1
|
N-glycosylation of mannose receptor (CD206) regulates glycan binding by C-type lectin domains. J Biol Chem 2022; 298:102591. [PMID: 36244450 PMCID: PMC9672410 DOI: 10.1016/j.jbc.2022.102591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
The macrophage mannose receptor (MR, CD206) is a transmembrane endocytic lectin receptor, expressed in selected immune and endothelial cells, and is involved in immunity and maintaining homeostasis. Eight of the ten extracellular domains of the MR are C-type lectin domains (CTLDs) which mediate the binding of mannose, fucose, and GlcNAc in a calcium-dependent manner. Previous studies indicated that self-glycosylation of MR regulates its glycan binding. To further explore this structure-function relationship, we studied herein a recombinant version of mouse MR CTLD4-7 fused to human Fc-portion of IgG (MR-Fc). The construct was expressed in different glycosylation-mutant cell lines to study the influence of differential glycosylation on receptor glycan-binding properties. We conducted site-specific N- and O-glycosylation analysis and glycosylation site characterization using mass spectrometry by which several novel O-glycosylation sites were identified in mouse MR and confirmed in human full-length MR. This information guided experiments evaluating the receptor functionality by glycan microarray analysis in combination with glycan-modifying enzymes. Treatment of active MR-Fc with combinations of exoglycosidases, including neuraminidase and galactosidases, resulted in the loss of trans-binding (binding of MR CTLDs to non-MR glycans), due to unmasking of terminal, nonreducing GlcNAc in N-glycans of the MR CTLDs. Regalactosylation of N-glycans rescues mannose binding by MR-Fc. Our results indicate that glycans within the MR CTLDs act as a regulatory switch by masking and unmasking self-ligands, including terminal, nonreducing GlcNAc in N-glycans, which could control MR activity in a tissue- and cell-specific manner or which potentially affect bacterial pathogenesis in an immunomodulatory fashion.
Collapse
|
2
|
The macrophage galactose-type lectin can function as an attachment and entry receptor for influenza virus. J Virol 2013; 88:1659-72. [PMID: 24257596 DOI: 10.1128/jvi.02014-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Specific protein receptors that mediate internalization and entry of influenza A virus (IAV) have not been identified for any cell type. Sialic acid (SIA), the primary attachment factor for IAV hemagglutinin, is expressed by numerous cell surface glycoproteins and glycolipids, confounding efforts to identify specific receptors involved in virus infection. Lec1 Chinese hamster ovary (CHO) epithelial cells express cell surface SIA and bind IAV yet are largely resistant to infection. Here, we demonstrate that expression of the murine macrophage galactose-type lectin 1 (MGL1) by Lec1 cells enhanced Ca(2+)-dependent IAV binding and restored permissivity to infection. Lec1 cells expressing MGL1 were infected in the presence or absence of cell surface SIA, indicating that MGL1 can act as a primary receptor or as a coreceptor with SIA. Lec1 cells expressing endocytosis-deficient MGL1 mediated Ca(2+)-dependent IAV binding but were less sensitive to IAV infection, indicating that direct internalization via MGL1 can result in cellular infection. Together, these studies identify MGL1 as a cell surface glycoprotein that can act as an authentic receptor for both attachment and infectious entry of IAV.
Collapse
|
3
|
Langhans M, Marcote MJ, Pimpl P, Virgili-López G, Robinson DG, Aniento F. In vivo Trafficking and Localization of p24 Proteins in Plant Cells. Traffic 2008; 9:770-85. [DOI: 10.1111/j.1600-0854.2008.00719.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Verdile G, Gandy SE, Martins RN. The role of presenilin and its interacting proteins in the biogenesis of Alzheimer's beta amyloid. Neurochem Res 2007; 32:609-23. [PMID: 16944319 PMCID: PMC1832151 DOI: 10.1007/s11064-006-9131-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2006] [Indexed: 01/07/2023]
Abstract
The biogenesis and accumulation of the beta amyloid protein (Abeta) is a key event in the cascade of oxidative and inflammatory processes that characterises Alzheimer's disease. The presenilins and its interacting proteins play a pivotal role in the generation of Abeta from the amyloid precursor protein (APP). In particular, three proteins (nicastrin, aph-1 and pen-2) interact with presenilins to form a large multi-subunit enzymatic complex (gamma-secretase) that cleaves APP to generate Abeta. Reconstitution studies in yeast and insect cells have provided strong evidence that these four proteins are the major components of the gamma-secretase enzyme. Current research is directed at elucidating the roles that each of these protein play in the function of this enzyme. In addition, a number of presenilin interacting proteins that are not components of gamma-secretase play important roles in modulating Abeta production. This review will discuss the components of the gamma-secretase complex and the role of presenilin interacting proteins on gamma-secretase activity.
Collapse
Affiliation(s)
- Giuseppe Verdile
- Centre of Excellence for Alzheimer’s disease Research and Care, and the Sir James McCusker Alzheimer’s Disease Research Unit, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, 100 Joondalup Drive, Joondalup, 6027 WA Australia
- Hollywood Private Hospital, Nedlands, WA Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA Australia
| | - Samuel E Gandy
- Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA USA
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s disease Research and Care, and the Sir James McCusker Alzheimer’s Disease Research Unit, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, 100 Joondalup Drive, Joondalup, 6027 WA Australia
- Hollywood Private Hospital, Nedlands, WA Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA Australia
| |
Collapse
|
5
|
Su Y, Bakker T, Harris J, Tsang C, Brown GD, Wormald MR, Gordon S, Dwek RA, Rudd PM, Martinez-Pomares L. Glycosylation influences the lectin activities of the macrophage mannose receptor. J Biol Chem 2005; 280:32811-20. [PMID: 15983039 DOI: 10.1074/jbc.m503457200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mannose receptor (MR) is a heavily glycosylated endocytic receptor that recognizes both mannosylated and sulfated ligands through its C-type lectin domains and cysteine-rich (CR) domain, respectively. Differential binding properties have been described for MR isolated from different sources, and we hypothesized that this could be due to altered glycosylation. Using MR transductants and purified MR, we demonstrate that glycosylation differentially affects both MR lectin activities. MR transductants generated in glycosylation mutant cell lines lacked most mannose internalization activity, but could internalize sulfated glycans. Accordingly, purified MR bearing truncated Man5-GlcNAc2 glycans (Man5 -MR) or non-sialylated complex glycans (SA0-MR) did not bind mannosylated glycans, but could recognize SO4-3-Gal in vitro. Additional studies showed that, although mannose recognition was largely independent of the oligomerization state of the protein, recognition of sulfated carbohydrates was mostly mediated by self-associated MR and that, in SA0-MR, there was a higher proportion of oligomeric MR. These results suggest that self-association could lead to multiple presentation of CR domains and enhanced avidity for sulfated sugars and that non-sialylated MR is predisposed to oligomerize. Therefore, the glycosylation of MR, terminal sialylation in particular, could influence its binding properties at two levels. (i) It is required for mannose recognition; and (ii) it modulates the tendency of MR to self-associate, effectively regulating the avidity of the CR domain for sulfated sugar ligands.
Collapse
Affiliation(s)
- Yunpeng Su
- Glycobiology Institute and the Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rodríguez A, Esteban MA, Meseguer J. A mannose-receptor is possibly involved in the phagocytosis of Saccharomyces cerevisiae by seabream (Sparus aurata L.) leucocytes. FISH & SHELLFISH IMMUNOLOGY 2003; 14:375-388. [PMID: 12711272 DOI: 10.1006/fsim.2002.0446] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper the possible involvement of the mannose-receptor on the non-specific recognition and phagocytosis of heat killed yeast cells (Saccharomyces cerevisiae) by gilthead seabream (Sparus aurata L.) head-kidney leucocytes was established by studying the ability of different sugars to inhibit the uptake of the yeast cells by leucocytes. Leucocytes were preincubated for 30min with different concentrations of sugar (alpha-mannan, d-mannose, d-fucose, l-fucose, d-glucose, d-glucosamine and n-acetyl-glucosamine, all of them described as specific ligands of the vertebrate mannose-receptor) and afterwards incubated with FITC-labelled yeast cells for phagocytosis assays. The phagocytic ability (percentage of cells with one or more ingested yeast cells within the total cell population) and capacity (number of ingested yeast cells per cell) of leucocytes was analysed by flow cytometry. The results demonstrate the potential existence of a specific receptor-sugar or receptor-yeast cell binding process, which was saturable, specific and dose-dependent. More specifically, when leucocytes were preincubated with appropriate doses of d-mannose, d- or l-fucose, d-glucose or n-acetyl-glucosamine the phagocytosis of yeast cells by head-kidney leucocytes was partially blocked. Seabream leucocytes were also preincubated with chloroquine, a lysosomotropic drug which downregulates (in a nonspecific manner) the expression of mannose-receptors in mammals, before phagocytosis assays were performed. The results demonstrated that the phagocytosis of yeast was completely blocked by this substance. The overall results seem to corroborate the presence of the mannose-receptor in seabream phagocytes, which is involved in the non-specific binding and phagocytosis of yeast cells by head-kidney leucocytes.
Collapse
Affiliation(s)
- A Rodríguez
- Department of Cell Biology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | | | |
Collapse
|
7
|
Beharka AA, Gaynor CD, Kang BK, Voelker DR, McCormack FX, Schlesinger LS. Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. THE JOURNAL OF IMMUNOLOGY 2002; 169:3565-73. [PMID: 12244146 DOI: 10.4049/jimmunol.169.7.3565] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inhaled particulates and microbes are continually cleared by a complex array of lung innate immune determinants, including alveolar macrophages (AMs). AMs are unique cells with an enhanced capacity for phagocytosis that is due, in part, to increased activity of the macrophage mannose receptor (MR), a pattern recognition receptor for various microorganisms. The local factors that "shape" AM function are not well understood. Surfactant protein A (SP-A), a major component of lung surfactant, participates in the innate immune response and can enhance phagocytosis. Here we show that SP-A selectively enhances MR expression on human monocyte-derived macrophages, a process involving both the attached sugars and collagen-like domain of SP-A. The newly expressed MR is functional. Monocyte-derived macrophages on an SP-A substrate demonstrated enhanced pinocytosis of mannose BSA and phagocytosis of Mycobacterium tuberculosis lipoarabinomannan-coated microspheres. The newly expressed MR likely came from intracellular pools because: 1) up-regulation of the MR by SP-A occurred by 1 h, 2) new protein synthesis was not necessary for MR up-regulation, and 3) pinocytosis of mannose BSA via MR recycling was increased. AMs from SP-A(-/-) mice have reduced MR expression relative to SP-A(+/+). SP-A up-regulation of MR activity provides a mechanism for enhanced phagocytosis of microbes by AMs, thereby enhancing lung host defense against extracellular pathogens or, paradoxically, enhancing the potential for intracellular pathogens to enter their intracellular niche. SP-A contributes to the alternative activation state of the AM in the lung.
Collapse
MESH Headings
- Adjuvants, Immunologic/deficiency
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Adult
- Animals
- Cells, Cultured
- Collagen/physiology
- Humans
- Iodine Radioisotopes/metabolism
- Lectins, C-Type
- Lipopolysaccharides/metabolism
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/microbiology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/microbiology
- Mannose/metabolism
- Mannose Receptor
- Mannose-Binding Lectins
- Mice
- Mice, Knockout
- Microspheres
- Monocytes/immunology
- Monocytes/metabolism
- Oligosaccharides/physiology
- Phagocytosis/genetics
- Phagocytosis/immunology
- Protein Structure, Tertiary/genetics
- Pulmonary Surfactant-Associated Protein A/deficiency
- Pulmonary Surfactant-Associated Protein A/genetics
- Pulmonary Surfactant-Associated Protein A/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- Serum Albumin/metabolism
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Alison A Beharka
- Veterans Affairs Medical Center and Division of Infectious Diseases, Department of Medicine and Microbiology, Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Schweizer A, Stahl PD, Rohrer J. A di-aromatic motif in the cytosolic tail of the mannose receptor mediates endosomal sorting. J Biol Chem 2000; 275:29694-700. [PMID: 10896932 DOI: 10.1074/jbc.m000571200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mannose receptor (MR), the prototype of a new family of multilectin receptor proteins important in innate immunity, undergoes rapid internalization and recycling from the endosomal system back to the cell surface. Sorting of the MR in endosomes prevents the receptor from entering lysosomes where it would be degraded. Here, we focused on a diaromatic sequence (Tyr(18)-Phe(19)) in the MR cytoplasmic tail as an endosomal sorting signal. The subcellular distribution of chimeric constructs between the MR and the cation-dependent mannose 6-phosphate receptor was assessed by Percoll density gradients and cell surface assays. Unlike the wild type constructs, mutant receptors with alanine substitutions of Tyr(18)-Phe(19) were highly missorted to lysosomes, indicating that the di-aromatic motif of the MR cytoplasmic tail mediates sorting in endosomes. Within this sequence Tyr(18) is the key residue with Phe(19) contributing to this function. Moreover, Tyr(18) was also found to be essential for internalization, consistent with the presence of overlapping signals for internalization and endosomal sorting in the cytosolic tail of the MR. A di-aromatic amino acid sequence in the cytosolic tail has now been shown to function in two receptors known to be internalized from the plasma membrane, the MR and the cation-dependent mannose 6-phosphate receptor. This feature therefore appears to be a general determinant for endosomal sorting.
Collapse
Affiliation(s)
- A Schweizer
- Friedrich Miescher Institut, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | |
Collapse
|
9
|
Reading PC, Miller JL, Anders EM. Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 2000; 74:5190-7. [PMID: 10799594 PMCID: PMC110872 DOI: 10.1128/jvi.74.11.5190-5197.2000] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses A/PR/8/34 (PR8; H1N1), A/Aichi/68 X-31 (HKx31; H3N2), and A/Beijing/89 X-109 (BJx109; H3N2) show marked differences in their ability to infect murine macrophages, including resident alveolar and peritoneal macrophages as well as the macrophage-derived cell line J774. The hierarchy in infectivity of the viruses (PR8 < HKx31 < BJx109) resembles that of their reactivity with mannose-binding lectins of the collectin family. Since the macrophage mannose receptor recognizes the same spectrum of monosaccharides as the collectins do, we investigated the possible involvement of this receptor in infection of macrophages by influenza virus. In competitive binding studies, the binding of (125)I-labeled mannosylated bovine serum albumin to macrophages was inhibited by the purified hemagglutinin and neuraminidase (HANA) glycoproteins of influenza virus but not by HANA that had been treated with periodate to oxidize its oligosaccharide side chains. The inhibitory activity of HANA from the three strains of virus differed markedly and correlated with the infectivity of each virus for macrophages. Infection of macrophages, but not MDCK cells, by influenza virus was inhibited by yeast mannan. A variant line of J774 cells, J774E, which expresses elevated levels of the mannose receptor, was more readily infected than J774, and the sensitivity of J774E cells to infection was greatly reduced by culture in the presence of D-mannose, which down-modulated mannose receptor expression. Together, the data implicate the mannose receptor as a major endocytic receptor in the infectious entry of influenza virus, and perhaps other enveloped viruses, into murine macrophages.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Dogs
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A virus/metabolism
- Influenza A virus/physiology
- Lectins, C-Type
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/virology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/virology
- Mannans/metabolism
- Mannose Receptor
- Mannose-Binding Lectins
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- N-Acetylneuraminic Acid/metabolism
- Neuraminidase/metabolism
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- P C Reading
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
10
|
Verhoeven AJ, Neve BP, Jansen H. Intracellular activation of rat hepatic lipase requires transport to the Golgi compartment and is associated with a decrease in sedimentation velocity. J Biol Chem 2000; 275:9332-9. [PMID: 10734075 DOI: 10.1074/jbc.275.13.9332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatic lipase (HL) is an N-glycoprotein that acquires triglyceridase activity somewhere during maturation and secretion. To determine where and how HL becomes activated, the effect of drugs that interfere with maturation and intracellular transport of HL protein was studied using freshly isolated rat hepatocytes. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), castanospermine, monensin, and colchicin all inhibited secretion of HL without affecting its specific enzyme activity. The specific enzyme activity of intracellular HL was decreased by 25-50% upon incubation with CCCP or castanospermine, and increased 2-fold with monensin and colchicin. Glucose trimming of HL protein was not affected by CCCP, as indicated by digestion of immunoprecipitates with jack bean alpha-mannosidase. Pulse labeling experiments with [(35)S]methionine indicated that conversion of the 53-kDa precursor to the 58-kDa form, nor the development of endoglycosidase H-resistance, were essential for acquisition of enzyme activity. In sucrose gradients, HL protein from secretion media sedimented as a homogeneous band of about 5.8 S, whereas HL protein from the cell lysates migrated as a broad band extending from 5.8 S to more than 8 S. With both sources, HL activity was exclusively associated with the 5.8 S HL protein form. We conclude that glucose trimming of HL protein in the endoplasmic reticulum is not sufficient for activation; full activation occurs during or after transport from the endoplasmic reticulum to the Golgi and is associated with a decrease in sedimentation velocity.
Collapse
Affiliation(s)
- A J Verhoeven
- Department of Biochemistry, Cardiovascular Research Institute (COEUR), Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands.
| | | | | |
Collapse
|
11
|
Alvarez-Dominguez C, Stahl PD. Increased expression of Rab5a correlates directly with accelerated maturation of Listeria monocytogenes phagosomes. J Biol Chem 1999; 274:11459-62. [PMID: 10206948 DOI: 10.1074/jbc.274.17.11459] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that Listeria monocytogenes (LM) modulates phagocytic membrane traffic. Here we explore whether Rab5a, a GTPase associated with phagosome-endosome fusion, is related to phagosome maturation and to the intracellular survival of LM. Stable transfection of Rab5a cDNA into macrophages accelerates intracellular degradation of LM. Morphological studies confirmed that phagosome maturation and phagosome-lysosome fusion is enhanced by overexpression of Rab5a. Down-regulation experiments using antisense oligonucleotides targeted to the Rab5a mRNA efficiently reduced Rab5a synthesis, reduced phagosome-endosome traffic, blocked phagosome-lysosome fusion, and extended intraphagosomal survival of LM. Down-regulation of Rab5a had no effect on LM internalization. Down-regulation of Rab5c had no effect on phagosome maturation and phagosome-lysosome fusion. The results indicate that Rab5a controls early phagosome-endosome interactions and governs the maturation of the early phagosome leading to phagosome-lysosome fusion.
Collapse
Affiliation(s)
- C Alvarez-Dominguez
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
12
|
Alvarez-Dominguez C, Stahl PD. Interferon-gamma selectively induces Rab5a synthesis and processing in mononuclear cells. J Biol Chem 1998; 273:33901-4. [PMID: 9852039 DOI: 10.1074/jbc.273.51.33901] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage activation by interferon (IFN)-gamma is characterized by enhanced phagocytosis and killing of internalized pathogens. We studied the effects of IFN-gamma on Rab5a, a GTPase involved in both endocytosis and phagocytosis. IFN-gamma induced the synthesis of Rab5a in mononuclear cells as detected by immunoprecipitation and by Western blotting. Rab5a messenger RNA levels were also increased. Elevated protein expression was detected as early as 6 h following IFN-gamma and was maximal at 24 h. Following IFN-gamma, membrane association of Rab5a:GTP was substantially increased. Rab5b and Rab5c, as well as Rab7 and Rab11, Rab GTPases localized in the endosomal-lysosomal pathway, were unaffected by IFN-gamma. Moreover, Rab5a expression in non-macrophages was unaltered by IFN-gamma. Rab5a is a prenylated protein, and newly synthesized Rab5a was rapidly processed following IFN-gamma. However, elevated geranylgeranylation was not Rab5a-specific since all the Rab5 isoforms were more rapidly prenylated in vitro using cytosol from IFN-gamma-treated cells. Last, guanine nucleotide exchange on Rab5a was elevated about 3-fold in the presence of cytosol from IFN-gamma-treated cells. The selective effect of IFN-gamma on Rab5a, synthesis, processing, and nucleotide exchange suggests that Rab isoforms have closely associated but not identical functions and that selective enhancement of membrane trafficking may play a key role in intracellular killing.
Collapse
Affiliation(s)
- C Alvarez-Dominguez
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
13
|
Abstract
Gaucher disease was first described by Philippe Gaucher in his 1882 medical thesis. Gaucher's original concept was of an unusual epithelioma of the spleen. By the early 1900s, Mandelbaum recognized the systemic nature of the disease. Several children with Gaucher disease were described at the turn of the century, but Rusca described a rapidly progressive fatal neurodegenerative type of disease, i.e. type 2, in the 1920s. The 'juvenile' form (type 3) of the disease was described in Sweden in the 1950s. In 1965, the deficient enzyme, acid beta-glucosidase, was discovered and the lysosomal nature of the disease was elucidated. Currently, three variants of Gaucher disease have been defined clinically and are distinguished by the presence and severity of neuronopathic involvement (Table 1). Each of these clinical types has substantial phenotypic variation, but types 1 and 3 have significantly heterogeneous rates of disease progression and degrees of visceral organs involvement. The neuronopathic involvement in type 3 also has substantial variation in the age of onset and disease progression even within relatively isolated communities. An extensive review of the clinical and pathologic involvement by Gaucher disease is available.
Collapse
Affiliation(s)
- G A Grabowski
- Division in Human Genetics, Children's Hospital Research Foundation, Cincinnati, OH 45229-3039, USA.
| | | | | |
Collapse
|
14
|
Stahl PD, Ezekowitz RA. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 1998; 10:50-5. [PMID: 9523111 DOI: 10.1016/s0952-7915(98)80031-9] [Citation(s) in RCA: 451] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mannose receptor recognizes the patterns of carbohydrates that decorate the surfaces and cell walls of infectious agents. This macrophage and dendritic cell pattern-recognition receptor mediates endocytosis and phagocytosis. The mannose receptor is the prototype of a new family of multilectin receptor proteins (membrane-spanning receptors containing eight-ten lectin-like domains, which appear to play a key role in host defense) and provides a link between innate and adaptive immunity. Recent advances include the identification of three new members of the mannose receptor family, additional work on defining the molecular requirements for sugar binding, a role for the mannose receptor in antigen presentation of lipoglycan antigens and evidence that the mannose receptor is associated with a signal transduction pathway leading to cytokine production.
Collapse
Affiliation(s)
- P D Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|