitor classes tested inhibited autophosphorylation of recombinant PDK1 and PDK2. During these studies, PDC was shown to be directly inhibited by a novel mechanism; the addition of supplemental recombinant PDKs, an effect that is ADP-dependent and partly alleviated by members of each of the compound classes tested. Overall, these data demonstrate that small molecules acting at diverse sites can inhibit PDK activity.
Collapse
Affiliation(s)
- W R Mann
- Metabolic and Cardiovascular Diseases Research, Novartis Institute for Biomedical Research, 556 Morris Avenue, Summit, NJ 07901-1398, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Jackson JC, Vinluan CC, Dragland CJ, Sundararajan V, Yan B, Gounarides JS, Nirmala NR, Topiol S, Ramage P, Blume JE, Aicher TD, Bell PA, Mann WR. Heterologously expressed inner lipoyl domain of dihydrolipoyl acetyltransferase inhibits ATP-dependent inactivation of pyruvate dehydrogenase complex. Identification of important amino acid residues. Biochem J 1998; 334 ( Pt 3):703-11. [PMID: 9729480 PMCID: PMC1219741 DOI: 10.1042/bj3340703] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The activity of the pyruvate dehydrogenase multienzyme complex (PDC), which catalyses the oxidation of pyruvate to acetyl-CoA within the mitochondrion, is diminished in animal models of diabetes. Studies with purified PDC components have suggested that the kinases responsible for inactivating the decarboxylase catalytic subunits of the complex are most efficient in their regulatory role when they are bound to dihydrolipoyl acetyltransferase (E2) subunits, which form the structural core of the complex. We report that the addition of an exogenous E2 subdomain (inner lipoyl domain) to an intact PDC inhibits ATP-dependent inactivation of the complex. By combining molecular modelling, site-directed mutagenesis and biophysical characterizations, we have also identified two amino acid residues in this subdomain (Ile229 and Phe231) that largely determine the magnitude of this effect.
Collapse
Affiliation(s)
- J C Jackson
- Metabolic and Cardiovascular Diseases Research, Novartis Institute for Biomedical Research, 556 Morris Avenue, Summit, NJ 07901-1398, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang B, Gudi R, Wu P, Harris RA, Hamilton J, Popov KM. Isoenzymes of pyruvate dehydrogenase phosphatase. DNA-derived amino acid sequences, expression, and regulation. J Biol Chem 1998; 273:17680-8. [PMID: 9651365 DOI: 10.1074/jbc.273.28.17680] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyruvate dehydrogenase phosphatase (PDP) is one of the few mammalian phosphatases residing within the mitochondrial matrix space. It is responsible for dephosphorylation and reactivation of the pyruvate dehydrogenase complex (PDC) and, by this means, is intimately involved in the regulation of utilization of carbohydrate fuels in mammals. PDP is a dimeric enzyme consisting of catalytic and regulatory subunits. The catalytic subunit of PDP is a Mg2+-dependent enzyme homologous to the cytosolic phosphatases of the 2C family. In the present study, we isolated two cDNAs encoding for mitochondrial phosphatases. The first cDNA is highly homologous to the previously identified cDNA encoding for the catalytic subunit of PDP (PDP1). The second cDNA encodes a previously unknown catalytic subunit of PDP (PDP2). The new phosphatase, expressed as the recombinant protein in Escherichia coli, shows strict substrate specificity toward PDC and does not use phosphorylated branched chain alpha-ketoacid dehydrogenase as substrate. Like PDP1, PDP2 is a Mg2+-dependent enzyme, but its sensitivity to Mg2+ ions is almost 10-fold lower than that of PDP1. In contrast to PDP1, PDP2 is not regulated by Ca2+ ions. Instead, it is sensitive to the biological polyamine spermine, which, in turn, has no effect on the enzymatic activity of PDP1. Western blot analysis of PDP extracted from mitochondria isolated from liver and skeletal muscle revealed that PDP1 is predominantly expressed in mitochondria from skeletal muscle, whereas PDP2 is much more abundant in the liver rather than muscle mitochondria. Both isoenzymes are expressed in mitochondria from 3T3-L1 adipocytes, but the level of expression of PDP2 is considerably higher. These observations are consistent with previous findings on the enzymatic parameters of PDP in adipose tissue. Thus, our results provide the first evidence that there are at least two isoenzymes of PDP in mammals that are different with respect to tissue distribution and kinetic parameters and, therefore, are likely to be different functionally.
Collapse
Affiliation(s)
- B Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | | | | | |
Collapse
|
27
|
Howard MJ, Fuller C, Broadhurst RW, Perham RN, Tang JG, Quinn J, Diamond AG, Yeaman SJ. Three-dimensional structure of the major autoantigen in primary biliary cirrhosis. Gastroenterology 1998; 115:139-46. [PMID: 9649469 DOI: 10.1016/s0016-5085(98)70375-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease characterized by the presence of antimitochondrial autoantibodies in patients' serum. The major autoantigen, recognized by antibodies from > 95% of patients with PBC, has been identified as the E2 component (E2p) of the pyruvate dehydrogenase multienzyme complex. Immunodominant sites on E2p have been localized to the inner of the two lipoyl domains, where the essential cofactor lipoic acid is attached covalently. The aim of this study was to determine the three-dimensional structure of the inner lipoyl domain of human E2p. METHODS The domain was expressed in Escherichia coli; after purification, its structure was analyzed using nuclear magnetic resonance spectroscopy. RESULTS The structure of the lipoyl domain from human E2p was determined, and the implications of the structure for autoimmune recognition were assessed. CONCLUSIONS Knowledge of the structure further defines the major epitope and may help in the design of antigen-specific immunotherapy for treatment of PBC.
Collapse
Affiliation(s)
- M J Howard
- Department of Biochemistry, Cambridge Centre for Molecular Recognition, University of Cambridge, England
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang D, Gong X, Yakhnin A, Roche TE. Requirements for the adaptor protein role of dihydrolipoyl acetyltransferase in the up-regulated function of the pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. J Biol Chem 1998; 273:14130-7. [PMID: 9603912 DOI: 10.1074/jbc.273.23.14130] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dihydrolipoyl acetyltransferase (E2 component) is a 60-mer assembled via its COOH-terminal domain with exterior E1-binding domain and two lipoyl domains (L2 then L1) sequentially connected by mobile linker regions. E2 facilitates markedly enhanced function of the pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP). Human E2 structures were prepared with only one lipoyl domain (L1 or L2) or with alanines substituted at the sites of lipoylation (Lys-46 in L1 or Lys-173 in L2). The L2 domain and its lipoyl group were shown to be essential for markedly enhanced PDP function and were required for greatly up-regulated PDK function. The complete absence of the L1 domain reduced the enhancements of both of these activities but not the maximal effector-stimulated PDK activity through acetylation of L2. With nonlipoylated L2 present, lipoylated L1 supported a lesser enhancement in PDK function with significant stimulation upon acetylation of L1. Prevention of L1 lipoylation in K46AE2 removed this competitive L1 role and enhanced L2-facilitated PDK activity beyond that of native E2 when PDK activity was measured in the absence or in the presence of stimulatory effectors. Thus, the E2-L2 domain has a paramount role in facilitating enhanced PDK and PDP function but inclusion of E2-L1 domain, even in a noninteracting (nonlipoylated) form, contributes to the marked elevation of these activities.
Collapse
Affiliation(s)
- D Yang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
29
|
Thelen JJ, Miernyk JA, Randall DD. Partial purification and characterization of the maize mitochondrial pyruvate dehydrogenase complex. PLANT PHYSIOLOGY 1998; 116:1443-50. [PMID: 9536062 PMCID: PMC35052 DOI: 10.1104/pp.116.4.1443] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/1997] [Accepted: 12/23/1997] [Indexed: 05/22/2023]
Abstract
The pyruvate dehydrogenase complex was partially purified and characterized from etiolated maize (Zea mays L.) shoot mitochondria. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed proteins of 40, 43, 52 to 53, and 62 to 63 kD. Immunoblot analyses identified these proteins as the E1beta-, E1alpha-, E2-, and E3-subunits, respectively. The molecular mass of maize E2 is considerably smaller than that of other plant E2 subunits (76 kD). The activity of the maize mitochondrial complex has a pH optimum of 7.5 and a divalent cation requirement best satisfied by Mg2+. Michaelis constants for the substrates were 47, 3, 77, and 1 &mgr;m for pyruvate, coenzyme A (CoA), NAD+, and thiamine pyrophosphate, respectively. The products NADH and acetyl-CoA were competitive inhibitors with respect to NAD+ and CoA, and the inhibition constants were 15 and 47 &mgr;m, respectively. The complex was inactivated by phosphorylation and was reactivated after the removal of ATP and the addition of Mg2+.
Collapse
|
30
|
Lawson JE, Park SH, Mattison AR, Yan J, Reed LJ. Cloning, expression, and properties of the regulatory subunit of bovine pyruvate dehydrogenase phosphatase. J Biol Chem 1997; 272:31625-9. [PMID: 9395502 DOI: 10.1074/jbc.272.50.31625] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
cDNA encoding the regulatory subunit of bovine mitochondrial pyruvate dehydrogenase phosphatase (PDPr) has been cloned. Overlapping cDNA fragments were generated by the polymerase chain reaction from bovine genomic DNA and from cDNA synthesized from bovine poly(A)+ RNA and total RNA. The complete cDNA (2885 base pairs) contains an open reading frame of 2634 nucleotides encoding a putative presequence of 31 amino acid residues and a mature protein of 847 residues with a calculated Mr of 95,656. This value is in agreement with the molecular mass of native PDPr (95,800 +/- 200 Da) determined by matrix-assisted laser desorption-ionization mass spectrometry. The mature form of PDPr was expressed in Escherichia coli as a maltose-binding protein fusion, and the recombinant protein was purified to near homogeneity. It exhibited properties characteristic of the native PDPr, including recognition by antibodies against native bovine PDPr, ability to decrease the sensitivity of the catalytic subunit to Mg2+, and reversal of this inhibitory effect by the polyamine spermine. A BLAST search of protein data bases revealed that PDPr is distantly related to the mitochondrial flavoprotein dimethylglycine dehydrogenase, which functions in choline degradation.
Collapse
Affiliation(s)
- J E Lawson
- Biochemical Institute and Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
31
|
Yang D, Song J, Wagenknecht T, Roche TE. Assembly and full functionality of recombinantly expressed dihydrolipoyl acetyltransferase component of the human pyruvate dehydrogenase complex. J Biol Chem 1997; 272:6361-9. [PMID: 9045657 DOI: 10.1074/jbc.272.10.6361] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The dihydrolipoyl acetyltransferase (E2) component of mammalian pyruvate dehydrogenase complex (PDC) consists of 60 COOH-terminal domains as an inner assemblage and sequentially via linker regions an exterior pyruvate dehydrogenase (E1) binding domain and two lipoyl domains. Mature human E2, expressed in a protease-deficient Escherichia coli strain at 27 degrees , was prepared in a highly purified form. Purified E2 had a high acetyltransferase activity, was well lipoylated based on its acetylation, and bound a large complement of bovine E1. Electron micrographs demonstrated that the inner core was assembled in the expected pentagonal dodecahedron shape with E1 binding around the inner core periphery. With saturating E1 and excess dihydrolipoyl dehydrogenase (E3) but no E3-binding protein (E3BP), the recombinant E2 supported the overall PDC reaction at 4% of the rate of bovine E2.E3BP subcomplex. The lipoates of assembled human E2 or its free bilipoyl domain region were reduced by E3 at rates proportional to the lipoyl domain concentration, but those of the E2.E3BP were rapidly used in a concentration-independent manner consistent with bound E3 rapidly using a set of lipoyl domains localized nearby. Given this restriction and the need for E3BP for high PDC activity, directed channeling of reducing equivalents to bound E3 must be very efficient in the complex. The recombinant E2 oligomer increased E1 kinase activity by up to 4-fold and, in a Ca2+-dependent process, increased phospho-E1 phosphatase activity more than 15-fold. Thus the E2 assemblage fully provides the molecular intervention whereby a single E2-bound kinase or phosphatase molecule rapidly phosphorylate or dephosphorylate, respectively, many E2-bound E1. Thus, we prepared properly assembled, fully functional human E2 that mediated enhanced regulatory enzyme activities but, lacking E3BP, supported low PDC activity.
Collapse
Affiliation(s)
- D Yang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|