1
|
Kimmich MJ, Geary MA, Mi-Mi L, Votra SD, Pellenz CD, Sundaramurthy S, Pruyne D. The Sole Essential Low Molecular Weight Tropomyosin Isoform of Caenorhabditis elegans Is Essential for Pharyngeal Muscle Function. Cytoskeleton (Hoboken) 2025. [PMID: 40078096 DOI: 10.1002/cm.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode Caenorhabditis elegans provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy and a single tropomyosin gene, lev-11, that produces seven isoforms. Three higher molecular weight isoforms regulate the contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U). We demonstrate here that C. elegans can survive with a single low molecular weight isoform, LEV-11E. Mutants disrupted for LEV-11E die as young larvae, whereas mutants lacking all other short isoforms are viable, with no overt phenotype. Vertebrate low molecular weight tropomyosins are often considered "nonmuscle" isoforms, but we find LEV-11E localizes to sarcomeric thin filaments in pharyngeal muscle and co-precipitates from worm extracts with the formin FHOD-1, which is also associated with thin filaments in pharyngeal muscle. Pharyngeal sarcomere organization is grossly normal in larvae lacking LEV-11E, indicating that the tropomyosin is not required to stabilize thin filaments, but pharyngeal pumping is absent, suggesting LEV-11E regulates actomyosin activity similar to higher molecular weight sarcomeric tropomyosin isoforms.
Collapse
Affiliation(s)
- Michael J Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Meaghan A Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - SarahBeth D Votra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Kuruba B, Kaczmarek M, Kęsik-Brodacka M, Fojutowska M, Śliwinska M, Kostyukova AS, Moraczewska J. Structural Effects of Disease-Related Mutations in Actin-Binding Period 3 of Tropomyosin. Molecules 2021; 26:6980. [PMID: 34834072 PMCID: PMC8622905 DOI: 10.3390/molecules26226980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Tropomyosin (Tpm) is an actin-binding coiled-coil protein. In muscle, it regulates contractions in a troponin/Ca2+-dependent manner and controls the thin filament lengths at the pointed end. Due to its size and periodic structure, it is difficult to observe small local structural changes in the coiled coil caused by disease-related mutations. In this study, we designed 97-residue peptides, Tpm1.164-154 and Tpm3.1265-155, focusing on the actin-binding period 3 of two muscle isoforms. Using these peptides, we evaluated the effects of cardiomyopathy mutations: I92T and V95A in Tpm1.1, and congenital myopathy mutations R91P and R91C in Tpm3.12. We introduced a cysteine at the N-terminus of each fragment to promote the formation of the coiled-coil structure by disulfide bonds. Dimerization of the designed peptides was confirmed by gel electrophoresis in the presence and absence of dithiothreitol. Using circular dichroism, we showed that all mutations decreased coiled coil stability, with Tpm3.1265-155R91P and Tpm1.164-154I92T having the most drastic effects. Our experiments also indicated that adding the N-terminal cysteine increased coiled coil stability demonstrating that our design can serve as an effective tool in studying the coiled-coil fragments of various proteins.
Collapse
Affiliation(s)
- Balaganesh Kuruba
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA; (B.K.); (A.S.K.)
| | - Marta Kaczmarek
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (M.K.); (M.F.); (M.Ś.)
| | | | - Magdalena Fojutowska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (M.K.); (M.F.); (M.Ś.)
| | - Małgorzata Śliwinska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (M.K.); (M.F.); (M.Ś.)
| | - Alla S. Kostyukova
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA; (B.K.); (A.S.K.)
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (M.K.); (M.F.); (M.Ś.)
| |
Collapse
|
3
|
Schmidt W, Madan A, Foster DB, Cammarato A. Lysine acetylation of F-actin decreases tropomyosin-based inhibition of actomyosin activity. J Biol Chem 2020; 295:15527-15539. [PMID: 32873710 DOI: 10.1074/jbc.ra120.015277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Recent proteomics studies of vertebrate striated muscle have identified lysine acetylation at several sites on actin. Acetylation is a reversible post-translational modification that neutralizes lysine's positive charge. Positively charged residues on actin, particularly Lys326 and Lys328, are predicted to form critical electrostatic interactions with tropomyosin (Tpm) that promote its binding to filamentous (F)-actin and bias Tpm to an azimuthal location where it impedes myosin attachment. The troponin (Tn) complex also influences Tpm's position along F-actin as a function of Ca2+ to regulate exposure of myosin-binding sites and, thus, myosin cross-bridge recruitment and force production. Interestingly, Lys326 and Lys328 are among the documented acetylated residues. Using an acetic anhydride-based labeling approach, we showed that excessive, nonspecific actin acetylation did not disrupt characteristic F-actin-Tpm binding. However, it significantly reduced Tpm-mediated inhibition of myosin attachment, as reflected by increased F-actin-Tpm motility that persisted in the presence of Tn and submaximal Ca2+ Furthermore, decreasing the extent of chemical acetylation, to presumptively target highly reactive Lys326 and Lys328, also resulted in less inhibited F-actin-Tpm, implying that modifying only these residues influences Tpm's location and, potentially, thin filament regulation. To unequivocally determine the residue-specific consequences of acetylation on Tn-Tpm-based regulation of actomyosin activity, we assessed the effects of K326Q and K328Q acetyl (Ac)-mimetic actin on Ca2+-dependent, in vitro motility parameters of reconstituted thin filaments (RTFs). Incorporation of K328Q actin significantly enhanced Ca2+ sensitivity of RTF activation relative to control. Together, our findings suggest that actin acetylation, especially Lys328, modulates muscle contraction via disrupting inhibitory Tpm positioning.
Collapse
Affiliation(s)
- William Schmidt
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aditi Madan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anthony Cammarato
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Schmidt W, Cammarato A. The actin 'A-triad's' role in contractile regulation in health and disease. J Physiol 2019; 598:2897-2908. [PMID: 30770548 DOI: 10.1113/jp276741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Striated muscle contraction is regulated by Ca2+ -dependent modulation of myosin cross-bridge binding to F-actin by the thin filament troponin (Tn)-tropomyosin (Tm) complex. In the absence of Ca2+ , Tn binds to actin and constrains Tm to an azimuthal location where it sterically occludes myosin binding sites along the thin filament surface. This limits force production and promotes muscle relaxation. In addition to Tn-actin interactions, inhibitory Tm positioning requires associations between other thin filament constituents. For example, the actin 'A-triad', composed of residues K326, K328 and R147, forms numerous, highly favourable electrostatic contacts with Tm that are critical for establishing its inhibitory azimuthal binding position. Here, we review recent findings, including the identification and interrogation of modifications within and proximal to the A-triad that are associated with disease and/or altered muscle behaviour, which highlight the surface feature's role in F-actin-Tm interactions and contractile regulation.
Collapse
Affiliation(s)
- William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| |
Collapse
|
5
|
Wang J, Fan Y, Dube DK, Sanger JM, Sanger JW. Jasplakinolide reduces actin and tropomyosin dynamics during myofibrillogenesis. Cytoskeleton (Hoboken) 2014; 71:513-29. [PMID: 25145272 DOI: 10.1002/cm.21189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
Abstract
The premyofibril model proposes a three-stage process for the de novo assembly of myofibrils in cardiac and skeletal muscles: premyofibrils to nascent myofibrils to mature myofibrils. FRAP experiments and jasplakinolide, a drug that stabilizes F-actin, permitted us to determine how decreasing the dynamics of actin filaments affected the dynamics of tropomyosin, troponin-T, troponin-C, and two Z-Band proteins (alpha-actinin, FATZ) in premyofibrils versus mature myofibrils. Jasplakinolide reduced markedly the dynamics of actin in premyofibrils and in mature myofibrils in skeletal muscles. Two isoforms of tropomyosin-1 (TPM1α, TPM1κ) are more dynamic in premyofibrils than in mature myofibrils in control skeletal muscles. Jasplakinolide reduced the exchange rates of tropomyosins in premyofibrils but not in mature myofibrils. The reduced tropomyosin recoveries did not match the YFP-actin recoveries in premyofibrils in jasplakinolide. There were no significant differences in the effects of jasplakinolide on the dynamics of troponins in the thin filaments or of two Z-band proteins in premyofibrils or skeletal mature myofibrils. Cardiac control mature myofibrils lack nebulin, and small decreases in actin (∼5%) and two tropomyosin isoforms (∼10-15%) dynamics are detected in premyofibril to mature myofibril transformations compared with skeletal muscle. In contrast to skeletal muscle, jasplakinolide lowered the dynamics of actin and tropomyosin isoforms in the cardiac mature myofibrils. These results suggest that the dynamics of tropomyosins in control muscle cells are related to actin exchange. These results also suggest a stabilizing role for nebulin, an actin and tropomyosin-binding protein, present in mature myofibrils but not in premyofibrils of skeletal muscles.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | | | | | | | | |
Collapse
|
6
|
El-Mezgueldi M. Tropomyosin dynamics. J Muscle Res Cell Motil 2014; 35:203-10. [PMID: 24510226 DOI: 10.1007/s10974-014-9377-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 01/28/2014] [Indexed: 12/28/2022]
Abstract
Tropomyosin is a two chained α-helical coiled coil protein that binds actin filaments and interacts with various actin binding proteins. Tropomyosin function depends on its ability to move to distinct locations on the surface of actin in response to the binding of different thin filament effectors. Tropomyosin dynamics plays an important role in these fluctuating interactions with actin and is thought to be fundamental to many of its biological activities. For example tropomyosin concerted movement on the surface of actin triggered by Ca(2+) binding to troponin or myosin head binding to actin has been argued to be key to the cooperative allosteric regulation of muscle contraction. These large-scale motions are affected by tropomyosin internal dynamics and mechanical properties. Tropomyosin internal dynamics corresponding to smaller and more localised structural fluctuations are increasingly recognised to play an important role in its function. A thorough understanding of the coupling between local and global structural fluctuations in tropomyosin is required to understand how time dependent structural fluctuations in tropomyosin contribute to the overall thin filament dynamics and dictate their various biological activities.
Collapse
Affiliation(s)
- Mohammed El-Mezgueldi
- Department of Biochemistry, Faculty of Medicine and Biological Sciences, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK,
| |
Collapse
|
7
|
Abnormal actin binding of aberrant β-tropomyosins is a molecular cause of muscle weakness in TPM2-related nemaline and cap myopathy. Biochem J 2012; 442:231-9. [PMID: 22084935 DOI: 10.1042/bj20111030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NM (nemaline myopathy) is a rare genetic muscle disorder defined on the basis of muscle weakness and the presence of structural abnormalities in the muscle fibres, i.e. nemaline bodies. The related disorder cap myopathy is defined by cap-like structures located peripherally in the muscle fibres. Both disorders may be caused by mutations in the TPM2 gene encoding β-Tm (tropomyosin). Tm controls muscle contraction by inhibiting actin-myosin interaction in a calcium-sensitive manner. In the present study, we have investigated the pathogenetic mechanisms underlying five disease-causing mutations in Tm. We show that four of the mutations cause changes in affinity for actin, which may cause muscle weakness in these patients, whereas two show defective Ca2+ activation of contractility. We have also mapped the amino acids altered by the mutation to regions important for actin binding and note that two of the mutations cause altered protein conformation, which could account for impaired actin affinity.
Collapse
|
8
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
9
|
Rao JN, Rivera-Santiago R, Li XE, Lehman W, Dominguez R. Structural analysis of smooth muscle tropomyosin α and β isoforms. J Biol Chem 2011; 287:3165-74. [PMID: 22119916 DOI: 10.1074/jbc.m111.307330] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A large number of tropomyosin (Tm) isoforms function as gatekeepers of the actin filament, controlling the spatiotemporal access of actin-binding proteins to specialized actin networks. Residues ∼40-80 vary significantly among Tm isoforms, but the impact of sequence variation on Tm structure and interactions with actin is poorly understood, because structural studies have focused on skeletal muscle Tmα. We describe structures of N-terminal fragments of smooth muscle Tmα and Tmβ (sm-Tmα and sm-Tmβ). The 2.0-Å structure of sm-Tmα81 (81-aa) resembles that of skeletal Tmα, displaying a similar super-helical twist matching the contours of the actin filament. The 1.8-Å structure of sm-Tmα98 (98-aa) unexpectedly reveals an antiparallel coiled coil, with the two chains staggered by only 4 amino acids and displaying hydrophobic core interactions similar to those of the parallel dimer. In contrast, the 2.5-Å structure of sm-Tmβ98, containing Gly-Ala-Ser at the N terminus to mimic acetylation, reveals a parallel coiled coil. None of the structures contains coiled-coil stabilizing elements, favoring the formation of head-to-tail overlap complexes in four of five crystallographically independent parallel dimers. These complexes show similarly arranged 4-helix bundles stabilized by hydrophobic interactions, but the extent of the overlap varies between sm-Tmβ98 and sm-Tmα81 from 2 to 3 helical turns. The formation of overlap complexes thus appears to be an intrinsic property of the Tm coiled coil, with the specific nature of hydrophobic contacts determining the extent of the overlap. Overall, the results suggest that sequence variation among Tm isoforms has a limited effect on actin binding but could determine its gatekeeper function.
Collapse
Affiliation(s)
- Jampani Nageswara Rao
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
10
|
Oguchi Y, Ishizuka J, Hitchcock-DeGregori SE, Ishiwata S, Kawai M. The role of tropomyosin domains in cooperative activation of the actin-myosin interaction. J Mol Biol 2011; 414:667-80. [PMID: 22041451 DOI: 10.1016/j.jmb.2011.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/15/2022]
Abstract
To establish α-tropomyosin (Tm)'s structure-function relationships in cooperative regulation of muscle contraction, thin filaments were reconstituted with a variety of Tm mutants (Δ2Tm, Δ3Tm, Δ6Tm, P2sTm, P3sTm, P2P3sTm, P1P5Tm, and wtTm), and force and sliding velocity of the thin filament were studied using an in vitro motility assay. In the case of deletion mutants, Δ indicates which of the quasi-equivalent repeats in Tm was deleted. In the case of period (P) mutants, an Ala cluster was introduced into the indicated period to strengthen the Tm-actin interaction. In P1P5Tm, the N-terminal half of period 5 was substituted with that of period 1 to test the quasi-equivalence of these two Tm periods. The reconstitution included bovine cardiac troponin. Deletion studies revealed that period 3 is important for the positive cooperative effect of Tm on actin filament regulation and that period 2 also contributes to this effect at low ionic strength, but to a lesser degree. Furthermore, Tm with one extra Ala cluster at period 2 (P2s) or period 3 (P3s) did not increase force or velocity, whereas Tm with two extra Ala clusters (P2P3s) increased both force and velocity, demonstrating interaction between these periods. Most mutants did not move in the absence of Ca(2+). Notable exceptions were Δ6Tm and P1P5Tm, which moved near at the full velocity, but with reduced force, which indicate impaired relaxation. These results are consistent with the mechanism that the Tm-actin interaction cooperatively affects actin to result in generation of greater force and velocity.
Collapse
Affiliation(s)
- Yusuke Oguchi
- Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
11
|
Hitchcock-DeGregori SE, Singh A. What makes tropomyosin an actin binding protein? A perspective. J Struct Biol 2009; 170:319-24. [PMID: 20036744 DOI: 10.1016/j.jsb.2009.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/16/2009] [Indexed: 01/08/2023]
Abstract
Tropomyosin is a two-chained alpha-helical coiled coil that binds along the length of the actin filament and regulates its function. The paper addresses the question of how a "simple" coiled-coil sequence encodes the information for binding and regulating the actin filament, its universal target. Determination of the tropomyosin sequence confirmed Crick's predicted heptapeptide repeat of hydrophobic interface residues and revealed additional features that have been shown to be important for its function: a 7-fold periodicity predicted to correspond to actin binding sites and interruptions of the canonical interface with destabilizing residues, such as Ala. Evidence from published work is summarized, leading to the proposal of a paradigm that binding of tropomyosin to the actin filament requires local instability as well as regions of flexibility. The flexibility derives from bends and local unfolding at regions with a destabilized coiled-coil interface, as well as from the dynamic end-to-end complex. The features are required for tropomyosin to assume the form of the helical actin filament, and to bind to actin monomers along its length. The requirement of instability/flexibility for binding may be generalized to the binding of other coiled coils to their targets.
Collapse
Affiliation(s)
- Sarah E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
12
|
Alternatively spliced N-terminal exons in tropomyosin isoforms do not act as autonomous targeting signals. J Struct Biol 2009; 170:286-93. [PMID: 20026406 DOI: 10.1016/j.jsb.2009.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/16/2009] [Accepted: 12/16/2009] [Indexed: 01/14/2023]
Abstract
Tropomyosin (Tm) polymerises head-to-tail to form a continuous polymer located in the major groove of the actin filament. Multiple Tm isoforms are generated by alternative splicing of four genes, and individual isoforms show specific localisation patterns in many cell types, and can have differing effects on the actin cytoskeleton. Fluorescently-tagged Tm isoforms and mutants were expressed in C2C12 cells to investigate the mechanisms of alternative localisation of high molecular weight (HMW) and low molecular weight (LMW) Tms. Fluorescently-tagged Tm constructs show similar localisation to endogenous Tms as observed by antibodies, with the HMW Tm3 relatively diminished at the periphery of cells compared to LMW isoforms Tm5b or Tm5NM1. Tm3 and Tm5b only differ in their N-terminal exons, but these N-terminal exons do not independently direct localisation within the cell, as chimeric mutants Tm3-Tm5NM1 and Tm5b-Tm5NM1 show an increased peripheral localisation similar to Tm5NM1. The lower abundance of Tm3 at the periphery of the cell is not a result of different protein dynamics, as Tm3 and Tm5b show similar recovery after photobleaching. The relative exclusion of Tm3 from the periphery of cells does, however, require interaction with the actin filament, as mutants with truncations at either the N-terminus or the C-terminus are unable to localise to actin stress fibres, and are present in the most peripheral regions of the cell. We conclude that it is the entire Tm molecule which is the unit of sorting, and that the alternatively spliced N-terminal exons do not act as autonomous targeting signals.
Collapse
|
13
|
Kawai M, Lu X, Hitchcock-DeGregori SE, Stanton KJ, Wandling MW. Tropomyosin period 3 is essential for enhancement of isometric tension in thin filament-reconstituted bovine myocardium. JOURNAL OF BIOPHYSICS (HINDAWI PUBLISHING CORPORATION : ONLINE) 2009; 2009:380967. [PMID: 20130792 PMCID: PMC2814127 DOI: 10.1155/2009/380967] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/29/2009] [Accepted: 07/05/2009] [Indexed: 05/28/2023]
Abstract
Tropomyosin (Tm) consists of 7 quasiequivalent repeats known as "periods," and its specific function may be associated with these periods. To test the hypothesis that either period 2 or 3 promotes force generation by inducing a positive allosteric effect on actin, we reconstituted the thin filament with mutant Tm in which either period 2 (Delta2Tm) or period 3 (Delta3Tm) was deleted. We then studied: isometric tension, stiffness, 6 kinetic constants, and the pCa-tension relationship. N-terminal acetylation of Tm did not cause any differences. The isometric tension in Delta2Tm remained unchanged, and was reduced to approximately 60% in Delta3Tm. Although the kinetic constants underwent small changes, the occupancy of strongly attached cross-bridges was not much different. The Hill factor (cooperativity) did not differ significantly between Delta2Tm (1.79 +/- 0.19) and the control (1.73 +/- 0.21), or Delta3Tm (1.35 +/- 0.22) and the control. In contrast, pCa(50) decreased slightly in Delta2Tm (5.11 +/- 0.07), and increased significantly in Delta3Tm (5.57 +/- 0.09) compared to the control (5.28 +/- 0.04). These results demonstrate that, when ions are present at physiological concentrations in the muscle fiber system, period 3 (but not period 2) is essential for the positive allosteric effect that enhances the interaction between actin and myosin, and increases isometric force of each cross-bridge.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Xiaoying Lu
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Kristen J. Stanton
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael W. Wandling
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Singh A, Hitchcock-Degregori SE. A peek into tropomyosin binding and unfolding on the actin filament. PLoS One 2009; 4:e6336. [PMID: 19629180 PMCID: PMC2710508 DOI: 10.1371/journal.pone.0006336] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 06/21/2009] [Indexed: 11/19/2022] Open
Abstract
Background Tropomyosin is a prototypical coiled coil along its length with subtle variations in structure that allow interactions with actin and other proteins. Actin binding globally stabilizes tropomyosin. Tropomyosin-actin interaction occurs periodically along the length of tropomyosin. However, it is not well understood how tropomyosin binds actin. Principal Findings Tropomyosin's periodic binding sites make differential contributions to two components of actin binding, cooperativity and affinity, and can be classified as primary or secondary sites. We show through mutagenesis and analysis of recombinant striated muscle α-tropomyosins that primary actin binding sites have a destabilizing coiled-coil interface, typically alanine-rich, embedded within a non-interface recognition sequence. Introduction of an Ala cluster in place of the native, more stable interface in period 2 and/or period 3 sites (of seven) increased the affinity or cooperativity of actin binding, analysed by cosedimentation and differential scanning calorimetry. Replacement of period 3 with period 5 sequence, an unstable region of known importance for cooperative actin binding, increased the cooperativity of binding. Introduction of the fluorescent probe, pyrene, near the mutation sites in periods 2 and 3 reported local instability, stabilization by actin binding, and local unfolding before or coincident with dissociation from actin (measured using light scattering), and chain dissociation (analyzed using circular dichroism). Conclusions This, and previous work, suggests that regions of tropomyosin involved in binding actin have non-interface residues specific for interaction with actin and an unstable interface that is locally stabilized upon binding. The destabilized interface allows residues on the coiled-coil surface to obtain an optimal conformation for interaction with actin by increasing the number of local substates that the side chains can sample. We suggest that local disorder is a property typical of coiled coil binding sites and proteins that have multiple binding partners, of which tropomyosin is one type.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America.
| | | |
Collapse
|
15
|
Lehman W, Galińska-Rakoczy A, Hatch V, Tobacman LS, Craig R. Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 2009; 388:673-81. [PMID: 19341744 DOI: 10.1016/j.jmb.2009.03.060] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 11/19/2022]
Abstract
The molecular regulation of striated muscle contraction couples the binding and dissociation of Ca(2+) on troponin (Tn) to the movement of tropomyosin on actin filaments. In turn, this process exposes or blocks myosin binding sites on actin, thereby controlling myosin crossbridge dynamics and consequently muscle contraction. Using 3D electron microscopy, we recently provided structural evidence that a C-terminal extension of TnI is anchored on actin at low Ca(2+) and competes with tropomyosin for a common site to drive tropomyosin to the B-state location, a constrained, relaxing position on actin that inhibits myosin-crossbridge association. Here, we show that release of this constraint at high Ca(2+) allows a second segment of troponin, probably representing parts of TnT or the troponin core domain, to promote tropomyosin movement on actin to the Ca(2+)-induced C-state location. With tropomyosin stabilized in this position, myosin binding interactions can begin. Tropomyosin appears to oscillate to a higher degree between respective B- and C-state positions on troponin-free filaments than on fully regulated filaments, suggesting that tropomyosin positioning in both states is troponin-dependent. By biasing tropomyosin to either of these two positions, troponin appears to have two distinct structural functions; in relaxed muscles at low Ca(2+), troponin operates as an inhibitor, while in activated muscles at high Ca(2+), it acts as a promoter to initiate contraction.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology and Biophysics, Boston University, School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Tropomyosins were discovered as regulators of actomyosin contractility in muscle cells, making yeasts and other fungi seem unlikely to harbor such proteins. Fungal cells are encased in a rigid cell wall and do not engage in the same sorts of contractile shape changes of animal cells. However, discovery of actin and myosin in yeast raised the possibility for a role for tropomyosin in regulating their interaction. Through a biochemical search, fungal tropomyosins were identified with strong similarities to their animal counterparts in terms ofprotein structure and physical properties. Two particular fungi, the buddingyeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe, have provided powerful genetic systems for studying tropomyosins in nonmetazoans. In these yeasts, tropomyosins associate with subsets ofactin filamentous structures. Mutational studies oftropomyosin genes and biochemical assays of purified proteins point to roles for these proteins as factors that stabilize actin filaments, promote actin-based structures of particular architecture and help maintain distinct biochemical identities among different filament populations. Tropomyosin-enriched filaments are the cytoskeletal structures that promote the major cell shape changes of these organisms: polarized growth and cell division.
Collapse
Affiliation(s)
- David Pruyne
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
17
|
Gestalt-binding of tropomyosin to actin filaments. J Muscle Res Cell Motil 2008; 29:213-9. [PMID: 19116763 DOI: 10.1007/s10974-008-9157-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/01/2008] [Indexed: 01/26/2023]
Abstract
We argue that the overall behavior of tropomyosin on F-actin cannot be easily discerned by examining thin filaments reduced to their smallest interacting units. In isolation, the individual interactions of actin and tropomyosin, by themselves, are too weak to account for the specificity of the system. Instead the association of tropomyosin on actin can only be fully explained after considering the concerted action of the entire acto-tropomyosin system. We propose that the low K ( a ) describing tropomyosin:actin interaction, when taken together with the form-fitting complementarity of tropomyosin strands on F-actin and the tendency for tropomyosin to polymerize end-to-end, make possible unique thin filament functions both locally and at higher levels of filament organization.
Collapse
|
18
|
Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35. [PMID: 18195081 DOI: 10.1152/physrev.00001.2007] [Citation(s) in RCA: 368] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, and Muscle Development Unit, Children's Medical Research Institute, Westmead; New South Wales, Australia.
| | | | | |
Collapse
|
19
|
Maytum R, Hatch V, Konrad M, Lehman W, Geeves MA. Ultra Short Yeast Tropomyosins Show Novel Myosin Regulation. J Biol Chem 2008; 283:1902-10. [DOI: 10.1074/jbc.m708593200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Singh A, Hitchcock-DeGregori SE. Tropomyosin's Periods Are Quasi-Equivalent for Actin Binding but Have Specific Regulatory Functions. Biochemistry 2007; 46:14917-27. [DOI: 10.1021/bi701570b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abhishek Singh
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, MD/PhD Program, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and Joint Graduate Program in Biochemistry and Molecular Biology, UMDNJ-Graduate School of Biomedical Sciences and Rutgers University, Piscatway, New Jersey 08854
| | - Sarah E. Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, MD/PhD Program, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and Joint Graduate Program in Biochemistry and Molecular Biology, UMDNJ-Graduate School of Biomedical Sciences and Rutgers University, Piscatway, New Jersey 08854
| |
Collapse
|
21
|
Sakuma A, Kimura-Sakiyama C, Onoue A, Shitaka Y, Kusakabe T, Miki M. The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments. Biochemistry 2006; 45:9550-8. [PMID: 16878989 DOI: 10.1021/bi060963w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rabbit skeletal muscle alpha-tropomyosin (Tm), a 284-residue dimeric coiled-coil protein, spans seven actin monomers and contains seven quasiequivalent periods. X-ray analysis of cocrystals of Tm and troponin (Tn) placed the Tn core domain near residues 150-180 of Tm. To identify the Ca(2+)-sensitive Tn interaction site on Tm, we generated three Tm mutants to compare the consequences of sequence substitution inside and outside of the Tn core domain-binding region. Residues 152-165 and 156-162 in the second half of period 4 were replaced by corresponding residues 33-46 and 37-43 in the second half of period 1, respectively (termed mTm152-165 and mTm156-162, respectively), and residues 134-147 in the first half of period 4 were replaced with residues 15-28 in the first half of period 1 (mTm134-147). Recombinant Tms designed with an additional tripeptide, Ala-Ala-Ser, at the N-terminus were expressed in Escherichia coli. Both mTm152-165 and mTm156-162 suppressed the actin-activated myosin subfragment-1 Mg(2+)-ATPase rate regardless of whether Ca(2+) and Tn were present. On the other hand, mTm134-147 retained the normal Ca(2+)-sensitive regulation, although the actin binding of mTm alone was significantly impaired. Differential scanning calorimetry showed that the sequence substitution in the second half of period 4 affected the thermal stability of the complete Tm molecule and also the actin-induced stabilization. These results suggest that the second half of period 4 of Tm is a key region for inducing conformational changes of the regulated thin filament required for its fully activated state.
Collapse
Affiliation(s)
- Akiko Sakuma
- Department of Applied Chemistry and Biotechnology, Fukui University, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Lu X, Tobacman LS, Kawai M. Temperature-dependence of isometric tension and cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal deletion mutant. Biophys J 2006; 91:4230-40. [PMID: 16980359 PMCID: PMC1635655 DOI: 10.1529/biophysj.106.084608] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of temperature on isometric tension and cross-bridge kinetics was studied with a tropomyosin (Tm) internal deletion mutant AS-Delta23Tm (Ala-Ser-Tm Delta(47-123)) in bovine cardiac muscle fibers by using the thin filament extraction and reconstitution technique. The results are compared with those from actin reconstituted alone, cardiac muscle-derived control acetyl-Tm, and recombinant control AS-Tm. In all four reconstituted muscle groups, isometric tension and stiffness increased linearly with temperature in the range 5-40 degrees C for fibers activated in the presence of saturating ATP and Ca(2+). The slopes of the temperature-tension plots of the two controls were very similar, whereas the slope derived from fibers with actin alone had approximately 40% the control value, and the slope from mutant Tm had approximately 36% the control value. Sinusoidal analysis was performed to study the temperature dependence of cross-bridge kinetics. All three exponential processes A, B, and C were identified in the high temperature range (30-40 degrees C); only processes B and C were identified in the mid-temperature range (15-25 degrees C), and only process C was identified in the low temperature range (5-10 degrees C). At a given temperature, similar apparent rate constants (2pia, 2pib, 2pic) were observed in all four muscle groups, whereas their magnitudes were markedly less in the order of AS-Delta23Tm < Actin < AS-Tm approximately Acetyl-Tm groups. Our observations are consistent with the hypothesis that Tm enhances hydrophobic and stereospecific interactions (positive allosteric effect) between actin and myosin, but Delta23Tm decreases these interactions (negative allosteric effect). Our observations further indicate that tension/cross-bridge is increased by Tm, but is diminished by Delta23Tm. We conclude that Tm affects the conformation of actin so as to increase the area of hydrophobic interaction between actin and myosin molecules.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
23
|
Kawai M, Ishiwata S. Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation. J Muscle Res Cell Motil 2006; 27:455-68. [PMID: 16909198 PMCID: PMC2896216 DOI: 10.1007/s10974-006-9075-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
The technique of selective removal of the thin filament by gelsolin in bovine cardiac muscle fibres, and reconstitution of the thin filament from isolated proteins is reviewed, and papers that used reconstituted preparations are discussed. By comparing the results obtained in the absence/presence of regulatory proteins tropomyosin (Tm) and troponin (Tn), it is concluded that the role of Tm and Tn in force generation is not only to expose the binding site of actin to myosin, but also to modify actin for better stereospecific and hydrophobic interaction with myosin. This conclusion is further supported by experiments that used a truncated Tm mutant and the temperature study of reconstituted fibres. The conclusion is consistent with the hypothesis that there are three states in the thin filament: blocked state, closed state, and open state. Tm is the major player to produce these effects, with Tn playing the role of Ca2+ sensing and signal transmission mechanism. Experiments that changed the number of negative charges at the N-terminal finger of actin demonstrates that this part of actin is essential to promote the strong interaction between actin and myosin molecules, in addition to the well-known weak interaction that positions the myosin head at the active site of actin prior to force generation.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
24
|
Singh A, Hitchcock-DeGregori SE. Dual requirement for flexibility and specificity for binding of the coiled-coil tropomyosin to its target, actin. Structure 2006; 14:43-50. [PMID: 16407064 DOI: 10.1016/j.str.2005.09.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/15/2005] [Accepted: 09/16/2005] [Indexed: 11/20/2022]
Abstract
The coiled coil is a widespread motif involved in oligomerization and protein-protein interactions, but the structural requirements for binding to target proteins are poorly understood. To address this question, we measured binding of tropomyosin, the prototype coiled coil, to actin as a model system. Tropomyosin binds to the actin filament and cooperatively regulates its function. Our results support the hypothesis that coiled-coil domains that bind to other proteins are flexible. We made mutations that alter interface packing and stability as well as mutations in surface residues in a postulated actin binding site. Actin affinity, measured by cosedimentation, was correlated with coiled-coil stability and local instability and side chain flexibility, analyzed with circular dichroism and fluorescence spectroscopy. The flexibility from interruptions in the stable coiled-coil interface is essential for actin binding. The surface residues in a postulated actin binding site participate in actin binding when the coiled coil within it is poorly packed.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
25
|
Singh A, Hitchcock-DeGregori SE. Local Destabilization of the Tropomyosin Coiled Coil Gives the Molecular Flexibility Required for Actin Binding†. Biochemistry 2003; 42:14114-21. [PMID: 14640678 DOI: 10.1021/bi0348462] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tropomyosin, a coiled coil protein that binds along the length of actin filaments, contains 40 uninterrupted heptapeptide repeats characteristic of coiled coils. Yet, it is flexible. Regions of tropomyosin that may be important for binding to the filament and for interacting with troponin deviate from canonical coiled coil structure in subtle ways, altering the local conformation or energetics without interrupting the coiled coil. In a region rich in interface alanines (an Ala cluster), the chains pack closer than in canonical coiled coils, and are staggered, resulting in a bend [Brown et al. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8496-8501]. Brown et al. suggested that bends at alanine clusters allow tropomyosin to wind on the actin filament helix. Another explanation is that local destabilization of the coiled coil, rather than close packing of the chains at Ala clusters per se, allows flexibility. Changing three Ala residues to canonical interface residues, A74L-A78V-A81L, greatly stabilized tropomyosin, measured using circular dichroism and differential scanning calorimetry, and reduced actin affinity >10-fold. Normal actin affinity and stability were restored in a mutant A74Q-A78N-A81Q that mimicked the stability of the Ala cluster but not the close packing of the chains. Analysis and modeling of comparable mutations introduced closer to the N-terminus show that the effects on stability and function depend on context. Models based on tropomyosin crystal structures give insight into possible effects of the mutations on the structure. We conclude that the significance of the Ala clusters in allowing flexibility of tropomyosin is stability-driven.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
26
|
Lu X, Tobacman LS, Kawai M. Effects of tropomyosin internal deletion Delta23Tm on isometric tension and the cross-bridge kinetics in bovine myocardium. J Physiol 2003; 553:457-71. [PMID: 14500764 PMCID: PMC2343557 DOI: 10.1113/jphysiol.2003.053694] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tropomyosin (Tm) spans seven actin monomers and contains seven quasi-repeating, loosely similar regions, 1-7. Deletion of regions 2-3 decreases the in vitro sliding speed of synthetic filaments of actin-Tm-Troponin (Tn), and weakens Tm binding to the actin-myosin subfragment 1 (S1) complex (acto-S1). The thin filament was selectively removed from bovine myocardium by gelsolin, and the actin filament was reconstituted, followed by further reconstitution with Tm and Tn. In this reconstitution, full-length Tm (control) was compared with Tm internal deletion mutant Delta23Tm, which lacks residues 47-123 (regions 2-3). The effects of phosphate, MgATP, MgADP and Ca2+ were studied in Tm-reconstituted myocardium and Delta23Tm-reconstituted myocardium at pH 7.00 and 25 degrees C. In Delta23Tm, both isometric tension and stiffness were about 40 % of the control. The Hill factor with Delta23Tm, deduced from the pCa-tension plot, was 1.4 times that of the control, but the Ca2+ sensitivity was the same. Sinusoidal analysis indicated that the cross-bridge number in force-generating states was not decreased with Delta23Tm. We conclude that the thin filament cooperativity is increased with Delta23Tm, presumably because of the increased density of the Ca2+-binding sites. We further conclude that tension per cross-bridge is 40 % of control and stiffness per cross-bridge is 40 % of control in Delta23Tm. These results are consistent with the idea that Tm modifies the actin-myosin interface so as to increase the stereospecific interaction between moieties of actin and myosin. In Delta23Tm, the interface may not have a perfect stereospecific match so that the tension- and stiffness-generating capacity is greatly diminished.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
27
|
Hitchcock-DeGregori SE, Song Y, Greenfield NJ. Functions of tropomyosin's periodic repeats. Biochemistry 2002; 41:15036-44. [PMID: 12475253 DOI: 10.1021/bi026519k] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tropomyosin binds along actin filaments and regulates actin-myosin interaction in muscle and nonmuscle cells. Seven periodic amino acid repeats are proposed to correspond to actin binding sites, and the middle periods are important for cooperative activation of actin by myosin. The functional contributions of individual periods were studied in mutants in which periods 2-6 were individually deleted from rat striated muscle alphaalpha-tropomyosin or replaced with a leucine zipper sequence. Unacetylated recombinant tropomyosins were assayed for actin binding, regulation of the actomyosin ATPase with troponin, cooperative myosin S1-induced binding to actin, and thermal stability. Tropomyosin function is relatively insensitive to deletion of period 2, but loss increases as the deletion is shifted toward the C-terminus. Retention of function upon deletion of the periodic repeats is in the order of 2 > 3 approximately 4 approximately 6 >> 5. Internal periods are important for specific functions and are not quasiequivalent. Deletion of period 5 (residues 166-207), and especially deletion or replacement of residues 166-188, a constitutively expressed region encoded by exon 5, had severe consequences on actin affinity and cooperative myosin S1-induced binding to actin. Period 6, residues 208-242, part of the troponin binding site, is required for full inhibition of the actomyosin ATPase in the absence of calcium. The effect of the deletion can depend on its context, suggesting that sequence alone is not the only factor important for function. We propose that the local structure and stability, and consequent flexibility, of the coiled coil are major determinants of actin affinity.
Collapse
Affiliation(s)
- Sarah E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
28
|
|
29
|
Hitchcock-DeGregori SE, Song Y, Moraczewska J. Importance of internal regions and the overall length of tropomyosin for actin binding and regulatory function. Biochemistry 2001; 40:2104-12. [PMID: 11329279 DOI: 10.1021/bi002421z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tropomyosin (Tm) binds along actin filaments, one molecule spanning four to seven actin monomers, depending on the isoform. Periodic repeats in the sequence have been proposed to correspond to actin binding sites. To learn the functional importance of length and the internal periods we made a series of progressively shorter Tms, deleting from two up to six of the internal periods from rat striated alpha-TM (dAc2--3, dAc2--4, dAc3--5, dAc2--5, dAc2--6, dAc1.5--6.5). Recombinant Tms (unacetylated) were expressed in Escherichia coli. Tropomyosins that are four or more periods long (dAc2--3, dAc2--4, and dAc3--5) bound well to F-actin with troponin (Tn). dAc2--5 bound weakly (with EGTA) and binding of shorter mutants was undetectable in any condition. Myosin S1-induced binding of Tm to actin in the tight Tm-binding "open" state did not correlate with actin binding. dAc3--5 and dAc2--5 did not bind to actin even when the filament was saturated with S1. In contrast, dAc2--3 and dAc2--4 did, like wild-type-Tm, requiring about 3 mol of S1/mol of Tm for half-maximal binding. The results show the critical importance of period 5 (residues 166--207) for myosin S1-induced binding. The Tms that bound to actin (dAc2--3, dAc2--4, and dAc3--5) all fully inhibited the actomyosin ATPase (+Tn) in EGTA. In the presence of Ca(2+), relief of inhibition by these Tms was incomplete. We conclude (1) four or more actin periods are required for Tm to bind to actin with reasonable affinity and (2) that the structural requirements of Tm for the transition of the regulated filament from the blocked-to-closed/open (relief of inhibition by Ca(2+)) and the closed-to-open states (strong Tm binding to actin-S1) are different.
Collapse
Affiliation(s)
- S E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
30
|
Wen KK, Kuang B, Rubenstein PA. Tropomyosin-dependent filament formation by a polymerization-defective mutant yeast actin (V266G,L267G). J Biol Chem 2000; 275:40594-600. [PMID: 10998421 DOI: 10.1074/jbc.m007201200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major function of tropomyosin (TPM) in nonmuscle cells may be stabilization of F-actin by binding longitudinally along the actin filament axis. However, no clear evidence exists in vitro that TPM can significantly affect the critical concentration of actin. We previously made a polymerization-defective mutant actin, GG (V266G, L267G). This actin will not polymerize alone at 25 degrees C but will in the presence of phalloidin or beryllium fluoride. With beryllium fluoride, but not phalloidin, this polymerization rescue is cold-sensitive. We show here that GG-actin polymerizability was restored by cardiac tropomyosin and yeast TPM1 and TPM2 at 25 degrees C with rescue efficiency inversely proportional to TPM length (TPM2 > TPM1 > cardiac tropomyosin), indicating the importance of the ends in polymerization rescue. In the presence of TPM, the apparent critical concentration of actin is 5.5 microm, 10-15-fold higher than that of wild type actin but well below that of the GG-actin alone (>20 microm). Non N-acetylated TPMs did not rescue GG-actin polymerization. The TPMs did not prevent cold-induced depolymerization of GG F-actin. TPM-dependent GG-actin polymerization did not occur at temperatures below 20 degrees C. Polymerization rescue may depend initially on the capture of unstable GG-F-actin oligomers by the TPM, resulting in the strengthening of actin monomer-monomer contacts along the filament axis.
Collapse
Affiliation(s)
- K K Wen
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
31
|
Evans CC, Pena JR, Phillips RM, Muthuchamy M, Wieczorek DF, Solaro RJ, Wolska BM. Altered hemodynamics in transgenic mice harboring mutant tropomyosin linked to hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2000; 279:H2414-23. [PMID: 11045979 DOI: 10.1152/ajpheart.2000.279.5.h2414] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used transgenic (TG) mice overexpressing mutant alpha-tropomyosin [alpha-Tm(Asp175Asn)], linked to familial hypertrophic cardiomyopathy (FHC), to test the hypothesis that this mutation impairs cardiac function by altering the sensitivity of myofilaments to Ca(2+). Left ventricular (LV) pressure was measured in anesthetized nontransgenic (NTG) and TG mice. In control conditions, LV relaxation was 6,970 +/- 297 mmHg/s in NTG and 5,624 +/- 392 mmHg/s in TG mice (P < 0.05). During beta-adrenergic stimulation, the rate of relaxation increased to 8,411 +/- 323 mmHg/s in NTG and to 6,080 +/- 413 mmHg/s in TG mice (P < 0.05). We measured the pCa-force relationship (pCa = -log [Ca(2+)]) in skinned fiber bundles from LV papillary muscles of NTG and TG hearts. In control conditions, the Ca(2+) concentration producing 50% maximal force (pCa(50)) was 5.77 +/- 0.02 in NTG and 5.84 +/- 0.01 in TG myofilament bundles (P < 0.05). After protein kinase A-dependent phosphorylation, the pCa(50) was 5.71 +/- 0.01 in NTG and 5.77 +/- 0. 02 in TG myofilament bundles (P < 0.05). Our results indicate that mutant alpha-Tm(Asp175Asn) increases myofilament Ca(2+)-sensitivity, which results in decreased relaxation rate and blunted response to beta-adrenergic stimulation.
Collapse
Affiliation(s)
- C C Evans
- Departments of Physiology and Biophysics, Section of Cardiology, The University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Bing W, Knott A, Redwood C, Esposito G, Purcell I, Watkins H, Marston S. Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha -tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. J Mol Cell Cardiol 2000; 32:1489-98. [PMID: 10900175 DOI: 10.1006/jmcc.2000.1182] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The properties of mutant contractile proteins that cause hypertrophic cardiomyopathy (HCM) have been investigated in expression studies and in mouse models. There is growing evidence that the precise isoforms of both the mutated protein and its interacting partners can qualitatively influence the effects of the mutation. We therefore investigated the functional effects of two HCM mutations in alpha -tropomyosin, Asp175Asn and Glu180Gly, in the in vitro motility assay using recombinant human alpha -tropomyosin, expressed with an N-terminal alanine-serine extension (AStm) to mimic acetylation in vivo, and purified native human cardiac troponin. The expected switching off of reconstituted filament movement at pCa9, and switching on at pCa5, was observed with no difference in fraction of filaments motile or filament velocity, between wild-type and mutant filaments. However, we observed increased Ca(2+)sensitivity of fraction of filaments motile using the mutant tropomyosin compared to wild-type (DeltaEC(50)+0.082+/-0. 019 pCa units for Asp175Asn and +0.115+/-0.021 for Glu180Gly). Indirect measurements using immobilized alpha -actinin to retard filament movement showed that filaments reconstituted with mutant AStm produced the same force as wild-type filaments. The results using human cardiac regulatory proteins reveal different effects of the HCM mutations in tropomyosin compared to studies using heterologous systems. By performing parallel experiments using either human cardiac or rabbit skeletal troponin we show that the cardiac-specific phenotype of HCM mutations in alpha -tropomyosin is not the result of more marked functional changes when interacting with cardiac troponin.
Collapse
Affiliation(s)
- W Bing
- Cardiac Medicine, Imperial College School of Medicine, National Heart and Lung Institute, Dovehouse St, London, SW3 6LY, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
34
|
Rosol M, Lehman W, Craig R, Landis C, Butters C, Tobacman LS. Three-dimensional reconstruction of thin filaments containing mutant tropomyosin. Biophys J 2000; 78:908-17. [PMID: 10653803 PMCID: PMC1300693 DOI: 10.1016/s0006-3495(00)76648-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interactions of the components of reconstituted thin filaments were investigated using a tropomyosin internal deletion mutant, D234, in which actin-binding pseudo-repeats 2, 3, and 4 are missing. D234 retains regions of tropomyosin that bind troponin and form end-to-end tropomyosin bonds, but has a length to span only four instead of seven actin monomers. It inhibits acto-myosin subfragment 1 ATPase (acto-S-1 ATPase) and filament sliding in vitro in both the presence and absence of Ca(2+) (, J. Biol. Chem. 272:14051-14056) and lowers the affinity of S-1.ADP for actin while increasing its cooperative binding. Electron microscopy and three-dimensional reconstruction of reconstituted thin filaments containing actin, troponin, and wild-type or D234 tropomyosin were carried out to determine if Ca(2+)-induced movement of D234 occurred in the filaments. In the presence and absence of Ca(2+), the D234 position was indistinguishable from that of the wild-type tropomyosin, demonstrating that the mutation did not affect normal tropomyosin movement induced by Ca(2+) and troponin. These results suggested that, in the presence of Ca(2+) and troponin, D234 tropomyosin was trapped on filaments in the Ca(2+)-induced position and was unable to undergo a transition to a completely activated position. By adding small amounts of rigor-bonded N-ethyl-maleimide-treated S-1 to mutant thin filaments, thus mimicking the myosin-induced "open" state, inhibition could be overcome and full activation restored. This myosin requirement for full activation provides support for the existence of three functionally distinct thin filament states (off, Ca(2+)-induced, myosin-induced; cf.;, J. Mol. Biol. 266:8-14). We propose a further refinement of the three-state model in which the binding of myosin to actin causes allosteric changes in actin that promote the binding of tropomyosin in an otherwise energetically unfavorable "open" state.
Collapse
Affiliation(s)
- M Rosol
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
35
|
Landis C, Back N, Homsher E, Tobacman LS. Effects of tropomyosin internal deletions on thin filament function. J Biol Chem 1999; 274:31279-85. [PMID: 10531325 DOI: 10.1074/jbc.274.44.31279] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Striated muscle tropomyosin spans seven actin monomers and contains seven quasi-repeating regions with loose sequence similarity. Each region contains a hypothesized actin binding motif. To examine the functions of these regions, full-length tropomyosin was compared with tropomyosin internal deletion mutants spanning either five or four actins. Actin-troponin-tropomyosin filaments lacking tropomyosin regions 2-3 exhibited calcium-sensitive regulation in in vitro motility and myosin S1 ATP hydrolysis experiments, similar to filaments with full-length tropomyosin. In contrast, filaments lacking tropomyosin regions 3-4 were inhibitory to these myosin functions. Deletion of regions 2-4, 3-5, or 4-6 had little effect on tropomyosin binding to actin in the presence of troponin or troponin-Ca(2+), or in the absence of troponin. However, all of these mutants inhibited myosin cycling. Deletion of the quasi-repeating regions diminished the prominent effect of myosin S1 on tropomyosin-actin binding. Interruption of this cooperative, myosin-tropomyosin interaction was least severe for the mutant lacking regions 2-3 and therefore correlated with inhibition of myosin cycling. Regions 3, 4, and 5 each contributed about 1.5 kcal/mol to this process, whereas regions 2 and 6 contributed much less. We suggest that a myosin-induced conformational change in actin facilitates the azimuthal repositioning of tropomyosin which is an essential part of regulation.
Collapse
Affiliation(s)
- C Landis
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
36
|
Greenfield NJ, Montelione GT, Farid RS, Hitchcock-DeGregori SE. The structure of the N-terminus of striated muscle alpha-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies. Biochemistry 1998; 37:7834-43. [PMID: 9601044 DOI: 10.1021/bi973167m] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tropomyosins (TMs) are highly conserved, coiled-coil, actin binding regulatory proteins found in most eukaryotic cells. The amino-terminal domain of 284-residue TMs is among the most conserved and functionally important regions. The first nine residues are proposed to bind to the carboxyl-terminal nine residues to form the "overlap" region between successive TMs, which bind along the actin filament. Here, the structure of the N-terminus of muscle alpha-TM, in a chimeric peptide, TMZip, has been solved using circular dichroism (CD) and two-dimensional proton nuclear magnetic resonance (2D 1H NMR) spectroscopy. Residues 1-14 of TMZip are the first 14 N-terminal residues of rabbit striated alpha-TM, and residues 15-32 of TMZip are the last 18 C-terminal residues of the yeast GCN4 transcription factor. CD measurements show that TMZip forms a two-stranded coiled-coil alpha-helix with an enthalpy of folding of -34 +/- 2 kcal/mol. In 2D1H NMR studies at 15 degrees C, pH 6.4, the peptide exhibits 123 sequential and medium range intrachain NOE cross peaks per chain, characteristic of alpha-helices extending from residue 1 to residue 29, together with 85 long-range NOE cross peaks arising from interchain interactions. The three-dimensional structure of TMZip has been determined using these data plus an additional 509 intrachain constraints per chain. The coiled-coil domain extends to the N-terminus. Amide hydrogen exchange studies, however, suggest that the TM region is less stable than the GCN4 region. The work reported here is the first atomic-resolution structure of any region of TM and it allows insight into the mechanism of the function of the highly conserved N-terminal domain.
Collapse
Affiliation(s)
- N J Greenfield
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | | | | | |
Collapse
|
37
|
Mykles DL, Cotton JL, Taniguchi H, Sano K, Maeda Y. Cloning of tropomyosins from lobster (Homarus americanus) striated muscles: fast and slow isoforms may be generated from the same transcript. J Muscle Res Cell Motil 1998; 19:105-15. [PMID: 9536438 DOI: 10.1023/a:1005352410725] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complementary DNAs encoding fibre-type-specific isoforms of tropomyosin (Tm) have been isolated from lobster (Homarus americanus) striated muscle expression libraries made from poly(A)+ RNA purified from deep abdominal (fast-type) and crusher-claw closer (slow-type) muscles. A cDNA of slow-muscle Tm (sTm1), containing a complete open reading frame (ORF) and portions of the 5' and 3' untranslated regions (UTRs), encodes a protein of 284 amino acid residues with a predicted mass of 32,950, assuming acetylation of the amino terminus. The nucleotide sequence of a fast-muscle tropomyosin (fTm cDNA), which includes the entire ORF and part of the 3' UTR, is identical to that of sTm1 cDNA, except in the region encoding amino acid residues 39-80 (equivalent to exon 2 of mammalian and Drosophila muscle tropomyosin genes). The deduced amino acid sequences, which display the heptameric repeats of nonpolar and charged amino acids characteristic of alpha-helical coiled-coils, are highly homologous to tropomyosins from rabbit, Drosophila, and shrimp (57% to 99% identities, depending on species). Northern blot analysis showed that two transcripts (1.1 and 2.1 kb) are present in both fibre types. Mass spectrometry indicated that fast muscle contains one major isoform (fTm: 32,903), while slow muscle contains two major isoforms (sTm1 and sTm2: 32,950 and 32,884 respectively). Both Tm preparations contained minor species with a mass of about 32,830. Sequences of peptides derived from purified slow and fast Tms were identical to the deduced amino acid sequences of the sTm1 and fTm cDNAs, respectively, except in the C-terminal region of fTm. The difference in mass between that predicted by the deduced sequence (32,880) and that measured by mass spectrometry (32,903) suggests that fTm is posttranslationally modified, in addition to acetylation of the N-terminal methionine. These data are consistent with the hypothesis that the fTm and sTm1 are generated by alternative splicing of two mutually-exclusive exons near the 5' end of the same gene.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| | | | | | | | | |
Collapse
|
38
|
Hammell RL, Hitchcock-DeGregori SE. The sequence of the alternatively spliced sixth exon of alpha-tropomyosin is critical for cooperative actin binding but not for interaction with troponin. J Biol Chem 1997; 272:22409-16. [PMID: 9278391 DOI: 10.1074/jbc.272.36.22409] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tropomyosins, a family of highly conserved coiled-coil actin binding proteins, can differ as a consequence of alternative expression of several exons (Lees-Miller, J., and Helfman, D. (1991) BioEssays 13, 429-437). Exon 6, which encodes residues 189-213 in long, 284-residue tropomyosins, has two alternative forms, exon 6a or 6b, both highly conserved throughout evolution. In alpha-tropomyosin, exon 6a or 6b is not specific to any one of the nine isoforms. Exon 6b encodes part of a putative Ca2+-sensitive troponin binding site in striated muscle tropomyosins, suggesting that the exon 6-encoded region may be specialized for certain tropomyosin functions. A series of recombinant, unacetylated tropomyosin exon 6 deletion and substitution mutants and chimeras was expressed in Escherichia coli to determine the requirements of exon 6 for tropomyosin function. Functional properties of the tropomyosins were defined by actin affinity measured by cosedimentation, troponin T affinity using a newly developed biosensor assay, and regulation of the actomyosin MgATPase. The region of tropomyosin encoded by exon 6 affects actin affinity but not thin filament assembly, troponin T binding, or regulation with troponin. The tropomyosins with exon 6a or 6b function normally whether a striated muscle exon 9a or smooth/non-muscle exon 9d is present. However, the effect of deleting 21 amino acids encoded by exon 6 or replacing it with a GCN4 leucine zipper sequence depends on the COOH-terminal sequence.
Collapse
Affiliation(s)
- R L Hammell
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
39
|
Landis CA, Bobkova A, Homsher E, Tobacman LS. The active state of the thin filament is destabilized by an internal deletion in tropomyosin. J Biol Chem 1997; 272:14051-6. [PMID: 9162027 DOI: 10.1074/jbc.272.22.14051] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The function of three of tropomyosin's sequential quasiequivalent regions was studied by deletion from skeletal muscle alpha-tropomyosin of internal residues 49-167. This deletion mutant tropomyosin spans four instead of the normal seven actins, and most of the tropomyosin region believed to interact with troponin is retained and uninterrupted in the mutant. The mutant tropomyosin was compared with a full-length control molecule that was modified to functionally resemble muscle tropomyosin (Monteiro, P. B., Lataro, R. C., Ferro, J. A., and Reinach, F. C. (1994) J. Biol. Chem. 269, 10461-10466). The tropomyosin deletion suppressed the actin-myosin subfragment 1 MgATPase rate and the in vitro sliding of thin filaments over a heavy meromyosin-coated surface. This inhibition was not reversed by troponin plus Ca2+. Comparable tropomyosin affinities for actin, regardless of the deletion, suggest that the deleted region has little interaction with actin in the absence of other proteins. Similarly, the deletion did not weaken binding of the troponin-tropomyosin complex to actin. Furthermore, Ca2+ had a 2-fold effect on troponin-tropomyosin's affinity for actin, regardless of the deletion. Notably, the deletion greatly weakened tropomyosin binding to myosin subfragment 1-decorated actin, with the full-length tropomyosin having a 100-fold greater affinity. The inhibitory properties resulting from the deletion are attributed to defective stabilization of the myosin-induced active state of the thin filament.
Collapse
Affiliation(s)
- C A Landis
- Departments of Internal Medicine and Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
40
|
Golitsina N, An Y, Greenfield NJ, Thierfelder L, Iizuka K, Seidman JG, Seidman CE, Lehrer SS, Hitchcock-DeGregori SE. Effects of two familial hypertrophic cardiomyopathy-causing mutations on alpha-tropomyosin structure and function. Biochemistry 1997; 36:4637-42. [PMID: 9109674 DOI: 10.1021/bi962970y] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Missense mutations in alpha-tropomyosin can cause familial hypertrophic cardiomyopathy. The effects of two of these, Asp175Asn and Glu180Gly, have been tested on the structure and function of recombinant human tropomyosin expressed in Escherichia coli. The F-actin affinity (measured by cosedimentation) of Glu180Gly was similar to that of wild-type, but Asp175Asn was more than 2-fold weaker, whether or not troponin was present. The mutations had no apparent effect on the affinity of tropomyosin for troponin. The mutations had a small effect on the overall stability (measured using circular dichroism) but caused increased local flexibility or decreased local stability, as evaluated by the higher excimer/monomer ratios of tropomyosin labeled with pyrene maleimide at Cys 190. The pyrene-labeled tropomyosins differed in their response to myosin S1 binding to the actin-tropomyosin filament. The conformations of the two mutants were different from each other and from wild-type in the myosin S1-induced on-state of the thin filament. Even though both mutant tropomyosins bound cooperatively to actin, they did not respond with the same conformational change as wild-type when myosin S1 switched the thin filament from the off- to the on-state.
Collapse
Affiliation(s)
- N Golitsina
- Boston Biomedical Research Institute, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Saeki K, Sutoh K, Wakabayashi T. Tropomyosin-binding site(s) on the Dictyostelium actin surface as identified by site-directed mutagenesis. Biochemistry 1996; 35:14465-72. [PMID: 8931542 DOI: 10.1021/bi961292c] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To identify tropomyosin-binding site(s) on the surface of actin molecule, we examined the effect of mutagenesis introduced to subdomain 4 of actin. Because the sequence of Gln228-Ser232 of Dictyostelium actin differs from that of Tetrahymena actin that does not bind tropomyosin, the Dictyostelium/Tetrahymena chimeric actin was produced. Also, Lys238 and Glu241 were replaced with alanine (mutant 645) to study the role of charged residues which are located at both ends of a beta-sheet. As a control experiment, a negative charge was introduced near to the N-terminus (mutant 663). To facilitate the separation of mutant actins without affecting the normal function, Glu360 was replaced with histidine. As a control mutant to such mutants, the mutant 647 (E360H) was produced. Mutant actins were expressed in Dictyostelium cells. All mutant actins were functional: they (i) polymerize and (ii) activate ATPase activity of rabbit skeletal myosin subfragment-1 (S1). The mutant 663 (G2E) showed tropomyosin binding and activated myosin ATPase almost as well as rabbit skeletal actin. However, the tropomyosin binding of the mutant 645 (K238A/E241A/E360H) became magnesium dependent. The chimeric actin (mutant 646: QTAAS-to-KAYKE replacement and E360H) showed decreased tropomyosin binding even in the presence of magnesium ions. These results indicate that the tropomyosin-binding sites of "on"-state actin are on subdomain 4. Surprisingly, the chimeric actin showed more cooperative calcium regulation than rabbit skeletal actin in the presence of tropomyosin-troponin. The mutant actin 645 can hardly activate S1 ATPase irrespective of calcium concentration in the presence of tropomyosin-troponin, even though this actin by itself can activate S1 ATPase. The steric blocking or cooperative/allosteric mechanism of thin filament regulation is discussed.
Collapse
Affiliation(s)
- K Saeki
- Department of Physics, School of Science, University of Tokyo, Japan
| | | | | |
Collapse
|