1
|
Jarman OD, Biner O, Hirst J. Regulation of ATP hydrolysis by the ε subunit, ζ subunit and Mg-ADP in the ATP synthase of Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148355. [PMID: 33321110 PMCID: PMC8039183 DOI: 10.1016/j.bbabio.2020.148355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
F1FO-ATP synthase is a crucial metabolic enzyme that uses the proton motive force from respiration to regenerate ATP. For maximum thermodynamic efficiency ATP synthesis should be fully reversible, but the enzyme from Paracoccus denitrificans catalyzes ATP hydrolysis at far lower rates than it catalyzes ATP synthesis, an effect often attributed to its unique ζ subunit. Recently, we showed that deleting ζ increases hydrolysis only marginally, indicating that other common inhibitory mechanisms such as inhibition by the C-terminal domain of the ε subunit (ε-CTD) or Mg-ADP may be more important. Here, we created mutants lacking the ε-CTD, and double mutants lacking both the ε-CTD and ζ subunit. No substantial activation of ATP hydrolysis was observed in any of these strains. Instead, hydrolysis in even the double mutant strains could only be activated by oxyanions, the detergent lauryldimethylamine oxide, or a proton motive force, which are all considered to release Mg-ADP inhibition. Our results establish that P. denitrificans ATP synthase is regulated by a combination of the ε and ζ subunits and Mg-ADP inhibition.
Collapse
Affiliation(s)
- Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Olivier Biner
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
2
|
Milgrom YM, Duncan TM. F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε-subunit's C-terminal domain are mutually exclusive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148189. [PMID: 32194063 DOI: 10.1016/j.bbabio.2020.148189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
ATP synthases are important energy-coupling, rotary motor enzymes in all kingdoms of life. In all F-type ATP synthases, the central rotor of the catalytic F1 complex is composed of the γ subunit and the N-terminal domain (NTD) of the ε subunit. In the enzymes of diverse bacteria, the C-terminal domain of ε (εCTD) can undergo a dramatic conformational change to trap the enzyme in a transiently inactive state. This inhibitory mechanism is absent in the mitochondrial enzyme, so the εCTD could provide a means to selectively target ATP synthases of pathogenic bacteria for antibiotic development. For Escherichia coli and other bacterial model systems, it has been difficult to dissect the relationship between ε inhibition and a MgADP-inhibited state that is ubiquitous for FOF1 from bacteria and eukaryotes. A prior study with the isolated catalytic complex from E. coli, EcF1, showed that these two modes of inhibition are mutually exclusive, but it has long been known that interactions of F1 with the membrane-embedded FO complex modulate inhibition by the εCTD. Here, we study membranes containing EcFOF1 with wild-type ε, ε lacking the full εCTD, or ε with a small deletion at the C-terminus. By using compounds with distinct activating effects on F-ATP-ase activity, we confirm that εCTD inhibition and ubiquitous MgADP inhibition are mutually exclusive for membrane-bound E. coli F-ATP-ase. We determine that most of the enzyme complexes in wild-type membranes are in the ε-inhibited state (>50%) or in the MgADP-inhibited state (30%).
Collapse
Affiliation(s)
- Yakov M Milgrom
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| |
Collapse
|
3
|
Petri J, Nakatani Y, Montgomery MG, Ferguson SA, Aragão D, Leslie AGW, Heikal A, Walker JE, Cook GM. Structure of F 1-ATPase from the obligate anaerobe Fusobacterium nucleatum. Open Biol 2019; 9:190066. [PMID: 31238823 PMCID: PMC6597759 DOI: 10.1098/rsob.190066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from the pathogenic anaerobic bacterium Fusobacterium nucleatum. The enzyme can hydrolyse ATP but is partially inhibited. The structure is similar to those of the F1-ATPases from Caldalkalibacillus thermarum, which is more strongly inhibited in ATP hydrolysis, and in Mycobacterium smegmatis, which has a very low ATP hydrolytic activity. The βE-subunits in all three enzymes are in the conventional ‘open’ state, and in the case of C. thermarum and M. smegmatis, they are occupied by an ADP and phosphate (or sulfate), but in F. nucleatum, the occupancy by ADP appears to be partial. It is likely that the hydrolytic activity of the F. nucleatum enzyme is regulated by the concentration of ADP, as in mitochondria.
Collapse
Affiliation(s)
- Jessica Petri
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand
| | - Yoshio Nakatani
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand.,2 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| | - Martin G Montgomery
- 3 Medical Research Council Mitochondrial Biology Unit , Cambridge Biomedical Campus, Cambridge CB2 0XY , UK
| | - Scott A Ferguson
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand
| | - David Aragão
- 4 Australian Synchrotron , 800 Blackburn Road, Clayton, Victoria 3168 , Australia
| | - Andrew G W Leslie
- 5 Medical Research Council Laboratory of Molecular Biology , Cambridge Biomedical Campus, Cambridge CB2 0QH , UK
| | - Adam Heikal
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand.,2 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| | - John E Walker
- 3 Medical Research Council Mitochondrial Biology Unit , Cambridge Biomedical Campus, Cambridge CB2 0XY , UK
| | - Gregory M Cook
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand.,2 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| |
Collapse
|
4
|
Lapashina AS, Feniouk BA. ADP-Inhibition of H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2018; 83:1141-1160. [PMID: 30472953 DOI: 10.1134/s0006297918100012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Hahn-Herrera O, Salcedo G, Barril X, García-Hernández E. Inherent conformational flexibility of F1-ATPase α-subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1392-1402. [PMID: 27137408 DOI: 10.1016/j.bbabio.2016.04.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/12/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022]
Abstract
The core of F1-ATPase consists of three catalytic (β) and three noncatalytic (α) subunits, forming a hexameric ring in alternating positions. A wealth of experimental and theoretical data has provided a detailed picture of the complex role played by catalytic subunits. Although major conformational changes have only been seen in β-subunits, it is clear that α-subunits have to respond to these changes in order to be able to transmit information during the rotary mechanism. However, the conformational behavior of α-subunits has not been explored in detail. Here, we have combined unbiased molecular dynamics (MD) simulations and calorimetrically measured thermodynamic signatures to investigate the conformational flexibility of isolated α-subunits, as a step toward deepening our understanding of its function inside the α3β3 ring. The simulations indicate that the open-to-closed conformational transition of the α-subunit is essentially barrierless, which is ideal to accompany and transmit the movement of the catalytic subunits. Calorimetric measurements of the recombinant α-subunit from Geobacillus kaustophilus indicate that the isolated subunit undergoes no significant conformational changes upon nucleotide binding. Simulations confirm that the nucleotide-free and nucleotide-bound subunits show average conformations similar to that observed in the F1 crystal structure, but they reveal an increased conformational flexibility of the isolated α-subunit upon MgATP binding, which might explain the evolutionary conserved capacity of α-subunits to recognize nucleotides with considerable strength. Furthermore, we elucidate the different dependencies that α- and β-subunits show on Mg(II) for recognizing ATP.
Collapse
Affiliation(s)
- Otto Hahn-Herrera
- Instituto de Química Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04630, D.F., Mexico
| | - Guillermo Salcedo
- Instituto de Química Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04630, D.F., Mexico
| | - Xavier Barril
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain; Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique García-Hernández
- Instituto de Química Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04630, D.F., Mexico.
| |
Collapse
|
6
|
Buchert F, Konno H, Hisabori T. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:441-450. [PMID: 25660164 DOI: 10.1016/j.bbabio.2015.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/23/2014] [Accepted: 01/27/2015] [Indexed: 11/26/2022]
Abstract
The soluble F1 complex of ATP synthase (FoF1) is capable of ATP hydrolysis, accomplished by the minimum catalytic core subunits α3β3γ. A special feature of cyanobacterial F1 and chloroplast F1 (CF1) is an amino acid sequence inserted in the γ-subunit. The insertion is extended slightly into the CF1 enzyme containing two additional cysteines for regulation of ATPase activity via thiol modulation. This molecular switch was transferred to a chimeric F1 by inserting the cysteine-containing fragment from spinach CF1 into a cyanobacterial γ-subunit [Y. Kim et al., redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch, J Biol Chem, 286 (2011) 9071-9078]. Under oxidizing conditions, the obtained F1 tends to lapse into an ADP-inhibited state, a common regulation mechanism to prevent wasteful ATP hydrolysis under unfavorable circumstances. However, the information flow between thiol modulation sites on the γ-subunit and catalytic sites on the β-subunits remains unclear. Here, we clarified a possible interplay for the CF1-ATPase redox regulation between structural elements of the βDELSEED-loop and the γ-subunit neck region, i.e., the most convex part of the α-helical γ-termini. Critical residues were assigned on the β-subunit, which received the conformation change signal produced by disulfide/dithiol formation on the γ-subunit. Mutant response to the ATPase redox regulation ranged from lost to hypersensitive. Furthermore, mutant cross-link experiments and inversion of redox regulation indicated that the γ-redox state might modulate the subunit interface via reorientation of the βDELSEED motif region.
Collapse
Affiliation(s)
- Felix Buchert
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan; Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan.
| |
Collapse
|
7
|
Malyan AN. Noncatalytic nucleotide binding sites: properties and mechanism of involvement in ATP synthase activity regulation. BIOCHEMISTRY (MOSCOW) 2014; 78:1512-23. [PMID: 24490737 DOI: 10.1134/s0006297913130099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP synthases (FoF1-ATPases) of chloroplasts, mitochondria, and bacteria catalyze ATP synthesis or hydrolysis coupled with the transmembrane transfer of protons or sodium ions. Their activity is regulated through their reversible inactivation resulting from a decreased transmembrane potential difference. The inactivation is believed to conserve ATP previously synthesized under conditions of sufficient energy supply against unproductive hydrolysis. This review is focused on the mechanism of nucleotide-dependent regulation of the ATP synthase activity where the so-called noncatalytic nucleotide binding sites are involved. Properties of these sites varying upon free enzyme transition to its membrane-bound form, their dependence on membrane energization, and putative mechanisms of noncatalytic site-mediated regulation of the ATP synthase activity are discussed.
Collapse
Affiliation(s)
- A N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
8
|
Ishikawa T, Kato-Yamada Y. Severe MgADP inhibition of Bacillus subtilis F1-ATPase is not due to the absence of nucleotide binding to the noncatalytic nucleotide binding sites. PLoS One 2014; 9:e107197. [PMID: 25244289 PMCID: PMC4171097 DOI: 10.1371/journal.pone.0107197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022] Open
Abstract
F1-ATPase from Bacillus subtilis (BF1) is severely suppressed by the MgADP inhibition. Here, we have tested if this is due to the loss of nucleotide binding to the noncatalytic site that is required for the activation. Measurements with a tryptophan mutant of BF1 indicated that the noncatalytic sites could bind ATP normally. Furthermore, the mutant BF1 that cannot bind ATP to the noncatalytic sites showed much lower ATPase activity. It was concluded that the cause of strong MgADP inhibition of BF1 is not the weak nucleotide binding to the noncatalytic sites but the other steps required for the activation.
Collapse
Affiliation(s)
- Toru Ishikawa
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
- Research Center for Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Lu P, Lill H, Bald D. ATP synthase in mycobacteria: special features and implications for a function as drug target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1208-18. [PMID: 24513197 DOI: 10.1016/j.bbabio.2014.01.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
ATP synthase is a ubiquitous enzyme that is largely conserved across the kingdoms of life. This conservation is in accordance with its central role in chemiosmotic energy conversion, a pathway utilized by far by most living cells. On the other hand, in particular pathogenic bacteria whilst employing ATP synthase have to deal with energetically unfavorable conditions such as low oxygen tensions in the human host, e.g. Mycobacterium tuberculosis can survive in human macrophages for an extended time. It is well conceivable that such ATP synthases may carry idiosyncratic features that contribute to efficient ATP production. In this review genetic and biochemical data on mycobacterial ATP synthase are discussed in terms of rotary catalysis, stator composition, and regulation of activity. ATP synthase in mycobacteria is of particular interest as this enzyme has been validated as a target for promising new antibacterial drugs. A deeper understanding of the working of mycobacterial ATP synthase and its atypical features can provide insight in adaptations of bacterial energy metabolism. Moreover, pinpointing and understanding critical differences as compared with human ATP synthase may provide input for the design and development of selective ATP synthase inhibitors as antibacterials. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Ping Lu
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Kikuchi Y, Naka Y, Osakabe H, Okamoto T, Masaike T, Ueno H, Toyabe S, Muneyuki E. Thermodynamic analyses of nucleotide binding to an isolated monomeric β subunit and the α3β3γ subcomplex of F1-ATPase. Biophys J 2013; 105:2541-8. [PMID: 24314084 PMCID: PMC3853085 DOI: 10.1016/j.bpj.2013.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022] Open
Abstract
Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a βY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a βE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric βY341W subunit and a mutant α3β3γ subcomplex containing the βY341W mutation with or without an additional βE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated β subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van't Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated β subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH(0) and ΔG(0) values at 25°C. The binding of nucleotides with different bases to the isolated β subunit resulted in different entropy changes. Interestingly, NDP binding to the α3β(Y341W)3γ subcomplex had similar Kd and ΔG(0) values as binding to the isolated β(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy.
Collapse
Affiliation(s)
- Yohsuke Kikuchi
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Yusuke Naka
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Hidemitsu Osakabe
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tetsuaki Okamoto
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tomoko Masaike
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba-ken, Japan
| | - Hiroshi Ueno
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Shoichi Toyabe
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Eiro Muneyuki
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| |
Collapse
|
11
|
Hisabori T, Sunamura EI, Kim Y, Konno H. The chloroplast ATP synthase features the characteristic redox regulation machinery. Antioxid Redox Signal 2013; 19:1846-54. [PMID: 23145525 PMCID: PMC3837435 DOI: 10.1089/ars.2012.5044] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. RECENT ADVANCES The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. CRITICAL ISSUES Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. FUTURE DIRECTIONS The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system.
Collapse
Affiliation(s)
- Toru Hisabori
- 1 Chemical Resources Laboratory, Tokyo Institute of Technology , Yokohama, Japan
| | | | | | | |
Collapse
|
12
|
ε subunit of Bacillus subtilis F1-ATPase relieves MgADP inhibition. PLoS One 2013; 8:e73888. [PMID: 23967352 PMCID: PMC3742539 DOI: 10.1371/journal.pone.0073888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
MgADP inhibition, which is considered as a part of the regulatory system of ATP synthase, is a well-known process common to all F1-ATPases, a soluble component of ATP synthase. The entrapment of inhibitory MgADP at catalytic sites terminates catalysis. Regulation by the ε subunit is a common mechanism among F1-ATPases from bacteria and plants. The relationship between these two forms of regulatory mechanisms is obscure because it is difficult to distinguish which is active at a particular moment. Here, using F1-ATPase from Bacillus subtilis (BF1), which is strongly affected by MgADP inhibition, we can distinguish MgADP inhibition from regulation by the ε subunit. The ε subunit did not inhibit but activated BF1. We conclude that the ε subunit relieves BF1 from MgADP inhibition.
Collapse
|
13
|
Malyan AN. Activation of MgADP-inactivated chloroplast F1-ATPase depends on oxyanion binding to noncatalytic sites. DOKL BIOCHEM BIOPHYS 2013; 450:123-5. [PMID: 23824451 DOI: 10.1134/s1607672913030022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Indexed: 11/23/2022]
Affiliation(s)
- A N Malyan
- Russian Academy of Sciences, Moscow oblast, Russia
| |
Collapse
|
14
|
Sunamura EI, Konno H, Imashimizu M, Mochimaru M, Hisabori T. A conformational change of the γ subunit indirectly regulates the activity of cyanobacterial F1-ATPase. J Biol Chem 2012; 287:38695-704. [PMID: 23012354 DOI: 10.1074/jbc.m112.395053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30-40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α(3)β(3)γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ε inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ε inhibition.
Collapse
Affiliation(s)
- Ei-Ichiro Sunamura
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
15
|
Milgrom YM. Characteristics of protection by MgADP and MgATP of α3β3γ subcomplex of thermophilic Bacillus PS3 βY341W-mutant F1-ATPase from inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole support a bi-site mechanism of catalysis. BIOCHEMISTRY (MOSCOW) 2012; 76:1253-61. [PMID: 22117552 DOI: 10.1134/s0006297911110071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MgADP and MgATP binding to catalytic sites of βY341W-α(3)β(3)γ subcomplex of F(1)-ATPase from thermophilic Bacillus PS3 has been assessed using their effect on the enzyme inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). It was assumed that NBD-Cl can inhibit only when catalytic sites are empty, and inhibition is prevented if a catalytic site is occupied with a nucleotide. In the absence of an activator, MgADP and MgATP protect βY341W-α(3)β(3)γ subcomplex from inhibition by NBD-Cl by binding to two catalytic sites with an affinity of 37 µM and 12 mM, and 46 µM and 15 mM, respectively. In the presence of an activator lauryldimethylamine-N-oxide (LDAO), MgADP protects βY341W-α(3)β(3)γ subcomplex from inhibition by NBD-Cl by binding to a catalytic site with a K(d) of 12 mM. Nucleotide binding to a catalytic site with affinity in the millimolar range has not been previously revealed in the fluorescence quenching experiments with βY341W-α(3)β(3)γ subcomplex. In the presence of activators LDAO or selenite, MgATP protects βY341W-α(3)β(3)γ subcomplex from inhibition by NBD-Cl only partially, and the enzyme remains sensitive to inhibition by NBD-Cl even at MgATP concentrations that are saturating for ATPase activity. The results support a bi-site mechanism of catalysis by F(1)-ATPases.
Collapse
Affiliation(s)
- Y M Milgrom
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA.
| |
Collapse
|
16
|
Konno H, Isu A, Kim Y, Murakami-Fuse T, Sugano Y, Hisabori T. Characterization of the relationship between ADP- and epsilon-induced inhibition in cyanobacterial F1-ATPase. J Biol Chem 2011; 286:13423-9. [PMID: 21345803 DOI: 10.1074/jbc.m110.155986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATPase activity of chloroplast and bacterial F(1)-ATPase is strongly inhibited by both the endogenous inhibitor ε and tightly bound ADP. Although the physiological significance of these inhibitory mechanisms is not very well known for the membrane-bound F(0)F(1), these are very likely to be important in avoiding the futile ATP hydrolysis reaction and ensuring efficient ATP synthesis in vivo. In a previous study using the α(3)β(3)γ complex of F(1) obtained from the thermophilic cyanobacteria, Thermosynechococcus elongatus BP-1, we succeeded in determining the discrete stop position, ∼80° forward from the pause position for ATP binding, caused by ε-induced inhibition (ε-inhibition) during γ rotation (Konno, H., Murakami-Fuse, T., Fujii, F., Koyama, F., Ueoka-Nakanishi, H., Pack, C. G., Kinjo, M., and Hisabori, T. (2006) EMBO J. 25, 4596-4604). Because γ in ADP-inhibited F(1) also pauses at the same position, ADP-induced inhibition (ADP-inhibition) was assumed to be linked to ε-inhibition. However, ADP-inhibition and ε-inhibition should be independent phenomena from each other because the ATPase core complex, α(3)β(3)γ, also lapses into the ADP-inhibition state. By way of thorough biophysical and biochemical analyses, we determined that the ε subunit inhibition mechanism does not directly correlate with ADP-inhibition. We suggest here that the cyanobacterial ATP synthase ε subunit carries out an important regulatory role in acting as an independent "braking system" for the physiologically unfavorable ATP hydrolysis reaction.
Collapse
Affiliation(s)
- Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Haruyama T, Hirono-Hara Y, Kato-Yamada Y. Inhibition of thermophilic F 1-ATPase by the ε subunit takes different path from the ADP-Mg inhibition. Biophysics (Nagoya-shi) 2010; 6:59-65. [PMID: 27857586 PMCID: PMC5036666 DOI: 10.2142/biophysics.6.59] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 11/28/2010] [Indexed: 12/01/2022] Open
Abstract
The F1-ATPase, the soluble part of FoF1-ATP synthase, is a rotary molecular motor consisting of α3β3γδε. The γ and ε subunits rotate relative to the α3β3δ sub-complex on ATP hydrolysis by the β subunit. The ε subunit is known as an endogenous inhibitor of the ATPase activity of the F1-ATPase and is believed to function as a regulator of the ATP synthase. This inhibition by the ε subunit (ε inhibition) of F1-ATPase from thermophilic Bacillus PS3 was analyzed by single molecule measurements. By using a mutant ε subunit deficient in ATP binding, reversible transitions between active and inactive states were observed. Analysis of pause and rotation durations showed that the ε inhibition takes a different path from the ADP-Mg inhibition. Furthermore, the addition of the mutant ε subunit to the α3β3γ sub-complex was found to facilitate recovery of the ATPase activity from the ADP-Mg inhibition. Thus, it was concluded that these two inhibitions are essentially exclusive of each other.
Collapse
Affiliation(s)
- Takamitsu Haruyama
- Department of Life Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; Frontier Project "Adaptation and Evolution of Extremophile", College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yoko Hirono-Hara
- Institute of Industrial Science, the University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; Frontier Project "Adaptation and Evolution of Extremophile", College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
18
|
Shimo-Kon R, Muneyuki E, Sakai H, Adachi K, Yoshida M, Kinosita K. Chemo-mechanical coupling in F(1)-ATPase revealed by catalytic site occupancy during catalysis. Biophys J 2010; 98:1227-36. [PMID: 20371322 DOI: 10.1016/j.bpj.2009.11.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/04/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022] Open
Abstract
F(1)-ATPase is a rotary molecular motor in which the central gamma subunit rotates inside a cylinder made of alpha(3)beta(3) subunits. To clarify how ATP hydrolysis in three catalytic sites cooperate to drive rotation, we measured the site occupancy, the number of catalytic sites occupied by a nucleotide, while assessing the hydrolysis activity under identical conditions. The results show hitherto unsettled timings of ADP and phosphate releases: starting with ATP binding to a catalytic site at an ATP-waiting gamma angle defined as 0 degrees , phosphate is released at approximately 200 degrees , and ADP is released during quick rotation between 240 degrees and 320 degrees that is initiated by binding of a third ATP. The site occupancy remains two except for a brief moment after the ATP binding, but the third vacant site can bind a medium nucleotide weakly.
Collapse
Affiliation(s)
- Rieko Shimo-Kon
- Department of Physics, Faculty of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Malyan AN. Nucleotide binding to noncatalytic sites is essential for ATP-dependent stimulation and ADP-dependent inactivation of the chloroplast ATP synthase. PHOTOSYNTHESIS RESEARCH 2010; 105:243-8. [PMID: 20706787 DOI: 10.1007/s11120-010-9586-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 07/10/2010] [Indexed: 05/29/2023]
Abstract
Light-dependent binding of labeled ADP and ATP to noncatalytic sites of chloroplast ATP synthase and the effect of light-exposed thylakoid membrane preincubation with ADP or ATP on ATPase activity were studied. ADP binding during the preincubation was shown to inactivate the chloroplast ATPase, whereas ATP binding caused its activation. The rate and equilibrium constants of ATPase inactivation and activation were close to those of ADP and ATP binding to a noncatalytic site, with K (d) values of 38 and 33 μM, respectively. It is suggested that ADP- or ATP-binding to one of the noncatalytic sites affects the ATPase activity of chloroplast ATP synthase through a mechanism that modulates tightness of ADP binding to a catalytic site.
Collapse
Affiliation(s)
- Alexander N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| |
Collapse
|
20
|
Bulygin VV, Milgrom YM. Probes of inhibition of Escherichia coli F(1)-ATPase by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole in the presence of MgADP and MgATP support a bi-site mechanism of ATP hydrolysis by the enzyme. BIOCHEMISTRY (MOSCOW) 2010; 75:327-35. [PMID: 20370611 DOI: 10.1134/s0006297910030090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Binding of MgADP and MgATP to Escherichia coli F(1)-ATPase (EcF(1)) has been assessed by their effects on extent of the enzyme inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). MgADP at low concentrations (K(d) 1.3 microM) promotes the inhibition, whereas at higher concentrations (K(d) 0.7 mM) EcF(1) is protected from inhibition. The mutant betaY331W-EcF(1) requires much higher MgADP, K(d) of about 10 mM, for protection. Such MgADP binding was not revealed by fluorescence quenching measurements. MgATP partially protects EcF(1) from inactivation by NBD-Cl, but the enzyme remains sensitive to NBD-Cl in the presence of MgATP at concentrations as high as 10 mM. The activating anion selenite in the absence of MgATP partially protects EcF(1) from inhibition by NBD-Cl. A complete protection of EcF(1) from inhibition by NBD-Cl has been observed in the presence of both MgATP and selenite. The results support a bi-site catalytic mechanism for MgATP hydrolysis by F(1)-ATPases and suggest that stimulation of the enzyme activity by activating anions is due to the anion binding to a catalytic site that remains unoccupied at saturating substrate concentration.
Collapse
Affiliation(s)
- V V Bulygin
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
21
|
Malyan AN. Role of short conserved segments of α- and β-subunits that link F1-ATPase catalytic and noncatalytic sites. BIOCHEMISTRY (MOSCOW) 2010; 75:81-4. [DOI: 10.1134/s0006297910010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Hossain MD, Furuike S, Onoue Y, Adachi K, Yoshida M, Kinosita K. Stimulation of F(1)-ATPase activity by sodium dodecyl sulfate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:435-42. [PMID: 20044971 DOI: 10.1016/j.bbabio.2009.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/01/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
F(1)-ATPase is a rotary molecular motor in which the gamma subunit rotates inside the cylinder made of alpha(3)beta(3) subunits. We have studied the effects of sodium dodecyl sulfate (SDS) on the rotational and ATP hydrolysis activities of F(1)-ATPase. Bulk hydrolysis activity at various SDS concentrations was examined at 2mM ATP. Maximal stimulation was obtained at 0.003% (w/v) SDS, the initial (least inhibited) activity being about 1.4 times and the steady-state activity 3-4 times the values in the absence of SDS. Rotation rates observed with a 40-nm gold bead or a 0.29-mum bead duplex as well as the torque were unaffected by the presence of 0.003% SDS. The fraction of beads that rotated, in contrast, tended to increase in the presence of SDS. SDS seems to bring inactive F(1) molecules into an active form but it does not alter or enhance the function of already active F(1) molecules significantly.
Collapse
Affiliation(s)
- Mohammad Delawar Hossain
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Maher MJ, Akimoto S, Iwata M, Nagata K, Hori Y, Yoshida M, Yokoyama S, Iwata S, Yokoyama K. Crystal structure of A3B3 complex of V-ATPase from Thermus thermophilus. EMBO J 2009; 28:3771-9. [PMID: 19893485 PMCID: PMC2775895 DOI: 10.1038/emboj.2009.310] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/01/2009] [Indexed: 12/01/2022] Open
Abstract
Vacuolar-type ATPases (V-ATPases) exist in various cellular membranes of many organisms to regulate physiological processes by controlling the acidic environment. Here, we have determined the crystal structure of the A(3)B(3) subcomplex of V-ATPase at 2.8 A resolution. The overall construction of the A(3)B(3) subcomplex is significantly different from that of the alpha(3)beta(3) sub-domain in F(o)F(1)-ATP synthase, because of the presence of a protruding 'bulge' domain feature in the catalytic A subunits. The A(3)B(3) subcomplex structure provides the first molecular insight at the catalytic and non-catalytic interfaces, which was not possible in the structures of the separate subunits alone. Specifically, in the non-catalytic interface, the B subunit seems to be incapable of binding ATP, which is a marked difference from the situation indicated by the structure of the F(o)F(1)-ATP synthase. In the catalytic interface, our mutational analysis, on the basis of the A(3)B(3) structure, has highlighted the presence of a cluster composed of key hydrophobic residues, which are essential for ATP hydrolysis by V-ATPases.
Collapse
Affiliation(s)
- Megan J Maher
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK
| | - Satoru Akimoto
- Protein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Momi Iwata
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK
- Membrane Protein Laboratory, Diamond Light Source Limited, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire, UK
| | - Koji Nagata
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK
| | - Yoshiko Hori
- Protein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Masasuke Yoshida
- Chemical Resources Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- ICORP, ATP Synthesis Regulation Project, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, Koto-ku, Tokyo, Japan
| | - Shigeyuki Yokoyama
- Protein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - So Iwata
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK
- Membrane Protein Laboratory, Diamond Light Source Limited, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire, UK
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan
- Human Receptor Crystallography Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan
| | - Ken Yokoyama
- Protein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- ICORP, ATP Synthesis Regulation Project, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, Koto-ku, Tokyo, Japan
| |
Collapse
|
24
|
Modulation of nucleotide binding to the catalytic sites of thermophilic F(1)-ATPase by the epsilon subunit: implication for the role of the epsilon subunit in ATP synthesis. Biochem Biophys Res Commun 2009; 390:230-4. [PMID: 19785990 DOI: 10.1016/j.bbrc.2009.09.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/22/2022]
Abstract
Effect of epsilon subunit on the nucleotide binding to the catalytic sites of F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) has been tested by using alpha(3)beta(3)gamma and alpha(3)beta(3)gammaepsilon complexes of TF(1) containing betaTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the epsilon subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the epsilon subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.
Collapse
|
25
|
Pronin AS, Malyan AN. Interaction of pyrophosphate with catalytic and noncatalytic sites of chloroplast ATP synthase. BIOCHEMISTRY. BIOKHIMIIA 2009; 74:775-80. [PMID: 19747098 DOI: 10.1134/s0006297909070104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of pyrophosphate (PP(i)) on labeled nucleotide incorporation into noncatalytic sites of chloroplast ATP synthase was studied. In illuminated thylakoid membranes, PP(i) competed with nucleotides for binding to noncatalytic sites. In the dark, PP(i) was capable of tight binding to noncatalytic sites previously vacated by endogenous nucleotides, thereby preventing their subsequent interaction with ADP and ATP. The effect of PP(i) on ATP hydrolysis kinetics was also elucidated. In the dark at micromolar ATP concentrations, PP(i) inhibited ATPase activity of ATP synthase. Addition of PP(i) to the reaction mixture at the step of preliminary illumination inhibited high initial activity of the enzyme, but stimulated its activity during prolonged incubation. These results indicate that the stimulating effect of PP(i) light preincubation with thylakoid membranes on ATPase activity is caused by its binding to ATP synthase noncatalytic sites. The inhibition of ATP synthase results from competition between PP(i) and ATP for binding to catalytic sites.
Collapse
Affiliation(s)
- A S Pronin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
26
|
Bulygin VV, Milgrom YM. A bi-site mechanism for Escherichia coli F1-ATPase accounts for the observed positive catalytic cooperativity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1016-23. [PMID: 19269272 DOI: 10.1016/j.bbabio.2009.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 11/20/2022]
Abstract
Nucleotide binding to nucleotide-depleted F(1)-ATPase from Escherichia coli (EcF(1)) during MgATP hydrolysis in the presence of excess epsilon subunit has been studied using a combination of centrifugal filtration and column-centrifugation methods. The results show that nucleotide-binding properties of catalytic sites on EcF(1) are affected by the state of occupancy of noncatalytic sites. The ATP-concentration dependence of catalytic-site occupancy during MgATP hydrolysis demonstrates that a bi-site mechanism is responsible for the positive catalytic cooperativity observed during multi-site catalysis by EcF(1). The results suggest that a bi-site mechanism is a general feature of F(1) catalysis.
Collapse
Affiliation(s)
- Vladimir V Bulygin
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
27
|
Proton Translocation and ATP Synthesis by the FoF1-ATPase of Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Hong S, Pedersen PL. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 2008; 72:590-641, Table of Contents. [PMID: 19052322 PMCID: PMC2593570 DOI: 10.1128/mmbr.00016-08] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and P(i), the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology.
Collapse
Affiliation(s)
- Sangjin Hong
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
29
|
Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production. Biophys J 2008; 95:4837-44. [PMID: 18708468 PMCID: PMC2576389 DOI: 10.1529/biophysj.108.140061] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
F1-ATPase is an ATP-driven rotary molecular motor in which the central γ-subunit rotates inside the cylinder made of α3β3 subunits. The amino and carboxy termini of the γ-subunit form the axle, an α-helical coiled coil that deeply penetrates the stator cylinder. We previously truncated the axle step by step, starting with the longer carboxy terminus and then cutting both termini at the same levels, resulting in a slower yet considerably powerful rotation. Here we examine the role of each helix by truncating only the carboxy terminus by 25–40 amino-acid residues. Longer truncation impaired the stability of the motor complex severely: 40 deletions failed to yield rotating the complex. Up to 36 deletions, however, the mutants produced an apparent torque at nearly half of the wild-type torque, independent of truncation length. Time-averaged rotary speeds were low because of load-dependent stumbling at 120° intervals, even with saturating ATP. Comparison with our previous work indicates that half the normal torque is produced at the orifice of the stator. The very tip of the carboxy terminus adds the other half, whereas neither helix in the middle of the axle contributes much to torque generation and the rapid progress of catalysis. None of the residues of the entire axle played a specific decisive role in rotation.
Collapse
|
30
|
Nakano M, Imamura H, Toei M, Tamakoshi M, Yoshida M, Yokoyama K. ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus. J Biol Chem 2008; 283:20789-96. [PMID: 18492667 DOI: 10.1074/jbc.m801276200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type H(+)-ATPase (V-ATPase) catalyzes ATP synthesis and hydrolysis coupled with proton translocation across membranes via a rotary motor mechanism. Here we report biochemical and biophysical catalytic properties of V-ATPase from Thermus thermophilus. ATP hydrolysis of V-ATPase was severely inhibited by entrapment of Mg-ADP in the catalytic site. In contrast, the enzyme was very active for ATP synthesis (approximately 70 s(-1)) with the K(m) values for ADP and phosphate being 4.7 +/- 0.5 and 460 +/- 30 microm, respectively. Single molecule observation showed V-ATPase rotated in a 120 degrees stepwise manner, and analysis of dwelling time allowed the binding rate constant k(on) for ATP to be estimated ( approximately 1.1 x 10(6) m(-1) s(-1)), which was much lower than the k(on) (= V(max)/K(m)) for ADP ( approximately 1.4 x 10(7) m(-1) s(-1)). The slower k(on)(ATP) than k(on)(ADP) and strong Mg-ADP inhibition may contribute to prevent wasteful consumption of ATP under in vivo conditions when the proton motive force collapses.
Collapse
Affiliation(s)
- Masahiro Nakano
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
F1-ATPase, a water-soluble portion of the enzyme ATP synthase, is a rotary molecular motor driven by ATP hydrolysis. To learn how the kinetics of rotation are regulated, we have investigated the rotational characteristics of a thermophilic F1-ATPase over the temperature range 4–50°C by attaching a polystyrene bead (or bead duplex) to the rotor subunit and observing its rotation under a microscope. The apparent rate of ATP binding estimated at low ATP concentrations increased from 1.2 × 106 M−1 s−1 at 4°C to 4.3 × 107 M−1 s−1 at 40°C, whereas the torque estimated at 2 mM ATP remained around 40 pN·nm over 4–50°C. The rotation was stepwise at 4°C, even at the saturating ATP concentration of 2 mM, indicating the presence of a hitherto unresolved rate-limiting reaction that occurs at ATP-waiting angles. We also measured the ATP hydrolysis activity in bulk solution at 4–65°C. F1-ATPase tends to be inactivated by binding ADP tightly. Both the inactivation and reactivation rates were found to rise sharply with temperature, and above 30°C, equilibrium between the active and inactive forms was reached within 2 s, the majority being inactive. Rapid inactivation at high temperatures is consistent with the physiological role of this enzyme, ATP synthesis, in the thermophile.
Collapse
|
32
|
Kato S, Yoshida M, Kato-Yamada Y. Role of the epsilon subunit of thermophilic F1-ATPase as a sensor for ATP. J Biol Chem 2007; 282:37618-23. [PMID: 17933866 DOI: 10.1074/jbc.m707509200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epsilon subunit of F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) has been shown to bind ATP. The precise nature of the regulatory role of ATP binding to the epsilon subunit remains to be determined. To address this question, 11 mutants of the epsilon subunit were prepared, in which one of the basic or acidic residues was substituted with alanine. ATP binding to these mutants was tested by gel-filtration chromatography. Among them, four mutants that showed no ATP binding were selected and reconstituted with the alpha(3)beta(3)gamma complex of TF(1). The ATPase activity of the resulting alpha(3)beta(3)gammaepsilon complexes was measured, and the extent of inhibition by the mutant epsilon subunits was compared in each case. With one exception, weaker binding of ATP correlated with greater inhibition of ATPase activity. These results clearly indicate that ATP binding to the epsilon subunit plays a regulatory role and that ATP binding may stabilize the ATPase-active form of TF(1) by fixing the epsilon subunit into the folded conformation.
Collapse
Affiliation(s)
- Shigeyuki Kato
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, Tokyo, Japan
| | | | | |
Collapse
|
33
|
Malyan AN. Interaction of ADP and ATP with noncatalytic sites of isolated and membrane-bound chloroplast coupling factor CF1. BIOCHEMISTRY. BIOKHIMIIA 2007; 72:728-34. [PMID: 17680764 DOI: 10.1134/s0006297907070061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study of ATP and ADP binding to noncatalytic sites of membrane-bound CF1 (ATP synthase) revealed two noncatalytic sites with different specificities and affinities for nucleotides. One of these is characterized by a high affinity and specificity to ADP (Kd=2.6+/-0.3 microM). However, a certain increase in ADP apparent dissociation constant at high ATP/ADP ratio in the medium allows a possibility that ATP binds to this site as well. The other site displays high specificity to ATP. When the ADP-binding site is vacant, it shows a comparatively low affinity for ATP, which greatly increases with increasing ADP concentration accompanied by filling of the ADP-binding site. The reported specificities of these two sites are independent of thylakoid membrane energization, since both in the dark and in the light the ratios of ATP/ADP tightly bound to the noncatalytic sites were very close. The difference in noncatalytic site affinity for ATP and ADP is shown to depend on the amount of delta subunit in a particular sample. Thylakoid membrane ATP synthase, with stoichiometric content of delta-subunit (one delta-subunit per CF1 molecule), showed the maximal difference in ADP and ATP affinities for the noncatalytic sites. For CF1, with substoichiometric delta subunit values, this difference was less, and after delta subunit removal it decreased still more.
Collapse
Affiliation(s)
- A N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
34
|
Konno H, Murakami-Fuse T, Fujii F, Koyama F, Ueoka-Nakanishi H, Pack CG, Kinjo M, Hisabori T. The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the epsilon subunit. EMBO J 2006; 25:4596-604. [PMID: 16977308 PMCID: PMC1589999 DOI: 10.1038/sj.emboj.7601348] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/22/2006] [Indexed: 11/09/2022] Open
Abstract
The chloroplast-type F(1) ATPase is the key enzyme of energy conversion in chloroplasts, and is regulated by the endogenous inhibitor epsilon, tightly bound ADP, the membrane potential and the redox state of the gamma subunit. In order to understand the molecular mechanism of epsilon inhibition, we constructed an expression system for the alpha(3)beta(3)gamma subcomplex in thermophilic cyanobacteria allowing thorough investigation of epsilon inhibition. epsilon Inhibition was found to be ATP-independent, and different to that observed for bacterial F(1)-ATPase. The role of the additional region on the gamma subunit of chloroplast-type F(1)-ATPase in epsilon inhibition was also determined. By single molecule rotation analysis, we succeeded in assigning the pausing angular position of gamma in epsilon inhibition, which was found to be identical to that observed for ATP hydrolysis, product release and ADP inhibition, but distinctly different from the waiting position for ATP binding. These results suggest that the epsilon subunit of chloroplast-type ATP synthase plays an important regulator for the rotary motor enzyme, thus preventing wasteful ATP hydrolysis.
Collapse
Affiliation(s)
- Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Tomoe Murakami-Fuse
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Fumihiko Fujii
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Fumie Koyama
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Hanayo Ueoka-Nakanishi
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Chan-Gi Pack
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Masataka Kinjo
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan. Tel.: +81 45 924 5234; Fax: +81 45 924 5277; E-mail:
| |
Collapse
|
35
|
Hossain MD, Furuike S, Maki Y, Adachi K, Ali MY, Huq M, Itoh H, Yoshida M, Kinosita K. The rotor tip inside a bearing of a thermophilic F1-ATPase is dispensable for torque generation. Biophys J 2006; 90:4195-203. [PMID: 16698789 PMCID: PMC1459503 DOI: 10.1529/biophysj.105.079087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F(1)-ATPase is an ATP-driven rotary molecular motor in which the central gamma-subunit rotates inside a stator cylinder made of alpha(3)beta(3) subunits. To elucidate the role of rotor-stator interactions in torque generation, we truncated the gamma-subunit at its carboxyl terminus, which forms an alpha helix that penetrates deeply into the stator cylinder. We used an alpha(3)beta(3)gamma subcomplex of F(1)-ATPase derived from thermophilic Bacillus PS3 and expressed it in Escherichia coli. We could obtain purified subcomplexes in which 14, 17, or 21 amino-acid residues were deleted. The rotary characteristics of the truncated mutants, monitored by attaching a duplex of 0.49-microm beads to the gamma-subunit, did not differ greatly from those of the wild-type over the ATP concentrations of 20 nM-2 mM, the most conspicuous effect being approximately 50% reduction in torque and approximately 70% reduction in the rate of ATP binding upon deletion of 21 residues. The ATP hydrolysis activity estimated in bulk samples was more seriously affected. The 21-deletion mutant, in particular, was >10-fold less active, but this is likely due to instability of this subcomplex. For torque generation, though not for rapid catalysis, most of the rotor-stator contacts on the deeper half of the penetrating portion of the gamma-subunit are dispensable.
Collapse
Affiliation(s)
- Mohammad Delawar Hossain
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Malyan AN. Light-dependent incorporation of adenine nucleotide into noncatalytic sites of chloroplast ATP synthase. BIOCHEMISTRY (MOSCOW) 2006; 70:1245-50. [PMID: 16336184 DOI: 10.1007/s10541-005-0254-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of ADP and ATP to noncatalytic sites of dithiothreitol-modified chloroplast ATP synthase was studied. Selective binding of nucleotides to noncatalytic sites was provided by preliminary light incubation of thylakoid membranes with [14C]ADP followed by its dissociation from catalytic sites during dark ATP hydrolysis stimulated by bisulfite ions ("cold chase"). Incorporation of labeled nucleotides increased with increasing light intensity. Concentration-dependent equilibrium between free and bound nucleotides was achieved within 2-10 min with the following characteristic parameters: the maximal value of nucleotide incorporation was 1.5 nmol/mg of chlorophyll, and the dissociation constant was 1.5 microM. The dependence of nucleotide incorporation on Mg2+ concentration was slight and changed insignificantly upon substituting Ca2+ for Mg2+. Dissociation of nucleotide from noncatalytic sites was illumination-dependent. The dissociation kinetics suggested the existence of at least two nucleotide-binding sites with different dissociation rate constants.
Collapse
Affiliation(s)
- A N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
37
|
Feniouk BA, Suzuki T, Yoshida M. The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:326-38. [PMID: 16701076 DOI: 10.1016/j.bbabio.2006.03.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/13/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
The regulation of ATP synthase activity is complex and involves several distinct mechanisms. In bacteria and chloroplasts, subunit epsilon plays an important role in this regulation, (i) affecting the efficiency of coupling, (ii) influencing the catalytic pathway, and (iii) selectively inhibiting ATP hydrolysis activity. Several experimental studies indicate that the regulation is achieved through large conformational transitions of the alpha-helical C-terminal domain of subunit epsilon that occur in response to membrane energization, change in ATP/ADP ratio or addition of inhibitors. This review summarizes the experimental data obtained on different organisms that clarify some basic features as well as some molecular details of this regulatory mechanism. Multiple functions of subunit epsilon, its role in the difference between the catalytic pathways of ATP synthesis and hydrolysis and its influence on the inhibition of ATP hydrolysis by ADP are also discussed.
Collapse
Affiliation(s)
- Boris A Feniouk
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation (JST), 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan.
| | | | | |
Collapse
|
38
|
Malyan AN. ADP and ATP binding to noncatalytic sites of thiol-modulated chloroplast ATP synthase. PHOTOSYNTHESIS RESEARCH 2006; 88:9-18. [PMID: 16440137 DOI: 10.1007/s11120-005-9025-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 10/12/2005] [Indexed: 05/06/2023]
Abstract
A modified 'cold chase' technique was used to study tight [(14)C]ADP and [(14)C]ATP binding to noncatalytic sites of chloroplast ATP synthase (CF(0)F(1)). The binding was very low in the dark and sharply increased with light intensity. Dissociation of labeled nucleotides incorporated into noncatalytic sites of CF(0)F(1 )or CF(1) reconstituted with EDTA-treated thylakoid membranes was also found to be light-dependent. Time dependence of nucleotide dissociation is described by the first order equation with a k (d) of about 5 min(-1). The exposure of thylakoid membranes to 0.7-24.8 muM nucleotides leads to filling of up to two noncatalytic sites of CF(0)F(1). The sites differ in their specificity: one preferentially binds ADP, whereas the other - ATP. A much higher ATP/ADP ratio of nucleotides bound at noncatalytic sites of isolated CF(1) dramatically decreases upon its reconstitution with EDTA-treated thylakoid membranes. It is suggested that the decrease is caused by conformational changes in one of the alpha subunits induced by its interaction with the delta subunit and/or subunit I-II when CF(1) becomes bound to a thylakoid membrane.
Collapse
Affiliation(s)
- Alexander N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Moscow Region, Russia.
| |
Collapse
|
39
|
Iino R, Murakami T, Iizuka S, Kato-Yamada Y, Suzuki T, Yoshida M. Real-time monitoring of conformational dynamics of the epsilon subunit in F1-ATPase. J Biol Chem 2005; 280:40130-4. [PMID: 16203732 DOI: 10.1074/jbc.m506160200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been proposed that C-terminal two alpha-helices of the epsilon subunit of F1-ATPase can undergo conformational transition between retracted folded-hairpin form and extended form. Here, using F(1) from thermophilic Bacillus PS3, we monitored this transition in real time by fluorescence resonance energy transfer (FRET) between a donor dye and an acceptor dye attached to N terminus of the gamma subunit and C terminus of the epsilon subunit, respectively. High FRET (extended form) of F1 turned to low FRET (retracted form) by ATP, which then reverted as ATP was hydrolyzed to ADP. 5'-Adenyl-beta,gamma-imidodiphosphate, ADP + AlF4-, ADP + NaN3, and GTP also caused the retracted form, indicating that ATP binding to the catalytic beta subunits induces the transition. The ATP-induced transition from high FRET to low FRET occurred in a similar time scale to the ATP-induced activation of ATPase from inhibition by the epsilon subunit, although detailed kinetics were not the same. The transition became faster as temperature increased, but the extrapolated rate at 65 degrees C (physiological temperature of Bacillus PS3) was still too slow to assign the transition as an obligate step in the catalytic turnover. Furthermore, binding affinity of ATP to the isolated epsilon subunit was weakened as temperature increased, and the dissociation constant extrapolated to 65 degrees C reached to 0.67 mm, a consistent value to assume that the epsilon subunit acts as a sensor of ATP concentration in the cell.
Collapse
Affiliation(s)
- Ryota Iino
- ATP System Project, ERATO, Japan Science and Technology Agency, Nagatsuta 5800-3, Yokohama 226-0026, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
We present a mesoscopic model for ATP synthesis by F(1)F(o) ATPase. The model combines the existing experimental knowledge of the F(1) enzyme into a consistent mathematical model that illuminates how the stages in synthesis are related to the protein structure. For example, the model illuminates how specific interactions between the gamma, epsilon, and alpha(3)beta(3) subunits couple the F(o) motor to events at the catalytic sites. The model also elucidates the origin of ADP inhibition of F(1) in its hydrolysis mode. The methodology we develop for constructing the structure-based model should prove useful in modeling other protein motors.
Collapse
Affiliation(s)
- Jianhua Xing
- Departments of Molecular Cell Biology, University of California, Berkeley, CA 94720-1132, USA
| | | | | |
Collapse
|
41
|
Feniouk BA, Junge W. Regulation of the F0F1-ATP synthase: the conformation of subunit epsilon might be determined by directionality of subunit gamma rotation. FEBS Lett 2005; 579:5114-8. [PMID: 16154570 DOI: 10.1016/j.febslet.2005.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 11/22/2022]
Abstract
F(0)F(1)-ATP synthase couples ATP synthesis/hydrolysis with transmembrane proton transport. The catalytic mechanism involves rotation of the gamma epsilon c(approximately 10)-subunits complex relative to the rest of the enzyme. In the absence of protonmotive force the enzyme is inactivated by the tight binding of MgADP. Subunit epsilon also modulates the activity: its conformation can change from a contracted to extended form with C-terminus stretched towards F(1). The latter form inhibits ATP hydrolysis (but not synthesis). We propose that the directionality of the coiled-coil subunit gamma rotation determines whether subunit epsilon is in contracted or extended form. Block of rotation by MgADP presumably induces the extended conformation of subunit epsilon. This conformation might serve as a safety lock, stabilizing the ADP-inhibited state upon de-energization and preventing spontaneous re-activation and wasteful ATP hydrolysis. The hypothesis merges the known regulatory effects of ADP, protonmotive force and conformational changes of subunit epsilon into a consistent picture.
Collapse
Affiliation(s)
- Boris A Feniouk
- Division of Biophysics, Faculty of Biology/Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany.
| | | |
Collapse
|
42
|
Hirono-Hara Y, Ishizuka K, Kinosita K, Yoshida M, Noji H. Activation of pausing F1 motor by external force. Proc Natl Acad Sci U S A 2005; 102:4288-93. [PMID: 15758075 PMCID: PMC555477 DOI: 10.1073/pnas.0406486102] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rotary motor F(1), a catalytic part of ATP synthase, makes a 120 degrees step rotation driven by hydrolysis of one ATP, which consists of 80 degrees and 40 degrees substeps initiated by ATP binding and probably by ADP and/or P(i) dissociation, respectively. During active rotations, F(1) spontaneously fails in ADP release and pauses after a 80 degrees substep, which is called the ADP-inhibited form. In the present work, we found that, when pushed >+40 degrees with magnetic tweezers, the pausing F(1) resumes its active rotation after releasing inhibitory ADP. The rate constant of the mechanical activation exponentially increased with the pushed angle, implying that F(1) weakens the affinity of its catalytic site for ADP as the angle goes forward. This finding explains not only its unidirectional nature of rotation, but also its physiological function in ATP synthesis; it would readily bind ADP from solution when rotated backward by an F(o) motor in the ATP synthase. Furthermore, the mechanical work for the forced rotation was efficiently converted into work for expelling ADP from the catalytic site, supporting the tight coupling between the rotation and catalytic event.
Collapse
Affiliation(s)
- Yoko Hirono-Hara
- Institute of Industrial Science and Precursory Research for Embryonic Science and Technology, Japan Science and Technology Corporation, University of Tokyo, Tokyo 153-8505, Japan
| | | | | | | | | |
Collapse
|
43
|
Ueno H, Suzuki T, Kinosita K, Yoshida M. ATP-driven stepwise rotation of FoF1-ATP synthase. Proc Natl Acad Sci U S A 2005; 102:1333-8. [PMID: 15668386 PMCID: PMC545493 DOI: 10.1073/pnas.0407857102] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FoF1-ATP synthase (FoF1) is a motor enzyme that couples ATP synthesis/hydrolysis with a transmembrane proton translocation. F1, a water-soluble ATPase portion of FoF1, rotates by repeating ATP-waiting dwell, 80 degrees substep rotation, catalytic dwell, and 40 degrees -substep rotation. Compared with F1, rotation of FoF1 has yet been poorly understood, and, here, we analyzed ATP-driven rotations of FoF1. Rotation was probed with an 80-nm bead attached to the ring of c subunits in the immobilized FoF1 and recorded with a submillisecond fast camera. The rotation rates at various ATP concentrations obeyed the curve defined by a Km of approximately 30 microM and a Vmax of approximately 350 revolutions per second (at 37 degrees C). At low ATP, ATP-waiting dwell was seen and the kon-ATP was estimated to be 3.6 x 10(7) M(-1) x s(-1). At high ATP, fast, poorly defined stepwise motions were observed that probably reflect the catalytic dwells. When a slowly hydrolyzable substrate, adenosine 5'-[gamma-thio]triphosphate, was used, the catalytic dwells consisting of two events were seen more clearly at the angular position of approximately 80 degrees . The rotational behavior of FoF1 resembles that of F1. This finding indicates that "friction" in Fo motor is negligible during the ATP-driven rotation. Tributyltin chloride, a specific inhibitor of proton translocation, slowed the rotation rate by 96%. However, dwells at clearly defined angular positions were not observed under these conditions, indicating that inhibition by tributyltin chloride is complex.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8503, Japan
| | | | | | | |
Collapse
|
44
|
Sakaki N, Shimo-Kon R, Adachi K, Itoh H, Furuike S, Muneyuki E, Yoshida M, Kinosita K. One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar. Biophys J 2004; 88:2047-56. [PMID: 15626703 PMCID: PMC1305257 DOI: 10.1529/biophysj.104.054668] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F(1)-ATPase is a rotary molecular motor in which the central gamma-subunit rotates inside a cylinder made of alpha(3)beta(3)-subunits. The rotation is driven by ATP hydrolysis in three catalytic sites on the beta-subunits. How many of the three catalytic sites are filled with a nucleotide during the course of rotation is an important yet unsettled question. Here we inquire whether F(1) rotates at extremely low ATP concentrations where the site occupancy is expected to be low. We observed under an optical microscope rotation of individual F(1) molecules that carried a bead duplex on the gamma-subunit. Time-averaged rotation rate was proportional to the ATP concentration down to 200 pM, giving an apparent rate constant for ATP binding of 2 x 10(7) M(-1)s(-1). A similar rate constant characterized bulk ATP hydrolysis in solution, which obeyed a simple Michaelis-Menten scheme between 6 mM and 60 nM ATP. F(1) produced the same torque of approximately 40 pN.nm at 2 mM, 60 nM, and 2 nM ATP. These results point to one rotary mechanism governing the entire range of nanomolar to millimolar ATP, although a switchover between two mechanisms cannot be dismissed. Below 1 nM ATP, we observed less regular rotations, indicative of the appearance of another reaction scheme.
Collapse
Affiliation(s)
- Naoyoshi Sakaki
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
F1-ATPase is a rotary motor made of a single protein molecule. Its rotation is driven by free energy obtained by ATP hydrolysis. In vivo, another motor, Fo, presumably rotates the F1 motor in the reverse direction, reversing also the chemical reaction in F1 to let it synthesize ATP. Here we attempt to answer two related questions, How is free energy obtained by ATP hydrolysis converted to the mechanical work of rotation, and how is mechanical work done on F1 converted to free energy to produce ATP? After summarizing single-molecule observations of F1 rotation, we introduce a toy model and discuss its free-energy diagrams to possibly answer the above questions. We also discuss the efficiency of molecular motors in general.
Collapse
Affiliation(s)
- Kazuhiko Kinosita
- Center for Integrative Bioscience, Okazaki National Research Institutes, Higashiyama 5-1, Myodaiji, Okazaki 444-8585, Japan.
| | | | | |
Collapse
|
46
|
Konno H, Suzuki T, Bald D, Yoshida M, Hisabori T. Significance of the epsilon subunit in the thiol modulation of chloroplast ATP synthase. Biochem Biophys Res Commun 2004; 318:17-24. [PMID: 15110747 DOI: 10.1016/j.bbrc.2004.03.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Indexed: 11/24/2022]
Abstract
To understand the regulatory function of the gamma and epsilon subunits of chloroplast ATP synthase in the membrane integrated complex, we constructed a chimeric FoF1 complex of thermophilic bacteria. When a part of the chloroplast F1 gamma subunit was introduced into the bacterial FoF1 complex, the inverted membrane vesicles with this chimeric FoF1 did not exhibit the redox sensitive ATP hydrolysis activity, which is a common property of the chloroplast ATP synthase. However, when the whole part or the C-terminal alpha-helices region of the epsilon subunit was substituted with the corresponding region from CF1-epsilon together with the mutation of gamma, the redox regulation property emerged. In contrast, ATP synthesis activity did not become redox sensitive even if both the regulatory region of CF1-gamma and the entire epsilon subunit from CF1 were introduced. These results provide important features for the regulation of FoF1 by these subunits: (1) the interaction between gamma and epsilon is important for the redox regulation of FoF1 complex by the gamma subunit, and (2) a certain structural matching between these regulatory subunits and the catalytic core of the enzyme must be required to confer the complete redox regulation mechanism to the bacterial FoF1. In addition, a structural requirement for the redox regulation of ATP hydrolysis activity might be different from that for the ATP synthesis activity.
Collapse
Affiliation(s)
- Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
47
|
Ueoka-Nakanishi H, Nakanishi Y, Konno H, Motohashi K, Bald D, Hisabori T. Inverse regulation of rotation of F1-ATPase by the mutation at the regulatory region on the gamma subunit of chloroplast ATP synthase. J Biol Chem 2004; 279:16272-7. [PMID: 14747461 DOI: 10.1074/jbc.m400607200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In F1-ATPase, the rotation of the central axis subunit gamma relative to the surrounding alpha3beta3 subunits is coupled to ATP hydrolysis. We previously reported that the introduced regulatory region of the gamma subunit of chloroplast F1-ATPase can modulate rotation of the gamma subunit of the thermophilic bacterial F1-ATPase (Bald, D., Noji, H., Yoshida, M., Hirono-Hara, Y., and Hisabori, T. (2001) J. Biol. Chem. 276, 39505-39507). The attenuated enzyme activity of this chimeric enzyme under oxidizing conditions was characterized by frequent and long pauses of rotation of gamma. In this study, we report an inverse regulation of the gamma subunit rotation in the newly engineered F1-chimeric complex whose three negatively charged residues Glu210-Asp211-Glu212 adjacent to two cysteine residues of the regulatory region derived from chloroplast F1-ATPase gamma were deleted. ATP hydrolysis activity of the mutant complex was stimulated up to 2-fold by the formation of the disulfide bond at the regulatory region by oxidation. We successfully observed inverse redox switching of rotation of gamma using this mutant complex. The complex exhibited long and frequent pauses in its gamma rotation when reduced, but the rotation rates between pauses remained unaltered. Hence, the suppression or activation of the redox-sensitive F1-ATPase can be explained in terms of the change in the rotation behavior at a single molecule level. These results obtained by the single molecule analysis of the redox regulation provide further insights into the regulation mechanism of the rotary enzyme.
Collapse
Affiliation(s)
- Hanayo Ueoka-Nakanishi
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5800-3 Nagatsuta-cho, Midori-ku, Yokohama 226-0026, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Pavlova P, Shimabukuro K, Hisabori T, Groth G, Lill H, Bald D. Complete inhibition and partial Re-activation of single F1-ATPase molecules by tentoxin: new properties of the re-activated enzyme. J Biol Chem 2004; 279:9685-8. [PMID: 14739290 DOI: 10.1074/jbc.c400014200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During hydrolysis of ATP, the gamma subunit of the rotary motor protein F(1)-ATPase rotates within a ring of alpha(3)beta(3) subunits. Tentoxin is a phyto-pathogenic cyclic tetrapeptide, which influences F(1)-ATPase activity of sensitive species. At low concentrations, tentoxin inhibits ATP hydrolysis of ensembles of F(1) molecules in solution. At higher concentrations, however, ATP hydrolysis recovers. Here we have examined how tentoxin acts on individual molecules of engineered F(1)-ATPase from the thermophilic Bacillus PS3 (Groth, G., Hisabori, T., Lill, H., and Bald, D. (2002) J. Biol. Chem. 277, 20117-20119). We found that inhibition by tentoxin caused a virtually complete stop of rotation, which was partially relieved at higher tentoxin concentrations. Re-activation, however, was not simply a reversal of inhibition; while the torque appears unaffected as compared with the situation without tentoxin, F(1) under re-activating conditions was less susceptible to inhibitory ADP binding but displayed a large number of short pauses, indicating infringed energy conversion.
Collapse
Affiliation(s)
- Penka Pavlova
- Department of Structural Biology, Faculty of Earth and Life Science, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Malyan AN. Interaction of oxyanions with thioredoxin-activated chloroplast coupling factor 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1607:161-6. [PMID: 14670606 DOI: 10.1016/j.bbabio.2003.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interaction between F(1)-ATPase activity stimulating oxyanions and noncatalytic sites of coupling factor CF(1) was studied. Carbonate, borate and sulfite anions were shown to inhibit tight binding of [14C]ATP and [14C]ADP to CF(1) noncatalytic sites. The demonstrated change of their inhibitory efficiency in carbonate-borate-sulfite order coincides with the previously found change in efficiency of these anions as stimulators of CF(1)-ATPase activity [Biochemistry (Mosc.) 43 (1978) 1206-1211]. Inhibition of tight nucleotide binding to noncatalytic sites was accompanied by stimulation of nucleotide binding to catalytic sites. This suggests that stimulation of CF(1)-ATPase activity is caused by interaction between oxyanions and noncatalytic sites. A most efficient stimulator of CF(1)-ATPase activity, sulfite oxyanion, appeared to be a competitive inhibitor with respect to ATP and a partial noncompetitive inhibitor with respect to ADP. The inhibition weakened with increasing time of CF(1) incubation with sulfite and nucleotides. Sulfite is believed to inhibit fast reversible interaction between nucleotides and noncatalytic sites and to produce no effect on subsequent tight binding of nucleotides. A possible mechanism of the oxyanion-stimulating effect is discussed.
Collapse
Affiliation(s)
- Alexander N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia.
| |
Collapse
|
50
|
Nishizaka T, Oiwa K, Noji H, Kimura S, Muneyuki E, Yoshida M, Kinosita K. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat Struct Mol Biol 2004; 11:142-8. [PMID: 14730353 DOI: 10.1038/nsmb721] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 11/13/2003] [Indexed: 11/09/2022]
Abstract
F(1)-ATPase is a rotary molecular motor in which unidirectional rotation of the central gamma subunit is powered by ATP hydrolysis in three catalytic sites arranged 120 degrees apart around gamma. To study how hydrolysis reactions produce mechanical rotation, we observed rotation under an optical microscope to see which of the three sites bound and released a fluorescent ATP analog. Assuming that the analog mimics authentic ATP, the following scheme emerges: (i) in the ATP-waiting state, one site, dictated by the orientation of gamma, is empty, whereas the other two bind a nucleotide; (ii) ATP binding to the empty site drives an approximately 80 degrees rotation of gamma; (iii) this triggers a reaction(s), hydrolysis and/or phosphate release, but not ADP release in the site that bound ATP one step earlier; (iv) completion of this reaction induces further approximately 40 degrees rotation.
Collapse
Affiliation(s)
- Takayuki Nishizaka
- Kansai Advanced Research Center, Protein Biophysics Group, Iwaoka 588-2, Nishi-ku, Kobe 651-2492, Japan.
| | | | | | | | | | | | | |
Collapse
|