1
|
Ruan H, Mandla R, Ravi N, Galang G, Soe AW, Olgin JE, Lang D, Vedantham V. Cholecystokinin-A signaling regulates automaticity of pacemaker cardiomyocytes. Front Physiol 2023; 14:1284673. [PMID: 38179138 PMCID: PMC10764621 DOI: 10.3389/fphys.2023.1284673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Aims: The behavior of pacemaker cardiomyocytes (PCs) in the sinoatrial node (SAN) is modulated by neurohormonal and paracrine factors, many of which signal through G-protein coupled receptors (GPCRs). The aims of the present study are to catalog GPCRs that are differentially expressed in the mammalian SAN and to define the acute physiological consequences of activating the cholecystokinin-A signaling system in isolated PCs. Methods and results: Using bulk and single cell RNA sequencing datasets, we identify a set of GPCRs that are differentially expressed between SAN and right atrial tissue, including several whose roles in PCs and in the SAN have not been thoroughly characterized. Focusing on one such GPCR, Cholecystokinin-A receptor (CCKAR), we demonstrate expression of Cckar mRNA specifically in mouse PCs, and further demonstrate that subsets of SAN fibroblasts and neurons within the cardiac intrinsic nervous system express cholecystokinin, the ligand for CCKAR. Using mouse models, we find that while baseline SAN function is not dramatically affected by loss of CCKAR, the firing rate of individual PCs is slowed by exposure to sulfated cholecystokinin-8 (sCCK-8), the high affinity ligand for CCKAR. The effect of sCCK-8 on firing rate is mediated by reduction in the rate of spontaneous phase 4 depolarization of PCs and is mitigated by activation of beta-adrenergic signaling. Conclusion: (1) PCs express many GPCRs whose specific roles in SAN function have not been characterized, (2) Activation of the cholecystokinin-A signaling pathway regulates PC automaticity.
Collapse
Affiliation(s)
- Hongmei Ruan
- *Correspondence: Hongmei Ruan, Vasanth Vedantham,
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Ruan H, Mandla R, Ravi N, Galang G, Soe AW, Olgin JE, Lang D, Vedantham V. Cholecystokinin-A Signaling Regulates Automaticity of Pacemaker Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525392. [PMID: 36747643 PMCID: PMC9900793 DOI: 10.1101/2023.01.24.525392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aims The behavior of pacemaker cardiomyocytes (PCs) in the sinoatrial node (SAN) is modulated by neurohormonal and paracrine factors, many of which signal through G-protein coupled receptors (GPCRs). The aims of the present study are to catalog GPCRs that are differentially expressed in the mammalian SAN and to define the acute physiological consequences of activating the cholecystokinin-A signaling system in isolated PCs. Methods and Results Using bulk and single cell RNA sequencing datasets, we identify a set of GPCRs that are differentially expressed between SAN and right atrial tissue, including several whose roles in PCs and in the SAN have not been thoroughly characterized. Focusing on one such GPCR, Cholecystokinin-A receptor (CCK A R), we demonstrate expression of Cckar mRNA specifically in mouse PCs, and further demonstrate that subsets of SAN fibroblasts and neurons within the cardiac intrinsic nervous system express cholecystokinin, the ligand for CCK A R. Using mouse models, we find that while baseline SAN function is not dramatically affected by loss of CCK A R, the firing rate of individual PCs is slowed by exposure to sulfated cholecystokinin-8 (sCCK-8), the high affinity ligand for CCK A R. The effect of sCCK-8 on firing rate is mediated by reduction in the rate of spontaneous phase 4 depolarization of PCs and is mitigated by activation of beta-adrenergic signaling. Conclusions (1) PCs express many GPCRs whose specific roles in SAN function have not been characterized, (2) Activation of the the cholecystokinin-A signaling pathway regulates PC automaticity.
Collapse
|
3
|
Cholecystokinin (CCK) and its receptors (CCK1R and CCK2R) in chickens: functional analysis and tissue expression. Poult Sci 2022; 102:102273. [PMID: 36436379 PMCID: PMC9706633 DOI: 10.1016/j.psj.2022.102273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/25/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Cholecystokinin (CCK) is widely distributed in the gastrointestinal tract and central nervous system, regulating a range of physiological functions by activating its receptors (CCK1R and CCK2R). Compared to those in mammals, the CCK gene and its receptors have already been cloned in various birds, such as chickens. However, knowledge regarding their functionality and tissue expression is limited. In this study, we examined the expression of CCK and its 2 receptors in chicken tissues. In addition, the functionality of the 2 receptors was investigated. Using 3 cell-based luciferase reporter systems and western blots, we demonstrated that chicken (c-) CCK1R could be potently activated by cCCK-8S but not cCCK-4, whereas cCCK2R could be activated by cCCK-8S and cCCK-4 with similar efficiency. Using RNA-sequencing, we revealed that cCCK is abundantly expressed in the testis, ileum, and several brain regions (cerebrum, midbrain, cerebellum, hindbrain, and hypothalamus). The abundant expression of CCK in the hypothalamus was further supported by immunofluorescence. In addition, cCCK1R is highly expressed in the pancreas and moderately expressed in various intestinal regions (ileum, cecum, and rectum) and the pituitary gland, whereas cCCK2R expression is primarily restricted to the brain. Our data reveal the differential specificities of CCK receptors for various CCK peptides. In combination with the differential tissue distribution of CCK and its receptors, the present study helps to understanding the physiological functions of CCK/CCKRs in birds.
Collapse
|
4
|
|
5
|
Winfield I, Barkan K, Routledge S, Robertson NJ, Harris M, Jazayeri A, Simms J, Reynolds CA, Poyner DR, Ladds G. The Role of ICL1 and H8 in Class B1 GPCRs; Implications for Receptor Activation. Front Endocrinol (Lausanne) 2021; 12:792912. [PMID: 35095763 PMCID: PMC8796428 DOI: 10.3389/fendo.2021.792912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The first intracellular loop (ICL1) of G protein-coupled receptors (GPCRs) has received little attention, although there is evidence that, with the 8th helix (H8), it is involved in early conformational changes following receptor activation as well as contacting the G protein β subunit. In class B1 GPCRs, the distal part of ICL1 contains a conserved R12.48KLRCxR2.46b motif that extends into the base of the second transmembrane helix; this is weakly conserved as a [R/H]12.48KL[R/H] motif in class A GPCRs. In the current study, the role of ICL1 and H8 in signaling through cAMP, iCa2+ and ERK1/2 has been examined in two class B1 GPCRs, using mutagenesis and molecular dynamics. Mutations throughout ICL1 can either enhance or disrupt cAMP production by CGRP at the CGRP receptor. Alanine mutagenesis identified subtle differences with regard elevation of iCa2+, with the distal end of the loop being particularly sensitive. ERK1/2 activation displayed little sensitivity to ICL1 mutation. A broadly similar pattern was observed with the glucagon receptor, although there were differences in significance of individual residues. Extending the study revealed that at the CRF1 receptor, an insertion in ICL1 switched signaling bias between iCa2+ and cAMP. Molecular dynamics suggested that changes in ICL1 altered the conformation of ICL2 and the H8/TM7 junction (ICL4). For H8, alanine mutagenesis showed the importance of E3908.49b for all three signal transduction pathways, for the CGRP receptor, but mutations of other residues largely just altered ERK1/2 activation. Thus, ICL1 may modulate GPCR bias via interactions with ICL2, ICL4 and the Gβ subunit.
Collapse
MESH Headings
- Amino Acid Motifs/physiology
- Calcitonin Receptor-Like Protein/metabolism
- Calcitonin Receptor-Like Protein/physiology
- Calcitonin Receptor-Like Protein/ultrastructure
- Calcium Signaling
- Cyclic AMP/metabolism
- HEK293 Cells
- Humans
- MAP Kinase Signaling System
- Molecular Dynamics Simulation
- Protein Domains
- Protein Structure, Tertiary
- Receptor Activity-Modifying Protein 1/metabolism
- Receptor Activity-Modifying Protein 1/physiology
- Receptor Activity-Modifying Protein 1/ultrastructure
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Receptors, Calcitonin Gene-Related Peptide/physiology
- Receptors, Calcitonin Gene-Related Peptide/ultrastructure
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Corticotropin-Releasing Hormone/physiology
- Receptors, Corticotropin-Releasing Hormone/ultrastructure
- Receptors, G-Protein-Coupled
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/physiology
- Receptors, Glucagon/ultrastructure
Collapse
Affiliation(s)
- Ian Winfield
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Kerry Barkan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Routledge
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | | | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - John Simms
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | | | - David R. Poyner
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
- *Correspondence: Graham Ladds, ; David R. Poyner,
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Graham Ladds, ; David R. Poyner,
| |
Collapse
|
6
|
Liu Q, Yang D, Zhuang Y, Croll TI, Cai X, Dai A, He X, Duan J, Yin W, Ye C, Zhou F, Wu B, Zhao Q, Xu HE, Wang MW, Jiang Y. Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor. Nat Chem Biol 2021; 17:1238-1244. [PMID: 34556862 PMCID: PMC8604728 DOI: 10.1038/s41589-021-00841-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Cholecystokinin A receptor (CCKAR) belongs to family A G-protein-coupled receptors and regulates nutrient homeostasis upon stimulation by cholecystokinin (CCK). It is an attractive drug target for gastrointestinal and metabolic diseases. One distinguishing feature of CCKAR is its ability to interact with a sulfated ligand and to couple with divergent G-protein subtypes, including Gs, Gi and Gq. However, the basis for G-protein coupling promiscuity and ligand recognition by CCKAR remains unknown. Here, we present three cryo-electron microscopy structures of sulfated CCK-8-activated CCKAR in complex with Gs, Gi and Gq heterotrimers, respectively. CCKAR presents a similar conformation in the three structures, whereas conformational differences in the 'wavy hook' of the Gα subunits and ICL3 of the receptor serve as determinants in G-protein coupling selectivity. Our findings provide a framework for understanding G-protein coupling promiscuity by CCKAR and uncover the mechanism of receptor recognition by sulfated CCK-8.
Collapse
Affiliation(s)
- Qiufeng Liu
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Yang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youwen Zhuang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tristan I. Croll
- grid.5335.00000000121885934Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Xiaoqing Cai
- grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jia Duan
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Wanchao Yin
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chenyu Ye
- grid.8547.e0000 0001 0125 2443School of Pharmacy, Fudan University, Shanghai, China
| | - Fulai Zhou
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Beili Wu
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.9227.e0000000119573309CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhao
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - H. Eric Xu
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ming-Wei Wang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.8547.e0000 0001 0125 2443School of Pharmacy, Fudan University, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.8547.e0000 0001 0125 2443School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi Jiang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
8
|
Williams JA. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol 2019; 9:535-564. [PMID: 30873601 DOI: 10.1002/cphy.c180014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic acinar cells synthesize and secrete about 20 digestive enzymes and ancillary proteins with the processes that match the supply of these enzymes to their need in digestion being regulated by a number of hormones (CCK, secretin and insulin), neurotransmitters (acetylcholine and VIP) and growth factors (EGF and IGF). Of these regulators, one of the most important and best studied is the gastrointestinal hormone, cholecystokinin (CCK). Furthermore, the acinar cell has become a model for seven transmembrane, heterotrimeric G protein coupled receptors to regulate multiple processes by distinct signal transduction cascades. In this review, we briefly describe the chemistry and physiology of CCK and then consider the major physiological effects of CCK on pancreatic acinar cells. The majority of the review is devoted to the physiologic signaling pathways activated by CCK receptors and heterotrimeric G proteins and the functions they affect. The pathways covered include the traditional second messenger pathways PLC-IP3-Ca2+ , DAG-PKC, and AC-cAMP-PKA/EPAC that primarily relate to secretion. Then there are the protein-protein interaction pathways Akt-mTOR-S6K, the three major MAPK pathways (ERK, JNK, and p38 MAPK), and Ca2+ -calcineurin-NFAT pathways that primarily regulate non-secretory processes including biosynthesis and growth, and several miscellaneous pathways that include the Rho family small G proteins, PKD, FAK, and Src that may regulate both secretory and nonsecretory processes but are not as well understood. © 2019 American Physiological Society. Compr Physiol 9:535-564, 2019.
Collapse
Affiliation(s)
- John A Williams
- University of Michigan, Departments of Molecular & Integrative Physiology and Internal Medicine (Gastroenterology), Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Hao L, Wen D, Gou H, Yu F, Cong B, Ma C. Over-expression of CCK1 Receptor Reverse Morphine Dependence. Int J Pept Res Ther 2018; 24:471-477. [PMID: 30147637 PMCID: PMC6096524 DOI: 10.1007/s10989-018-9696-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/30/2022]
Abstract
Studies demonstrated that cholecystokinin (CCK) system involved in morphine dependence and withdrawal. Our previous study showed that endogenous CCK system were up-regulated after chronic morphine exposure. Additionally, CCK1 receptor significantly blocked the inhibitory effect of exogenous CCK-8 on morphine dependence, but CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence. Therefore, CCK1R and CCK2R function differently in chronic morphine dependence, but the mechanism is still unclear. In this study, HEK-293 cells co-transfected with µ-opioid receptors (HEK293-hMOR) and CCK1R or CCK2R were established. Cells were treated with 10 µM morphine for 6, 12, 16, 24 h and 100 µM naloxone precipitation for 15 min. cAMP overshoot was appeared at 12 h and was increased time dependently after morphine exposure in HEK293-hMOR cells. The cAMP overshoot did not appear in CCK1R-overexpressing HEK293-hMOR cells, while still appeared in CCK2R-overexpressing HEK293-hMOR cells. Over-expression of CCK1R reversed CREB and ERK1/2 activation in HEK293-hMOR cells exposed to morphine. Our study identifies over-expression of CCK1R significantly blocked morphine dependence, which was related with phosphorylation of CREB, and ERK1/2 signaling activation. While over-expression of CCK2R promoted morphine dependence, which was related with phosphorylation of CREB but not ERK1/2 signaling activation.
Collapse
Affiliation(s)
- Lijing Hao
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China.,2Department of Anesthesiology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051 People's Republic of China
| | - Di Wen
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China
| | - Hongyan Gou
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China.,CUHK Shenzhen Research Institute, 2 Yuexing Road, Nanshan District, Shenzhen, 518057 People's Republic of China
| | - Feng Yu
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China
| | - Bin Cong
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China
| | - Chunling Ma
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China
| |
Collapse
|
10
|
Duca FA, Bauer PV, Hamr SC, Lam TKT. Glucoregulatory Relevance of Small Intestinal Nutrient Sensing in Physiology, Bariatric Surgery, and Pharmacology. Cell Metab 2015. [PMID: 26212718 DOI: 10.1016/j.cmet.2015.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Emerging evidence suggests the gastrointestinal tract plays an important glucoregulatory role. In this perspective, we first review how the intestine senses ingested nutrients, initiating crucial negative feedback mechanisms through a gut-brain neuronal axis to regulate glycemia, mainly via reduction in hepatic glucose production. We then highlight how intestinal energy sensory mechanisms are responsible for the glucose-lowering effects of bariatric surgery, specifically duodenal-jejunal bypass, and the antidiabetic agents metformin and resveratrol. A better understanding of these pathways lays the groundwork for intestinally targeted drug therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada
| | - Paige V Bauer
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sophie C Hamr
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tony K T Lam
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
11
|
Tripathi S, Flobak Å, Chawla K, Baudot A, Bruland T, Thommesen L, Kuiper M, Lægreid A. The gastrin and cholecystokinin receptors mediated signaling network: a scaffold for data analysis and new hypotheses on regulatory mechanisms. BMC SYSTEMS BIOLOGY 2015. [PMID: 26205660 PMCID: PMC4513977 DOI: 10.1186/s12918-015-0181-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The gastrointestinal peptide hormones cholecystokinin and gastrin exert their biological functions via cholecystokinin receptors CCK1R and CCK2R respectively. Gastrin, a central regulator of gastric acid secretion, is involved in growth and differentiation of gastric and colonic mucosa, and there is evidence that it is pro-carcinogenic. Cholecystokinin is implicated in digestion, appetite control and body weight regulation, and may play a role in several digestive disorders. Results We performed a detailed analysis of the literature reporting experimental evidence on signaling pathways triggered by CCK1R and CCK2R, in order to create a comprehensive map of gastrin and cholecystokinin-mediated intracellular signaling cascades. The resulting signaling map captures 413 reactions involving 530 molecular species, and incorporates the currently available knowledge into one integrated signaling network. The decomposition of the signaling map into sub-networks revealed 18 modules that represent higher-level structures of the signaling map. These modules allow a more compact mapping of intracellular signaling reactions to known cell behavioral outcomes such as proliferation, migration and apoptosis. The integration of large-scale protein-protein interaction data to this literature-based signaling map in combination with topological analyses allowed us to identify 70 proteins able to increase the compactness of the map. These proteins represent experimentally testable hypotheses for gaining new knowledge on gastrin- and cholecystokinin receptor signaling. The CCKR map is freely available both in a downloadable, machine-readable SBML-compatible format and as a web resource through PAYAO (http://sblab.celldesigner.org:18080/Payao11/bin/). Conclusion We have demonstrated how a literature-based CCKR signaling map together with its protein interaction extensions can be analyzed to generate new hypotheses on molecular mechanisms involved in gastrin- and cholecystokinin-mediated regulation of cellular processes. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0181-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sushil Tripathi
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway.
| | - Åsmund Flobak
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway.
| | - Konika Chawla
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| | - Anaïs Baudot
- I2M, Marseilles Institute of Mathematics CNRS - AMU, Case 907, 13288, Marseille, Cedex 9, France.
| | - Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway.
| | - Liv Thommesen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway. .,Department of Technology, Sør-Trøndelag University College, N-7004, Trondheim, Norway.
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| | - Astrid Lægreid
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway. .,Institute of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7489, Trondheim, Norway.
| |
Collapse
|
12
|
Dong M, Vattelana AM, Lam PCH, Orry AJ, Abagyan R, Christopoulos A, Sexton PM, Haines DR, Miller LJ. Development of a highly selective allosteric antagonist radioligand for the type 1 cholecystokinin receptor and elucidation of its molecular basis of binding. Mol Pharmacol 2014; 87:130-40. [PMID: 25319540 DOI: 10.1124/mol.114.095430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the molecular basis of ligand binding to receptors provides insights useful for rational drug design. This work describes development of a new antagonist radioligand of the type 1 cholecystokinin receptor (CCK1R), (2-fluorophenyl)-2,3-dihydro-3-[(3-isoquinolinylcarbonyl)amino]-6-methoxy-2-oxo-l-H-indole-3-propanoate (T-0632), and exploration of the molecular basis of its binding. This radioligand bound specifically with high affinity within an allosteric pocket of CCK1R. T-0632 fully inhibited binding and action of CCK at this receptor, while exhibiting no saturable binding to the closely related type 2 cholecystokinin receptor (CCK2R). Chimeric CCK1R/CCK2R constructs were used to explore the molecular basis of T-0632 binding. Exchanging exonic regions revealed the functional importance of CCK1R exon 3, extending from the bottom of transmembrane segment (TM) 3 to the top of TM5, including portions of the intramembranous pocket as well as the second extracellular loop region (ECL2). However, CCK1R mutants in which each residue facing the pocket was changed to that present in CCK2R had no negative impact on T-0632 binding. Extending the chimeric approach to ECL2 established the importance of its C-terminal region, and site-directed mutagenesis of each nonconserved residue in this region revealed the importance of Ser(208) at the top of TM5. A molecular model of T-0632-occupied CCK1R was consistent with these experimental determinants, also identifying Met(121) in TM3 and Arg(336) in TM6 as important. Although these residues are conserved in CCK2R, mutating them had a distinct impact on the two closely related receptors, suggesting differential orientation. This establishes the molecular basis of binding of a highly selective nonpeptidyl allosteric antagonist of CCK1R, illustrating differences in docking that extend beyond determinants attributable to distinct residues lining the intramembranous pocket in the two receptor subtypes.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
| | - Ashton M Vattelana
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
| | - Polo C-H Lam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
| | - Andrew J Orry
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
| | - Ruben Abagyan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
| | - Arthur Christopoulos
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
| | - Patrick M Sexton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
| | - David R Haines
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
| |
Collapse
|
13
|
Delhanty PJD, Bouw E, Huisman M, Vervenne RML, Themmen APN, van der Lely AJ, van den Akker ELT. Functional characterization of a new human melanocortin-4 receptor homozygous mutation (N72K) that is associated with early-onset obesity. Mol Biol Rep 2014; 41:7967-72. [PMID: 25163632 DOI: 10.1007/s11033-014-3691-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/21/2014] [Indexed: 01/31/2023]
Abstract
The melanocortin 4 receptor (MC4R) is expressed in the hypothalamus and is essential for regulation of appetite and energy expenditure. MC4R dysfunction in humans causes hyperphagia, impaired satiety and obesity. We have identified a novel c.216C>A (N72 K) homozygous mutation in MC4R in a girl with severe obesity. The patient presented with early-onset obesity and hyperphagia indicating an effect of the homozygous mutation on her phenotype. In silico analyses indicate a damaging effect on receptor function, and the mutation is unusual in occurring in the first intra-cellular loop of the receptor. Site-directed mutagenesis was used to generate plasmid constructs expressing wild-type and mutant MC4R. These were transfected into HEK293 cells and assessed for cAMP responsiveness to α-MSH. Cells expressing N-terminal HA and C-terminal GFP-tagged MC4R were assessed by immunofluorescence confocal microscopy and flow cytometry for correct cell-surface localization. The maximal response of the mutant MC4R to α-MSH was decreased to 20 ± 1 % of the wild type receptor response, and the EC50 was increased from 16.5 ± 5.4 nM to 37.0 ± 8.3 nM. Localization of N- and C-terminally tagged MC4R by confocal microscopy and flow cytometry showed aberrant retention of the mutant receptor in the cytoplasm. Our data describe a rare homozygous inactivating mutation in the first intra-cellular loop of MC4R that markedly impairs its function and is associated with early-onset obesity and hyperphagia.
Collapse
Affiliation(s)
- Patric J D Delhanty
- Departments of Internal Medicine and Pediatric Endocrinology, Erasmus MC, Rotterdam, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
14
|
Abreu AP, Noel SD, Xu S, Carroll RS, Latronico AC, Kaiser UB. Evidence of the importance of the first intracellular loop of prokineticin receptor 2 in receptor function. Mol Endocrinol 2012; 26:1417-27. [PMID: 22745195 DOI: 10.1210/me.2012-1102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prokineticin receptors (PROKR) are G protein-coupled receptors (GPCR) that regulate diverse biological processes, including olfactory bulb neurogenesis and GnRH neuronal migration. Mutations in PROKR2 have been described in patients with varying degrees of GnRH deficiency and are located in diverse functional domains of the receptor. Our goal was to determine whether variants in the first intracellular loop (ICL1) of PROKR2 (R80C, R85C, and R85H) identified in patients with hypogonadotropic hypogonadism interfere with receptor function and to elucidate the mechanisms of these effects. Because of structural homology among GPCR, clarification of the role of ICL1 in PROKR2 activity may contribute to a better understanding of this domain across other GPCR. The effects of the ICL1 PROKR2 mutations on activation of signal transduction pathways, ligand binding, and receptor expression were evaluated. Our results indicated that the R85C and R85H PROKR2 mutations interfere only modestly with receptor function, whereas the R80C PROKR2 mutation leads to a marked reduction in receptor activity. Cotransfection of wild-type (WT) and R80C PROKR2 showed that the R80C mutant could exert a dominant negative effect on WT PROKR2 in vitro by interfering with WT receptor expression. In summary, we have shown the importance of Arg80 in ICL1 for PROKR2 expression and demonstrate that R80C PROKR2 exerts a dominant negative effect on WT PROKR2.
Collapse
Affiliation(s)
- Ana Paula Abreu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
15
|
Garcia GL, Dong M, Miller LJ. Differential determinants for coupling of distinct G proteins with the class B secretin receptor. Am J Physiol Cell Physiol 2012; 302:C1202-12. [PMID: 22277758 DOI: 10.1152/ajpcell.00273.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The secretin receptor is a prototypic class B G protein-coupled receptor that is activated by binding of its natural peptide ligand. The signaling effects of this receptor are mediated by coupling with Gs, which activates cAMP production, and Gq, which activates intracellular calcium mobilization. We have explored the molecular basis for the coupling of each of these G proteins to this receptor using systematic site-directed mutagenesis of key residues within each of the intracellular loop regions, and studying ligand binding and secretin-stimulated cAMP and calcium responses. Mutation of a conserved histidine in the first intracellular loop (H157A and H157R) markedly reduced cell surface expression, resulting in marked reduction in cAMP and elimination of measurable calcium responses. Mutation of an arginine (R153A) in the first intracellular loop reduced calcium, but not cAMP responses. Mutation of a dibasic motif in the second intracellular loop (R231A/K232A) had no significant effects on any measured responses. Mutations in the third intracellular loop involving adjacent lysine and leucine residues (K302A/L303A) or two arginine residues separated by a leucine and an alanine (R318A/R321A) significantly reduced cAMP responses, while the latter also reduced calcium responses. Additive effects were elicited by combining the effective mutations, while combining all the effective mutations resulted in a construct that continued to bind secretin normally, but that elicited no significant cAMP or calcium responses. These data suggest that, while some receptor determinants are clearly shared, there are also distinct determinants for coupling with each of these G proteins.
Collapse
Affiliation(s)
- Gene L Garcia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | | |
Collapse
|
16
|
Potter RM, Harikumar KG, Wu SV, Miller LJ. Differential sensitivity of types 1 and 2 cholecystokinin receptors to membrane cholesterol. J Lipid Res 2011; 53:137-48. [PMID: 22021636 DOI: 10.1194/jlr.m020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies indicate that membrane cholesterol can associate with G protein-coupled receptors (GPCRs) and affect their function. Previously, we reported that manipulation of membrane cholesterol affects ligand binding and signal transduction of the type 1 cholecystokinin receptor (CCK1R), a Class A GPCR. We now demonstrate that the closely related type 2 cholecystokinin receptor (CCK2R) does not share this cholesterol sensitivity. The sequences of both receptors reveal almost identical cholesterol interaction motifs in analogous locations in transmembrane segments two, three, four, and five. The disparity in cholesterol sensitivity between these receptors, despite their close structural relationship, provides a unique opportunity to define the possible structural basis of cholesterol sensitivity of CCK1R. To evaluate the relative contributions of different regions of CCK1R to cholesterol sensitivity, we performed ligand binding studies and biological activity assays of wild-type and CCK2R/CCK1R chimeric receptor-bearing Chinese hamster ovary cells after manipulation of membrane cholesterol. We also extended these studies to site-directed mutations within the cholesterol interaction motifs. The results contribute to a better understanding of the structural requirements for cholesterol sensitivity in CCK1R and provides insight into the function of other cholesterol-sensitive Class A GPCRs.
Collapse
Affiliation(s)
- Ross M Potter
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
17
|
Discovery of a CXCR4 agonist pepducin that mobilizes bone marrow hematopoietic cells. Proc Natl Acad Sci U S A 2010; 107:22255-9. [PMID: 21139054 DOI: 10.1073/pnas.1009633108] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The G protein-coupled receptor (GPCR), chemokine CXC-type receptor 4 (CXCR4), and its ligand, CXCL12, mediate the retention of polymorphonuclear neutrophils (PMNs) and hematopoietic stem and progenitor cells (HSPCs) in the bone marrow. Agents that disrupt CXCL12-mediated chemoattraction of CXCR4-expressing cells mobilize PMNs and HSPCs into the peripheral circulation and are therapeutically useful for HSPC collection before autologous bone marrow transplantation (ABMT). Our aim was to develop unique CXCR4-targeted therapeutics using lipopeptide GPCR modulators called pepducins. A pepducin is a synthetic molecule composed of a peptide derived from the amino acid sequence of one of the intracellular (IC) loops of a target GPCR coupled to a lipid tether. We prepared and screened a small CXCR4-targeted pepducin library and identified several pepducins with in vitro agonist activity, including ATI-2341, whose peptide sequence derives from the first IC loop. ATI-2341 induced CXCR4- and G protein-dependent signaling, receptor internalization, and chemotaxis in CXCR4-expressing cells. It also induced dose-dependent peritoneal recruitment of PMNs when administered i.p. to mice. However, when administered systemically by i.v. bolus, ATI-2341 acted as a functional antagonist and dose-dependently mediated release of PMNs from the bone marrow of both mice and cynomolgus monkeys. ATI-2341-mediated release of granulocyte/macrophage progenitor cells from the bone marrow was confirmed by colony-forming assays. We conclude that ATI-2341 is a potent and efficacious mobilizer of bone marrow PMNs and HSPCs and could represent a previously undescribed therapeutic approach for the recruitment of HSPCs before ABMT.
Collapse
|
18
|
Cawston EE, Miller LJ. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol 2009; 159:1009-21. [PMID: 19922535 DOI: 10.1111/j.1476-5381.2009.00489.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cholecystokinin (CCK) is a physiologically important gastrointestinal and neuronal peptide hormone, with roles in stimulating gallbladder contraction, pancreatic secretion, gastrointestinal motility and satiety. CCK exerts its effects via interactions with two structurally related class I guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs), the CCK(1) receptor and the CCK(2) receptor. Here, we focus on the CCK(1) receptor, with particular relevance to the broad spectrum of signalling initiated by activation with the natural full agonist peptide ligand, CCK. Distinct ligand-binding pockets have been defined for the natural peptide ligand and for some non-peptidyl small molecule ligands. While many CCK(1) receptor ligands have been developed and have had their pharmacology well described, their clinical potential has not yet been fully explored. The case is built for the potential importance of developing more selective partial agonists and allosteric modulators of this receptor that could have important roles in the treatment of common clinical syndromes.
Collapse
Affiliation(s)
- Erin E Cawston
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | | |
Collapse
|
19
|
Parker MS, Parker SL. The fourth intracellular domain of G-protein coupling receptors: helicity, basicity and similarity to opsins. Amino Acids 2009; 38:1-13. [DOI: 10.1007/s00726-009-0316-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/15/2009] [Indexed: 11/27/2022]
|
20
|
Rogers RC, Hermann GE. Mechanisms of action of CCK to activate central vagal afferent terminals. Peptides 2008; 29:1716-25. [PMID: 18655818 PMCID: PMC2650377 DOI: 10.1016/j.peptides.2008.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/10/2008] [Accepted: 06/16/2008] [Indexed: 12/29/2022]
Abstract
Cholecystokinin [CCK] is a peptide released as a hormone by the proximal gut in response to the presence of peptones and fatty acid in the gut. Considerable evidence suggests that CCK inhibits feeding behavior and gastric function by acting as a paracrine modulator of vagal afferents in the periphery, especially in the duodenum. CCK is also widely distributed throughout the mammalian brain and appears to function as a neurotransmitter and neuromodulator. More recent studies have suggested that CCK may act directly within the CNS to activate central vagal afferent terminal inputs to the solitary nucleus. We have developed an in vitro calcium imaging method that reveals, for the first time, the direct effects of this peptide on vagal terminals in the solitary nucleus. In vitro imaging reveals that CCK provokes increases in intracellular calcium in vagal afferent terminals as a consequence of a complex interaction between protein kinase A [PKA] and phospholipase C [PLC] transduction mechanisms that open L-type calcium channels and causes endoplasmic reticular [ER] calcium release. The subsequent activation of PKC may be responsible for initiating calcium spiking which is dependent on a TTX-sensitive mechanism. Thus, imaging of the isolated but spatially intact hindbrain slice has allowed a more complete appreciation of the interdependent transduction mechanisms used by CCK to excite identified central vagal afferent fibers and varicosities.
Collapse
Affiliation(s)
- Richard C Rogers
- Laboratory of Autonomic Neurosciences, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
21
|
Miller LJ, Gao F. Structural basis of cholecystokinin receptor binding and regulation. Pharmacol Ther 2008; 119:83-95. [PMID: 18558433 DOI: 10.1016/j.pharmthera.2008.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 05/03/2008] [Indexed: 01/02/2023]
Abstract
Two structurally-related guanine nucleotide-binding protein-coupled receptors for two related peptides, cholecystokinin (CCK) and gastrin, have evolved to exhibit substantial diversity in specificity of ligand recognition, in their molecular basis of binding these ligands, and in their mechanisms of biochemical and cellular regulation. Consistent with this, the CCK1 and CCK2 receptors also play unique and distinct roles in physiology and pathophysiology. The paradigms for ligand recognition and receptor regulation and function are reviewed in this article, and should be broadly applicable to many members of this remarkable receptor superfamily. This degree of specialization is instructive and provides an encouraging basis for the diversity of potential drugs targeting these receptors and their actions that can be developed.
Collapse
Affiliation(s)
- Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA.
| | | |
Collapse
|
22
|
Thomas BE, Wittelsberger A, Woznica I, Hsieh MY, Monaghan P, Lee BK, Rosenblatt M. Cysteine at position 217 in the intracellular loop 1 plays a critical role in human PTH receptor type 1 membrane translocation and function. J Bone Miner Res 2007; 22:609-16. [PMID: 17227205 DOI: 10.1359/jbmr.070101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED PTHR1 mutants lacking endogenous cysteines in transmembrane and intracellular domains were generated. Mutant receptors were tested for their biological activities and mRNA and cell surface expression levels. C217 in intracellular loop 1 was determined to play a critical role in cell surface translocation and function of the receptor. INTRODUCTION Elucidating the role of different domains of PTH receptor 1 (PTHR1) is essential for understanding the mechanism of ligand-receptor interactions. Here we present a study directed at determining the importance of cysteine residues present in the intracellular and transmembrane (TM) domains of the receptor. MATERIALS AND METHODS Mutant receptors were generated by site-directed mutagenesis. Biological activities were characterized by adenylyl cyclase and competition binding assays. RT-PCR, ELISA, and immunofluorescence microscopy were carried out to determine receptor mRNA and protein expression levels. RESULTS Mutations C460L and C462L in TM7, C568L in the C-terminal intracellular domain of the receptor, and removal of C397 in intracellular loop (ICL)3 by insertion of cleavage sites for Factor Xa did not affect binding affinity of PTH or agonist-induced adenylyl cyclase activity, although maximal responses (IC(max) and EC(max)) were decreased. However, mutations C217L in ICL1 or both C217L and C568L simultaneously resulted in a decrease in binding and loss of adenylyl cyclase activity. RT-PCR results showed that the observed changes in binding and activity were not caused by changes in mRNA expression. Next, we determined cell surface and total expression of the wildtype and mutant receptors by ELISA. We found that mutations of C460/C462 to L moderately decreased transfer of receptors to the cell surface. However, mutation of C217 to L in the ICL1 drastically reduced cell surface expression. Immunofluorescence and confocal microscopy studies confirmed reduced cell surface expression of receptors containing the C217L mutation. Similar results were obtained when replacing C217 and C460/C462 of the receptor with A instead of L. CONCLUSIONS Our studies indicate that the cysteine at position 217 in ICL1 plays a critical role in translocation to the cell surface and biological function of PTHR1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- COS Cells
- Cell Membrane/metabolism
- Chlorocebus aethiops
- Cysteine/chemistry
- DNA Primers/genetics
- Humans
- In Vitro Techniques
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Parathyroid Hormone, Type 1/chemistry
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- Beena E Thomas
- Department of Physiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Yu HG, Schäfer H, Mergler S, Müerköster S, Cramer T, Höcker M, Herzig KH, Schmidt WE, Schmitz F. Valine-286 residue in the third intracellular loop of the cholecystokinin 2 receptor exerts a pivotal role in cholecystokinin 2 receptor mediated intracellular signal transduction in human colon cancer cells. Cell Signal 2006; 17:1505-15. [PMID: 15951156 DOI: 10.1016/j.cellsig.2005.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 03/04/2005] [Indexed: 12/26/2022]
Abstract
Although expression of the gastrin/cholecystokinin-2 receptor (CCK2R) is widely reported in human colorectal cancer, little is known on its role in mediating mature amidated gastrin (gastrin-17 amide, G-17) induced intracellular signal transduction in colon cancer cells. The purpose of this study was to explore the intracellular events of colorectal cancer cells after gastrin binding to CCK2R. Meanwhile, the influence of a natural point mutation 286V-->F in the third intracellular loop of CCK2R on gastrin-envoked intracellular signal transduction was also investigated. Firstly, Colo320 cells were stably transfected with wild type (Colo320 WT) and mutant CCK2R (Colo320 M), respectively. The intracellular signal transduction events in response to gastrin were investigated in both Colo320 WT and Colo320 M cells. In Colo320 WT cells, G-17 induced formation of intracellular cyclic AMP and inositol 1,4,5-trisphosphate, and stimulated intracellular calcium mobilization. G-17 also stimulated tyrosine phosphorylation of ERKl/2, p38, FAK, and paxillin, and up-regulated the mRNA expression of early response gene c-Jun and c-Fos. However, G-17 inhibited proliferation and induced apoptosis in Colo320 WT cells. Mutation 286V-->F in the third intracellular loop of CCK2R blocked G-17 induced biological without affecting binding affinity of CCK2R to G-17. Our results suggest that activation of CCK2R by gastrin stimulates heterotrimeric G-protein Gq and G(12/13) mediated intracellular signal transduction pathway in colon cancer cells. The valine-287 residue in third intracellular loop of CCK2R plays a pivotal role in CCK2R mediated intracellular signal transduction.
Collapse
Affiliation(s)
- Hong-Gang Yu
- Laboratory for Experimental Gastroenterology, Department of Medicine I, St. Josef-Hospital, Ruhr-University of Bochum, Gudrunstr. 56, D-44791 Bochum
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
25
|
Varga G, Bálint A, Burghardt B, D'Amato M. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br J Pharmacol 2004. [PMID: 15100163 DOI: 10.1038/sj.bjp.0705769141/8/1275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cholecystokinin (CCK) is a brain-gut peptide; it functions both as a neuropeptide and as a gut hormone. Although the pancreas and the gallbladder were long thought to be the principal peripheral targets of CCK, CCK receptors are found throughout the gut. It is likely that CCK has a physiological role not only in the stimulation of pancreatic and biliary secretions but also in the regulation of gastrointestinal motility. The motor effects of CCK include postprandial inhibition of gastric emptying and inhibition of colonic transit. It is now evident that at least two different receptors, CCK(1) and CCK(2) (formerly CCK-A and CCK-B, respectively), mediate the actions of CCK. Both localization and functional studies suggest that the motor effects of CCK are mediated by CCK(1) receptors in humans. Since CCK is involved in sensory and motor responses to distension in the intestinal tract, it may contribute to the symptoms of constipation, bloating and abdominal pain that are often characteristic of functional gastrointestinal disorders in general and irritable bowel syndrome (IBS), in particular. CCK(1) receptor antagonists are therefore currently under development for the treatment of constipation-predominant IBS. Clinical studies suggest that CCK(1) receptor antagonists are effective facilitators of gastric emptying and inhibitors of gallbladder contraction and can accelerate colonic transit time in healthy volunteers and patients with IBS. These drugs are therefore potentially of great value in the treatment of motility disorders such as constipation and constipation-predominant IBS.
Collapse
Affiliation(s)
- Gábor Varga
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest 1083, Hungary.
| | | | | | | |
Collapse
|
26
|
Varga G, Bálint A, Burghardt B, D'Amato M. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br J Pharmacol 2004; 141:1275-84. [PMID: 15100163 PMCID: PMC1574909 DOI: 10.1038/sj.bjp.0705769] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholecystokinin (CCK) is a brain-gut peptide; it functions both as a neuropeptide and as a gut hormone. Although the pancreas and the gallbladder were long thought to be the principal peripheral targets of CCK, CCK receptors are found throughout the gut. It is likely that CCK has a physiological role not only in the stimulation of pancreatic and biliary secretions but also in the regulation of gastrointestinal motility. The motor effects of CCK include postprandial inhibition of gastric emptying and inhibition of colonic transit. It is now evident that at least two different receptors, CCK(1) and CCK(2) (formerly CCK-A and CCK-B, respectively), mediate the actions of CCK. Both localization and functional studies suggest that the motor effects of CCK are mediated by CCK(1) receptors in humans. Since CCK is involved in sensory and motor responses to distension in the intestinal tract, it may contribute to the symptoms of constipation, bloating and abdominal pain that are often characteristic of functional gastrointestinal disorders in general and irritable bowel syndrome (IBS), in particular. CCK(1) receptor antagonists are therefore currently under development for the treatment of constipation-predominant IBS. Clinical studies suggest that CCK(1) receptor antagonists are effective facilitators of gastric emptying and inhibitors of gallbladder contraction and can accelerate colonic transit time in healthy volunteers and patients with IBS. These drugs are therefore potentially of great value in the treatment of motility disorders such as constipation and constipation-predominant IBS.
Collapse
Affiliation(s)
- Gábor Varga
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest 1083, Hungary.
| | | | | | | |
Collapse
|
27
|
Geng L, Wu J, So SP, Huang G, Ruan KH. Structural and functional characterization of the first intracellular loop of human thromboxane A2 receptor. Arch Biochem Biophys 2004; 423:253-65. [PMID: 15001390 DOI: 10.1016/j.abb.2004.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Indexed: 11/19/2022]
Abstract
The conformation of a constrained peptide mimicking the putative first intracellular domain (iLP1) of thromboxane A(2) receptor (TP) was determined by (1)H 2D NMR spectroscopy. Through completed assignments of TOCSY, DQF-COSY, and NOESY spectra, a NMR structure of the peptide showed a beta-turn in residues 56-59 and a short helical structure in the residues 63-66. It suggests that residues 63-66 may be part of the second transmembrane domain (TM), and that Arg60, in an exposed position on the outer surface of the loop, may be involved in signaling through charge contact with Gq protein. The sequence alignment of Lys residue in the same position of other prostanoid receptors mediates different G protein couplings, suggesting that the chemical properties of Arg and Lys may also affect the receptor signaling activity. These hypotheses were supported by mutagenesis studies, in which the mutant of Arg60Leu completely lost activity in increasing intracellular calcium level through Gq coupling, and the mutant of Arg60Lys retained only about 35% signaling activity. The difference between the side chain functions of Lys and Arg in effecting the signaling was discussed.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Arginine/genetics
- Arginine/metabolism
- COS Cells
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Circular Dichroism
- Humans
- Models, Molecular
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Linda Geng
- Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
28
|
Haidar B, Denis M, Marcil M, Krimbou L, Genest J. Apolipoprotein A-I activates cellular cAMP signaling through the ABCA1 transporter. J Biol Chem 2003; 279:9963-9. [PMID: 14701824 DOI: 10.1074/jbc.m313487200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that the signal transduction pathway initiated by apoA-I activates key proteins involved in cellular lipid efflux. We investigated apoA-I-mediated cAMP signaling in cultured human fibroblasts induced with (22R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Treatment of stimulated fibroblasts with apoA-I for short periods of time (<or=45 min) increased ATP binding cassette A1 (ABCA1) phosphorylation in a concentration-dependent manner. Concomitantly, apoA-I increased the intracellular level of cAMP in a concentration- and time-dependent manner. The maximal cAMP level was reached within 10 min at 10 microg/ml apoA-I representing a 1-fold increase. The ability of apoA-I to mediate cAMP production was only observed in stimulated fibroblasts. Furthermore, overexpression of ABCA1 in Chinese hamster ovary cells resulted in a 1.5-fold increase in apoA-I-mediated cAMP accumulation as compared with untransfected cells. In contrast, forskolin increased cAMP production significantly in unstimulated fibroblasts as well as in untransfected Chinese hamster ovary cells. Pharmacological inhibition of protein kinase A (H89) completely blocked apoA-I-mediated ABCA1 phosphorylation. Naturally occurring mutations of ABCA1 associated with Tangier disease (C1477R, 2203X, and 2145X) severely reduced apoA-I-mediated cAMP production, ABCA1 phosphorylation, (125)I-apoA-I binding, and lipid efflux, without affecting forskolin-mediated cAMP elevation. In contrast, the protein kinase A catalytic subunit was able to phosphorylate ABCA1 similarly from mutant and normal cell lines in vitro. Together, our results indicate that apoA-I activates ABCA1 phosphorylation through the cAMP/protein kinase A-dependent pathway, apoA-I-mediated cAMP production required high level expression of functional ABCA1, and Tangier disease mutants have defective apoA-I-mediated cAMP signaling. These findings suggest that apoA-I may activate cAMP signaling through G protein-coupled ABCA1 transporter.
Collapse
Affiliation(s)
- Bassam Haidar
- Cardiovascular Genetics Laboratory, Division of Cardiology, McGill University Health Centre/Royal Victoria Hospital, Montréal, Québec H3A 1A1, Canada
| | | | | | | | | |
Collapse
|
29
|
Oh DY, Wang L, Ahn RS, Park JY, Seong JY, Kwon HB. Differential G protein coupling preference of mammalian and nonmammalian gonadotropin-releasing hormone receptors. Mol Cell Endocrinol 2003; 205:89-98. [PMID: 12890570 DOI: 10.1016/s0303-7207(03)00204-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, we have identified three distinct types of gonadotropin-releasing hormone receptor (GnRHR) in the bullfrog (designated bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3). In the present study, we compared G protein coupling preference of mammalian and nonmammalian GnRHRs. In a transient expression system, stimulation of either bfGnRHRs or rat GnRHR by GnRH significantly increased both inositol phosphates (IP) and cAMP productions, but ratios of IP to cAMP induction levels were quite different among the receptors, indicating differential G protein coupling preference. Using cAMP-dependent protein kinase A (PKA)-specific (CRE-luc) or protein kinase C (PKC)-specific reporter (c-fos-luc) systems, we further examined G(s) and G(q/11) coupling preference of these GnRHRs. Since activities of CRE-luc and c-fos-luc were highly dependent on cell types, GnRH-induced CRE-luc or c-fos-luc activity was normalized by forskolin-induced CRE-luc or 12-O-tetradecanoylphenol-13-acetate (TPA)-induced c-fos-luc activity, respectively. This normalized result indicated that bfGnRHR-2 couples to G(s) more actively than G(q/11), while bfGnRHR-1 and -3 couple to G(s) and G(q/11) with similar strength. However, the rat GnRHR appeared to couple to G(q/11) more efficiently than G(s). This study was further confirmed by an experiment in which GnRH augmented CRE-driven luciferase activity in alphaT3-1 cells when CRE-luc was cotransfected with bfGnRHRs but not with vehicle or rat GnRHR. Collectively, these results indicate that mammalian and nonmammalian GnRHRs may induce diverse cellular and physiological responses through differential activation of PKA and PKC signaling pathways.
Collapse
Affiliation(s)
- Da Young Oh
- Hormone Research Center, Chonnam National University, 500-757 Gwangju, South Korea
| | | | | | | | | | | |
Collapse
|
30
|
Hermans E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther 2003; 99:25-44. [PMID: 12804697 DOI: 10.1016/s0163-7258(03)00051-2] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For decades, it has been generally proposed that a given receptor always interacts with a particular GTP-binding protein (G-protein) or with multiple G-proteins within one family. However, for several G-protein-coupled receptors (GPCR), it now becomes generally accepted that simultaneous functional coupling with distinct unrelated G-proteins can be observed, leading to the activation of multiple intracellular effectors with distinct efficacies and/or potencies. Multiplicity in G-protein coupling is frequently observed in artificial expression systems where high densities of receptors are obtained, raising the question of whether such complex signalling reveals artefactual promiscuous coupling or is a genuine property of GPCRs. Multiple biochemical and pharmacological evidence in favour of an intrinsic property of GPCRs were obtained in recent studies. Thus, there are now many examples showing that the coupling to multiple signalling pathways is dependent on the agonist used (agonist trafficking of receptor signals). In addition, the different couplings were demonstrated to involve distinct molecular determinants of the receptor and to show distinct desensitisation kinetics. Such multiplicity of signalling at the level of G-protein coupling leads to a further complexity in the functional response to agonist stimulation of one of the most elaborate cellular transmission systems. Indeed, the physiological relevance of such versatility in signalling associated with a single receptor requires the existence of critical mechanisms of dynamic regulation of the expression, the compartmentalisation, and the activity of the signalling partners. This review aims at summarising the different studies that support the concept of multiplicity of G-protein coupling. The physiological and pharmacological relevance of this coupling promiscuity will be discussed.
Collapse
Affiliation(s)
- Emmanuel Hermans
- Laboratoire de Pharmacologie Expérimentale, Université Catholique de Louvain, FARL 54.10, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
31
|
Roland J, Murphy BJ, Ahr B, Robert-Hebmann V, Delauzun V, Nye KE, Devaux C, Biard-Piechaczyk M. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood 2003; 101:399-406. [PMID: 12393663 DOI: 10.1182/blood-2002-03-0978] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CXCR4 chemokine receptor is a G(i) protein-coupled receptor that triggers multiple intracellular signals in response to stromal cell-derived factor 1 (SDF-1), including calcium mobilization and p44/42 extracellular signal-regulated kinases (ERK1/2). Transduced signals lead to cell chemotaxis and are terminated through receptor internalization depending on phosphorylation of the C terminus part of CXCR4. Receptor endocytosis is also required for some receptors to stimulate ERK1/2 and to migrate through a chemokine gradient. In this study, we explored the role played by the 3 intracellular loops (ICL1-3) and the C terminus domain of CXCR4 in SDF-1-mediated signaling by using human embryonic kidney (HEK)-293 cells stably expressing wild-type or mutated forms of CXCR4. ICL3 of CXCR4 is specifically involved in G(i)-dependent signals such as calcium mobilization and ERK activation, but does not trigger CXCR4 internalization after SDF-1 binding, indicating that ERK phosphorylation is independent of CXCR4 endocytosis. Surprisingly, ICL2, with or without the aspartic acid, arginine, and tyrosine (DRY) motif, is dispensable for G(i) signaling. However, ICL2 and ICL3, as well as the C terminus part of CXCR4, are needed to transduce SDF-1-mediated chemotaxis, suggesting that this event involves multiple activation pathways and/or cooperation of several cytoplasmic domains of CXCR4.
Collapse
Affiliation(s)
- Joachim Roland
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire CNRS UMR 5121, Institut de Biologie, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dawson ES, Henne RM, Miller LJ, Lybrand TP. Moleular models for cholecystokinin-A receptor. PHARMACOLOGY & TOXICOLOGY 2002; 91:290-6. [PMID: 12688371 DOI: 10.1034/j.1600-0773.2002.910605.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous techniques have been used to elucidate the structural basis for interaction of cholecystokinin (CCK)-related peptides with their hormone-binding receptor, the CCK-A receptor (CCK-AR), including structure-activity relationship studies, site-directed mutagenesis, photoaffinity-labeling, and solution NMR analysis of both CCK peptide ligands and peptide fragments derived from the CCK-A receptor. Different structural models have been developed for the peptide-receptor complexes using various subsets of the available experimental data (Giragossian & Mierke 2001; Ding et al. 2002; Escrieut et al. 2002). Here, we review details of the various models and evaluate the impact of selected experimental data sets on model development.
Collapse
Affiliation(s)
- Eric S Dawson
- Department of Chemistry, Vanderbilt University, Center for Structural Biology, Nashville, TN 37235-1822, USA
| | | | | | | |
Collapse
|
33
|
Fourmy D, Escrieut C, Archer E, Galès C, Gigoux V, Maigret B, Moroder L, Silvente-Poirot S, Martinez J, Fehrentz JA, Pradayrol L. Structure of cholecystokinin receptor binding sites and mechanism of activation/inactivation by agonists/antagonists. PHARMACOLOGY & TOXICOLOGY 2002; 91:313-20. [PMID: 12688374 DOI: 10.1034/j.1600-0773.2002.910608.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Delineation of CCK receptor binding sites is a prerequisite for the understanding of the molecular basis for ligand recognition, partial agonism, ligand-induced traffiking of receptor signalling. In the current paper, we illustrate how, in the past 5 years, studies from our laboratory and others have provided new data on the molecular basis of the pharmacology and functioning of CCK1 and CCK2 receptors. Available data on CCK1 and CCK2R binding sites indicate that 1) homologous regions of the two receptors are involved in the binding site of CCK, however, positioning of CCK slightly differs; 2) binding sites of non-peptide agonists/antagonist are buried in the pocket formed by transmembrane helices and overlap that of CCK and 3) residues of the binding sites as well as of conserved motifs such as E/DRY, NPXXY are crucial for receptor activation.
Collapse
Affiliation(s)
- Daniel Fourmy
- INSERM U 531, Louis Bugnard Institute, CHU Rangueil, Bat. L3, 31403 Toulouse Cedex 4, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The receptor for the peptide hormone, cholecystokinin, is a G-protein-coupled receptor in the rhodopsin/beta-adrenergic receptor family. A number of methodological approaches have been utilized to gain insights into the molecular basis for natural peptide ligand binding and activation of this physiologically important receptor. Insights into this have come from sequence analysis, ligand and receptor structure-activity data, receptor mutagenesis, conformational analysis of ligand and receptor fragments, and photoaffinity labeling. In this work, we review the contributions of each of these complementary approaches and provide a current integrated view of the active complex of cholecystokinin bound to its receptor.
Collapse
Affiliation(s)
- L J Miller
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minn., USA.
| | | |
Collapse
|
35
|
Ding XQ, Miller LJ. Characterization of the type A cholecystokinin receptor hormone-binding domain: use of contrasting and complementary methodologies. Peptides 2001; 22:1223-8. [PMID: 11457514 DOI: 10.1016/s0196-9781(01)00445-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insights into the molecular basis of binding of the peptide hormone, cholecystokinin, to its G protein-coupled receptor is of substantial interest and may contribute to the successful production and refinement of receptor-active drugs. A number of methodological approaches provide complementary data to contribute to these insights. These include receptor mutagenesis, ligand structure-activity data, conformational analysis of ligand and receptor fragments, and photoaffinity labeling. In this work, we compare and contrast each of these methods and provide our current view of the cumulative impact of the current data on molecular conformational models of the agonist-occupied type A cholecystokinin receptor. These support the key roles played by extracellular loop and tail regions of this receptor for binding its natural peptide ligand.
Collapse
Affiliation(s)
- X Q Ding
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
36
|
Abstract
Gastrin, produced by G cells in the gastric antrum, has been identified as the circulating hormone responsible for stimulation of acid secretion from the parietal cell. Gastrin also acts as a potent cell-growth factor that has been implicated in a variety of normal and abnormal biological processes including maintenance of the gastric mucosa, proliferation of enterochromaffin-like cells, and neoplastic transformation. Here, we review the models used to study the effects of gastrin on cell proliferation in vivo and in vitro with respect to mechanisms by which this hormone might influence normal and cancerous cell growth. Specifically, human and animal models of hypergastrinemia and hypogastrinemia have been described in vivo, and several cells that express cholecystokinin (CCK)B/gastrin receptors have been used for analysis of intracellular signaling pathways initiated by biologically active amidated gastrins. The binding of gastrin or CCK to their common cognate receptor triggers the activation of multiple signal transduction pathways that relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the synthesis of lipid-derived second messengers with subsequent activation of protein phosphorylation cascades, including mitogen-activated protein kinase, is an important early response to these signaling peptides. Gastrin and CCK also induce rapid Rho-dependent actin remodeling and coordinate tyrosine phosphorylation of cellular proteins including the non-receptor tyrosine kinases p125fak and Src and the adaptor proteins p130cas and paxillin. This article reviews recent advances in defining the role of gastrin and CCK in the control of cell proliferation in normal and cancer cells and in dissecting the signal transduction pathways that mediate the proliferative responses induced by these hormonal GI peptides in a variety of normal and cancer cell model systems.
Collapse
Affiliation(s)
- E Rozengurt
- Department of Medicine, School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
37
|
Cancela JM. Specific Ca2+ signaling evoked by cholecystokinin and acetylcholine: the roles of NAADP, cADPR, and IP3. Annu Rev Physiol 2001; 63:99-117. [PMID: 11181950 DOI: 10.1146/annurev.physiol.63.1.99] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to control cell functions, hormones and neurotransmitters generate an amazing diversity of Ca2+ signals such as local and global Ca2+ elevations and also Ca2+ oscillations. In pancreatic acinar cells, cholecystokinin (CCK) stimulates secretion of digestive enzyme and promotes cell growth, whereas acetylcholine (ACh) essentially triggers enzyme secretion. Pancreatic acinar cells are a classic model for the study of CCK- and ACh-evoked specific Ca2+ signals. In addition to inositol 1,4,5 trisphosphate (IP3), recent studies have shown that cyclic ADPribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) release Ca2+ in pancreatic acinar cells. Moreover, it has also been shown that both ACh and CCK trigger Ca2+ spikes by co-activation of IP3 and ryanodine receptors but by different means. ACh uses IP3 and Ca2+, whereas CCK uses cADPr and NAADP. In addition, CCK activates phospholipase A2 and D. The concept emerging from these studies is that agonist-specific Ca2+ signals in a single target cell are generated by combination of different intracellular messengers.
Collapse
Affiliation(s)
- J M Cancela
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
38
|
Lyu RM, Germano PM, Choi JK, Le SV, Pisegna JR. Identification of an essential amino acid motif within the C terminus of the pituitary adenylate cyclase-activating polypeptide type I receptor that is critical for signal transduction but not for receptor internalization. J Biol Chem 2000; 275:36134-42. [PMID: 10908567 PMCID: PMC6707528 DOI: 10.1074/jbc.m004612200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 (PAC1) receptor is a G protein-coupled receptor and class II receptor member. The receptor domains critical for signaling are unknown. To explore the role of the C terminus, truncations of 63 residues (Tr406), 53 residues (Tr416), 49 residues (Tr420), 44 residues (Tr424), and 37 residues (Tr433) were constructed and expressed in NIH/3T3 cells, and immunofluorescence, radioligand binding, adenylyl cyclase (AC) and phospholipase C (PLC) assays were performed. (125)I-PACAP-27 binding (K(d) = 0.6-1.5 nm) for the Tr406 and Tr433 were similar to wild type Hop and Null splice variants (K(d) = approximately 1.1 nm). Although internalization of ligand for both the Tr406 and Tr433 mutants was reduced to 50-60% at 60 min compared with 76-87% for WT, loss of G protein coupling did not account for differences in internalization. Despite similar binding properties Tr406 and Tr416 mutants showed no AC or PLC response. Addition of 14 amino acids distal to HopTr406 resulted in normal AC and PLC responses. Site-directed mutagenesis indicated that Arg(416) and Ser(417) are essential for G protein activation. The proximal C terminus mediates signal transduction, and the distal is involved with internalization. Two residues within the C terminus, Arg(416) and Ser(417) conserved among class II receptors are the likely sites for G protein coupling.
Collapse
Affiliation(s)
| | | | | | | | - Joseph R. Pisegna
- To whom correspondence should be addressed: Gastroenterology and Hepatology Section, VA Greater Los Angeles Healthcare System (111C), 11301 Wilshire Blvd., Los Angeles, CA 90073. Tel.: 310-478-3711, Ext. 41940; Fax: 310-268-4096;
| |
Collapse
|
39
|
Grosse R, Schmid A, Schöneberg T, Herrlich A, Muhn P, Schultz G, Gudermann T. Gonadotropin-releasing hormone receptor initiates multiple signaling pathways by exclusively coupling to G(q/11) proteins. J Biol Chem 2000; 275:9193-200. [PMID: 10734055 DOI: 10.1074/jbc.275.13.9193] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The agonist-bound gonadotropin-releasing hormone (GnRH) receptor engages several distinct signaling cascades, and it has recently been proposed that coupling of a single type of receptor to multiple G proteins (G(q), G(s), and G(i)) is responsible for this behavior. GnRH-dependent signaling was studied in gonadotropic alphaT3-1 cells endogenously expressing the murine receptor and in CHO-K1 (CHO#3) and COS-7 cells transfected with the human GnRH receptor cDNA. In all cell systems studied, GnRH-induced phospholipase C activation and Ca(2+) mobilization was pertussis toxin-insensitive, as was GnRH-mediated extracellular signal-regulated kinase activation. Whereas the G(i)-coupled m2 muscarinic receptor interacted with a chimeric G(s) protein (G(s)i5) containing the C-terminal five amino acids of Galpha(i2), the human GnRH receptor was unable to activate the G protein chimera. GnRH challenge of alphaT3-1, CHO#3 and of GnRH receptor-expressing COS-7 cells did not result in agonist-dependent cAMP formation. GnRH challenge of CHO#3 cells expressing a cAMP-responsive element-driven firefly luciferase did not result in increased reporter gene expression. However, coexpression of the human GnRH receptor and adenylyl cyclase I in COS-7 cells led to clearly discernible GnRH-dependent cAMP formation subsequent to GnRH-elicited rises in [Ca(2+)](i). In alphaT3-1 and CHO#3 cell membranes, addition of [alpha-(32)P]GTP azidoanilide resulted in GnRH receptor-dependent labeling of Galpha(q/11) but not of Galpha(i), Galpha(s) or Galpha(12/13) proteins. Thus, the murine and human GnRH receptors exclusively couple to G proteins of the G(q/11) family. Multiple GnRH-dependent signaling pathways are therefore initiated downstream of the receptor/G protein interface and are not indicative of a multiple G protein coupling potential of the GnRH receptor.
Collapse
Affiliation(s)
- R Grosse
- Institut für Pharmakologie, Freie Universität Berlin, Thielallee 69-73, D-14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Gouldson P, Legoux P, Carillon C, Dumont X, Le Fur G, Ferrara P, Shire D. Essential role of extracellular charged residues of the human CCK(1) receptor for interactions with SR 146131, SR 27897 and CCK-8S. Eur J Pharmacol 2000; 389:115-24. [PMID: 10688974 DOI: 10.1016/s0014-2999(99)00894-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We hypothesized that charge-charge interactions may be important for the binding of the human cholecystokinin type 1 (CCK(1)) receptor-specific non-peptide full agonist SR 146131, (2-[4-(4-chloro-2, 5-dimethoxyphenyl)-5-(2-cyclohexyl-ethyl)-thiazol-2-ylcarbamoyl ]-5, 7-dimethyl-indol-1-yl-1-acetic acid), the competitive antagonist SR 27897, (1-[2-(4-(2-chlorophenyl)thiazol-2-yl) aminocarbonyl indoyl] acetic acid) and the natural octapeptide CCK-8S to the CCK(1) receptor. Alanine replacement studies of positively charged residues in the extracellular domains of the receptor showed that only the R336A mutation affected SR 146131 potency of mutated receptors transiently expressed in monkey kidney epithelial COS-7 cells. Two residues, Lys(115) and Lys(187), were implicated in SR 27897 binding. Only the replacement of Lys(115), Arg(197) and Arg(336) significantly affected CCK-8S binding or activity. These results clearly indicated the importance of certain charged residues, but not others, in SR 146131, SR 27897 and CCK-8S binding. Furthermore, although these molecules probably occupy different binding sites on the CCK(1) receptor, we show that a small non-peptide agonist, SR 146131, can stimulate the dual signaling pathways mediated by the CCK(1) receptor.
Collapse
Affiliation(s)
- P Gouldson
- Sanofi-Synthelabo, Centre de Labège, Labège-Innopole Voie No. 1, B. P. 137, 31676, Labège, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Xiao ZL, Chen Q, Amaral J, Biancani P, Behar J. Defect of receptor-G protein coupling in human gallbladder with cholesterol stones. Am J Physiol Gastrointest Liver Physiol 2000; 278:G251-8. [PMID: 10666049 DOI: 10.1152/ajpgi.2000.278.2.g251] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human gallbladders with cholesterol stones (ChS) exhibit an impaired muscle contraction and relaxation and a lower CCK receptor-binding capacity compared with those with pigment stones (PS). This study was designed to determine whether there is an abnormal receptor-G protein coupling in human gallbladders with ChS using (35)S-labeled guanosine 5'-O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding, (125)I-labeled CCK-8 autoradiography, immunoblotting, and G protein quantitation. CCK and vasoactive intestinal peptide caused significant increases in [(35)S]GTPgammaS binding to Galpha(i-3) and G(s)alpha, respectively. The binding was lower in ChS than in PS (P < 0.01). The reduced [(35)S]GTPgammaS binding in ChS was normalized after the muscles were treated with cholesterol-free liposomes (P < 0.01). Autoradiography and immunoblots showed a decreased optical density (OD) for CCK receptors, an even lower OD value for receptor-G protein coupling, and a higher OD for uncoupled receptors or Galpha(i-3) protein in ChS compared with PS (P < 0.001). G protein quantitation also showed that there were no significant differences in the Galpha(i-3) and G(s)alpha content in ChS and PS. We conclude that, in addition to an impaired CCK receptor-binding capacity, there is a defect in receptor-G protein coupling in muscle cells from gallbladder with ChS. These changes may be normalized after removal of excess cholesterol from the plasma membrane.
Collapse
Affiliation(s)
- Z L Xiao
- Departments of Medicine and Surgery, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island 02903, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The intracellular mechanisms regulating pancreatic acinar cell function are more complex than previously realized. This is probably due in part to the need to match the biosynthetic and secretory functions of the cells. Much information is available on how secretagogue receptors acutely couple through heterotrimeric G proteins to increase intracellular messengers, particularly cytoplasmic free Ca(2+), although details are still being worked out. Less is known about how Ca(2+) signals to induce fusion of zymogen granules with the apical plasma membrane. Investigation has focused on the proteins of the zymogen granule membrane, and several novel proteins have recently been identified. In addition, understanding of the three MAP kinase cascades, the mTOR-p70S6 kinase pathway, and the focal adhesion kinase pathway in acinar cells is increasing. The functions of these pathways in acini have been linked to mitogenesis, protein synthesis, and regulation of the cytoskeleton.
Collapse
Affiliation(s)
- J A Williams
- Departments of Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
43
|
Abstract
The vast majority of extracellular signaling molecules, like hormones and neurotransmitters, interact with a class of membranous receptors characterized by a uniform molecular architecture of seven transmembrane alpha-helices linked by extra- and intracelluar peptide loops. In a reversible manner, binding of diverse agonists to heptahelical receptors leads to activation of a limited repertoire of heterotrimeric guanine nucleotide-binding proteins (G proteins) forwarding the signal to intracellular effectors such as enzymes and ion channels. Proper functioning of a G protein-coupled receptor is based on a complex interplay of structural determinants which are ultimately responsible for receptor folding, trafficking and transmembrane signaling. Applying novel biochemical and molecular biological methods interesting insights into receptor structure/function relationships became available. These studies have a significant impact on our understanding of the molecular basis of human diseases and may eventually lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- T Schöneberg
- Institut für Pharmakologie, Freie Universität Berlin, Germany.
| | | | | |
Collapse
|
44
|
Abstract
Molecular cloning studies have shown that G-protein-coupled receptors form one of the largest protein families found in nature, and it is estimated that approximately 1000 different such receptors exist in mammals. Characteristically, when activated by the appropriate ligand, an individual receptor can recognize and activate only a limited set of the many structurally closely related heterotrimeric G-proteins expressed within a cell. To understand how this selectivity is achieved at a molecular level has become the focus of an ever increasing number of laboratories. This review provides an overview of recent structural, molecular genetic, biochemical, and biophysical studies that have led to novel insights into the molecular mechanisms governing receptor-mediated G-protein activation and receptor/G-protein coupling selectivity.
Collapse
Affiliation(s)
- J Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Arora KK, Krsmanovic LZ, Mores N, O'Farrell H, Catt KJ. Mediation of cyclic AMP signaling by the first intracellular loop of the gonadotropin-releasing hormone receptor. J Biol Chem 1998; 273:25581-6. [PMID: 9748222 DOI: 10.1074/jbc.273.40.25581] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gonadotropin-releasing hormone (GnRH) receptor, which is a unique G protein-coupled receptor without a C-terminal cytoplasmic domain, activates both inositol phosphate (InsP) and cAMP signaling responses. The function of the highly basic first intracellular (1i) loop of the GnRH receptor in signal transduction was evaluated by mutating selected residues located in its N and C termini. Replacements of Leu58, Lys59, Gln61, and Lys62 at the N terminus, and Leu73, Ser74, and Leu80 at the C terminus, caused no change in binding affinity. The agonist-induced InsP and cAMP responses of the Q61E and K59Q,K62Q receptors were also unaffected, but the L58A receptor showed a normal InsP response and an 80% decrease in cAMP production. At the C terminus, the InsP response of the L73R receptor was normal, but cAMP production was reduced by 80%. The EC50 for GnRH-induced InsP responses of the S74E and L80A receptors was increased by about one order of magnitude, and the cAMP responses were essentially abolished. These findings indicate that cAMP signaling from the GnRH receptor is dependent on specific residues in the 1i loop that are not essential for activation of the phosphoinositide signaling pathway.
Collapse
Affiliation(s)
- K K Arora
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
46
|
Silvente-Poirot S, Escrieut C, Wank SA. Role of the extracellular domains of the cholecystokinin receptor in agonist binding. Mol Pharmacol 1998; 54:364-71. [PMID: 9687578 DOI: 10.1124/mol.54.2.364] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cholecystokinin (CCK) receptor types A and B (CCKAR and CCKBR) are G protein-coupled receptors with approximately 50% amino acid identity; both have high affinity for the sulfated CCK octapeptide (CCK-8), whereas only the CCKBR has high affinity for gastrin. Previously, we identified five amino acids in the second extracellular loop (ECL) of the CCKBR that were essential for gastrin selectivity. Subsequent mutagenesis of one of these five amino acids (H207F) resulted in the loss of radiolabeled CCK-8 binding. CCK-8 stimulated total inositol phosphate accumulation in COS-1 cells transiently expressing the CCKBR-H207F with full efficacy and a 3044-fold reduced potency, which suggests that the loss of radioligand binding was caused by a loss in affinity. Alanine scanning mutagenesis was performed on the amino terminus near the top of transmembrane domain I (TMI) and on ECL1, two extracellular domains implicated in ligand binding by previous mutagenesis studies. 125I-Bolton-Hunter-CCK-8 binding to mutant receptors transiently expressed in COS-1 identified one nonconserved amino acid, R57A, at the top of TMI that caused a 21-fold reduction in CCK-8 affinity and four conserved amino acids, N115A, L116A, F120A and F122A, in the ECL1 that caused a 15.6-, 6-, 440-, and 8-fold reduction in affinity or efficacy. Alanine substitution of the equivalent amino acids in the CCKAR corresponding to each of the five amino acids in ECL1 and ECL2 affecting CCK-8 affinity for the CCKBR revealed only two mutations, L103A and F107A, that decreased CCK-8 affinity (68- and 2885-fold, respectively). These data suggest that CCK-8 interacts at multiple contact points in the extracellular domains of CCK receptors and that the CCKAR and CCKBR have distinct binding sites despite their shared high affinity for CCK-8.
Collapse
Affiliation(s)
- S Silvente-Poirot
- Institut National de la Santé et de la Recherche Médicale U 151, CHU Rangueil, Bat L3, 31403 Toulouse Cedex, France
| | | | | |
Collapse
|
47
|
Wank SA. G protein-coupled receptors in gastrointestinal physiology. I. CCK receptors: an exemplary family. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G607-13. [PMID: 9575840 DOI: 10.1152/ajpgi.1998.274.4.g607] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CCK and gastrin families of peptides act as hormones and neuropeptides on central and peripheral receptors to mediate secretion and motility in the gastrointestinal tract in the physiological response to a normal meal. Thus far, two CCK receptors have been molecularly identified to mediate the actions of CCK and gastrin, CCK-A and CCK-B receptors (CCK-AR and CCK-BR, respectively). The regulation of CCK-AR and CCK-BR affinity by guanine nucleotides and the receptor activation of G protein-dependent stimulation of phospholipase C and adenylyl cyclase suggested that they were guanine nucleotide-binding protein-coupled receptors [G protein-coupled receptors (GPCRs)]; however, the eventual cloning of their cDNAs revealed their heptahelical structure and confirmed their membership in the GPCR superfamily. The gastrointestinal system is a rich source of neuroendocrine hormones that interact with a large number of GPCRs to regulate the complex tasks of digestion, absorption, and excretion of a meal. This article focuses on the CCK family of GPCRs, and its activities in the gastrointestinal system.
Collapse
Affiliation(s)
- S A Wank
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| |
Collapse
|
48
|
Jin H, Nip S, O'Dowd BF, George SR. D1 dopamine receptor activity is not altered by a mutation in the first intracellular loop. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1402:165-70. [PMID: 9561802 DOI: 10.1016/s0167-4889(97)00159-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first intracellular loop of the G protein-coupled receptors (GPCRs) is probably the domain that has been studied least. According to the limited data available, mutations of this region can increase, decrease or not affect receptor-G protein coupling, depending on the receptor. Melanocyte-stimulating hormone (MSH) receptors with a Ser69Leu mutation of the first intracellular loop phenotypically confer tobacco color to the coat of mice, and have constitutive activity and enhanced agonist stimulation of adenylyl cyclase. Since the human D1 dopamine receptor (D1DR) has a serine at the equivalent position, we were interested to see if this serine is involved in receptor-G protein coupling in a similar fashion. Our site-directed mutagenesis study showed that the replacement of this serine by leucine (Ser56Leu) in D1DR did not affect the ability of the receptors to bind ligand or couple to G protein.
Collapse
Affiliation(s)
- H Jin
- Addiction Research Foundation, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|