1
|
E1B-55K is a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral gene expression in HAdV-C5 infection. J Virol 2022; 96:e0206221. [PMID: 35019711 DOI: 10.1128/jvi.02062-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multifunctional adenoviral E1B-55K phosphoprotein is a major regulator of viral replication and plays key roles in virus-mediated cell transformation. While much is known about its function in oncogenic cell transformation, underlying features and exact mechanisms that implicate E1B-55K in regulation of viral gene expression are less well understood. Therefore, this work aimed at unravelling basic intranuclear principles of E1B-55K-regulated viral mRNA biogenesis using wild type HAdV-C5 E1B-55K, a virus mutant with abrogated E1B-55K expression and a mutant that expresses a phosphomimetic E1B-55K. By subnuclear fractionation, mRNA, DNA and protein analyses as well as luciferase reporter assays, we show that (i) E1B-55K promotes efficient release of viral late mRNAs from their site of synthesis in viral replication compartments (RCs) to the surrounding nucleoplasm, that (ii) E1B-55K modulates the rate of viral gene transcription and splicing in RCs, that (iii) E1B-55K participates in the temporal regulation of viral gene expression, that (iv) E1B-55K can enhance or repress the expression of viral early and late promoters and that (v) the phosphorylation of E1B-55K regulates the temporal effect of the protein on each of these activities. Together, these data demonstrate that E1B-55K is a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral genes during HAdV-C5 infection. Importance Human adenoviruses are useful models to study basic aspects of gene expression and splicing. Moreover, they are one of the most commonly used viral vectors for clinical applications. However, key aspects of the activities of essential viral proteins that are commonly modified in adenoviral vectors have not been fully described. A prominent example is the multifunctional adenoviral oncoprotein E1B-55K that is known to promote efficient viral genome replication and expression while simultaneously repressing host gene expression and antiviral host responses. Our study combined different quantitative methods to study how E1B-55K promotes viral mRNA biogenesis. The data presented here propose a novel role for E1B-55K as a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral genes.
Collapse
|
2
|
Going viral: a review of replication-selective oncolytic adenoviruses. Oncotarget 2016; 6:19976-89. [PMID: 26280277 PMCID: PMC4652981 DOI: 10.18632/oncotarget.5116] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses have had a tumultuous course, from the initial anecdotal reports of patients having antineoplastic effects after natural viral infections a century ago to the development of current cutting-edge therapies in clinical trials. Adenoviruses have long been the workhorse of virotherapy, and we review both the scientific and the not-so-scientific forces that have shaped the development of these therapeutics from wild-type viral pathogens, turning an old foe into a new friend. After a brief review of the mechanics of viral replication and how it has been modified to engineer tumor selectivity, we give particular attention to ONYX-015, the forerunner of virotherapy with extensive clinical testing that pioneered the field. The findings from those as well as other oncolytic trials have shaped how we now view these viruses, which our immune system has evolved to vigorously attack, as promising immunotherapy agents.
Collapse
|
3
|
Passaro C, Borriello F, Vastolo V, Di Somma S, Scamardella E, Gigantino V, Franco R, Marone G, Portella G. The oncolytic virus dl922-947 reduces IL-8/CXCL8 and MCP-1/CCL2 expression and impairs angiogenesis and macrophage infiltration in anaplastic thyroid carcinoma. Oncotarget 2016; 7:1500-15. [PMID: 26625205 PMCID: PMC4811476 DOI: 10.18632/oncotarget.6430] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/15/2015] [Indexed: 01/11/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human solid tumor and current treatments are ineffective in increasing patients' survival. Thus, the development of new therapeutic approaches for ATC is needed. We have previously shown that the oncolytic adenovirus dl922-947 induces ATC cell death in vitro and tumor regression in vivo. However, the impact of dl922-947 on the pro-tumorigenic ATC microenvironment is still unknown. Since viruses are able to regulate cytokine and chemokine production from infected cells, we sought to investigate whether dl922-947 virotherapy has such effect on ATC cells, thereby modulating ATC microenvironment. dl922-947 decreased IL-8/CXCL8 and MCP-1/CCL2 production by the ATC cell lines 8505-c and BHT101-5. These results correlated with dl922-947-mediated reduction of NF-κB p65 binding to IL8 promoter in 8505-c and BHT101-5 cells and CCL2 promoter in 8505-c cells. IL-8 stimulates cancer cell proliferation, survival and invasion, and also angiogenesis. dl922-947-mediated reduction of IL-8 impaired ATC cell motility in vitro and ATC-induced angiogenesis in vitro and in vivo. We also show that dl922-947-mediated reduction of the monocyte-attracting chemokine CCL2 decreased monocyte chemotaxis in vitro and tumor macrophage density in vivo. Interestingly, dl922-947 treatment induced the switch of tumor macrophages toward a pro-inflammatory M1 phenotype, likely by increasing the expression of the pro-inflammatory cytokine interferon-γ. Altogether, we demonstrate that dl922-947 treatment re-shape the pro-tumorigenic ATC microenvironment by modulating cancer-cell intrinsic factors and the immune response. An in-depth knowledge of dl922-947-mediated effects on ATC microenvironment may help to refine ATC virotherapy in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Carmela Passaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Viviana Vastolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Sarah Di Somma
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Eloise Scamardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Vincenzo Gigantino
- CNR Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Naples, Italy
| | - Renato Franco
- Experimental Oncology, IRCCS Fondazione Pascale, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- CNR Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Naples, Italy
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Li J, Li J, Zhang L, Huang Y, Pan JH, Chen KZ. Penehyclidine prevents nuclear factor-kB activation in acute lung injury induced by lipopolysaccharide. J Pharm Pharmacol 2010; 60:1197-205. [PMID: 18718124 DOI: 10.1211/jpp.60.9.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Penehyclidine (PHCD) has been proposed to reduce lung and lethal toxicity. The present study was undertaken to investigate the mechanisms responsible for the protective effect of PHCD against acute lung injury (ALI) in rats. Tail-vein injection of lipopolysaccharide (LPS; 5 mgkg−1) was used to induce ALI in rats. Secondary increases in total protein, lactate dehydrogenase activity in bronchoalveolar lavage fluid and myeloperoxidase in lung tissue were used to evaluate the effects of PHCD on ALI in rats. Activated DNA binding activity and expression of nuclear factor kB (NF-kB) in lung tissue were measured using electrophoretic mobility shift assays assay and immunohistological staining. Levels and mRNA expression of tumour necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were measured by enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction. Pretreatment with PHCD (0.03 mgkg−1, 0.1 mgkg−1 and 0.3 mgkg−1 i.p.) significantly attenuated the LPS-induced changes in lung injury parameters and inhibited the activation and expression of NF-kB in lung tissue. Furthermore, PHCD also substantially reduced the LPS-induced TNF-α and IL-1β mRNA expression and production in lung tissue and suppressed neutrophil recruitment. The results suggest that PHCD attenuates LPS-induced acute lung responses through inhibition of NF-kB activation and LPS-induced TNF-α and IL-1β production and resulting neutrophil recruitment associated with acute lung inflammation and injury. PHCD may be a useful adjuvant to treatment strategies targeting clinical situations of acute inflammation.
Collapse
Affiliation(s)
- Juan Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, China
- The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, China
| | - Jian-hui Pan
- The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Kun-zhou Chen
- The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Segerman A, Lindman K, Mei YF, Allard A, Wadell G. Adenovirus types 11p and 35 attach to and infect primary lymphocytes and monocytes, but hexon expression in T-cells requires prior activation. Virology 2006; 349:96-111. [PMID: 16483626 DOI: 10.1016/j.virol.2005.12.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/01/2005] [Accepted: 12/23/2005] [Indexed: 11/30/2022]
Abstract
Hematopoietic cells are attractive targets for gene therapy, but the conventional adenovirus (Ad) vectors, based on Ad5, transduce these cells inefficiently. One reason for low permissiveness of hematopoietic cells to infection by species C Ads appears to be inefficient attachment. Vectors pseudotyped with species B fibers are clearly more efficient at transducing hematopoietic cells than Ad5. To evaluate which Ad species B type(s) would be the most efficient vector(s) for primary T-cells, B-cells and monocytes, attachment to and entry of the species B1 serotypes 3p and 7p and the species B2 serotypes 11p and 35 into primary PBMCs was studied. Ad11p and Ad35 were the only serotypes to show efficient binding and for which uptake by PBMCs could be detected. Infection of PBMCs by Ad5, Ad11p and Ad35 was compared. Expression of Ad hexons was detected in stimulated PBMCs, most frequently in T-cells, and in unstimulated monocytes, although B-cells appear to be refractory to productive infection. Replication of Ad DNA was severely restricted in most PBMCs. Neither hexon expression nor genome replication could be detected in unstimulated lymphocytes, but FISH and a real-time PCR-based assay suggested that Ad11p and Ad35 DNA reach the nucleus. Activation thus appears to be required for T-cells to be permissive to Ad gene expression. In summary, there are substantial differences between Ad3p and Ad7p on the one hand and Ad11p and Ad35 on the other, in their ability to interact with PBMCs. Ad11p and Ad35 probably represent vectors of choice for these cell types.
Collapse
Affiliation(s)
- Anna Segerman
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
6
|
Schaack J. Induction and Inhibition of Innate Inflammatory Responses by Adenovirus Early Region Proteins. Viral Immunol 2005; 18:79-88. [PMID: 15802954 DOI: 10.1089/vim.2005.18.79] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
First-generation adenovirus (Ad) gene therapy vectors deleted for the E1A, E1B, and E3 regions and carrying foreign genes under the control of strong foreign promoters induce high-level innate inflammatory responses within the first 24 hrs after transduction. Both uptake of the capsid and expression of gene products encoded by the vector contribute to the innate inflammatory response. Natural infections by Ad are frequently asymptomatic, suggesting that Ad has potent methods of inhibiting inflammation. The inability of Ad vectors to counter inflammatory responses suggests that the products of the Ad genes deleted in vector construction play critical roles in inhibiting these responses. Genetic analysis of the roles of Ad early region gene functions in vivo demonstrated that a virus made replication-incompetent by deletion of the preterminal protein gene and deleted for the transcriptional activation function of E1A effectively inhibits the innate inflammatory processes induced by Ad vectors. The mechanism(s) by which the Ad early region proteins inhibit inflammation is complex, as certain early region proteins can promote as well as inhibit inflammation, depending on the genetic context of the virus. Understanding of the roles of the Ad gene products in the induction and inhibition of innate inflammatory functions offers potential for the development of non-inflammatory vectors as well as for understanding of the mechanisms by which inflammation is regulated.
Collapse
Affiliation(s)
- Jerome Schaack
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Mail Stop 8333, P.O. Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Schagen FHE, Ossevoort M, Toes REM, Hoeben RC. Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 2005; 50:51-70. [PMID: 15094159 DOI: 10.1016/s1040-8428(03)00172-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2003] [Indexed: 01/05/2023] Open
Abstract
Human adenoviruses have been adopted as attractive vectors for in vivo gene therapy since they have a well-characterized genomic organization, can be grown to high titres and efficiently transduce a wide spectrum of dividing and non-dividing cells. However, the first-generation of adenoviral (Ad) vectors yielded only transient expression of the transgene in most immunocompetent mice. This constituted a major limitation of this early vector type. In contrast, persistent transgene expression can be established in immunodeficient mice. This suggests that the immunogenicity of adenoviral vectors limits the effective period of adenovirus-based gene therapy. Much effort has been put in devising strategies to circumvent the limitations imposed onto gene therapy by the immune system. Improvements in vector design have significantly improved the performance of the adenovirus vectors. Based on these results it is reasonable to anticipate that new modifications of the vectors will overcome some of the immunological barriers and will further expand the applicability of adenovirus-derived vectors.
Collapse
Affiliation(s)
- Frederik H E Schagen
- Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
8
|
Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WSM. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 2004; 23:75-111. [PMID: 14690856 DOI: 10.1080/08830180490265556] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the evolutionary battle between viruses and their hosts, viruses have armed themselves with weapons to defeat the host's attacks on infected cells. Various proteins encoded in the adenovirus (Ad) E3 transcription unit protect cells from killing mediated by cytotoxic T cells and death-inducing cytokines such as tumor necrosis factor (TNF), Fas ligand, and TNF-related apoptosis-inducing ligand (TRAIL). The viral protein E3-gp19 K blocks MHC class-I-restricted antigen presentation, which diminishes killing by cytotoxic T cells. The receptor internalization and degradation (RID) complex (formerly E3-10.4 K/14.5 K) stimulates the clearance from the cell surface and subsequent degradation of the receptors for Fas ligand and TRAIL, thereby preventing the action of these important immune mediators. RID also downmodulates the epidermal growth factor receptor (EGFR), although what role, if any, this function has in immune regulation is uncertain. In addition, RID antagonizes TNF-mediated apoptosis and inflammation through a mechanism that does not primarily involve receptor downregulation. E3-6.7 K functions together with RID in downregulating some TRAIL receptors and may block apoptosis independently of other E3 proteins. Furthermore, E3-14.7 K functions as a general inhibitor of TNF-mediated apoptosis and blocks TRAIL-induced apoptosis. Finally, after expending great effort to maintain cell viability during the early part of the virus replication cycle, Ads lyse the cell to allow efficient virus release and dissemination. To perform this task subgroup C Ads synthesize a protein late in infection named ADP (formerly E3-11.6 K) that is required for efficient virus release. This review focuses on recent experiments aimed at discovering the mechanism of action of these critically important viral proteins.
Collapse
Affiliation(s)
- Drew L Lichtenstein
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
9
|
Schaack J, Bennett ML, Colbert JD, Torres AV, Clayton GH, Ornelles D, Moorhead J. E1A and E1B proteins inhibit inflammation induced by adenovirus. Proc Natl Acad Sci U S A 2004; 101:3124-9. [PMID: 14976240 PMCID: PMC365754 DOI: 10.1073/pnas.0303709101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replication-defective human adenovirus (Ad) group C transducing vectors, most of which have the E1A, E1B, and E3 genes deleted, are highly inflammatory despite the fact that the parental viruses typically cause subclinical or mild infections. To investigate this paradox, the roles that the E1A, E1B, and E3 genes play in inflammation were tested by using replication-incompetent viruses carrying a deletion of the preterminal protein gene. The viruses were injected into BALB/c mouse ears, and edema was monitored as a sensitive surrogate marker of inflammation. A virus deleted for the E1A 289R (transcription activating) protein was noninflammatory, and inhibited edema induced by empty virus particles. The E1A 243R and E1B 55-kDa (p53 binding) proteins play the most important roles in inhibition of inflammation by the noninflammatory virus. The E1B 19-kDa antiapoptotic protein inhibited edema when both the E1A 243R and E1B 55-kDa proteins were expressed but strongly induced edema when only one was expressed. E3 proteins had their greatest effect on the inhibition of edema induced by the E1A 289R protein. The results support a model in which inflammation is countered through a mechanism that involves complex genetic interactions between Ad early region proteins and offer promise for the design and construction of noninflammatory Ad gene therapy vectors that are relatively easy to grow and purify.
Collapse
Affiliation(s)
- Jerome Schaack
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kajon AE, Gigliotti AP, Harrod KS. Acute inflammatory response and remodeling of airway epithelium after subspecies B1 human adenovirus infection of the mouse lower respiratory tract. J Med Virol 2003; 71:233-44. [PMID: 12938198 DOI: 10.1002/jmv.10475] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the well-recognized role of adenoviruses of species B in the etiology of severe respiratory disease, the lack of an experimental in vivo model system has limited the understanding of the molecular pathogenesis of species B adenovirus-induced pneumonia. Intratracheal instillation of 5 x 10(8) plaque-forming units (pfu) of adenoviruses 3p and 7h resulted in a robust inflammatory response in the lungs of infected mice. A marked infiltration of neutrophils into the lung air spaces was observed at 1 and 2 days postinfection (dpi), with a concomitant increase in the levels of neutrophil chemokines MIP-2 and KC. The overall histological severity scores were significantly higher for Ad3p-infected mice at 2 dpi, but similar between the two viruses at other time points. Remodeling of the airway epithelia and mucous cell metaplasia were noted in the proximal airways of infected mice, indicating marked epithelial differentiation and/or injury. The proinflammatory cytokines interleukin-beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma [see symbol in text]), and interleukin-12 (IL-12) were induced by viral infection. Expression of the early viral immunomodulatory genes E3-15.3K and E3gp19K mRNA was readily detectable in the lungs of infected mice by reverse transcription-polymerase chain reaction (RT-PCR) at 1 and 2 dpi, coinciding with the peak levels of TNF-alpha. While the detection of gp19K mRNA declined thereafter, 15.3K mRNA was detectable up to 6 dpi. Our results indicate that human Ad3 and Ad7 cause marked pulmonary pathology, inducing similar host responses in the respiratory tract, thus validating the use of the mouse model for the study of early virus-host interactions during lung infection by adenoviruses of subspecies B1.
Collapse
Affiliation(s)
- Adriana E Kajon
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | |
Collapse
|
11
|
Mahr JA, Boss JM, Gooding LR. The adenovirus e3 promoter is sensitive to activation signals in human T cells. J Virol 2003; 77:1112-9. [PMID: 12502827 PMCID: PMC140835 DOI: 10.1128/jvi.77.2.1112-1119.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The group C adenoviruses typically cause acute respiratory disease in young children. In addition, a persistent phase of infection has been observed in which virus may be shed for years without producing overt pathology. Our laboratory recently reported that group C adenovirus DNA can be found in tonsil and adenoid T lymphocytes from the majority of pediatric donors (C. T. Garnett, D. Erdman, W. Xu, and L. R. Gooding, J. Virol. 76:10608-10616, 2002). This finding suggests that immune evasion strategies of human adenoviruses may be directed, in part, toward protection of persistently or latently infected T lymphocytes. Many of the adenoviral gene products implicated in prevention of immune destruction of virus-infected cells are encoded within the E3 transcription unit. In this study, the E3 promoter was evaluated for sensitivity to T-cell activation signals by using a promoter reporter plasmid. Indeed, this promoter is extremely sensitive to T-cell activation, with phorbol myristate acetate (PMA) plus ionomycin increasing E3-directed transcription 100-fold. By comparison, in the same cells E1A expression leads to a 5.5-fold increase in transcription from the E3 promoter. In contrast to induction by E1A, activation by PMA plus ionomycin requires the two E3 NF-kappaB binding sites. Interestingly, expression of E1A inhibits induction of the E3 promoter in response to T-cell activation while increasing E3 promoter activity in unactivated cells. Collectively, these data suggest that the E3 promoter may have evolved the capacity to respond to T-cell activation in the absence of E1A expression and may act to upregulate antiapoptotic gene expression in order to promote survival of persistently infected T lymphocytes.
Collapse
Affiliation(s)
- Jeffrey A Mahr
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
12
|
Burgert HG, Ruzsics Z, Obermeier S, Hilgendorf A, Windheim M, Elsing A. Subversion of host defense mechanisms by adenoviruses. Curr Top Microbiol Immunol 2002; 269:273-318. [PMID: 12224514 DOI: 10.1007/978-3-642-59421-2_16] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenoviruses (Ads) cause acute and persistent infections. Alike the much more complex herpesviruses, Ads encode numerous immunomodulatory functions. About a third of the viral genome is devoted to counteract both the innate and the adaptive antiviral immune response. Immediately upon infection, E1A blocks interferon-induced gene expression and the VA-RNA inhibits interferon-induced PKR activity. At the same time, E1A reprograms the cell for DNA synthesis and induces the intrinsic cellular apoptosis program that is interrupted by E1B/19K and E1B/55K proteins, the latter inhibits p53-mediated apoptosis. Most other viral stealth functions are encoded by a separate transcription units, E3. Several E3 products prevent death receptor-mediated apoptosis. E3/14.7K seems to interfere with the cytolytic and pro-inflammatory activities of TNF while E3/10.4K and 14.5K proteins remove Fas and TRAIL receptors from the cell surface by inducing their degradation in lysosomes. These and other functions that may afect granule-mediated cell death might drastically limit lysis by NK cells and cytotoxic T cells (CTL). Moreover, Ads interfere with recognition of infected cell by CTL. The paradigmatic E3/19K protein subverts antigen presentation by MHC class I molecules by inhibiting their transport to the cell surface. In concert, these viral countermeasures ensure prolonged survival in the infected host and, as a consequence, facilitate transmission. Elucidating the molecular mechanisms of Ad-mediated immune evasion has stimulated corresponding research on other viruses. This knowledge will also be instrumental for designing better vectors for gene therapy and vaccination, and may lead to a more rational treatment of life-threatening Ad infections, e.g. in transplantation patients.
Collapse
Affiliation(s)
- H G Burgert
- Max von Pettenkofer-Institut, Lehrstuhl Virologie, Genzentrum der Ludwig-Maximilians-Universität, Feodor-Lynen-Str. 25, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Liao PH, Chen TH, Liao PY. Complex Formation between the Lumenal Domain of Adenovirus E3-19k Protein and the Extracellular Domain of Class I MHC Molecule In Vitro. J CHIN CHEM SOC-TAIP 2002. [DOI: 10.1002/jccs.200200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Moise AR, Grant JR, Vitalis TZ, Jefferies WA. Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release. J Virol 2002; 76:1578-87. [PMID: 11799152 PMCID: PMC135875 DOI: 10.1128/jvi.76.4.1578-1587.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E3-6.7K is a small and hydrophobic membrane glycoprotein encoded by the E3 region of subgroup C adenovirus. Recently, E3-6.7K has been shown to be required for the downregulation of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors by the adenovirus E3/10.4K and E3/14.5K complex of proteins. We demonstrate here that E3-6.7K has additional protective roles, independent of other virus proteins. In transfected Jurkat T-cell lymphoma cells, E3-6.7K was found to maintain endoplasmic reticulum-Ca(2+) homeostasis and inhibit the induction of apoptosis by thapsigargin. The presence of E3-6.7K also lead to a reduction in the TNF-induced release of arachidonic acid from transfected U937 human histiocytic lymphoma cells. In addition, E3-6.7K protected cells against apoptosis induced through Fas, TNF receptor, and TRAIL receptors. Therefore, E3-6.7K confers a wide range of protective effects against both Ca(2+) flux-induced and death receptor-mediated apoptosis.
Collapse
Affiliation(s)
- Alexander R Moise
- Biotechnology Laboratory, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
15
|
Evasion of the immune system by tumor viruses. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0168-7069(01)05014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Affiliation(s)
- W C Russell
- Biomolecular Sciences Building, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK1
| |
Collapse
|
17
|
Wold WS, Doronin K, Toth K, Kuppuswamy M, Lichtenstein DL, Tollefson AE. Immune responses to adenoviruses: viral evasion mechanisms and their implications for the clinic. Curr Opin Immunol 1999; 11:380-6. [PMID: 10448144 DOI: 10.1016/s0952-7915(99)80064-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenoviruses encode proteins that block responses to interferons, intrinsic cellular apoptosis, killing by CD8(+) cytotoxic T lymphocytes and killing by the death ligands TNF, Fas ligand and TRAIL. The viral proteins are believed to prolong acute and persistent adenovirus infections. The proteins may prove useful in protecting adenovirus gene therapy vectors and transplanted cells from the immune system.
Collapse
Affiliation(s)
- W S Wold
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1402 South Grand Boulevard, St Louis, MO 63104, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Jilling T, Haddad IY, Cheng SH, Matalon S. Nitric oxide inhibits heterologous CFTR expression in polarized epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L89-96. [PMID: 10409234 DOI: 10.1152/ajplung.1999.277.1.l89] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (. NO) has been implicated in a wide range of autocrine and paracrine signaling mechanisms. Herein, we assessed the role of exogenous. NO in the modulation of heterologous gene expression in polarized kidney epithelial cells (LLC-PK(1)) that were stably transduced with a cDNA encoding human wild-type cystic fibrosis transmembrane conductance regulator (CFTR) under the control of a heavy metal-sensitive metallothionein promoter (LLC-PK(1)-WTCFTR). Exposure of these cells to 125 microM DETA NONOate at 37 degrees C for 24 h (a chemical. NO donor) diminished Zn(2+)-induced and uninduced CFTR protein levels by 43.3 +/- 5.1 and 34.4 +/- 17.1% from their corresponding control values, respectively. These changes did not occur if red blood cells, effective scavengers of. NO, were added to the medium. Exposure to. NO did not alter lactate dehydrogenase release in the medium or the extent of apoptosis. Coculturing LLC-PK(1)-WTCFTR cells with murine fibroblasts that were stably transduced with the human inducible. NO synthase cDNA gene also inhibited CFTR protein expression in a manner that was antagonized by 1 mM N(G)-monomethyl-L-arginine in the medium. Pretreatment of LLC-PK(1)-WTCFTR with ODQ, an inhibitor of guanylyl cyclase, did not affect the ability of. NO to inhibit heterologous CFTR expression; furthermore, 8-bromo-cGMP had no effect on heterologous CFTR expression. These data indicate that. NO impairs the heterologous expression of CFTR in epithelial cells at the protein level via cGMP-independent mechanisms.
Collapse
Affiliation(s)
- T Jilling
- Department of Pediatrics, The Evanston Hospital, Northwestern University Medical School, Evanston, Illinois 60201, USA
| | | | | | | |
Collapse
|
19
|
Ohkawa T, Ueki N, Taguchi T, Shindo Y, Adachi M, Amuro Y, Hada T, Higashino K. Stimulation of hyaluronan synthesis by tumor necrosis factor-alpha is mediated by the p50/p65 NF-kappa B complex in MRC-5 myofibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1448:416-24. [PMID: 9990294 DOI: 10.1016/s0167-4889(98)00155-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The lesions of fibrocontractive diseases result from an excessive myofibroproliferative response to numerous forms of inflammatory stimuli, which elicit the net deposition of extracellular matrix (ECM) in the interstitium of the affected tissue. Hyaluronan (HA), reported to be a key player supporting cellular migration and adherence, is a major component of ECM that undergoes dynamic regulation during inflammation. The molecular regulation of HA biosynthesis by inflammatory cytokines on myofibroblasts is not yet completely understood. Here we report the biochemical characteristics of the lung myofibroblast cell line MRC-5, and we demonstrate that the production of HA by this cell line is inducible by the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), at the message level of HA synthase (HAS). In TNF-alpha-stimulated MRC-5 cells, DNA-binding and competition experiments indicated that the predominant NF-kappa B binding activity detected with nuclear extract-stimulated cells is mediated by the p50/p65 complex. Using antisense oligonucleotides, we confirmed that the TNF-alpha-stimulation of HA synthesis by MRC-5 cells is dependent on the activation of the p50/p65 NF-kappa B complex. These findings indicate that TNF-alpha production within inflamed tissues may enhance the HA synthesis via the transcriptional induction of HAS on myofibroblasts, thereby providing a provisional matrix for supporting cellular migration and adhesion, and that the p50/p65 NF-kappa B complex that plays an important role in the regulation of HA production by TNF-alpha might be an appropriate target for therapeutic compounds to treat tissue fibrosis accompanied by inflammation.
Collapse
Affiliation(s)
- T Ohkawa
- Third Department of Internal Medicine, Hyogo College of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lieber A, He CY, Meuse L, Himeda C, Wilson C, Kay MA. Inhibition of NF-kappaB activation in combination with bcl-2 expression allows for persistence of first-generation adenovirus vectors in the mouse liver. J Virol 1998; 72:9267-77. [PMID: 9765474 PMCID: PMC110346 DOI: 10.1128/jvi.72.11.9267-9277.1998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
NF-kappaB is a key regulator of the innate antiviral immune response, due in part to its transcriptional activation of cytokines and adhesion molecules, which, in turn, function in chemotaxis and activation of inflammatory cells. We reported earlier that viral gene expression in hepatocytes transduced with first-generation (E1-deleted) adenoviruses induced NF-kappaB activation, elevation of serum cytokines, and hepatocellular apoptosis during the first days postinfusion. These events did not occur in mice infused with an adenovirus vector deleted for E1, E2, E3, and late gene expression. In the present study, we used an adenovirus expressing an IkappaBalpha supersuppressor (Ad.IkappaBM) and bcl-2 transgenic mice to unravel the role of virus-induced NF-kappaB activation and apoptosis in the clearance of recombinant adenovirus vectors from the liver. The combined action of IkappaBM and Bcl-2 allowed for vector persistence in livers of C57BL/6 x C3H mice. In the absence of Bcl-2, IkappaBM expression in mouse livers significantly reduced NF-kappaB activation, cytokine expression, leukocyte infiltration, and the humoral immune response against the transgene product; however, this was not sufficient to prevent the decline of vector DNA in transduced cells. Infusion of Ad.IkappaBM caused extended apoptosis predominantly in periportal liver regions, indicating that NF-kappaB activation may protect transduced hepatocytes from apoptosis induced by adenovirus gene products. To confer vector persistence, bcl-2 transgene expression was required to block virus-induced apoptosis if NF-kappaB protection was inactivated by IkappaBM. Expression of gene products involved in early stages of apoptotic pathways was up-regulated in response to virus infusion in bcl-2 transgenic mice, which may represent a compensatory effect. Our study supports the idea that the suppression of innate defense mechanisms improves vector persistence.
Collapse
Affiliation(s)
- A Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington 98115, USA
| | | | | | | | | | | |
Collapse
|
21
|
Elsing A, Burgert HG. The adenovirus E3/10.4K-14.5K proteins down-modulate the apoptosis receptor Fas/Apo-1 by inducing its internalization. Proc Natl Acad Sci U S A 1998; 95:10072-7. [PMID: 9707602 PMCID: PMC21463 DOI: 10.1073/pnas.95.17.10072] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1998] [Accepted: 06/05/1998] [Indexed: 01/25/2023] Open
Abstract
Adenoviruses (Ads) have evolved multiple mechanisms to evade the host immune response. Several of the immunomodulatory Ad proteins are encoded in early transcription unit 3 (E3). The E3/19K protein interferes with antigen presentation and T cell recognition, whereas the E3/10.4K, 14.5K, and 14.7K proteins can protect cells from tumor necrosis factor alpha-mediated lysis. Here, we describe an additional activity of E3 proteins. Transfectants expressing all E3 proteins of Ad2 exhibit a profound reduction of the apoptosis receptor CD95 (Fas, APO-1) on the cell surface. In contrast, cells expressing only the E3A region have normal Fas levels. Thus, one of the E3B proteins (10.4K, 14.5K, or 14.7K) seems to be responsible for this effect. To identify the E3B products involved, each individual E3B ORF was selectively disrupted. Examination of stable cell lines containing the mutated E3 regions showed that Fas expression is restored when either the 10.4K or the 14.5K ORF is disrupted, whereas mutation of the 14.7K ORF does not rescue Fas expression. Loss of Fas on the cell surface is accompanied by a similar decrease of total Fas levels. However, in the presence of lysosomotropic agents Fas accumulates in endosomal/lysosomal vesicles, indicating that 10.4K-14.5K induce internalization and degradation of Fas. Down-regulation of Fas but not CD40 is also observed during infection and as a consequence, Ad-infected cells are protected from Fas-mediated apoptosis. Thus, the Fas system is implicated in Ad pathogenesis.
Collapse
Affiliation(s)
- A Elsing
- Max von Pettenkofer-Institut, Lehrstuhl Virologie, Genzentrum der Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | |
Collapse
|
22
|
|
23
|
Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B, Kay MA. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 1997; 71:8798-807. [PMID: 9343240 PMCID: PMC192346 DOI: 10.1128/jvi.71.11.8798-8807.1997] [Citation(s) in RCA: 344] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Systemic application of first-generation adenovirus induces pathogenic effects in the liver. To begin unraveling the mechanisms underlying early liver toxicity after adenovirus infusion, particularly the role of macrophage activation and expression of viral genes in transduced target cells, first-generation adenovirus or adenovirus vectors that lacked most early and late gene expression were administered to C3H/HeJ mice after transient depletion of Kupffer cells by gadolinium chloride treatment. Activation of NF-kappaB, and the serum levels of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) were studied in correlation with liver damage, apoptosis, and hepatocellular DNA synthesis. While Kupffer cell depletion nearly eliminated adenovirus-induced TNF release, it resulted in a more robust IL-6 release. These responses were greatly reduced in animals receiving the deleted adenovirus. Although there were quantitative differences, NF-kappaB activation was observed within minutes of first-generation or deleted adenovirus vector administration regardless of the status of the Kupffer cells, suggesting that the induction is related to a direct effect of the virus particle on the hepatocyte. Early liver toxicity as determined by serum glutamic-pyruvic transaminase elevation and inflammatory cell infiltrates appeared to be dependent on adenovirus-mediated early gene expression and intact Kupffer cell function. Kupffer cell depletion had little effect on adenovirus-mediated hepatocyte apoptosis but did increase hepatocellular DNA synthesis. Finally, Kupffer cell depletion decreased the persistence of transgene (human alpha1-antitrypsin [hAAT]) expression that was associated with a more pronounced humoral immune response against hAAT. The elucidation of these events occurring after intravenous adenovirus injection will be important in developing new vectors and transfer techniques with reduced toxicity.
Collapse
Affiliation(s)
- A Lieber
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Viruses that establish persistent infections in their host, such as herpesviruses, adenoviruses or HIV, express proteins designed to pre-empt or evade recognition and elimination by MHC class I restricted CD8+ T lymphocytes. Notable discoveries during the annual period of review have demonstrated that, in principle, each single step within the MHC class I pathway of antigen processing and presentation is fair game for manipulation by viral functions. The viral factors that are natural inhibitors of this pathway have been instrumental for the elucidation of the distinct molecular mechanisms that are exploited by viruses. The viral stealth strategies that downregulate MHC class I protein surface expression may lead, however, to a higher susceptibility of virus-infected cells to natural killer cell activity. Strikingly, there is evidence that some viruses counteract increased natural killer cell recognition by expressing viral MHC class I homologues that function as surrogate inhibitors of natural killer cell activity.
Collapse
Affiliation(s)
- H Hengel
- Max von Pettenkofer-Institut, Lehrstuhl Virologie, Genzentrum, Ludwig Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, München, Germany.
| | | |
Collapse
|