1
|
Genome-Wide Detection and Analysis of Copy Number Variation in Anhui Indigenous and Western Commercial Pig Breeds Using Porcine 80K SNP BeadChip. Genes (Basel) 2023; 14:genes14030654. [PMID: 36980927 PMCID: PMC10047991 DOI: 10.3390/genes14030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Copy number variation (CNV) is an important class of genetic variations widely associated with the porcine genome, but little is known about the characteristics of CNVs in foreign and indigenous pig breeds. We performed a genome-wide comparison of CNVs between Anhui indigenous pig (AHIP) and Western commercial pig (WECP) breeds based on data from the Porcine 80K SNP BeadChip. After analysis using the PennCNV software, we detected 3863 and 7546 CNVs in the AHIP and WECP populations, respectively. We obtained 225 (loss: 178, gain: 47) and 379 (loss: 293, gain: 86) copy number variation regions (CNVRs) randomly distributed across the autosomes of the AHIP and WECP populations, accounting for 10.90% and 22.57% of the porcine autosomal genome, respectively. Functional enrichment analysis of genes in the CNVRs identified genes related to immunity (FOXJ1, FOXK2, MBL2, TNFRSF4, SIRT1, NCF1) and meat quality (DGAT1, NT5E) in the WECP population; these genes were a loss event in the WECP population. This study provides important information on CNV differences between foreign and indigenous pig breeds, making it possible to provide a reference for future improvement of these breeds and their production performance.
Collapse
|
2
|
Kang Y, Zhang K, Sun L, Zhang Y. Regulation and roles of FOXK2 in cancer. Front Oncol 2022; 12:967625. [PMID: 36172141 PMCID: PMC9510715 DOI: 10.3389/fonc.2022.967625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Forkhead box K2 (FOXK2) is a member of the forkhead box transcription factor family that contains an evolutionarily conserved winged-helix DNA-binding domain. Recently, an increasing number of studies have demonstrated that FOXK2 plays an important role in the transcriptional regulation of cancer. Here, we provide an overview of the mechanisms underlying the regulation of FOXK2 expression and function and discuss the roles of FOXK2 in tumor pathogenesis. Additionally, we evaluated the prognostic value of FOXK2 expression in patients with various cancers. This review presents an overview of the different roles of FOXK2 in tumorigenesis and will help inform the design of experimental studies involving FOXK2. Ultimately, the information presented here will help enhance the therapeutic potential of FOXK2 as a cancer target.
Collapse
|
3
|
Tsai H, Zeng X, Liu L, Xin S, Wu Y, Xu Z, Zhang H, Liu G, Bi Z, Su D, Yang M, Tao Y, Wang C, Zhao J, Eriksson JE, Deng W, Cheng F, Chen H. NF45/NF90-mediated rDNA transcription provides a novel target for immunosuppressant development. EMBO Mol Med 2021; 13:e12834. [PMID: 33555115 PMCID: PMC7933818 DOI: 10.15252/emmm.202012834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Herein, we demonstrate that NFAT, a key regulator of the immune response, translocates from cytoplasm to nucleolus and interacts with NF45/NF90 complex to collaboratively promote rDNA transcription via triggering the directly binding of NF45/NF90 to the ARRE2-like sequences in rDNA promoter upon T-cell activation in vitro. The elevated pre-rRNA level of T cells is also observed in both mouse heart or skin transplantation models and in kidney transplanted patients. Importantly, T-cell activation can be significantly suppressed by inhibiting NF45/NF90-dependent rDNA transcription. Amazingly, CX5461, a rDNA transcription-specific inhibitor, outperformed FK506, the most commonly used immunosuppressant, both in terms of potency and off-target activity (i.e., toxicity), as demonstrated by a series of skin and heart allograft models. Collectively, this reveals NF45/NF90-mediated rDNA transcription as a novel signaling pathway essential for T-cell activation and as a new target for the development of safe and effective immunosuppressants.
Collapse
Affiliation(s)
- Hsiang‐i Tsai
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious DiseaseShenzhen People's Hospital2 Clinical Medical College of Jinan UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Regional Immunity and DiseasesMedicine School of Shenzhen UniversityShenzhenChina
| | - Longshan Liu
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shengchang Xin
- State Key Laboratory of Coordination ChemistryInstitute of Chemistry and Biomedical SciencesSchool of Life SciencesNanjing UniversityNanjingChina
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Huanxi Zhang
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Zirong Bi
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Min Yang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Yijing Tao
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Changxi Wang
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jing Zhao
- State Key Laboratory of Coordination ChemistryInstitute of Chemistry and Biomedical SciencesSchool of Life SciencesNanjing UniversityNanjingChina
| | - John E Eriksson
- Cell BiologyBiosciencesFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Centre for BiotechnologyUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
4
|
Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X, Wang J. FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett 2019; 458:1-12. [PMID: 31132431 DOI: 10.1016/j.canlet.2019.05.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
Growing evidence suggests that alterations of gene expression including expression and activities of transcription factors are closely associated with carcinogenesis. Forkhead Box Class K (FOXK) proteins, FOXK1 and FOXK2, are a family of evolutionarily conserved transcriptional factors, which have recently been recognized as key transcriptional regulators involved in many types of cancer. Members of the FOXK family mediate a wide spectrum of biological processes, including cell proliferation, differentiation, apoptosis, autophagy, cell cycle progression, DNA damage and tumorigenesis. Therefore, the deregulation of FOXKs can affect the cell fate and they promote tumorigenesis as well as cancer progression. The mechanisms of FOXKs regulation including post-translational modifications (PTMs), microRNAs (miRNAs) and protein-protein interactions are well demonstrated. However, the detailed mechanisms of FOXKs activation and deregulation in cancer progression are still inconclusive. In this review, we summarize the regulatory mechanisms of FOXKs expression and activity, and their role in the development and progression of cancer. We have discussed whether FOXKs act as tumor suppressors/oncoproteins in tumor cells and their therapeutic applications in malignant diseases are also discussed. This review may assist in designing experimental studies involving FOXKs and it would strength the therapeutic potential of FOXKs as targets for cancers.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China
| | - Hu Ge
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qiong Wang
- Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Jianxun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
FOXK2 Transcription Factor and Its Emerging Roles in Cancer. Cancers (Basel) 2019; 11:cancers11030393. [PMID: 30897782 PMCID: PMC6468357 DOI: 10.3390/cancers11030393] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Forkhead box (FOX) transcription factors compose a large family of regulators of key biological processes within a cell. FOXK2 is a member of FOX family, whose biological functions remain relatively unexplored, despite its description in the early nineties. More recently, growing evidence has been pointing towards a role of FOXK2 in cancer, which is likely to be context-dependent and tumour-specific. Here, we provide an overview of important aspects concerning the mechanisms of regulation of FOXK2 expression and function, as well as its complex interactions at the chromatin level, which orchestrate how it differentially regulates the expression of gene targets in pathophysiology. Particularly, we explore the emerging functions of FOXK2 as a regulator of a broad range of cancer features, such as cell proliferation and survival, DNA damage, metabolism, migration, invasion and metastasis. Finally, we discuss the prognostic value of assessing FOXK2 expression in cancer patients and how it can be potentially targeted for future anticancer interventions.
Collapse
|
6
|
El-Gammal Z, AlOkda A, El-Badri N. Role of human oocyte-enriched factors in somatic cell reprograming. Mech Ageing Dev 2018; 175:88-99. [PMID: 29890177 DOI: 10.1016/j.mad.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Cellular reprograming paves the way for creating functional patient-specific tissues to eliminate immune rejection responses by applying the same genetic profile. However, the epigenetic memory of a cell remains a challenge facing the current reprograming methods and does not allow transcription factors to bind properly. Because somatic cells can be reprogramed by transferring their nuclear contents into oocytes, introducing specific oocyte factors into differentiated cells is considered a promising approach for mimicking the reprograming process that occurs during fertilization. Mammalian metaphase II oocyte possesses a superior capacity to epigenetically reprogram somatic cell nuclei towards an embryonic stem cell-like state than the current factor-based reprograming approaches. This may be due to the presence of specific factors that are lacking in the current factor-based reprograming approaches. In this review, we focus on studies identifying human oocyte-enriched factors aiming to understand the molecular mechanisms mediating cellular reprograming. We describe the role of oocyte-enriched factors in metabolic switch, chromatin remodelling, and global epigenetic transformation. This is critical for improving the quality of resulting reprogramed cells, which is crucial for therapeutic applications.
Collapse
Affiliation(s)
- Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Abdelrahman AlOkda
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt.
| |
Collapse
|
7
|
Lockyer P, Mao H, Fan Q, Li L, Yu-Lee LY, Eissa NT, Patterson C, Xie L, Pi X. LRP1-Dependent BMPER Signaling Regulates Lipopolysaccharide-Induced Vascular Inflammation. Arterioscler Thromb Vasc Biol 2017; 37:1524-1535. [PMID: 28596374 DOI: 10.1161/atvbaha.117.309521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/30/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Bacterial endotoxin (lipopolysaccharide)-mediated sepsis involves dysregulated systemic inflammation, which injures the lung and other organs, often fatally. Vascular endothelial cells act as both targets and mediators of lipopolysaccharide-induced inflammatory responses. Dysfunction of endothelium results in increases of proinflammatory cytokine production and permeability leakage. BMPER (bone morphogenetic protein-binding endothelial regulator), an extracellular modulator of bone morphogenetic protein signaling, has been identified as a vital component in chronic endothelial inflammatory responses and atherosclerosis. However, it is unclear whether BMPER also regulates inflammatory response in an acute setting such as sepsis. To address this question, we investigated the role of BMPER during lipopolysaccharide-induced acute lung injury. APPROACH AND RESULTS Mice missing 1 allele of BMPER (BMPER+/- mice used in the place of BMPER-/- mice that die at birth) were used for lipopolysaccharide challenge. Lipopolysaccharide-induced pulmonary inflammation and injury was reduced in BMPER+/- mice as shown by several measures, including survival rate, infiltration of inflammatory cells, edema, and production of proinflammatory cytokines. Mechanistically, we have demonstrated that BMPER is required and sufficient for the activation of nuclear factor of activated T cells c1. This BMPER-induced nuclear factor of activated T cells activation is coordinated by multiple signaling pathways, including bone morphogenetic protein-independent low-density lipoprotein receptor-related protein 1-extracellular signal-regulated kinase activation, calcineurin signaling, and low-density lipoprotein receptor-related protein 1β-mediated nuclear factor 45 nuclear export in response to BMPER treatment. CONCLUSIONS We conclude that BMPER plays a pivotal role in pulmonary inflammatory response, which provides new therapeutic options against sepsis shock. The new signaling pathway initiated by BMPER/low-density lipoprotein receptor-related protein 1 axis broadens our understanding about BMPER's role in vascular homeostasis.
Collapse
Affiliation(s)
- Pamela Lockyer
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Hua Mao
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Qiying Fan
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Luge Li
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Li-Yuan Yu-Lee
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - N Tony Eissa
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Cam Patterson
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Liang Xie
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Xinchun Pi
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.).
| |
Collapse
|
8
|
Lindblom RPF, Ström M, Heinig M, Al Nimer F, Aeinehband S, Berg A, Dominguez CA, Vijayaraghavan S, Zhang XM, Harnesk K, Zelano J, Hübner N, Cullheim S, Darreh-Shori T, Diez M, Piehl F. Unbiased expression mapping identifies a link between the complement and cholinergic systems in the rat central nervous system. THE JOURNAL OF IMMUNOLOGY 2013; 192:1138-53. [PMID: 24353269 DOI: 10.4049/jimmunol.1301233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The complement system is activated in a wide spectrum of CNS diseases and is suggested to play a role in degenerative phenomena such as elimination of synaptic terminals. Still, little is known of mechanisms regulating complement activation in the CNS. Loss of synaptic terminals in the spinal cord after an experimental nerve injury is increased in the inbred DA strain compared with the PVG strain and is associated with expression of the upstream complement components C1q and C3, in the absence of membrane attack complex activation and neutrophil infiltration. To further dissect pathways regulating complement expression, we performed genome-wide expression profiling and linkage analysis in a large F2(DA × PVG) intercross, which identified quantitative trait loci regulating expression of C1qa, C1qb, C3, and C9. Unlike C1qa, C1qb, and C9, which all displayed distinct coregulation with different cis-regulated C-type lectins, C3 was regulated in a coexpression network immediately downstream of butyrylcholinesterase. Butyrylcholinesterase hydrolyses acetylcholine, which exerts immunoregulatory effects partly through TNF-α pathways. Accordingly, increased C3, but not C1q, expression was demonstrated in rat and mouse glia following TNF-α stimulation, which was abrogated in a dose-dependent manner by acetylcholine. These findings demonstrate new pathways regulating CNS complement expression using unbiased mapping in an experimental in vivo system. A direct link between cholinergic activity and complement activation is supported by in vitro experiments. The identification of distinct pathways subjected to regulation by naturally occurring genetic variability is of relevance for the understanding of disease mechanisms in neurologic conditions characterized by neuronal injury and complement activation.
Collapse
Affiliation(s)
- Rickard P F Lindblom
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nelson CS, Fuller CK, Fordyce PM, Greninger AL, Li H, DeRisi JL. Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets. Nucleic Acids Res 2013; 41:5991-6004. [PMID: 23625967 PMCID: PMC3695516 DOI: 10.1093/nar/gkt259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transcription factor forkhead box P2 (FOXP2) is believed to be important in the evolution of human speech. A mutation in its DNA-binding domain causes severe speech impairment. Humans have acquired two coding changes relative to the conserved mammalian sequence. Despite intense interest in FOXP2, it has remained an open question whether the human protein’s DNA-binding specificity and chromatin localization are conserved. Previous in vitro and ChIP-chip studies have provided conflicting consensus sequences for the FOXP2-binding site. Using MITOMI 2.0 microfluidic affinity assays, we describe the binding site of FOXP2 and its affinity profile in base-specific detail for all substitutions of the strongest binding site. We find that human and chimp FOXP2 have similar binding sites that are distinct from previously suggested consensus binding sites. Additionally, through analysis of FOXP2 ChIP-seq data from cultured neurons, we find strong overrepresentation of a motif that matches our in vitro results and identifies a set of genes with FOXP2 binding sites. The FOXP2-binding sites tend to be conserved, yet we identified 38 instances of evolutionarily novel sites in humans. Combined, these data present a comprehensive portrait of FOXP2’s-binding properties and imply that although its sequence specificity has been conserved, some of its genomic binding sites are newly evolved.
Collapse
Affiliation(s)
- Christopher S Nelson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94131, USA.
| | | | | | | | | | | |
Collapse
|
10
|
The forkhead transcription factor FOXK2 promotes AP-1-mediated transcriptional regulation. Mol Cell Biol 2011; 32:385-98. [PMID: 22083952 DOI: 10.1128/mcb.05504-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The transcriptional control circuitry in eukaryotic cells is complex and is orchestrated by combinatorially acting transcription factors. Forkhead transcription factors often function in concert with heterotypic transcription factors to specify distinct transcriptional programs. Here, we demonstrate that FOXK2 participates in combinatorial transcriptional control with the AP-1 transcription factor. FOXK2 binding regions are widespread throughout the genome and are often coassociated with AP-1 binding motifs. FOXK2 acts to promote AP-1-dependent gene expression changes in response to activation of the AP-1 pathway. In this context, FOXK2 is required for the efficient recruitment of AP-1 to chromatin. Thus, we have uncovered an important new molecular mechanism that controls AP-1-dependent gene expression.
Collapse
|
11
|
Marais A, Ji Z, Child ES, Krause E, Mann DJ, Sharrocks AD. Cell cycle-dependent regulation of the forkhead transcription factor FOXK2 by CDK·cyclin complexes. J Biol Chem 2010; 285:35728-39. [PMID: 20810654 PMCID: PMC2975197 DOI: 10.1074/jbc.m110.154005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several mammalian forkhead transcription factors have been shown to impact on cell cycle regulation and are themselves linked to cell cycle control systems. Here we have investigated the little studied mammalian forkhead transcription factor FOXK2 and demonstrate that it is subject to control by cell cycle-regulated protein kinases. FOXK2 exhibits a periodic rise in its phosphorylation levels during the cell cycle, with hyperphosphorylation occurring in mitotic cells. Hyperphosphorylation occurs in a cyclin-dependent kinase (CDK)·cyclin-dependent manner with CDK1·cyclin B as the major kinase complex, although CDK2 and cyclin A also appear to be important. We have mapped two CDK phosphorylation sites, serines 368 and 423, which play a role in defining FOXK2 function through regulating its stability and its activity as a transcriptional repressor protein. These two CDK sites appear vital for FOXK2 function because expression of a mutant lacking these sites cannot be tolerated and causes apoptosis.
Collapse
Affiliation(s)
- Anett Marais
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Fujii Y, Nakamura M. FOXK2 transcription factor is a novel G/T-mismatch DNA binding protein. J Biochem 2010; 147:705-9. [DOI: 10.1093/jb/mvq004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
13
|
Georges AB, Benayoun BA, Caburet S, Veitia RA. Generic binding sites, generic DNA‐binding domains: where does specific promoter recognition come from? FASEB J 2009; 24:346-56. [DOI: 10.1096/fj.09-142117] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adrien B. Georges
- Unité Mixte de Recherche 7592‐Centre National de la Recherche ScientifiqueInstitut Jacques MonodParisFrance
| | - Berenice A. Benayoun
- Unité Mixte de Recherche 7592‐Centre National de la Recherche ScientifiqueInstitut Jacques MonodParisFrance
| | - Sandrine Caburet
- Unité Mixte de Recherche 7592‐Centre National de la Recherche ScientifiqueInstitut Jacques MonodParisFrance
| | - Reiner A. Veitia
- Unité Mixte de Recherche 7592‐Centre National de la Recherche ScientifiqueInstitut Jacques MonodParisFrance
| |
Collapse
|
14
|
Benayoun BA, Caburet S, Dipietromaria A, Bailly-Bechet M, Batista F, Fellous M, Vaiman D, Veitia RA. The identification and characterization of a FOXL2 response element provides insights into the pathogenesis of mutant alleles. Hum Mol Genet 2008; 17:3118-27. [DOI: 10.1093/hmg/ddn209] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Palumbo SL, Memmott RM, Uribe DJ, Krotova-Khan Y, Hurley LH, Ebbinghaus SW. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res 2008; 36:1755-69. [PMID: 18252774 PMCID: PMC2330228 DOI: 10.1093/nar/gkm1069] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-myb promoter contains multiple GGA repeats beginning 17 bp downstream of the transcription initiation site. GGA repeats have been previously shown to form unusual DNA structures in solution. Results from chemical footprinting, circular dichroism and RNA and DNA polymerase arrest assays on oligonucleotides representing the GGA repeat region of the c-myb promoter demonstrate that the element is able to form tetrad:heptad:heptad:tetrad (T:H:H:T) G-quadruplex structures by stacking two tetrad:heptad G-quadruplexes formed by two of the three (GGA)(4) repeats. Deletion of one or two (GGA)(4) motifs destabilizes this secondary structure and increases c-myb promoter activity, indicating that the G-quadruplexes formed in the c-myb GGA repeat region may act as a negative regulator of the c-myb promoter. Complete deletion of the c-myb GGA repeat region abolishes c-myb promoter activity, indicating dual roles of the c-myb GGA repeat element as both a transcriptional repressor and an activator. Furthermore, we demonstrated that Myc-associated zinc finger protein (MAZ) represses c-myb promoter activity and binds to the c-myb T:H:H:T G-quadruplexes. Our findings show that the T:H:H:T G-quadruplex-forming region in the c-myb promoter is a critical cis-acting element and may repress c-myb promoter activity through MAZ interaction with G-quadruplexes in the c-myb promoter.
Collapse
Affiliation(s)
- SunMi L Palumbo
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724-5024, USA
| | | | | | | | | | | |
Collapse
|
16
|
Liang CS, Ikeda D, Kinoshita S, Shimizu A, Sasaki T, Asakawa S, Shimizu N, Watabe S. Myocyte enhancer factor 2 regulates expression of medaka Oryzias latipes fast skeletal myosin heavy chain genes in a temperature-dependent manner. Gene 2008; 407:42-53. [DOI: 10.1016/j.gene.2007.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/19/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
|
17
|
Liu XL, Yuan JY, Zhang JW, Zhang XH, Wang RX. Differential gene expression in human hematopoietic stem cells specified toward erythroid, megakaryocytic, and granulocytic lineage. J Leukoc Biol 2007; 82:986-1002. [PMID: 17626799 DOI: 10.1189/jlb.0107014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To better understand the transcriptional program that accompanies orderly lineage-specific hematopoietic differentiation, we analyzed expression changes during the lineage-specific differentiation of human hematopoietic stem cells (HSC; CD34+/CD38-/CD33-); HSC and multipotent myeloid progenitors (MMP; CD34+/CD38-/CD33+) were isolated from the bone marrow of healthy individuals by MACS. CD34+ cells in semi-solid culture were stimulated with the cytokines erythropoietin, IL-6, and G-CSF to promote differentiation to committed erythroid, megakaryocytic, and granulocytic clones, respectively. Differential display RT-PCR analysis was performed to compare the mRNA transcripts in HSC, MMP, and the committed lineage-specific clones derived from these committed lineage-specific progenitors. Expressed sequence tags (n=256), which were differentially expressed, were identified. One hundred ninety-four were homologous to known genes, and some were associated with hematopoiesis. These known genes were classified as involved in transcription/translation, signal transduction, cell surface receptors/ligands, cell signaling, cell metabolism, cell cycle, cell apoptosis, and oncogenesis. We identified genes, which were up- or down-regulated specifically in the lineage-committed clones compared with HSC or/and MMP, suggesting that specific gene activation and repression might be necessary for specific lineage commitment and differentiation. Our data provide an extensive transcriptional profile of human hematopoiesis during in vitro, lineage-specific differentiation.
Collapse
Affiliation(s)
- Xiao-Ling Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
18
|
Shirai H, Kamimura M, Fujiwara H. Characterization of core promoter elements for ecdysone receptor isoforms of the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2007; 16:253-64. [PMID: 17298552 DOI: 10.1111/j.1365-2583.2006.00722.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Two ecdysone receptor (EcR) isoforms, EcR-A and EcR-B1, are expressed in a tissue- and stage-specific manner, although the details of their transcription mechanisms are unknown. We determined the transcription start sites of EcR-A and EcR-B1 isoforms of Bombyx mori and found that both core promoter regions consist of initiator (Inr) and downstream promoter elements (DPE) but not TATA boxes. Promoter truncation analysis performed using the luciferase reporter assays and BmN cells showed that, in both isoforms, the regions -296 to -74 for BmEcR-B1, -104 to -61 for BmEcR-A and downstream regions of +1 are essential for basal transcriptional activity. Mutation experiments revealed that both DPE and its 5'-flanking CGCGCG sequence are crucial but DPE of BmEcR-B1 is not important for BmEcR-A transcription. These results indicate that the basal promoter activities differ between the two BmEcR isoforms.
Collapse
Affiliation(s)
- H Shirai
- Department of Integrated Biosciences Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | |
Collapse
|
19
|
Wang Y, Dennehy PH, Keyserling HL, Tang K, Gentsch JR, Glass RI, Jiang B. Rotavirus infection alters peripheral T-cell homeostasis in children with acute diarrhea. J Virol 2007; 81:3904-12. [PMID: 17267507 PMCID: PMC1866105 DOI: 10.1128/jvi.01887-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 01/22/2007] [Indexed: 11/20/2022] Open
Abstract
The patterns of gene expression and the phenotypes of lymphocytes in peripheral blood mononuclear cells (PBMC) from children with diarrhea caused by rotavirus and healthy children were compared by using DNA microarray, quantitative PCR, and flow cytometry. We observed increased expression of a number of genes encoding proinflammatory cytokines and interferon or interferon-stimulated proteins and demonstrated activation of some genes involved in the differentiation, maturation, activation, and survival of B lymphocytes in PBMC of patients with rotavirus infection. In contrast, we observed a consistent pattern of lower mRNA levels for an array of genes involved in the various stages of T-cell development and demonstrated a reduction in total lymphocyte populations and in the proportions of CD4 and CD8 T lymphocytes from PBMC of patients. This decreased frequency of T lymphocytes was transient, since the proportions of T lymphocytes recovered to almost normal levels in convalescent-phase PBMC from most patients. Finally, rotavirus infection induced the activation and expression of the early activation markers CD83 and CD69 on a fraction of CD19 B cells and the remaining CD4 and CD8 T lymphocytes in acute-phase PBMC of patients; the expression of CD83 continued to be elevated and was predominantly exhibited on CD4 T lymphocytes in convalescent-phase PBMC. On the basis of these findings at the molecular, phenotypic, and physiologic levels in acute-phase PBMC, we conclude that rotavirus infection induces robust proinflammatory and antiviral responses and B-cell activation but alters peripheral T-cell homeostasis in children.
Collapse
Affiliation(s)
- Yuhuan Wang
- Division of Viral Diseases, Scientific Resources Program, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen C, Rowell EA, Thomas RM, Hancock WW, Wells AD. Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem 2006; 281:36828-34. [PMID: 17028180 DOI: 10.1074/jbc.m608848200] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Regulatory T cells (T(reg)) express Foxp3, a forkhead family member that is necessary and sufficient for T(reg) lineage choice and function. Ectopic expression of Foxp3 in non-T(reg) leads to repression of the interleukin 2 (IL-2) and interferon gamma (IFNgamma) genes, gain of suppressor function, and induction of genes such as CD25, GITR, and CTLA-4, but the mode by which Foxp3 enforces this program is unclear. Using chromatin immunoprecipitation, we have demonstrated that Foxp3 binds to the endogenous IL-2 and IFNgamma loci in T cells, but only after T cell receptor stimulation. This activation-induced Foxp3 binding was abrogated by cyclosporin A, suggesting a role for the phosphatase calcineurin in Foxp3 function. We have also shown that binding of Foxp3 to the IL-2 and IFNgamma genes induces active deacetylation of histone H3, a process that inhibits chromatin remodeling and opposes gene transcription. Conversely, binding of Foxp3 to the GITR, CD25, and CTLA-4 genes results in increased histone acetylation. These data indicate that Foxp3 may regulate transcription through direct chromatin remodeling and show that Foxp3 function is influenced by signals from the TCR.
Collapse
Affiliation(s)
- Chunxia Chen
- Joseph Stokes, Jr. Research Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Wijchers PJEC, Burbach JPH, Smidt MP. In control of biology: of mice, men and Foxes. Biochem J 2006; 397:233-46. [PMID: 16792526 PMCID: PMC1513289 DOI: 10.1042/bj20060387] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 12/11/2022]
Abstract
Forkhead proteins comprise a highly conserved family of transcription factors, named after the original forkhead gene in Drosophila. To date, over 100 forkhead genes have been identified in a large variety of species, all sharing the evolutionary conserved 'forkhead' DNA-binding domain, and the cloning and characterization of forkhead genes have continued in recent years. Forkhead transcription factors regulate the expression of countless genes downstream of important signalling pathways in most, if not all, tissues and cell types. Recent work has provided novel insights into the mechanisms that contribute to their functional diversity, including functional protein domains and interactions of forkheads with other transcription factors. Studies using loss- and gain-of-function models have elucidated the role of forkhead factors in developmental biology and cellular functions such as metabolism, cell division and cell survival. The importance of forkhead transcription factors is underlined by the developmental defects observed in mutant model organisms, and multiple human disorders and cancers which can be attributed to mutations within members of the forkhead gene family. This review provides a comprehensive overview of current knowledge on forkhead transcription factors, from structural organization and regulatory mechanisms to cellular and developmental functions in mice and humans. Finally, we will discuss how novel insights gained from involvement of 'Foxes' in the mechanisms underlying human pathology may create new opportunities for treatment strategies.
Collapse
Key Words
- cell cycle
- development
- forkhead
- fox
- immunoregulation
- transcription factor
- cbp, creb (camp-response-element-binding protein)-binding protein
- ccnb, cyclin b
- cdk, cyclin-dependent kinase
- cki, cdk inhibitor
- dyrk1a, dual-specificity tyrosine-phosphorylated and -regulated kinase 1a
- er, oestrogen receptor
- fha, forkhead-associated domain
- fm, foxh1 motif
- fox, forkhead box
- gadd45a, growth arrest and dna-damage-inducible protein 45α
- hdac, histone deacetylase
- iκb, inhibitory κb
- ikkβ, iκb kinase β
- mh domain, mothers against decapentaplegic homology domain
- nf-κb, nuclear factor κb
- nls, nuclear localization signal
- pkb, protein kinase b
- plk-1, polo-like kinase 1
- scf, skp2/cullin/f-box
- sgk, serum- and glucocorticoid-induced protein kinase
- smad, similar to mothers against decapentaplegic
- sid, smad-interaction domain
- sim, smad-interaction motif
- tgfβ, transforming growth factor β
Collapse
Affiliation(s)
- Patrick J E C Wijchers
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
22
|
Tsai KL, Huang CY, Chang CH, Sun YJ, Chuang WJ, Hsiao CD. Crystal structure of the human FOXK1a-DNA complex and its implications on the diverse binding specificity of winged helix/forkhead proteins. J Biol Chem 2006; 281:17400-17409. [PMID: 16624804 DOI: 10.1074/jbc.m600478200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin enhancer binding factor (ILF) is a human transcription factor and a new member of the winged helix/forkhead family. ILF can bind to purine-rich regulatory motifs such as the human T-cell leukemia virus-long terminal region and the interleukin-2 promoter. Here we report the 2.4 A crystal structure of two DNA binding domains of ILF (FOXK1a) binding to a 16-bp DNA duplex containing a promoter sequence. Electrophoretic mobility shift assay studies demonstrate that two ILF-DNA binding domain molecules cooperatively bind to DNA. In addition to the recognition helix recognizing the core sequences through the major groove, the structure shows that wing 1 interacts with the minor groove of DNA, and the H2-H3 loop region makes ionic bonds to the phosphate group, which permits the recognition of DNA. The structure also reveals that the presence of the C-terminal alpha-helix in place of a typical wing 2 in a member of this family alters the orientation of the C-terminal basic residues (RKRRPR) when binding to DNA outside the core sequence. These results provide a new insight into how the DNA binding specificities of winged helix/forkhead proteins may be regulated by their less conserved regions.
Collapse
Affiliation(s)
- Kuang-Lei Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300
| | | | - Chia-Hao Chang
- Department of Biochemistry, National Cheng Kung University, College of Medicine, Tainan 701, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300
| | - Woei-Jer Chuang
- Department of Biochemistry, National Cheng Kung University, College of Medicine, Tainan 701, Taiwan.
| | | |
Collapse
|
23
|
Stroud JC, Wu Y, Bates DL, Han A, Nowick K, Paabo S, Tong H, Chen L. Structure of the Forkhead Domain of FOXP2 Bound to DNA. Structure 2006; 14:159-66. [PMID: 16407075 DOI: 10.1016/j.str.2005.10.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/27/2005] [Accepted: 10/04/2005] [Indexed: 11/24/2022]
Abstract
FOXP (FOXP1-4) is a newly defined subfamily of the forkhead box (FOX) transcription factors. A mutation in the FOXP2 forkhead domain cosegregates with a severe speech disorder, whereas several mutations in the FOXP3 forkhead domain are linked to the IPEX syndrome in human and a similar autoimmune phenotype in mice. Here we report a 1.9 A crystal structure of the forkhead domain of human FOXP2 bound to DNA. This structure allows us to revise the previously proposed DNA recognition mechanism and provide a unifying model of DNA binding for the FOX family of proteins. Our studies also reveal that the FOXP2 forkhead domain can form a domain-swapped dimer, made possible by a strategic substitution of a highly conserved proline in conventional FOX proteins with alanine in the P subfamily. Disease-causing mutations in FOXP2 and FOXP3 map either to the DNA binding surface or the domain-swapping dimer interface, functionally corroborating the crystal structure.
Collapse
Affiliation(s)
- James C Stroud
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Payvandi F, Wu L, Naziruddin SD, Haley M, Parton A, Schafer PH, Chen RS, Muller GW, Hughes CCW, Stirling DI. Immunomodulatory Drugs (IMiDs) Increase the Production of IL-2 from Stimulated T Cells by Increasing PKC-θ Activation and Enhancing the DNA-Binding Activity of AP-1 but Not NF-κB, OCT-1, or NF-AT. J Interferon Cytokine Res 2005; 25:604-16. [PMID: 16241859 DOI: 10.1089/jir.2005.25.604] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are orally available small molecules that potently inhibit tumor necrosis factor-alpha (TNF-alpha) production by lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (HuPBMCs) but enhance secretion of such cytokines as interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) by stimulated T cells. The mechanism of cytokine regulation by IMiDs has not yet been determined. In the present study, we investigated the effects of one of the IMiDs, CC-4047 (Actimid, Celgene, Warren, NJ), on synthesis of IL-2 protein and mRNA and on the activity and expression of transcription factors. Treatment with CC-4047 enhances the secretion of IL-2 protein and the expression of IL-2 mRNA in a dose-dependent and time-dependent manner. In T cells stimulated with phorbol myristate acetate (PMA)/ionomycin, CC-4047 enhanced the DNA-binding activity of activated protein-1 (AP-1) but not NF-kappaB, Octomer-1 (OCT-1), or NFAT by 2-fold and 4-fold after an incubation time of 1 and 3 h, respectively. Luciferase reporter assays in Jurkat cells showed similar effects on transcription factor activity. Using in vitro kinase activity assays, we also showed that CC-4047 enhances the activity of protein kinase C-theta (PKC-theta) in stimulated T cells. The secreted IL-2 from HuPBMCs was shown to activate natural killer (NK) cells to lyse their target cell line K562. Taken together, our results demonstrate that the IMiDs exert their effects at least in part by activating PKC-theta and acting on AP-1 DNA-binding activity in T cells, resulting in augmented IL-2 synthesis and activation of IL- 2-dependent downstream effectors, such as NK cells.
Collapse
Affiliation(s)
- Faribourz Payvandi
- Department of Immunotherapeutics, Celgene Corporation, Summit, NJ 07901, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu PP, Chen YC, Li C, Hsieh YH, Chen SW, Chen SH, Jeng WY, Chuang WJ. Solution structure of the DNA-binding domain of interleukin enhancer binding factor 1 (FOXK1a). Proteins 2002; 49:543-53. [PMID: 12402362 DOI: 10.1002/prot.10227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interleukin enhancer binding factor (ILF) binds to the interleukin-2 (IL-2) promoter and regulates IL-2 gene expression. In this study, the 3D structure of the DNA-binding domain of ILF was determined by multidimensional NMR spectroscopy. NMR structure analysis revealed that the DNA-binding domain of ILF is a new member of the winged helix/forkhead family, and that its wing 2 contains an extra alpha-helix. This is the first study to report the presence of a C-terminal alpha-helix in place of a typical wing 2 in a member of this family. This structural difference may be responsible for the different DNA-binding specificity of ILF compared to other winged helix/forkhead proteins. Our deletion studies of the fragments of ILF also suggest that the C-terminal region plays a regulatory role in DNA binding.
Collapse
Affiliation(s)
- Pei-Phen Liu
- Department of Biochemistry, National Cheng Kung University College of Medicine, Tainan 701, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fürstenau U, Schwaninger M, Blume R, Jendrusch EM, Knepel W. Characterization of a novel calcium response element in the glucagon gene. J Biol Chem 1999; 274:5851-60. [PMID: 10026208 DOI: 10.1074/jbc.274.9.5851] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To maintain blood glucose levels within narrow limits, the synthesis and secretion of pancreatic islet hormones is controlled by a variety of extracellular signals. Depolarization-induced calcium influx into islet cells has been shown to stimulate glucagon gene transcription through the transcription factor cAMP response element-binding protein that binds to the glucagon cAMP response element. By transient transfection of glucagon-reporter fusion genes into islet cell lines, this study identified a second calcium response element in the glucagon gene (G2 element, from -165 to -200). Membrane depolarization was found to induce the binding of a nuclear complex with NFATp-like immunoreactivity to the G2 element. Consistent with nuclear translocation, a comigrating complex was found in cytosolic extracts of unstimulated cells, and the induction of nuclear protein binding was blocked by inhibition of calcineurin phosphatase activity by FK506. A mutational analysis of G2 function and nuclear protein binding as well as the effect of FK506 indicate that calcium responsiveness is conferred to the G2 element by NFATp functionally interacting with HNF-3beta binding to a closely associated site. Transcription factors of the NFAT family are known to cooperate with AP-1 proteins in T cells for calcium-dependent activation of cytokine genes. This study shows a novel pairing of NFATp with the cell lineage-specific transcription factor HNF-3beta in islet cells to form a novel calcium response element in the glucagon gene.
Collapse
Affiliation(s)
- U Fürstenau
- Department of Molecular Pharmacology, University of Göttingen, D-37070 Göttingen, Germany
| | | | | | | | | |
Collapse
|
27
|
DaSilva L, Kirken RA, Taub DD, Evans GA, Duhé RJ, Bailey MA, Farrar WL. Molecular cloning of FKHRL1P2, a member of the developmentally regulated fork head domain transcription factor family. Gene 1998; 221:135-42. [PMID: 9852958 DOI: 10.1016/s0378-1119(98)00441-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we report the expression of a fork head domain protein in human T helper cells. We cloned and characterized a fork head cDNA from human T helper cell mRNA using differential display RT-PCR. The cDNA contains a 546-nucleotide (nt) open reading frame (ORF) that codes for the carboxyl-terminal 180 amino acids (aa) of the recently identified fkhrl1 gene. This ORF does not contain the characteristic DNA-binding domain found in members of the forkhead protein family. In-vitro transcription/translation of this cDNA expressed a protein of approximately 20 kDa. We have generated antibodies that specifically immunoprecipitated the in-vitro-translated 20-kDa protein. This antibody also recognizes in human T lymphocytes a 70-kDa protein corresponding in size to that predicted for the fkhrl1 gene product. The mRNA levels for fkhrl1 is elevated in T helper-induced lymphocytes in comparison to PHA-stimulated T lymphocytes. Further characterization of FKHRL1 and its related family members should shed light on the transcriptional mechanisms of this fork head gene subfamily and their role in T helper cell differentiation and regulation of cell growth.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Cell Differentiation
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- Forkhead Box Protein O1
- Forkhead Box Protein O3
- Forkhead Transcription Factors
- Gene Expression Regulation, Developmental
- Humans
- Molecular Sequence Data
- Precipitin Tests
- Protein Biosynthesis
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- T-Lymphocytes, Helper-Inducer/chemistry
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/metabolism
- Transcription Factors/analysis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- L DaSilva
- Division of Basic Science, IRSP, SAIC Frederick, MD 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The nuclear factor of activated T cells (NFAT) plays an important role in T-cell biology. Activation of T cells results in the rapid calcineurin-dependent translocation of NFAT transcription factors from the cytoplasm to the nucleus. This translocation process coupled to the subsequent active maintenance of NFAT in the nucleus compartment is critical for the induction of expression of several genes encoding cytokines and membrane proteins that modulate immune responses. The molecular cloning of the NFAT family of transcription factors has facilitated rapid progress in the understanding of the signalling mechanisms that control the activity of NFAT.
Collapse
Affiliation(s)
- E S Masuda
- Department of Cell Signalling, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
29
|
Chang JH, Pratt JC, Sawasdikosol S, Kapeller R, Burakoff SJ. The small GTP-binding protein Rho potentiates AP-1 transcription in T cells. Mol Cell Biol 1998; 18:4986-93. [PMID: 9710582 PMCID: PMC109083 DOI: 10.1128/mcb.18.9.4986] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rho family of small GTP-binding proteins is involved in the regulation of cytoskeletal structure, gene transcription, specific cell fate development, and transformation. We demonstrate in this report that overexpression of an activated form of Rho enhances AP-1 activity in Jurkat T cells in the presence of phorbol myristate acetate (PMA), but activated Rho (V14Rho) has little or no effect on NFAT, Oct-1, and NF-kappaB enhancer element activities under similar conditions. Overexpression of a V14Rho construct incapable of membrane localization (CAAX deleted) abolishes PMA-induced AP-1 transcriptional activation. The effect of Rho on AP-1 is independent of the mitogen-activated protein kinase pathway, as a dominant-negative MEK and a MEK inhibitor (PD98059) did not affect Rho-induced AP-1 activity. V14Rho binds strongly to protein kinase Calpha (PKCalpha) in vivo; however, deletion of the CAAX site on V14Rho severely diminished this association. Evidence for a role for PKCalpha as an effector of Rho was obtained by the observation that coexpression of the N-terminal domain of PKCalpha blocked the effects of activated Rho plus PMA on AP-1 transcriptional activity. These data suggest that Rho potentiates AP-1 transcription during T-cell activation.
Collapse
Affiliation(s)
- J H Chang
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|