1
|
ATP7A-Regulated Enzyme Metalation and Trafficking in the Menkes Disease Puzzle. Biomedicines 2021; 9:biomedicines9040391. [PMID: 33917579 PMCID: PMC8067471 DOI: 10.3390/biomedicines9040391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.
Collapse
|
2
|
Montllor-Albalate C, Colin AE, Chandrasekharan B, Bolaji N, Andersen JL, Wayne Outten F, Reddi AR. Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biol 2019; 21:101064. [PMID: 30576923 PMCID: PMC6302037 DOI: 10.1016/j.redox.2018.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Cu/Zn Superoxide Dismutase (Sod1) is a highly conserved and abundant metalloenzyme that catalyzes the disproportionation of superoxide radicals into hydrogen peroxide and molecular oxygen. As a consequence, Sod1 serves dual roles in oxidative stress protection and redox signaling by both scavenging cytotoxic superoxide radicals and producing hydrogen peroxide that can be used to oxidize and regulate the activity of downstream targets. However, the relative contributions of Sod1 to protection against oxidative stress and redox signaling are poorly understood. Using the model unicellular eukaryote, Baker's yeast, we found that only a small fraction of the total Sod1 pool is required for protection against superoxide toxicity and that this pool is localized to the mitochondrial intermembrane space. On the contrary, we find that much larger amounts of extra-mitochondrial Sod1 are critical for peroxide-mediated redox signaling. Altogether, our results force the re-evaluation of the physiological role of bulk Sod1 in redox biology; namely, we propose that the vast majority of Sod1 in yeast is utilized for peroxide-mediated signaling rather than superoxide scavenging.
Collapse
Affiliation(s)
| | - Alyson E Colin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bindu Chandrasekharan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Naimah Bolaji
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
3
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
4
|
Tehlivets O, Malanovic N, Visram M, Pavkov-Keller T, Keller W. S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system. Biochim Biophys Acta Mol Basis Dis 2012; 1832:204-15. [PMID: 23017368 PMCID: PMC3787734 DOI: 10.1016/j.bbadis.2012.09.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| | | | | | | | | |
Collapse
|
5
|
Molnar KS, Karabacak NM, Johnson JL, Wang Q, Tiwari A, Hayward LJ, Coales SJ, Hamuro Y, Agar JN. A common property of amyotrophic lateral sclerosis-associated variants: destabilization of the copper/zinc superoxide dismutase electrostatic loop. J Biol Chem 2009; 284:30965-73. [PMID: 19635794 DOI: 10.1074/jbc.m109.023945] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
At least 119 mutations in the gene encoding copper/zinc superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis by an unidentified toxic gain of function. We compared the dynamic properties of 13 as-isolated, partially metallated, SOD1 variant enzymes using hydrogen-deuterium exchange. We identified a shared property of these familial amyotrophic lateral sclerosis-related SOD1 variants, namely structural and dynamic change affecting the electrostatic loop (loop VII) of SOD1. Furthermore, SOD1 variants that have severely compromised metal binding affinities demonstrated additional structural and dynamic changes to the zinc-binding loop (loop IV) of SOD1. Although the biological consequences of increased loop VII mobility are not fully understood, this common property is consistent with the hypotheses that SOD1 mutations exert toxicity via aggregation or aberrant association with other cellular constituents.
Collapse
Affiliation(s)
- Kathleen S Molnar
- Department of Chemistry, Volen Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Oztug Durer ZA, Cohlberg JA, Dinh P, Padua S, Ehrenclou K, Downes S, Tan JK, Nakano Y, Bowman CJ, Hoskins JL, Kwon C, Mason AZ, Rodriguez JA, Doucette PA, Shaw BF, Valentine JS. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase. PLoS One 2009; 4:e5004. [PMID: 19325915 PMCID: PMC2659422 DOI: 10.1371/journal.pone.0005004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 03/03/2009] [Indexed: 12/18/2022] Open
Abstract
Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.
Collapse
Affiliation(s)
- Zeynep A. Oztug Durer
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Jeffrey A. Cohlberg
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
- * E-mail:
| | - Phong Dinh
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Shelby Padua
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Krista Ehrenclou
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Sean Downes
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - James K. Tan
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Yoko Nakano
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Christopher J. Bowman
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Jessica L. Hoskins
- Department of Physics and Astronomy, California State University Long Beach, Long Beach, California, United States of America
| | - Chuhee Kwon
- Department of Physics and Astronomy, California State University Long Beach, Long Beach, California, United States of America
| | - Andrew Z. Mason
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, United States of America
| | - Jorge A. Rodriguez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Peter A. Doucette
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joan Selverstone Valentine
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Abstract
Copper-zinc superoxide dismutase (CuZnSOD, SOD1 protein) is an abundant copper- and zinc-containing protein that is present in the cytosol, nucleus, peroxisomes, and mitochondrial intermembrane space of human cells. Its primary function is to act as an antioxidant enzyme, lowering the steady-state concentration of superoxide, but when mutated, it can also cause disease. Over 100 different mutations have been identified in the sod1 genes of patients diagnosed with the familial form of amyotrophic lateral sclerosis (fALS). These mutations result in a highly diverse group of mutant proteins, some of them very similar to and others enormously different from wild-type SOD1. Despite their differences in properties, each member of this diverse set of mutant proteins causes the same clinical disease, presenting a challenge in formulating hypotheses as to what causes SOD1-associated fALS. In this review, we draw together and summarize information from many laboratories about the characteristics of the individual mutant SOD1 proteins in vivo and in vitro in the hope that it will aid investigators in their search for the cause(s) of SOD1-associated fALS.
Collapse
Affiliation(s)
- Joan Selverstone Valentine
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA.
| | | | | |
Collapse
|
8
|
Li Y, Chen J, Liu J, Yang X, Wang K. Binding of Cu2+ to S-adenosyl-L-homocysteine hydrolase. J Inorg Biochem 2005; 98:977-83. [PMID: 15149804 DOI: 10.1016/j.jinorgbio.2004.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 02/16/2004] [Accepted: 02/18/2004] [Indexed: 11/22/2022]
Abstract
S-Adenosylhomocysteine (AdoHcy) hydrolase regulates biomethylation and homocysteine metabolism. It has been proposed to be a copper binding protein playing an important role in copper transport and distribution. In the present work, the kinetics of binding and releasing of copper ions was studied using fluorescence method. The dissociation constant for copper ions with AdoHcy hydrolase was determined by fluorescence quenching titration and activity titration methods using ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and glycine as competitive chelators. The experimental results showed that copper ions bind to AdoHcy hydrolase with a K(d) of approximately 10(-11) M. The association rate constant was determined to be 7 x 10(6) M(-1)s(-1). The releasing of copper ions from the enzyme was found to be biphasic with a k(1) of 2.8 x 10(-3) s(-1) and k(2) of 1.7x10(-5) s(-1). It is suggested that copper ions do not bind to the substrate binding sites because the addition of adenine substrate did not compete with the binding of copper to AdoHcy hydrolase. Interestingly, it was observed that EDTA could bind to AdoHcy hydrolase with a dissociation constant of K(1) = 8.0 x 10(-5) M and result in an increased affinity (K(d) = approximately 10(-17) M) of binding of copper ions to the enzyme.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083, PR China
| | | | | | | | | |
Collapse
|
9
|
Bartnikas TB, Gitlin JD. Mechanisms of biosynthesis of mammalian copper/zinc superoxide dismutase. J Biol Chem 2003; 278:33602-8. [PMID: 12815046 DOI: 10.1074/jbc.m305435200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper/zinc superoxide dismutase (SOD1) is an abundant intracellular enzyme with an essential role in antioxidant defense. The activity of SOD1 is dependent upon the presence of a bound copper ion incorporated by the copper chaperone for superoxide dismutase, CCS. To elucidate the cell biological mechanisms of this process, SOD1 synthesis and turnover were examined following 64Cu metabolic labeling of fibroblasts derived from CCS+/+ and CCS-/- embryos. The data indicate that copper is rapidly incorporated into both newly synthesized SOD1 and preformed SOD1 apoprotein, that each process is dependent upon CCS and that once incorporated, copper is unavailable for cellular exchange. The abundance of apoSOD1 is inversely proportional to the intracellular copper content and immunoblot and gel filtration analysis indicate that this apoprotein exists as a homodimer that is distinguishable from SOD1. Despite these distinct differences, the abundance and half-life of SOD1 is equivalent in CCS+/+ and CCS-/- fibroblasts, indicating that neither CCS nor copper incorporation has any essential role in the stability or turnover of SOD1 in vivo. Taken together, these data provide a cell biological model of SOD1 biosynthesis that is consistent with the concept of limited intracellular copper availability and indicate that the metallochaperone CCS is a critical determinant of SOD1 activity in mammalian cells. These kinetic and biochemical findings also provide an important framework for understanding the role of mutant SOD1 in the pathogenesis of familial amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Thomas B Bartnikas
- Edward Mallinckrodt Department of Pediatrics Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
10
|
|
11
|
Wawryn J, Swieciło A, Bartosz G, Biliński T. Effect of superoxide dismutase deficiency on the life span of the yeast Saccharomyces cerevisiae. An oxygen-independent role of Cu,Zn-superoxide dismutase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1570:199-202. [PMID: 12020810 DOI: 10.1016/s0304-4165(02)00197-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Effects of the absence of Cu,Zn-superoxide dismutase (CuZnSOD) on the replicative life span of the yeast Saccharomyces cerevisiae were studied under different oxygen conditions. In both strains, replicative life span and the rate of cell divisions were found to be similar under the atmosphere of air and under hypoxic (3% oxygen) and anoxic conditions. These results indicate that deleterious consequences of the lack of CuZnSOD are not limited to elevation of superoxide concentration and involve function(s) other than superoxide scavenging.
Collapse
Affiliation(s)
- Jarosław Wawryn
- Zamość College of Agriculture, ul. Szczebrzeska 102, PL 22-400 Zamość, Poland
| | | | | | | |
Collapse
|
12
|
Ma D, Lu F, Overstreet T, Milenic DE, Brechbiel MW. Novel chelating agents for potential clinical applications of copper. Nucl Med Biol 2002; 29:91-105. [PMID: 11786280 DOI: 10.1016/s0969-8051(01)00287-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Copper offers a unique selection of radioisotopes ((60)Cu, (61)Cu, (62)Cu, (64)Cu, and (67)Cu) with half-lives ranging from 9.8 min to 61.9 h suitable for imaging and/or radiotherapy. In peptide/antibody targeted radiotherapy one of the most studied chelating agents for copper, 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA), has been employed in clinical trials, but transchelation to ceruloplasmin and/or superoxide dismutase in vivo has been noted. In this study, a series of novel hexadentate chelating agents based on N,N',N"-tris(2-pyridylmethyl)-1,3,5-cis,cis,-triaminocyclohexane (tachpyr) have been synthesized and the serum stability of their copper complexes was evaluated as compared to TETA. Copper complexes of tachpyr modified at the 3, 4, or 5 position or with replacement of pyridine by imidazole have serum stability comparable to Cu[TETA]. When the complexes were cross-challenged, Cu[TETA] versus tachpyr or 1,3,5-cis,cis,-triaminocyclohexane- N,N',N"-tris-(2-methyl-(N-methylimidazole)) (IM), tachpyr and IM appear to have superior copper chelation ability to TETA. When challenged by a large excess of non-radioactive copper, copper exchange with the tachpyr radio-copper complex was observed. However, tachpyr clearly exhibited a significant preference for Cu(II) over Zn(II) or Fe(III). Therefore, tachpyr, 1,3,5-cis,cis,-triaminocyclohexane-N,N',N"-tri-(3-methyl-2-methylpyridineimine) (tachpyr(3-Me)), 1,3,5-cis,cis,-triaminocyclohexane-N,N',N"-tri-(4-methyl-2-methylpyridineimine) (tachpyr(4-Me)), 1,3,5-cis,cis,-triaminocyclohexane-N,N',N"-tri-(5-methyl-2-methylpyridineimine) (tachpyr(5-Me)) and IM easily form copper complexes with high stability. These novel chelating agents provide an attractive lead for creation of new copper radiopharmaceuticals for diagnosis and therapy applications.
Collapse
Affiliation(s)
- Dangshe Ma
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10, Room B3B69, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
13
|
McArdle HJ, Bingham MJ, Summer K, Ong TJ. Cu metabolism in the liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 448:29-37. [PMID: 10079813 DOI: 10.1007/978-1-4615-4859-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This paper has, given some idea of our concepts of the processes involved in the transport of Cu across cell membranes in the liver, which we have summarised in Fig 1. Cu(II)His2 is reduced to Cu(I). This is transported across the membrane, re-oxidised, either before or after binding to glutathione (Freedman et al., 1989) or HAH1 (Klomp et al., 1997), binds to SAHH, and donates Cu(II) to the ATPase. It is very interesting that cells which are very diverse from an evolutionary point of view still use very similar methods to handle the metal. Whether regulation of transport is also the sam remains to be seen. We would guess that, although there will be strong similarities, there will also be very significant differences, reflecting the different environments seen by different tissues in mammalian cells and given the different requirements of the tissues.
Collapse
Affiliation(s)
- H J McArdle
- Rowett Research Institute, Bucksburn Aberdeen, Scotland.
| | | | | | | |
Collapse
|
14
|
Corson LB, Strain JJ, Culotta VC, Cleveland DW. Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. Proc Natl Acad Sci U S A 1998; 95:6361-6. [PMID: 9600970 PMCID: PMC27707 DOI: 10.1073/pnas.95.11.6361] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in Cu, Zn superoxide dismutase (SOD1) cause the neurodegenerative disease familial amyotrophic lateral sclerosis from an as-yet-unidentified toxic property(ies). Analysis in Saccharomyces cerevisiae of a broad range of human familial amyotrophic lateral sclerosis-linked SOD1 mutants (A4V, G37R, G41D, H46R, H48Q, G85R, G93C, and I113T) reveals one property common to these mutants (including two at residues that coordinate the catalytic copper): Each does indeed bind copper and scavenge oxygen-free radicals in vivo. Neither decreased copper binding nor decreased superoxide scavenging activity is a property shared by all mutants. The demonstration that shows that all mutants tested do bind copper under physiologic conditions supports a mechanism of SOD1 mutant-mediated disease arising from aberrant copper-mediated chemistry catalyzed by less tightly folded (and hence less constrained) mutant enzymes. The mutant enzymes also are shown to acquire the catalytic copper in vivo through the action of CCS, a specific copper chaperone for SOD1, which in turn suggests that a search for inhibitors of this SOD1 copper chaperone may represent a therapeutic avenue.
Collapse
Affiliation(s)
- L B Corson
- Predoctoral Program in Human Genetics, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
15
|
Petrovic N, Comi A, Ettinger MJ. Identification of an apo-superoxide dismutase (Cu,Zn) pool in human lymphoblasts. J Biol Chem 1996; 271:28331-4. [PMID: 8910455 DOI: 10.1074/jbc.271.45.28331] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Copper incorporation (64Cu(II)) into Cu,Zn-superoxide dismutase (SOD) was studied in human lymphoblasts. Rapid incorporation of copper with a proportionate increase in SOD activity was detected. No copper incorporation or SOD activation was detected when 64Cu(II) was added to cell cytosols rather than to intact cells. Thus, incorporation of 64Cu was not due to isotopic exchange. Cycloheximide had no significant effect on copper incorporation and activation of SOD when the data were corrected for total cell copper. Thus, the data were consistent with copper incorporation into a preexisting apoSOD pool rather than newly synthesized SOD, and no new SOD synthesis was detected over a 15-h incubation period. The size of the apoSOD pool was estimated to be approximately 35% of the total SOD in lymphoblasts. When cells were preincubated for 15 h with excess copper (15 microM Cu(II)), the size of the apo pool markedly decreased but was not eliminated, suggesting that the apoSOD was not due to copper deficiency. These experiments also indicated that newly arrived copper was preferentially incorporated into the apoSOD pool, while the function(s) of an apoSOD pool remains unknown. Copper binding to apoSOD may provide a rapid protective response against copper toxicity.
Collapse
Affiliation(s)
- N Petrovic
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214, USA.
| | | | | |
Collapse
|