1
|
Guo Z, Jing X, Sun X, Sun S, Yang Y, Cao Y. Tumor angiogenesis and anti-angiogenic therapy. Chin Med J (Engl) 2024; 137:2043-2051. [PMID: 39051171 PMCID: PMC11374217 DOI: 10.1097/cm9.0000000000003231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT Anti-angiogenic drugs (AADs), which mainly target the vascular endothelial growth factor-A signaling pathway, have become a therapeutic option for cancer patients for two decades. During this period, tremendous clinical experience of anti-angiogenic therapy has been acquired, new AADs have been developed, and the clinical indications for AAD treatment of various cancers have been expanded using monotherapy and combination therapy. However, improvements in the therapeutic outcomes of clinically available AADs and the development of more effective next-generation AADs are still urgently required. This review aims to provide historical and perspective views on tumor angiogenesis to allow readers to gain mechanistic insights and learn new therapeutic development. We revisit the history of concept initiation and AAD discovery, and summarize the up-to-date clinical translation of anti-angiogenic cancer therapy in this field.
Collapse
Affiliation(s)
- Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| | - Xiaoting Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shishuo Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
2
|
Zhou F, Wang S, Lu W, Chen X, Guo S, Lu C, Zhang X, Wu J, Wang S, Long Z, He B, Zhuang T, Xu X. The Essential Role of PGF2α/PTGFR in Molding Endometrial Breakdown and Vascular Dynamics, Regulated by HIF-1α in a Mouse Menstrual-like Model. Reprod Sci 2024; 31:2718-2730. [PMID: 38637474 DOI: 10.1007/s43032-024-01526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
In women of childbearing age, extensive decidualization, shedding and remodeling of the endometrium during the menstrual cycle are fundamental for successful pregnancy. The role of prostaglandins (PGs) in menstruation has long been proposed in humans, and the rate-limiting enzyme cyclooxygenase was shown to play a key role in endometrial breakdown and shedding in a mouse menstrual-like model in our previous study. However, the specific types of PGs involved and their respective roles remain unclear. Therefore, our objective was to investigate the mechanism through which PGs regulate endometrial disintegration. In this study, the microscopy was observed by HE; the protein levels of prostaglandins E1 (PGE1), prostaglandins E2 (PGE2), prostaglandin F2α (PGF2α) and Prostaglandin I2 (PGI2) were detected by ELISA; the mRNA level of Pfgfr2, Vascular Endothelial Growth Factor(Vegf), Angiostatin and Hypoxia inducible factor-1α (Hif1α) were examined by real-time PCR; PTGFR Receptor (PTGFR), VEGF, Angiostatin and HIF-1α protein levels were investigated by western blotting; the locations of protein were observed by Immunohistochemistry; HIF-1α binding PTGFR promoter was detected by Chromatin Immunoprecipitation (ChIP) and real-time PCR. We found that the concentrations of PGE1, PGE2, and PGF2α all increased significantly during this process. Furthermore, Ptgfr mRNA increased soon after Progesterone (P4) withdrawal, and PTGFR protein levels increased significantly during abundant endometrial breakdown and shedding processes. PTGFR inhibitors AL8810 significantly suppressed endometrial breakdown and shedding, promoted Angiostatin expression, and reduced VEGF-A expressions and vascular permeability. And HIF-1α and PTGFR were mainly located in the luminal/gland epithelium, vascular endothelium, and pre-decidual zone. Interestingly, HIF-1α directly bound to Ptgfr promoter. Moreover, a HIF-1α inhibitor 2-methoxyestradiol (2ME) significantly reduced PTGFR expression and suppressed endometrial breakdown which was in accord with PTGFR inhibitor's effect. Similar changes occurred in human stromal cells relevant to menstruation in vitro. Our study provides evidence that PGF2α/PTGFR plays a vital role in endometrial breakdown via vascular changes that are regulated by HIF-1α during menstruation.
Collapse
Affiliation(s)
- Fang Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Human Sperm Bank, National Research Institute for Family Planning, Beijing, China
| | - Shufang Wang
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Wenhong Lu
- Human Sperm Bank, National Research Institute for Family Planning, Beijing, China
| | - Xihua Chen
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Shige Guo
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Cong Lu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Xin Zhang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Jiangxu Wu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Siyu Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Zeyi Long
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Bin He
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Taifeng Zhuang
- Beijing Obstetrics & Gynecology Hospital, Capital Medical University, Beijing Maternal &. Child Health Care Hospital, Beijing, China
| | - Xiangbo Xu
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China.
| |
Collapse
|
3
|
Bharadwaj AG, Kempster E, Waisman DM. The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor. Biomolecules 2021; 11:biom11121772. [PMID: 34944416 PMCID: PMC8698604 DOI: 10.3390/biom11121772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of the serine protease plasmin is initiated by the binding of its zymogenic precursor, plasminogen, to cell surface receptors. The proteolytic activity of plasmin, generated at the cell surface, plays a crucial role in several physiological processes, including fibrinolysis, angiogenesis, wound healing, and the invasion of cells through both the basement membrane and extracellular matrix. The seminal observation by Albert Fischer that cancer cells, but not normal cells in culture, produce large amounts of plasmin formed the basis of current-day observations that plasmin generation can be hijacked by cancer cells to allow tumor development, progression, and metastasis. Thus, the cell surface plasminogen-binding receptor proteins are critical to generating plasmin proteolytic activity at the cell surface. This review focuses on one of the twelve well-described plasminogen receptors, S100A10, which, when in complex with its regulatory partner, annexin A2 (ANXA2), forms the ANXA2/S100A10 heterotetrameric complex referred to as AIIt. We present the theme that AIIt is the quintessential cellular plasminogen receptor since it regulates the formation and the destruction of plasmin. We also introduce the term oncogenic plasminogen receptor to define those plasminogen receptors directly activated during cancer progression. We then discuss the research establishing AIIt as an oncogenic plasminogen receptor-regulated during EMT and activated by oncogenes such as SRC, RAS, HIF1α, and PML-RAR and epigenetically by DNA methylation. We further discuss the evidence derived from animal models supporting the role of S100A10 in tumor progression and oncogenesis. Lastly, we describe the potential of S100A10 as a biomarker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Alamelu G. Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
| | - David M. Waisman
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence: ; Tel.: +1-(902)-494-1803; Fax: +1-(902)-494-1355
| |
Collapse
|
4
|
PRODUCTION AND APPLICATION OF ANGIOSTATINS FOR THE TREATMENT OF OCULAR NEOVASCULAR DISEASES. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Angiostatins comprise a group of kringle-containing proteolytically-derived fragments of plasminogen/plasmin, which act as potent inhibitory mediators of endothelial cells proliferation and migration. Angiostatins are involved in modulation of vessel growth in healthy tissues and various pathological conditions associated with aberrant neovascularization. The aim of the present paper was to summarize available information, including our own experimental data, on prospects of angiostatin application for treatment of ocular neovascular diseases (OND), focusing on retinal pathologies and corneal injury. In particular, literature data on prospective and retrospective studies, clinical trials and animal models relating to the pathophysiology, investigation and management of OND are described. Special emphasis was made on the laboratory approaches of production of different angiostatin isoforms, as well as comparison of antiangiogenic capacities of native and recombinant angiostatin polypeptides. Several studies reported that angiostatins may completely abolish pathologic angiogenesis in diabetic proliferative retinopathy without affecting normal retinal vessel development and without exhibiting adverse side effects. Angiostatins have been tested as a tool for corneal antiangiogenesis target therapy in order to manage diverse ocular surface pathological conditions induced by traumas, chemical burns, previous surgery, chronic contact lens wear, autoimmune diseases, keratitis and viral infections (herpes, COVID-19), corneal graft rejection, etc. Among all known angiostatin species, isolated K5 plasminogen fragment was shown to display the most potent inhibitory activity against proliferation of endothelial cells via triggering multiple signaling pathways, which lead to cell death and resulting angiogenesis suppression. Application of adenoviral genetic construct encoding angiostatin K5 as a promising tool for OND treatment illustrates a vivid example of upcoming revolution in local gene therapy. Further comprehensive studies are necessary to elucidate the clinical potential and optimal regimes of angiostatinbased intervention modalities for treating ocular neovascularization.
Collapse
|
5
|
Rai N, Shihan M, Seeger W, Schermuly RT, Novoyatleva T. Genetic Delivery and Gene Therapy in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031179. [PMID: 33503992 PMCID: PMC7865388 DOI: 10.3390/ijms22031179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive complex fatal disease of multiple etiologies. Hyperproliferation and resistance to apoptosis of vascular cells of intimal, medial, and adventitial layers of pulmonary vessels trigger excessive pulmonary vascular remodeling and vasoconstriction in the course of pulmonary arterial hypertension (PAH), a subgroup of PH. Multiple gene mutation/s or dysregulated gene expression contribute to the pathogenesis of PAH by endorsing the proliferation and promoting the resistance to apoptosis of pulmonary vascular cells. Given the vital role of these cells in PAH progression, the development of safe and efficient-gene therapeutic approaches that lead to restoration or down-regulation of gene expression, generally involved in the etiology of the disease is the need of the hour. Currently, none of the FDA-approved drugs provides a cure against PH, hence innovative tools may offer a novel treatment paradigm for this progressive and lethal disorder by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. Here, we review the effectiveness and limitations of the presently available gene therapy approaches for PH. We provide a brief survey of commonly existing and currently applicable gene transfer methods for pulmonary vascular cells in vitro and describe some more recent developments for gene delivery existing in the field of PH in vivo.
Collapse
Affiliation(s)
- Nabham Rai
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Mazen Shihan
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Tatyana Novoyatleva
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Correspondence:
| |
Collapse
|
6
|
Sharma MC, Jain D. Important role of annexin A2 (ANXA2) in new blood vessel development in vivo and human triple negative breast cancer (TNBC) growth. Exp Mol Pathol 2020; 116:104523. [PMID: 32866522 DOI: 10.1016/j.yexmp.2020.104523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 11/18/2022]
Abstract
Development of new blood vessels in the tumor microenvironment is an essential component of tumor progression during which newly formed blood vessels nourish tumor cells and play a critical role in rapid tumor growth, invasion and metastasis. Nevertheless, how tumor cells develop new blood vessels in the tumor microenvironment (TME) have been enigmatic. Previously, we have shown specific overexpression of ANX A2 in TNBC cells regulates plasmin generation and suspected a role in neoangiogenesis. In this report, we used Matrigel plug model of in vivo angiogenesis and confirmed its role in new blood vessel development. Next, we tested if blocking of ANX A2 in aggressive human breast TME can inhibit angiogenesis and tumor growth in vivo. We showed that aggressive human breast tumor cells growing in nude mice can induce intense neoangiogenesis in the tumor mass. Blocking of ANXA2 significantly inhibited neoangiogenesis and resulted in inhibition of tumor growth. Interestingly, we identified that blocking of ANXA2 significantly inhibited tyrosine phosphorylation (Tyr-P) of ANXA2 implying its involvement in tyrosine signaling pathway and suggesting it may regulate angiogenesis. Taken together, our experimental evidence suggests that ANX A2 could be a novel strategy for disruption of tyrosine signaling and inhibition of neoangiogenesis in breast tumor.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC 20422, United States of America; Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, United States of America.
| | - Diwakar Jain
- Westchester Medical Center, NY 10595, United States of America
| |
Collapse
|
7
|
Zhu Y, Li L, Reinach PS, Li Y, Ge C, Qu J, Chen W. Corneal Collagen Cross-Linking With Riboflavin and UVA Regulates Hemangiogenesis and Lymphangiogenesis in Rats. Invest Ophthalmol Vis Sci 2019; 59:3702-3712. [PMID: 30029257 DOI: 10.1167/iovs.17-23036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to determine whether corneal collagen crosslinking (CXL) inhibits hemangiogenesis and lymphangiogenesis during acute corneal inflammation in an in vivo rat model. Methods Inflammatory corneal neovascularization was induced by suture placement into a rat cornea. At day 3 after suture, a CXL protocol using riboflavin and UVA was administered after mechanical epithelial debridement. Hemangiogenesis and lymphangiogenesis were analyzed morphometrically. CD45 and CD68 immunostaining evaluated corneal leucocyte and macrophage immune cell infiltration, respectively. A TUNEL assay detected stromal cell apoptosis. Quantitative RT-PCR analysis identified angiogenic and lymphangiogenic genes as well as proinflammatory cytokine expression. Western blot analysis characterized vascular endothelial cell CD31 and lymphatic vessel endothelial hyaluronan receptor (LYVE-1) protein expression. Results CXL treatment significantly reduced corneal pathologic suture-induced hemangiogenesis and lymphangiogenesis 7 days after suture emplacement, but this procedure failed to affect hemangiogenesis and lymphangiogenesis 14 days after suture. Increased cell apoptosis and reduced CD45+ and CD68+ cell infiltration were evident in CXL-treated rats on days 7 and 14 after suture emplacement. CXL treatment significantly decreased angiogenic and lymphangiogenic mRNA expression levels and both CD31 and LYVE-1 protein expression levels, whereas it increased proinflammatory cytokine levels on day 7 after suture emplacement. However, on day 14 after corneal neovascularization, angiogenic and lymphangiogenic mRNA gene expression levels were upregulated along with hematic CD31 and lymphatic LYVE-1 protein expression. Conclusions CXL treatment only temporarily inhibits corneal inflammatory-associated hemangiogenesis and lymphangiogenesis in vivo. Such insight suggests that future studies are warranted to develop novel CXL strategies with longer-lasting effectiveness in attenuating hemantic- and lymphatic-related corneal diseases.
Collapse
Affiliation(s)
- Yirui Zhu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Ling Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Peter S Reinach
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Yun Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Chaoxiang Ge
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Wei Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
8
|
Vezzani B, Shaw I, Lesme H, Yong L, Khan N, Tremolada C, Péault B. Higher Pericyte Content and Secretory Activity of Microfragmented Human Adipose Tissue Compared to Enzymatically Derived Stromal Vascular Fraction. Stem Cells Transl Med 2018; 7:876-886. [PMID: 30255987 PMCID: PMC6265639 DOI: 10.1002/sctm.18-0051] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
Autologous adipose tissue is used for tissue repletion and/or regeneration as an intact lipoaspirate or as enzymatically derived stromal vascular fraction (SVF), which may be first cultured into mesenchymal stem cells (MSCs). Alternatively, transplant of autologous adipose tissue mechanically fragmented into submillimeter clusters has recently showed remarkable efficacy in diverse therapeutic indications. To document the biologic basis of the regenerative potential of microfragmented adipose tissue, we first analyzed the distribution of perivascular presumptive MSCs in adipose tissue processed with the Lipogems technology, observing a significant enrichment in pericytes, at the expense of adventitial cells, as compared to isogenic enzymatically processed lipoaspirates. The importance of MSCs as trophic and immunomodulatory cells, due to the secretion of specific factors, has been described. Therefore, we investigated protein secretion by cultured adipose tissue clusters or enzymatically derived SVF using secretome arrays. In culture, microfragmented adipose tissue releases many more growth factors and cytokines involved in tissue repair and regeneration, noticeably via angiogenesis, compared to isogenic SVF. Therefore, we suggest that the efficient tissue repair/regeneration observed after transplantation of microfragmented adipose tissue is due to the secretory ability of the intact perivascular niche. Stem Cells Translational Medicine 2018;7:876-886.
Collapse
Affiliation(s)
- Bianca Vezzani
- MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Isaac Shaw
- MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Hanna Lesme
- MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Li Yong
- MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Nusrat Khan
- MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | | | - Bruno Péault
- MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
- Orthopaedic Hospital Research Center and Broad Stem Cell Research CenterDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Venugopal S, Kao C, Chandna R, Sulochana KN, Subramanian V, Chen M, Kini RM, Ge R. Angio-3, a 10-residue peptide derived from human plasminogen kringle 3, suppresses tumor growth in mice via impeding both angiogenesis and vascular permeability. Angiogenesis 2018; 21:653-665. [DOI: 10.1007/s10456-018-9616-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
|
10
|
Liu S, Romano V, Steger B, Kaye SB, Hamill KJ, Willoughby CE. Gene-based antiangiogenic applications for corneal neovascularization. Surv Ophthalmol 2018; 63:193-213. [DOI: 10.1016/j.survophthal.2017.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
|
11
|
Wu P, Li L, Wang H, Ma T, Wu H, Fan X, Yang Z, Chen D, Wang L. Role of Angiogenesis in Chronic Radiation Proctitis: New Evidence Favoring Inhibition of Angiogenesis Ex Vivo. Dig Dis Sci 2018; 63:113-125. [PMID: 29080145 DOI: 10.1007/s10620-017-4818-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic radiation proctitis (CRP), a common complication after radiotherapy for pelvic malignancies, compromises patient quality of life. Vascular damage and aberrant angiogenesis in the mucosal layer are essential histological features, but changes to the submucosal layer are unclear. Thus, we evaluated the histological characteristics and distribution changes of key angiogenic factors in full-layered human CRP samples. METHODS Thirty paraffin-embedded CRP and twenty-nine non-CRP tissues were used to evaluate histopathological changes. Immunohistochemistry with anti-CD34 antibody was performed to calculate microvascular density (MVD). Frozen tissues from eight CRP patients and five non-CRP controls were collected and analyzed by antibody array, which contained sixty human angiogenesis-related factors. Quality controls with positive and negative controls were performed during antibody array analysis. Two differentially expressed factors were confirmed by ELISA. RESULTS CRP lesions showed vasculopathy, fibrosis, mucosal ulceration, edema, and inflammatory cell infiltration. Human angiogenesis antibody array and ELISA confirmed the increased angiostatin in CRP lesions. Immunohistochemical staining showed dispersed distribution of angiostatin throughout the mucosal and submucosal layers in CRP lesions, while angiostatin accumulated within the vessel lumens in non-CRP tissues. MVD significantly decreased in the submucosal layer of CRP, suggesting a potential association with increased angiostatin. CONCLUSIONS Angiostatin increased and had a distinct distribution in CRP lesions. Compensatory telangiectasia in the mucosa, vessel stenosis, and reduced MVD might attenuate blood flow in the submucosa and contribute to CRP progression. Restoration of vascular functionality by promoting angiogenesis in the submucosal layer may help alleviate CRP in clinical practice.
Collapse
Affiliation(s)
- Peihuang Wu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiming Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tenghui Ma
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiyong Wu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zihuan Yang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daici Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Lei Wang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Human neutrophil elastase mediates fibrinolysis shutdown through competitive degradation of plasminogen and generation of angiostatin. J Trauma Acute Care Surg 2017; 83:1053-1061. [PMID: 28837538 DOI: 10.1097/ta.0000000000001685] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND A subset of trauma patients undergo fibrinolysis shutdown rather than pathologic hyperfibrinolysis, contributing to organ failure. The molecular basis for fibrinolysis shutdown in trauma is incompletely understood. Elastase released from primed/activated human neutrophils (HNE) has historically been described as fibrin(ogen)olytic. However, HNE can also degrade plasminogen (PLG) to angiostatin (ANG), retaining the kringle domains but not the proteolytic function, and could thereby compete for generation of active plasmin by tissue plasminogen activator (tPA). We hypothesized that HNE can drive fibrinolysis shutdown rather than fibrinolysis. METHODS Turbidometry was performed using light scatter (λ = 620 nm) in a purified fibrinogen + PLG system and in healthy citrate plasma clotted with Ca/thrombin ± tPA, ±HNE, and ±ANG to evaluate HNE effects on fibrinolysis, quantified by time to transition midpoint (Tm). ΔTm from control is reported as percent of control ±95% CI. Purified HNE coincubated with PLG or tPA was analyzed by western blot to identify cleavage products. Exogenous HNE was mixed ex vivo with healthy volunteer blood (n = 7) and used in TEG ± tPA to evaluate effects on fibrinolysis. RESULTS HNE did not cause measurable fibrinolysis on fibrin clots, clotted plasma, or whole blood as assessed by turbidometry or TEG in the absence of tPA. Upon tPA treatment, all three methods of evaluating fibrinolysis showed delays and decreases in fibrinolysis caused by HNE relative to control: fibrin clot turbidometry ΔTm = 110.7% (CI 105.0-116.5%), clotted citrate plasma (n = 6 healthy volunteers) ΔTm = 126.1% (CI 110.4-141.8%), and whole blood native TEG (n = 7 healthy volunteers) with ΔLY30 = 28% (p = 0.043). Western blot analysis of HNE-PLG co-incubation confirmed that HNE generates angiostatin K1-3, and plasma turbidity assays treated with angiostatin K1-3 delayed fibrinolysis. CONCLUSION HNE degrades PLG and generates angiostatin K1-3, which predominates over HNE cleavage of fibrin(ogen). These findings suggest that neutrophil release of elastase may underlie trauma-induced fibrinolytic shutdown.
Collapse
|
13
|
Karizbodagh MP, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. Implantation Window and Angiogenesis. J Cell Biochem 2017; 118:4141-4151. [DOI: 10.1002/jcb.26088] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/21/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Mostafa Peyvandi Karizbodagh
- Department of Anatomical SciencesSchool of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Anatomical SciencesSchool of MedicineBirjand University of Medical SciencesBirjandIran
| | - Bahman Rashidi
- Department of Anatomical Sciences and Molecular BiologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | | | - Aria Masoudifar
- Department of Molecular BiotechnologyCell Science Research CenterRoyan Institute for Biotechnology ACECRIsfahanIran
| | - Hamed Mirzaei
- Department of Medical BiotechnologySchool of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
14
|
Liang YK, Bian LJ. Voltage-Dependent Anion Channel-1, a Possible Ligand of Plasminogen Kringle 5. PLoS One 2016; 11:e0164834. [PMID: 27749918 PMCID: PMC5066947 DOI: 10.1371/journal.pone.0164834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/30/2016] [Indexed: 11/18/2022] Open
Abstract
Kringle 5, the fifth fragment of plasminogen, is known to be important for inhibiting the proliferation and migration of vascular endothelial cell (VEC), while not having any effects on normal endothelial cells. Therefore, it may be a potential tumor therapy candidate. However, the ligand of the Kringle 5 in VEC has not yet been identified. In this study, the possible ligand of Kringle 5 in vitro was screened and validated using Ph.D.-7 phage display peptide library with molecular docking, along with surface plasma resonance (SPR). After four rounds of panning, the specific clones of Kringle 5 were confirmed using enzyme-linked immunosorbent assay (ELISA). The gene sequence analysis showed that they expressed the common amino sequence IGNSNTL. Then, using a NCBI BLAST, 103 matching sequences were found. Following the molecular docking evaluation and considering the acting function and pathway of the plasminogen Kringle 5 in the human body, the most promising candidate was determined to be voltage-dependent anion channel-1 (VDAC-1), which was able to bind to Kringle 5 at -822.65 J·mol-1 of the binding energy at the residues of Lys12, Thr19, Ser57, Thr188, Arg139, Asn214, Ser240 and Lys274. A strong dose-dependent interaction occurred between the VDAC-1 and Kringle 5 (binding constant 2.43 × 103 L·mol-1) in SPR observation. Therefore, this study proposed that VDAC-1 was a potential ligand of plasminogen Kringle 5, and also demonstrated that the screening and validation of protein ligand using phage display peptide library with the molecular docking, along with SPR, was a practicable application.
Collapse
Affiliation(s)
- Yin-ku Liang
- College of Life Sciences, Northwest University, Xi’an 710069, P. R. China
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, P. R. China
- Shaanxi Province Key Laboratory of Bio-Resource, Shaanxi University of Technology, Hanzhong 723000, P. R. China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi province, Shaanxi University of Technology, Hanzhong 723000, P. R. China
| | - Liu-jiao Bian
- College of Life Sciences, Northwest University, Xi’an 710069, P. R. China
- * E-mail:
| |
Collapse
|
15
|
Ghag G, Wolf LM, Reed RG, Van Der Munnik NP, Mundoma C, Moss MA, Rangachari V. Fully reduced granulin-B is intrinsically disordered and displays concentration-dependent dynamics. Protein Eng Des Sel 2016; 29:177-86. [PMID: 26957645 PMCID: PMC4830411 DOI: 10.1093/protein/gzw005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
Granulins (Grns) are a family of small, cysteine-rich proteins that are generated upon proteolytic cleavage of their precursor, progranulin (Pgrn). All seven Grns (A-G) contain 12 conserved cysteines that form 6 intramolecular disulfide bonds, rendering this family of proteins unique. Grns are known to play multi-functional roles, including wound healing, embryonic growth, and inflammation and are implicated in neurodegenerative diseases. Despite their manifold functions, there exists a dearth of information regarding their structure-function relationship. Here, we sought to establish the role of disulfide bonds in promoting structure by investigating the fully reduced GrnB (rGrnB). We report that monomeric rGrnB is an intrinsically disordered protein (IDP) at low concentrations. rGrnB undergoes dimerization at higher concentrations to form a fuzzy complex without a net gain in the structure-a behavior increasingly identified as a hallmark of some IDPs. Interestingly, we show that rGrnB is also able to activate NF-κB in human neuroblastoma cells in a concentration-dependent manner. This activation correlates with the observed monomer-dimer dynamics. Collectively, the presented data establish that the intrinsic disorder of rGrnB governs conformational dynamics within the reduced form of the protein, and suggest that the overall structure of Grns could be entirely dictated by disulfide bonds.
Collapse
Affiliation(s)
- Gaurav Ghag
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | - Randi G Reed
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | - Claudius Mundoma
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Melissa A Moss
- Biomedical Engineering Program and Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
16
|
Saraf R, Mahmood F, Amir R, Matyal R. Neuropeptide Y is an angiogenic factor in cardiovascular regeneration. Eur J Pharmacol 2016; 776:64-70. [PMID: 26875634 DOI: 10.1016/j.ejphar.2016.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/27/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
In diabetic cardiomyopathy, there is altered angiogenic signaling and increased oxidative stress. As a result, anti-angiogenic and pro-inflammatory pathways are activated. These disrupt cellular metabolism and cause fibrosis and apoptosis, leading to pathological remodeling. The autonomic nervous system and neurotransmitters play an important role in angiogenesis. Therapies that promote angiogenesis may be able to relieve the pathology in these disease states. Neuropeptide Y (NPY) is the most abundantly produced and expressed neuropeptide in the central and peripheral nervous systems in mammals and plays an important role in promoting angiogenesis and cardiomyocyte remodeling. It produces effects through G-protein-coupled Y receptors that are widely distributed and also present on the myocardium. Some of these receptors are also involved in diseased states of the heart. NPY has been implicated as a potent growth factor, causing cell proliferation in multiple systems while the NPY3-36 fragment is selective in stimulating angiogenesis and cardiomyocyte remodeling. Current research is focusing on developing a drug delivery mechanism for NPY to prolong therapy without having significant systemic consequences. This could be a promising innovation in the treatment of diabetic cardiomyopathy and ischemic heart disease.
Collapse
Affiliation(s)
- Rabya Saraf
- Department of Surgery, Division of Cardiac Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Feroze Mahmood
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Rabia Amir
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robina Matyal
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
17
|
Belkacemi L, Zhang SX. Anti-tumor effects of pigment epithelium-derived factor (PEDF): implication for cancer therapy. A mini-review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:4. [PMID: 26746675 PMCID: PMC4706649 DOI: 10.1186/s13046-015-0278-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a secreted glycoprotein and a non-inhibitory member of the serine protease inhibitor (serpin) family. It is widely expressed in human fetal and adult tissues but its expression decreases with age and in malignant tissues. The main anti-cancer activities of PEDF derive from its dual effects, either indirectly on the tumor microenvironment (indirect antitumor action) or directly on the tumor itself (direct antitumor influence). The indirect antitumor activities of PEDF were uncovered from the early findings that it stimulates retinoblastoma cell differentiation and that additionally it possesses anti-angiogenic, anti-tumorigenic and anti-metastatic properties. The mechanisms of its direct antitumor effect, however, have not been fully elucidated. This review highlights recent progress in our understanding of the multifunctional activities of PEDF and, in particular, its anti-cancer signaling mechanisms. Additionally, we discuss the possibility of using novel phosphaplatin compounds that can upregulate PEDF expression as a chemotherapy for cancer treatment.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77204, USA.
| | - Shaun Xiaoliu Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA. .,Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
18
|
Wang S, Cao W, Xing H, Chen YL, Li Q, Shen T, Jiang C, Zhu D. Activation of ERK pathway is required for 15-HETE-induced angiogenesis in human umbilical vascular endothelial cells. J Recept Signal Transduct Res 2015; 36:225-32. [PMID: 26460784 DOI: 10.3109/10799893.2015.1077865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis plays a critical role in the progression of cardiovascular disease, retinal ischemia, or tumorigenesis. The imbalance of endothelial cell proliferation and apoptosis disturbs the establishment of the vasculogenesis, which is affected by several arachidonic acid metabolites. 15-Hydroxyeicosatetraenoic acid (15-HETE) is one of the metabolites. However, the underlying mechanisms of angiogenesis induced by 15-HETE in human umbilical vascular endothelial cells (HUVECs) are still poorly understood. Since extracellular signal-regulated kinase (ERK) is a critical regulator of cell proliferation, there may be a crosstalk between 15-HETE-regulating angiogenic process and ERK-proliferative effect in HUVECs. To test this hypothesis, we study the effect of 15-HETE on cell proliferation, angiogenesis, and apoptosis using cell viability measurement, cell cycle analysis, western blot, scratch-wound, tube formation assay, and nuclear morphology determination. We found that 15-HETE promoted HUVEC angiogenesis, which were mediated by ERK. Moreover, 15-HETE-induced proliferation and cell cycle transition from the G(0)/G(1) phase to the G(2)/M + S phase. All these effects were reversed after blocking ERK with PD98059 (an ERK inhibitor). In addition, HUVEC apoptosis was relieved by 15-HETE through the ERK pathway. Thus, ERK is necessary for the effects of 15-HETE in the regulation of HUVEC angiogenesis, which may be a novel potential target for the treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Shuang Wang
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Weiwei Cao
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Hao Xing
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Ying Li Chen
- b Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University - Daqing , Daqing, Heilongjiang Province , People's Republic of China , and
| | - Qian Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Tingting Shen
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Chun Jiang
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China .,c Department of Biology , Georgia State University , Atlanta , GA , USA
| | - Daling Zhu
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China .,b Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University - Daqing , Daqing, Heilongjiang Province , People's Republic of China , and
| |
Collapse
|
19
|
Tykhomyrov AA, Nedzvetsky VS, Bardachenko NI, Grinenko TV, Kuryata OV. Statin treatment decreases serum angiostatin levels in patients with ischemic heart disease. Life Sci 2015; 134:22-9. [DOI: 10.1016/j.lfs.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/22/2015] [Accepted: 05/17/2015] [Indexed: 11/25/2022]
|
20
|
Park SH. Large-Scale Purification of Human Apolipoprotein Kringle Domain V (rHualkV) Expressed in Pichia pastoris. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/biotech.2015.206.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Topically Administered Gold Nanoparticles Inhibit Experimental Corneal Neovascularization in Mice. Cornea 2015; 34:456-9. [DOI: 10.1097/ico.0000000000000343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Coppini LP, Visniauskas B, Costa EF, Filho MN, Rodrigues EB, Chagas JR, Farah ME, Barros NMT, Carmona AK. Corneal angiogenesis modulation by cysteine cathepsins: In vitro and in vivo studies. Exp Eye Res 2015; 134:39-46. [PMID: 25795052 DOI: 10.1016/j.exer.2015.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
Corneal avascularization is essential for normal vision. Several antiangiogenic factors were identified in cornea such as endostatin and angiostatin. Cathepsin V, which is highly expressed in the cornea, can hydrolyze human plasminogen to release angiostatin fragments. Herein, we describe a detailed investigation of the expression profile of cathepsins B, L, S and V in the human cornea and the role of cysteine peptidases in modulating angiogenesis both in vitro and in vivo. We used various methodological tools for this purpose, including real-time PCR, SDS-PAGE, western blotting, catalytic activity assays, cellular assays and induction of corneal neovascularity in rabbit eyes. Human corneal enzymatic activity assays revealed the presence of cysteine proteases that were capable of processing endogenous corneal plasminogen to produce angiostatin-like fragments. Comparative real-time analysis of cathepsin B, L, S and V expression revealed that cathepsin V was the most highly expressed, followed by cathepsins L, B and S. However, cathepsin V depletion revealed that this enzyme is not the major cysteine protease responsible for plasminogen degradation under non-pathological conditions. Furthermore, western blotting analysis indicated that only cathepsins B and S were present in their enzymatically active forms. In vivo analysis of angiogenesis demonstrated that treatment with the cysteine peptidase inhibitor E64 caused a reduction in neovascularization. Taken together, our results show that human corneal cysteine proteases are critically involved in angiogenesis.
Collapse
Affiliation(s)
- Larissa P Coppini
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bruna Visniauskas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Elaine F Costa
- Departamento de Medicina I, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Milton N Filho
- Departamento de Oftalmologia e Ciências Visuais, Instituto da Visão (IPEPO), Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Eduardo B Rodrigues
- Departamento de Oftalmologia e Ciências Visuais, Instituto da Visão (IPEPO), Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jair R Chagas
- Departamento de Ciências da Saúde, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Michel E Farah
- Departamento de Oftalmologia e Ciências Visuais, Instituto da Visão (IPEPO), Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nilana M T Barros
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Tykhomyrov AA, Shram SI, Grinenko TV. [Role of angiostatins in diabetic complications]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:41-56. [PMID: 25762598 DOI: 10.18097/pbmc20156101041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Angiogenesis is a process through which new blood vessels form from pre-existing vessels. Angiogenesis is regulated by a number of factors of peptide nature. Disbalance of angiogenic system appears to be the major causative factor contributing vascular abnormalities in diabetes mellitus, resulting in various complications. Angiostatins, which are kringle-containing fragments of plasminogen/plasmin, are known to be powerful physiological inhibitors of neovascularization. In the present review, current literature data on peculiarities of production of angiostatins and their functioning at diabetes mellitus are summarized and analyzed for the first time. Also, role of angiostatins in the pathogenesis of typical diabetic complications, including retinopathies, nephropathies and cardiovascular diseases, is discussed. Data presented in this review may be useful for elaboration of novel effective approaches for diagnostics and therapy of vascular abnormalities in diabetes mellitus.
Collapse
|
24
|
Wang H, Yang Z, Gu J. Therapeutic Targeting of Angiogenesis with a Recombinant CTT Peptide–Endostatin Mimic–Kringle 5 Protein. Mol Cancer Ther 2014; 13:2674-87. [PMID: 25127900 DOI: 10.1158/1535-7163.mct-14-0266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Biomimetic Materials/chemistry
- Biomimetic Materials/pharmacology
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/drug therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation/drug effects
- Endostatins/chemistry
- Endostatins/pharmacology
- HEK293 Cells
- HeLa Cells
- Humans
- Kringles
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/drug therapy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Random Allocation
- Recombinant Fusion Proteins/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Houbin Wang
- National Key Laboratory of Protein and Plant Gene Research, LSC, Peking University, Beijing, China
| | - Zhigang Yang
- Department of Hematology, Affiliated Hospital of Guangdong Medical College, Guangzhou, China
| | - Jun Gu
- National Key Laboratory of Protein and Plant Gene Research, LSC, Peking University, Beijing, China. Department of Hematology, Affiliated Hospital of Guangdong Medical College, Guangzhou, China.
| |
Collapse
|
25
|
Plasmid transfer of plasminogen K1-5 reduces subcutaneous hepatoma growth by affecting inflammatory factors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:656527. [PMID: 24895598 PMCID: PMC4034484 DOI: 10.1155/2014/656527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022]
Abstract
There is evidence that plasminogen K1-5 (PlgK1-5) directly affects tumour cells and inflammation. Therefore, we analysed if PlgK1-5 has immediate effects on hepatoma cells and inflammatory factors in vitro and in vivo. In vitro, effects of plasmid encoding PlgK1-5 (pK1-5) on Hepa129, Hepa1-6, and HuH7 cell viability, apoptosis, and proliferation as well as VEGF and TNF-alpha expression and STAT3-phosphorylation were investigated. In vivo, tumour growth, proliferation, vessel density, and effects on vascular endothelial growth factor (VEGF) and tumour necrosis factor alpha (TNF-alpha) expression were examined following treatment with pK1-5. In vivo, pK1-5 halved cell viability; cell death was increased by up to 15% compared to the corresponding controls. Proliferation was not affected. VEGF, TNF-alpha, and STAT3-phosphorylation were affected following treatment with pK1-5. In vivo, ten days after treatment initiation, pK1-5 reduced subcutaneous tumour growth by 32% and mitosis by up to 77% compared to the controls. Vessel density was reduced by 50%. TNF-alpha levels in tumour and liver tissue were increased, whereas VEGF levels in tumours and livers were reduced after pK1-5 treatment. Taken together, plasmid gene transfer of PlgK1-5 inhibits hepatoma (cell) growth not only by reducing vessel density but also by inducing apoptosis, inhibiting proliferation, and triggering inflammation.
Collapse
|
26
|
Tykhomyrov AA, Shram SI, Grinenko TV. The role of angiostatins in diabetic complications. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s1990750814020140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Talaat RM, Salem TA, El-Masry S, Imbarek A, Mokhles M, Abdel-Aziz A. Circulating pro- and anti-angiogenic mediators in patients infected with hepatitis C at different stages of hepatocellular carcinoma. J Med Virol 2014; 86:1120-9. [DOI: 10.1002/jmv.23932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Roba M. Talaat
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Tarek A. Salem
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Samir El-Masry
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Arafat Imbarek
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Mohamed Mokhles
- Medical Biochemistry Department; Medical Division, National Research Center (NRC); Sadat City Egypt
| | - Amal Abdel-Aziz
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| |
Collapse
|
28
|
Qi X, Liu Y, Wei W, Huang X, Zuo Y. Effects of the C-terminal of endostatin on the tumorigenic potential of H22 cells. Biomed Rep 2014; 1:761-765. [PMID: 24649025 DOI: 10.3892/br.2013.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/04/2013] [Indexed: 11/05/2022] Open
Abstract
Endostatin is an endogenous angiogenesis inhibitor whose specific functional site has not yet been determined. In the present experiment, 13 amino acids (LCIENSFMTSFSK) were selectively deleted from the C-terminal of endostatin and the resulting mutant endostatin was named EM13. To determine the effect of the C-terminal deletion on the biological activity of endostatin, EM13, wild-type endostatin and empty plasmid were transfected into H22 cells. After 48 h, the three types of transfected cells were harvested and injected into nude mice. The results demonstrated that there was no significant difference in tumor size, as determined by hematoxylin and eosin staining, between the EM13-transfected group and the endostatin and empty plasmid groups, although the nude mice that were injected with EM13-transfected H22 cells exhibited smaller tumors and lower density of blood vessels compared to those injected with endostatin- and empty plasmid-transfected H22 cells. The results suggested that the 13 amino acids of the C-terminal of endostatin do not play an important role in the tumorigenic potential of H22 cells. This experiment was unsuccessful in reproducing the results of several investigators. Therefore, the mechanism underlying the tumorigenesis of H22 cells remains to be elucidated.
Collapse
Affiliation(s)
- Xia Qi
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yuejian Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Wei Wei
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaohua Huang
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yunfei Zuo
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
29
|
MacMillan CJ, Doucette CD, Warford J, Furlong SJ, Hoskin DW, Easton AS. Murine experimental autoimmune encephalomyelitis is diminished by treatment with the angiogenesis inhibitors B20-4.1.1 and angiostatin (K1-3). PLoS One 2014; 9:e89770. [PMID: 24587024 PMCID: PMC3935931 DOI: 10.1371/journal.pone.0089770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/26/2014] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels form pre-existing vasculature whose contribution to inflammatory conditions of the Central Nervous System is being studied in order to generate novel therapeutic targets. This study is the first to investigate the impact of two particular angiogenesis inhibitors on murine Experimental Autoimmune Encephalomyelitis (EAE), an inflammatory disease that mimics aspects of the human disease Multiple Sclerosis. The inhibitors were chosen to reduce angiogenesis by complimentary means. Extrinsic factors were targeted with B20-4.1.1 through its ability to bind to murine Vascular Endothelial Growth Factor (VEGF). Vascular processes connected to angiogenesis were targeted directly with K(1-3), the first three kringle domains of angiostatin. Mice treated with B20-4.1.1 and K(1-3) from onset of signs had reduced clinical scores 18–21 days after EAE induction. Both agents suppressed spinal cord angiogenesis without effect on local VEGF expression. B20-4.1.1 reduced spinal cord vascular permeability while K(1-3) had no effect. T cell infiltration into the spinal cord at day 21 was unaffected by either treatment. B20-4.1.1 reduced peripheral T cell proliferation while K(1-3) had no effect. Lymphoid cells from treated mice produced reduced levels of the T helper-17 (Th-17) cell cytokine interleukin (IL)-17 with no effect on the Th-1 cytokine interferon (IFN)-γ or Th-2 cytokine IL-4. However, when both drugs were added in vitro to naive T cells or to antigen stimulated T cells from mice with untreated EAE they had no effect on proliferation or levels of IL-17 or IFN-γ. We conclude that these angiogenesis inhibitors mitigate EAE by both suppressing spinal cord angiogenesis and reducing peripheral T cell activation.
Collapse
Affiliation(s)
| | - Carolyn D. Doucette
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jordan Warford
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Suzanne J. Furlong
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David W. Hoskin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alexander S. Easton
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
30
|
Melo PM, Bagnaresi P, Paschoalin T, Hirata IY, Gazarini ML, Carmona AK. Plasmodium falciparum proteases hydrolyze plasminogen, generating angiostatin-like fragments. Mol Biochem Parasitol 2014; 193:45-54. [DOI: 10.1016/j.molbiopara.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 12/27/2022]
|
31
|
Bian L, Ji X, Hu W. Isolation and purification of recombinant human plasminogen Kringle 5 by liquid chromatography and ammonium sulfate salting-out. Biomed Chromatogr 2013; 28:957-65. [PMID: 24311387 DOI: 10.1002/bmc.3101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/27/2013] [Accepted: 11/05/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Liujiao Bian
- College of Life Science; Northwest University; Xi'an 710069 China
| | - Xu Ji
- College of Life Science; Northwest University; Xi'an 710069 China
| | - Wei Hu
- Emergency Department; Shaan'xi Provincial People's Hospital; Xi'an 710068 China
| |
Collapse
|
32
|
Acidic/neutral amino acid residues substitution in NH2 terminal of plasminogen kringle 5 exerts enhanced effects on corneal neovascularization. Cornea 2013; 32:680-8. [PMID: 23343948 DOI: 10.1097/ico.0b013e3182781ec9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Recent results showed that plasminogen kringle 5 (K5) has improved inhibitory effect on human umbilical vein endothelial cells (HUVECs) viability when 5 acidic amino acids in NH2 terminal outside kringle domain were replaced by 5 serine residues (mutant K5, mK5). This study was designed to identify the enhanced antiangiogenic activity of mK5 in corneal neovascularization (CNV). METHODS Alkali burn-induced CNV was induced and treated with K5 and mK5 for 11 days. CNV and inflammation were evaluated by the CNV area and the inflammatory index, respectively. At the end of treatment, the corneas were removed for terminal deoxynucleotidyl transferase dUTP nick end labeling detection and immunohistochemistry. The effects of mK5 and K5 on HUVECs apoptosis were tested by MTT, BrdU, and flow cytometry. The expression levels of pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) were detected by Western blot. RESULTS In a rat model of CNV induced by alkali, topical treatment with mK5 significantly decreased the neovascular area and inflammation compared with the wild-type K5-treated group. Meanwhile, mK5 and K5 specifically inhibited the HUVECs proliferation and induced vascular endothelial cell apoptosis in vitro and in vivo, and mK5 exerted higher apoptosis induction. Toward the mechanism of action, both mK5 and K5 significantly upregulated the expression of PEDF and mildly downregulated the expression of VEGF. The elevation of PEDF/VEGF ratio induced by mK5 was higher than that by K5. CONCLUSIONS These findings suggest that mK5 has more effective therapeutic potential in CNV than wild-type K5.
Collapse
|
33
|
Potential role of kringle-integrin interaction in plasmin and uPA actions (a hypothesis). J Biomed Biotechnol 2012; 2012:136302. [PMID: 23125522 PMCID: PMC3480031 DOI: 10.1155/2012/136302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 12/02/2022] Open
Abstract
We previously showed that the kringle domains of plasmin and angiostatin, the N-terminal four kringles (K1–4) of plasminogen, directly bind to integrins. Angiostatin blocks tumor-mediated angiogenesis and has great therapeutic potential. Angiostatin binding to integrins may be related to the antiinflammatory action of angiostatin. We reported that plasmin induces signals through protease-activated receptor (PAR-1), and plasmin-integrin interaction may be required for enhancing plasmin concentration on the cell surface, and enhances its signaling function. Angiostatin binding to integrin does not seem to induce proliferative signals. One possible mechanism of angiostatin's inhibitory action is that angiostatin suppresses plasmin-induced PAR-1 activation by competing with plasmin for binding to integrins. Interestingly, plasminogen did not interact with αvβ3, suggesting that the αvβ3-binding sites in the kringle domains of plasminogen are cryptic. The kringle domain of urokinase-type plasminogen activator (uPA) also binds to integrins. The uPA-integrin interaction enhances uPA concentrations on the cell surface and enhances plasminogen activation on the cell surface. It is likely that integrins bind to the kringle domain, and uPAR binds to the growth factor-like domain (GFD) of uPA simultaneously, making the uPAR-uPA-integrin ternary complex. We present a docking model of the ternary complex.
Collapse
|
34
|
Lin YL, Tsai MJ, Lo MJ, Chang SE, Shih YH, Lee MJ, Kuo HS, Kuo WC, Huang WC, Cheng H, Huang MC. Evaluation of the antiangiogenic effect of Kringle 1-5 in a rat glioma model. Neurosurgery 2012; 70:479-89; discussion 489-90. [PMID: 21796002 DOI: 10.1227/neu.0b013e31822f3aea] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Kringle 1-5 (K1-5) is a potent antiangiogenesis factor for treating breast cancer and hepatocellular carcinoma. However, its use in treating brain tumors has not been studied. OBJECTIVE To evaluate whether K1-5 is effective at treating gliomas. METHODS The effects of K1-5 on cell morphology and cytotoxicity with or without lipopolysaccharide were tested in primary mixed neuronal-glial cultures. The antiglioma activity of K1-5 was evaluated by intra-arterial administration of K1-5 at 4 days after implantation of C6 glioma cells into the rat hippocampus. In 1 group of animals, tumor size, tumor vasculature, and tumor histology were evaluated on day 12. Animal survival was assessed in the other group. RESULTS In vitro studies showed that K1-5 did not induce cytotoxicity in neurons and glia. In vivo studies demonstrated that K1-5 reduced vessel length and vessel density and inhibited perivascular tumor invasion. In addition, K1-5 normalized vessel morphology, decreased expression of hypoxia-inducible factor-1α and vascular endothelial growth factor, decreased tumor hypoxia, and decreased pseudopalisading necrosis. The average tumor volume was smaller in the treated than in the untreated group. Furthermore, animals treated with K1-5 survived significantly longer. CONCLUSION Kringle 1-5 effectively reduces the growth of malignant gliomas in the rat. Although still far from translation in humans, K1-5 might be a possible future alternative treatment option for patients with gliomas.
Collapse
Affiliation(s)
- Yi-Lo Lin
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ertekin T, Ekinci N, Karaca O, Nisari M, Canoz O, Ulger H. Effect of angiostatin on 1,2-dimethylhydrazine-induced colon cancer in mice. Toxicol Ind Health 2012; 29:490-7. [PMID: 22393105 DOI: 10.1177/0748233712440137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiangiogenic therapy is supposed to be an attractive approach for antitumor treatment. Human plasminogen-derived angiostatin K1-3 is one of the most potent antiangiogenic agents known currently. However, it is unclear whether angiostatin has got protective effects on colon cancer. So we investigated the protective effects of angiostatin on 1,2-dimethylhydrazine (DMH)-induced colon cancer in mice. Thirty Balb/C male mice, weighing 25-30 g and 8 weeks of age, were used. Twenty of the mice were treated with DMH subcutaneously (20 mg/kg) once a week for 12 weeks. Six mice died during the DMH injection and surviving mice were divided into two groups (7 mice in DMH and 7 mice in DMH + angiostatin groups). In the angiostatin group, 6 weeks after the last DMH injection the animals were first treated with angiostatin (20 μg/mouse) intraperitoneally and then subcutaneously every 48 h (5 μg/mouse) throughout a period of 12 weeks. The animals were killed after 30 weeks for histopathological examination. When we look at the distribution of lesions in the colon, they mainly occurred in the distal colon. The incidence of mean colonic lesions in a tumor-bearing mouse was 9.85 ± 4.91 in those treated with DMH and 8.71 ± 3.49 in those treated with angiostatin. The incidence of colon tumors was not significantly affected by low dose of angiostatin, and we noticed that the number of lesions decreased by 12% in DMH + angiostatin group compared to the number of the lesions in DMH group, but this decrease was not statistically significant (p > 0.05). The administration period of angiostatin corresponds to the precancerous period and the reduction in the number of lesions could be important for the protective function of angiostatin in DMH + angiostain group. We assume that therapeutic effects of angiostatin are related to its doses, route of administration, frequency and administration period. In addition, we believe that combination of high doses of angiostatin with radiation, gene therapy or chemotherapy might be successful in proper tumor model.
Collapse
Affiliation(s)
- Tolga Ertekin
- Department of Anatomy, University of Erciyes, School of Medicine, Kayseri, Turkey.
| | | | | | | | | | | |
Collapse
|
36
|
Bresolin ITL, Fioritti RR, Bueno SMA. IgG purification by negative chromatography in amine-based ligands: A comparison of l-lysine and poly-l-lysine. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Brauer R, Beck IM, Roderfeld M, Roeb E, Sedlacek R. Matrix metalloproteinase-19 inhibits growth of endothelial cells by generating angiostatin-like fragments from plasminogen. BMC BIOCHEMISTRY 2011; 12:38. [PMID: 21787393 PMCID: PMC3160879 DOI: 10.1186/1471-2091-12-38] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/25/2011] [Indexed: 11/10/2022]
Abstract
Background Angiogenesis is the process of forming new blood vessels from existing ones and requires degradation of the vascular basement membrane and remodeling of extracellular matrix (ECM) in order to allow endothelial cells to migrate and invade into the surrounding tissue. Matrix metalloproteinases (MMPs) are considered to play a central role in the remodeling of basement membranes and ECM. However, MMPs contribute to vascular remodeling not only by degrading ECM components. Specific MMPs enhance angiogenesis via several ways; they help pericytes to detach from vessels undergoing angiogenesis, release ECM-bound angiogenic growth factors, expose cryptic pro-angiogenic integrin binding sites in the ECM, generate promigratory ECM component fragments, and cleave endothelial cell-cell adhesions. MMPs can also negatively influence the angiogenic process through generating endogenous angiogenesis inhibitors by proteolytic cleavage. Angiostatin, a proteolytic fragment of plasminogen, is one of the most potent antagonists of angiogenesis that inhibits migration and proliferation of endothelial cells. Reports have shown that metalloelastase, pancreas elastase, plasmin reductase, and plasmin convert plasminogen to angiostatin. Results We report here that MMP-19 processes human plasminogen in a characteristic cleavage pattern to generate three angiostatin-like fragments with a molecular weight of 35, 38, and 42 kDa. These fragments released by MMP-19 significantly inhibited the proliferation of HMEC cells by 27% (p = 0.01) and reduced formation of capillary-like structures by 45% (p = 0.05) compared with control cells. As it is known that angiostatin blocks hepatocyte growth factor (HGF)-induced pro-angiogenic signaling in endothelial cells due to structural similarities to HGF, we have analyzed if the plasminogen fragments generated by MMP-19 interfere with this pathway. As it involves the activation of c-met, the receptor of HGF, we could show that MMP-19-dependent processing of plasminogen decreases the phosphorylation of c-met. Conclusion Altogether, MMP-19 exhibits an anti-angiogenic effect on endothelial cells via generation of angiostatin-like fragments.
Collapse
Affiliation(s)
- Rena Brauer
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
38
|
Kim KY, Ahn JH, Cheon HG. Anti-angiogenic action of PPARγ ligand in human umbilical vein endothelial cells is mediated by PTEN upregulation and VEGFR-2 downregulation. Mol Cell Biochem 2011; 358:375-85. [DOI: 10.1007/s11010-011-0989-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/06/2011] [Indexed: 01/23/2023]
|
39
|
Farkas L, Gauldie J, Voelkel NF, Kolb M. Pulmonary Hypertension and Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2011; 45:1-15. [DOI: 10.1165/rcmb.2010-0365tr] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
40
|
Aisina RB, Muhametova LI, Prisyazhnaya NV, Gulin DA, Levashov MY, Gershkovich KB. Mechanism of the inhibitory effect of angiostatin on plasminogen activation by its physiologic activators. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:319-26. [DOI: 10.1134/s1068162011030046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Han QQ, Jin W, Xiao ZF, Huang JC, Ni HB, Kong J, Wu J, Chen B, Liang WB, Dai JW. The promotion of neurological recovery in an intracerebral hemorrhage model using fibrin-binding brain derived neurotrophic factor. Biomaterials 2011; 32:3244-52. [DOI: 10.1016/j.biomaterials.2011.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/13/2011] [Indexed: 12/09/2022]
|
42
|
Yang X, Cai W, Xu Z, Chen J, Li C, Liu S, Yang Z, Pan Q, Li M, Ma J, Gao G. High efficacy and minimal peptide required for the anti-angiogenic and anti-hepatocarcinoma activities of plasminogen K5. J Cell Mol Med 2011; 14:2519-30. [PMID: 20050964 PMCID: PMC3823168 DOI: 10.1111/j.1582-4934.2009.01004.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Kringle 5(K5) is the fifth kringle domain of human plasminogen and its anti-angiogenic activity is more potent than angiostatin that includes the first four kringle fragment of plasminogen. Our recent study demonstrated that K5 suppressed hepatocarcinoma growth by anti-angiogenesis. To find high efficacy and minimal peptide sequence required for the anti-angiogenic and anti-tumour activities of K5, two deletion mutants of K5 were generated. The amino acid residues outside kringle domain of intact K5 (Pro452-Ala542) were deleted to form K5mut1(Cys462-Cys541). The residue Cys462 was deleted again to form K5mut2(Met463-Cys541). K5mut1 specifically inhibited proliferation, migration and induced apoptosis of endothelial cells, with an apparent two-fold enhanced activity than K5. Intraperitoneal injection of K5mut1 resulted in more potent tumour growth inhibition and microvessel density reduction than K5 both in HepA-grafted and Bel7402-xenografted hepatocarcinoma mouse models. These results suggested that K5mut1 has more potent anti-angiogenic activity than intact K5. K5mut2, which lacks only the amino terminal cysteine of K5mut1, completely lost the activity, suggesting that the kringle domain is essential for the activity of K5. The activity was enhanced to K5mut1 level when five acidic amino acids of K5 in NH2 terminal outside kringle domain were replaced by five serine residues (K5mut3). The shielding effect of acidic amino acids may explain why K5mut1 has higher activity. K5, K5mut1 and K5mut3 held characteristic β-sheet spectrum while K5mut2 adopted random coil structure. These results suggest that K5mut1 with high efficacy is the minimal active peptide sequence of K5 and may have therapeutic potential in liver cancer.
Collapse
Affiliation(s)
- Xia Yang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rutland CS, Atkinson SD, Mukhopadhyay M, Jiang K, Soff GA, Mayhew TM, Mitchell CA. Thrombophilic-type placental pathologies and skeletal growth delay following maternal administration of angiostatin4.5 in mice. Biol Reprod 2010; 84:505-13. [PMID: 20980690 DOI: 10.1095/biolreprod.110.083865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During placentation, the concentration of fibrinous deposits on the surfaces of maternal vasculature plays a role in villous development and has been strongly implicated in the pathophysiology of human fetal growth restriction (FGR). Fibrinous deposits are conspicuous sites of platelet aggregation where there is local activation of the hemostatic cascade. During activation of the hemostatic cascade, a number of pro- and antiangiogenic agents may be generated at the cell surface, and an imbalance in these factors may contribute to the placental pathology characteristic of FGR. We tested the hypothesis that angiostatin(4.5) (AS(4.5)), a cleavage fragment of plasminogen liberated at the cell surface, is capable of causing FGR in mice. Increased maternal levels of AS(4.5) in vivo result in reproducible placental pathology, including an altered vascular compartment (both in decidual and labyrinthine layers) and increased apoptosis throughout the placenta. In addition, there is significant skeletal growth delay and conspicuous edema in fetuses from mothers that received AS(4.5). Maternally generated AS(4.5), therefore, can access maternal placental vasculature and have a severe effect on placental architecture and inhibit fetal development in vivo. These findings strongly support the hypothesis that maternal AS(4.5) levels can influence placental development, possibly by directly influencing trophoblast turnover in the placenta, and contribute to fetal growth delay in mice.
Collapse
Affiliation(s)
- Catrin S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Emara M, Obaid L, Johnson S, Bigam DL, Cheung PY. Angiostatins decrease in the kidney of newborn piglets after hypoxia-reoxygenation. Eur J Pharmacol 2010; 644:203-8. [PMID: 20621087 DOI: 10.1016/j.ejphar.2010.06.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 06/11/2010] [Accepted: 06/24/2010] [Indexed: 02/06/2023]
Abstract
Little is known about the expression of kidney angiostatin in the hypoxia and reoxygenation of neonates. In this study, we compared the effect of 21% and 100% reoxygenation on kidney levels of angiostatin and its related factors in newborn piglets subjected to hypoxia-reoxygenation. Newborn piglets were subjected to 2h hypoxia followed by 1h of reoxygenation with either 21% or 100% oxygen and observed for 4days. There were 3 isoforms (38, 43 and 50kDa) of angiostatins identified in the kidney tissue of newborn piglets with the 38kDa being the major isoform (~60%). The 38kDa, but not 43 and 50kDa, angiostatin isoform correlated significantly with the levels of total angiostatin and plasminogen (r=0.95 and r=0.58, respectively). On day 4 of recovery in 100% hypoxic-reoxygenated group, there were decreases in kidney tissue levels of plasminogen, total angiostatin, angiostatin (38 and 43kDa, but not 50kDa), whereas no significant changes were found in the 21% hypoxic-reoxygenated group when compared to the sham-operated piglets with no hypoxia-reoxygenation. Both 21% and 100% hypoxic-reoxygenated groups did not show significant changes in kidney tissue levels of 50kDa angiostatin, MMP-2, MMP-9 and HIF-1alpha. In comparison to 21% oxygen, neonatal resuscitation with 100% oxygen decreased the kidney tissue levels of plasminogen and angiostatin that may play a role in neonatal kidney injury and altered renal development in adulthood.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
45
|
Coppini LP, Barros NM, Oliveira M, Hirata IY, Alves MF, Paschoalin T, Assis DM, Juliano MA, Puzer L, Brömme D, Carmona AK. Plasminogen hydrolysis by cathepsin S and identification of derived peptides as selective substrate for cathepsin V and cathepsin L inhibitor. Biol Chem 2010; 391:561-70. [DOI: 10.1515/bc.2010.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Plasminogen is a glycoprotein implicated in angiogenesis and fibrin clot degradation associated with the release of angiostatin and plasmin activation, respectively. We have recently reported that cathepsin V, but not cathepsins L, B, and K, can release angiostatin-like fragments from plasminogen. Here, we extended the investigation to cathepsin S which has been implicated in angiogenesis and tumor cell proliferation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of plasminogen hydrolysis by cathepsin S revealed generation of two fragments (60 and 38 kDa). Amino-terminal sequencing indicated that cleavage occurs at the Leu469-Leu470 peptide bond. In contrast to cathepsin V, which possesses antiangiogenic activity, cathepsin S plasminogen cleavage products were not capable of inhibiting angiogenesis on endothelial cells. Moreover, we explored the different selectivities presented by cathepsins V and S towards plasminogen and synthesized fluorescence resonance energy transfer peptides encompassing the hydrolyzed peptide bonds by both enzymes. The peptide Abz-VLFEKKQ-EDDnp (Abz=ortho-aminobenzoic acid; EDDnp= N-[2,4-dinitrophenyl]ethylenediamine), hydrolyzed by cath-epsin V at the Phe-Glu bond, is a selective substrate for the enzyme when compared with cathepsins B, L, and S, whereas Abz-VLFEKKVYLQ-EDDnp is an efficient cathepsin L inhibitor. The demonstrated importance of the S3′-P3′ interaction indicates the significance of the extended subsites for enzyme specificity and affinity.
Collapse
|
46
|
Fiber-modified adenovirus can mediate human adipose tissue-derived mesenchymal stem cell-based anti-angiogenic gene therapy. Biotechnol Lett 2010; 32:1181-8. [PMID: 20424891 DOI: 10.1007/s10529-010-0276-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
A fiber-modified adenovirus (rAd5F11B), loaded with the Kringle1-5 gene (rAd-K1-5) was used to infect human adipose tissue-derived mesenchymal stem cells (HAMSCs). At a multiplicity of infection of 20, the transfection efficiency in HAMSCs was 90% and the cell expansion and differentiation of infected HAMSCs were not significantly suppressed. HAMSCs infected with rAd-K1-5 expressed the exogenous Kringle1-5 protein, an angiogenic inhibitor, and conditioned media from HAMSCs expressing the Kringle1-5 protein blocked VEGF-induced neovascularization both in vitro and in vivo. rAd5F11B may therefore be a promising gene transfer vector in HAMSCs-based anti-angiogenic gene therapy because of its low toxicity and high transfection efficiency.
Collapse
|
47
|
Tumor angiogenesis: insights and innovations. JOURNAL OF ONCOLOGY 2010; 2010:132641. [PMID: 20445741 PMCID: PMC2860112 DOI: 10.1155/2010/132641] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 12/21/2022]
Abstract
Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases.
Collapse
|
48
|
Bohnsack RN, Patel M, Olson LJ, Twining SS, Dahms NM. Residues essential for plasminogen binding by the cation-independent mannose 6-phosphate receptor. Biochemistry 2010; 49:635-44. [PMID: 20028034 DOI: 10.1021/bi901779p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) is a multifunctional protein that binds diverse intracellular and extracellular ligands with high affinity. The CI-MPR is a receptor for plasminogen, and this interaction can be inhibited by lysine analogues. To characterize the molecular basis for this interaction, surface plasmon resonance (SPR) analyses were performed using truncated forms of the CI-MPR and plasminogen. The results show that the N-terminal region of the CI-MPR containing domains 1 and 2, but not domain 1 alone, of the receptor's 15-domain extracytoplasmic region binds plasminogen (K(d) = 5 +/- 1 nM) with an affinity similar to that of the full-length receptor (K(d) = 20 +/- 6 nM). In addition to its C-terminal serine protease domain, plasminogen contains lysine binding sites (LBS), which are located within each of its five kringle domains, except kringle 3. We show that kringles 1-4, but not kringles 1-3, bind the CI-MPR, indicating an essential role for the LBS in kringle 4 of plasminogen. To identify the lysine residue(s) of the CI-MPR that serve(s) as an essential determinant for recognition by the LBS of plasminogen, site-directed mutagenesis studies were carried out using a construct encoding the N-terminal three domains of the CI-MPR (Dom1-3His) which contains both a mannose 6-phosphate (Man-6-P) and plasminogen binding site. The results demonstrate two lysine residues (Lys53 located in domain 1 and Lys125 located in the loop connecting domains 1 and 2) of the CI-MPR are key determinants for plasminogen binding but are not required for Man-6-P binding.
Collapse
Affiliation(s)
- Richard N Bohnsack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
49
|
Matsuura E, Shen L, Matsunami Y, Quan N, Makarova M, Geske FJ, Boisen M, Yasuda S, Kobayashi K, Lopez LR. Pathophysiology of β2-glycoprotein I in antiphospholipid syndrome. Lupus 2010; 19:379-84. [DOI: 10.1177/0961203310361352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since β2-glycoprotein I (β2GPI) was described as the major antigenic target for antiphospholipid antibodies, many studies have focused their attention to the physiological role of β2GPI and anti-β2GPI antibodies on autoimmune-mediated thrombosis. Studies reporting the physiological role of β2GPI have been numerous, but the exact mechanism of action(s) has yet to be completely determined. β2GPI’s epitopes for anti-β2GPI autoantibodies have been characterized, however, not all of the heterogeneous anti-β2GPI antibodies are pathogenic. The pathophysiologic role of β2GPI has been reported in the fields of coagulation, fibrinolysis, angiogenesis, and atherosclerosis. Our understanding of the impact of β2GPI, its metabolites and autoantibodies to β2GPI on these physiological functions may contribute to the development of better therapeutic strategies to treat and prevent autoimmune-mediated atherothrombotic vascular disease. Lupus (2010) 19, 379—384.
Collapse
Affiliation(s)
- E. Matsuura
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan,
| | - L. Shen
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Y. Matsunami
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - N. Quan
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - M. Makarova
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - FJ Geske
- Corgenix Inc, Broomfield, CO, USA
| | | | - S. Yasuda
- Department of Medicine , Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - K. Kobayashi
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - LR Lopez
- Corgenix Inc, Broomfield, CO, USA
| |
Collapse
|
50
|
Takahashi S, Shinya T, Sugiyama A. Angiostatin inhibition of vascular endothelial growth factor-stimulated nitric oxide production in endothelial cells. J Pharmacol Sci 2010; 112:432-7. [PMID: 20308796 DOI: 10.1254/jphs.10028fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Angiostatin (AS), a proteolytic fragment of plasminogen, is a potent antiangiogenic factor. It was reported that AS attenuates the vasodilatory response to vascular endothelial growth factor (VEGF) in isolated interventricular arterioles. Here, we investigated the effect of AS on nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs). AS inhibited VEGF-stimulated NO production in a dose-dependent manner, whereas AS alone did not affect basal NO production. Disruption of kringle structures by reduction of disulfide bonds resulted in the loss of the inhibitory effect of AS on VEGF-stimulated NO production. To elucidate how AS might impair VEGF activation of endothelial NO synthase (eNOS), we further examined whether AS would affect Ca(2+)-dependent and -independent pathways of eNOS activation. AS had no effect on the transient increase in cytosolic Ca(2+) levels elicited by VEGF. In contrast, AS prevented VEGF-potentiated eNOS phosphorylation at Ser1177. These results clearly indicate that AS inhibits VEGF-stimulated NO production in HUVECs without affecting basal NO production. The kringle structures of AS are required for this effect, and impairment of Ser1177 phosphorylation of eNOS might be involved in the inhibition of VEGF-stimulated NO production by AS.
Collapse
Affiliation(s)
- Satoru Takahashi
- First Department of Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Japan.
| | | | | |
Collapse
|