1
|
Liu TY, Chou WC, Chen WY, Chu CY, Dai CY, Wu PY. Detection of membrane protein-protein interaction in planta based on dual-intein-coupled tripartite split-GFP association. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:426-438. [PMID: 29451720 DOI: 10.1111/tpj.13874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI screening in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed, spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed tripartite split-GFP system was shown to be a reliable PPI reporter in mammalian and yeast cells. In this study, we adapted this methodology, in combination with the β-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agroinfiltration of Nicotiana benthamiana leaves, we demonstrate the utility of the tripartite split-GFP association in plant cells and affirm that the tripartite split-GFP system yields no spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the tripartite split-GFP association and dual-intein-mediated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis plants. Our results provide a proof-of-concept implementation of the tripartite split-GFP system as a potential tool for membrane PPI screens in planta.
Collapse
Affiliation(s)
- Tzu-Yin Liu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wen-Chun Chou
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-Yuan Chen
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ching-Yi Chu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chen-Yi Dai
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Yu Wu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
2
|
Murcha MW, Kmiec B, Kubiszewski-Jakubiak S, Teixeira PF, Glaser E, Whelan J. Protein import into plant mitochondria: signals, machinery, processing, and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6301-35. [PMID: 25324401 DOI: 10.1093/jxb/eru399] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
3
|
Ge C, Spånning E, Glaser E, Wieslander A. Import determinants of organelle-specific and dual targeting peptides of mitochondria and chloroplasts in Arabidopsis thaliana. MOLECULAR PLANT 2014; 7:121-136. [PMID: 24214895 DOI: 10.1093/mp/sst148] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Most of the mitochondrial and chloroplastic proteins are synthesized in the cytosol as precursor proteins carrying an N-terminal targeting peptide (TP) directing them specifically to a correct organelle. However, there is a group of proteins that are dually targeted to mitochondria and chloroplasts using an ambiguous N-terminal dual targeting peptide (dTP). Here, we have investigated pattern properties of import determinants of organelle-specific TPs and dTPs combining mathematical multivariate data analysis (MVDA) with in vitro organellar import studies. We have used large datasets of mitochondrial and chloroplastic proteins found in organellar proteomes as well as manually selected data sets of experimentally confirmed organelle-specific TPs and dTPs from Arabidopsis thaliana. Two classes of organelle-specific TPs could be distinguished by MVDA and potential patterns or periodicity in the amino acid sequence contributing to the separation were revealed. dTPs were found to have intermediate sequence features between the organelle-specific TPs. Interestingly, introducing positively charged residues to the dTPs showed clustering towards the mitochondrial TPs in silico and resulted in inhibition of chloroplast, but not mitochondrial import in in vitro organellar import studies. These findings suggest that positive charges in the N-terminal region of TPs may function as an 'avoidance signal' for the chloroplast import.
Collapse
Affiliation(s)
- Changrong Ge
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
4
|
Mitochondrial targeting of human NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) and its association with early-onset hypertrophic cardiomyopathy and encephalopathy. J Biomed Sci 2011; 18:29. [PMID: 21548921 PMCID: PMC3117770 DOI: 10.1186/1423-0127-18-29] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2), containing one iron sulfur cluster ([2Fe-2S] binuclear cluster N1a), is one of the core nuclear-encoded subunits existing in human mitochondrial complex I. Defects in this subunit have been associated with Parkinson's disease, Alzheimer's disease, Bipolar disorder, and Schizophrenia. The aim of this study is to examine the mitochondrial targeting of NDUFV2 and dissect the pathogenetic mechanism of one human deletion mutation present in patients with early-onset hypertrophic cardiomyopathy and encephalopathy. Methods A series of deletion and point-mutated constructs with the c-myc epitope tag were generated to identify the location and sequence features of mitochondrial targeting sequence for NDUFV2 in human cells using the confocal microscopy. In addition, various lengths of the NDUFV2 N-terminal and C-terminal fragments were fused with enhanced green fluorescent protein to investigate the minimal region required for correct mitochondrial import. Finally, a deletion construct that mimicked the IVS2+5_+8delGTAA mutation in NDUFV2 gene and would eventually produce a shortened NDUFV2 lacking 19-40 residues was generated to explore the connection between human gene mutation and disease. Results We identified that the cleavage site of NDUFV2 was located around amino acid 32 of the precursor protein, and the first 22 residues of NDUFV2 were enough to function as an efficient mitochondrial targeting sequence to carry the passenger protein into mitochondria. A site-directed mutagenesis study showed that none of the single-point mutations derived from basic, hydroxylated and hydrophobic residues in the NDUFV2 presequence had a significant effect on mitochondrial targeting, while increasing number of mutations in basic and hydrophobic residues gradually decreased the mitochondrial import efficacy of the protein. The deletion mutant mimicking the human early-onset hypertrophic cardiomyopathy and encephalopathy lacked 19-40 residues in NDUFV2 and exhibited a significant reduction in its mitochondrial targeting ability. Conclusions The mitochondrial targeting sequence of NDUFV2 is located at the N-terminus of the precursor protein. Maintaining a net positive charge and an amphiphilic structure with the overall balance and distribution of basic and hydrophobic amino acids in the N-terminus of NDUFV2 is important for mitochondrial targeting. The results of human disease cell model established that the impairment of mitochondrial localization of NDUFV2 as a mechanistic basis for early-onset hypertrophic cardiomyopathy and encephalopathy.
Collapse
|
5
|
Qiao Y, Li HF, Wong SM, Fan ZF. Plastocyanin transit peptide interacts with Potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1523-34. [PMID: 19888818 DOI: 10.1094/mpmi-22-12-1523] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Potato virus X coat protein (PVXCP) is, through communication with host proteins, involved in processes such as virus movement and symptom development. Here, we report that PVXCP also interacts with the precursor of plastocyanin, a protein involved in photosynthesis, both in vitro and in vivo. Yeast two-hybrid analysis indicated that PVXCP interacted with only the plastocyanin transit peptide. In subsequent bimolecular fluorescence complementation assays, both proteins were collocated within chloroplasts. Western blot analyses of chloroplast fractions showed that PVXCP could be detected in the envelope, stroma, and lumen fractions. Transmission electron microscopy demonstrated that grana were dilated in PVX-infected Nicotiana benthamiana. Furthermore, virus-induced gene silencing of plastocyanin by prior infection of N. benthamiana using a Tobacco rattle virus vector reduced the severity of symptoms that developed following subsequent PVX infection as well as the accumulation of PVXCP in isolated chloroplasts. However, PVXCP could not be detected in pea chloroplasts in an in vitro re-uptake assay using the plastocyanin precursor protein. Taken together, these data suggest that PVXCP interacts with the plastocyanin precursor protein and that silencing the expression of this protein leads to reduced PVXCP accumulation in chloroplasts and ameliorates symptom severity in host plants.
Collapse
Affiliation(s)
- Y Qiao
- State Key Laboratory of Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
6
|
Berglund AK, Pujol C, Duchene AM, Glaser E. Defining the determinants for dual targeting of amino acyl-tRNA synthetases to mitochondria and chloroplasts. J Mol Biol 2009; 393:803-14. [PMID: 19733576 DOI: 10.1016/j.jmb.2009.08.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/20/2009] [Accepted: 08/27/2009] [Indexed: 12/12/2022]
Abstract
Most of the organellar amino acyl-tRNA synthetases (aaRSs) are dually targeted to both mitochondria and chloroplasts using dual targeting peptides (dTPs). We have investigated the targeting properties and domain structure of dTPs of seven aaRSs by studying the in vitro and in vivo import of N-terminal deleted constructs of dTPs fused to green fluorescent protein. The deletion constructs were designed based on prediction programs, TargetP and Predotar, as well as LogoPlots derived from organellar proteomes in Arabidopsis thaliana. In vitro import was performed either into a single isolated organelle or as dual import (i.e., into a mixture of isolated mitochondria and chloroplasts followed by reisolation of the organelles). In vivo import was investigated as transient expression of the green fluorescent protein constructs in Nicotiana benthamiana protoplasts. Characterization of recognition determinants showed that the N-terminal portions of TyrRS-, ValRS- and ThrRS-dTPs (27, 22 and 23 amino acids, respectively) are required for targeting into both mitochondria and chloroplasts. Surprisingly, these N-terminal portions contain no or very few arginines (or lysines) but very high number of hydroxylated residues (26-51%). For two aaRSs, a domain structure of the dTP became evident. Removal of 20 residues from the dTP of ProRS abolished chloroplastic import, indicating that the N-terminal region was required for chloroplast targeting, whereas deletion of 16 N-terminal amino acids from AspRS-dTP inhibited the mitochondrial import, showing that in this case, the N-terminal portion was required for the mitochondrial import. Finally, deletion of N-terminal regions of dTPs for IleRS and LysRS did not affect dual targeting. In summary, it can be concluded that there is no general rule for how the determinants for dual targeting are distributed within dTPs; in most cases, the N-terminal portion is essential for import into both organelles, but in a few cases, a domain structure was observed.
Collapse
Affiliation(s)
- Anna-Karin Berglund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Science, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
7
|
Bodył A, Mackiewicz P, Stiller JW. Early steps in plastid evolution: current ideas and controversies. Bioessays 2009; 31:1219-32. [DOI: 10.1002/bies.200900073] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Morgante CV, Rodrigues RAO, Marbach PAS, Borgonovi CM, Moura DS, Silva-Filho MC. Conservation of dual-targeted proteins in Arabidopsis and rice points to a similar pattern of gene-family evolution. Mol Genet Genomics 2009; 281:525-38. [PMID: 19214577 DOI: 10.1007/s00438-009-0429-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 01/25/2009] [Indexed: 12/23/2022]
Abstract
Gene duplication followed by acquisition of specific targeting information and dual targeting were evolutionary strategies enabling organelles to cope with overlapping functions. We examined the evolutionary trend of dual-targeted single-gene products in Arabidopsis and rice genomes. The number of paralogous proteins encoded by gene families and the dual-targeted orthologous proteins were analysed. The number of dual-targeted proteins and the corresponding gene-family sizes were similar in Arabidopsis and rice irrespective of genome sizes. We show that dual targeting of methionine aminopeptidase, monodehydroascorbate reductase, glutamyl-tRNA synthetase, and tyrosyl-tRNA synthetase was maintained despite occurrence of whole-genome duplications in Arabidopsis and rice as well as a polyploidization followed by a diploidization event (gene loss) in the latter.
Collapse
Affiliation(s)
- Carolina V Morgante
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, C.P. 83, Piracicaba, SP, 13400-970, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Perry AJ, Rimmer KA, Mertens HDT, Waller RF, Mulhern TD, Lithgow T, Gooley PR. Structure, topology and function of the translocase of the outer membrane of mitochondria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:265-74. [PMID: 18272380 DOI: 10.1016/j.plaphy.2007.12.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Indexed: 05/09/2023]
Abstract
Proteins destined for the mitochondria required the evolution of specific and efficient molecular machinery for protein import. The subunits of the import translocases of the inner membrane (TIM) appear homologous and conserved amongst species, however the components of the translocase of the outer membrane (TOM) show extensive differences between species. Recently, bioinformatic and structural analysis of Tom20, an important receptor subunit of the TOM complex, suggests that this protein complex arose from different ancestors for plants compared to animals and fungi, but has subsequently converged to provide similar functions and analogous structures. Here we review the current knowledge of the TOM complex, the function and structure of the various subunits that make up this molecular machine.
Collapse
Affiliation(s)
- Andrew J Perry
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Biotechnology and Molecular Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Karnataki A, Derocher A, Coppens I, Nash C, Feagin JE, Parsons M. Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Mol Microbiol 2007; 63:1653-68. [PMID: 17367386 DOI: 10.1111/j.1365-2958.2007.05619.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The apicoplast is a relict plastid essential for viability of the apicomplexan parasites Toxoplasma and Plasmodium. It is surrounded by multiple membranes that proteins, substrates and metabolites must traverse. Little is known about apicoplast membrane proteins, much less their sorting mechanisms. We have identified two sets of apicomplexan proteins that are homologous to plastid membrane proteins that transport phosphosugars or their derivatives. Members of the first set bear N-terminal extensions similar to those that target proteins to the apicoplast lumen. While Toxoplasma gondii lacks this type of translocator, the N-terminal extension from the Plasmodium falciparum sequence was shown to be functional in T. gondii. The second set of translocators lacks an N-terminal targeting sequence. This translocator, TgAPT1, when tagged with HA, localized to multiple apicoplast membranes in T. gondii. Contrasting with the constitutive targeting of luminal proteins, the localization of the translocator varied during the cell cycle. Early-stage parasites showed circumplastid distribution, but as the plastid elongated in preparation for division, vesicles bearing TgAPT1 appeared adjacent to the plastid. After plastid division, the protein resumes a circumplastid colocalization. These studies demonstrate for the first time that vesicular trafficking likely plays a role in the apicoplast biogenesis.
Collapse
Affiliation(s)
- Anuradha Karnataki
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
11
|
Parsons M, Karnataki A, Feagin JE, DeRocher A. Protein trafficking to the apicoplast: deciphering the apicomplexan solution to secondary endosymbiosis. EUKARYOTIC CELL 2007; 6:1081-8. [PMID: 17513565 PMCID: PMC1951102 DOI: 10.1128/ec.00102-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marilyn Parsons
- Seattle Biomedical Research Institute, 307 Westlake Ave. North, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
12
|
Bhushan S, Pavlov PF, Rudhe C, Glaser E. In vitro and in vivo methods to study protein import into plant mitochondria. Methods Mol Biol 2007; 390:131-150. [PMID: 17951685 DOI: 10.1007/978-1-59745-466-7_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant mitochondria contain about 1000 proteins, 90-99% of which in different plant species are nuclear encoded, synthesized on cytosolic polyribosomes, and imported into the organelle. Most of the nuclear-encoded proteins are synthesized as precursors containing an N-terminal extension called a presequence or targeting peptide that directs the protein to the mitochondria. Here we describe in vitro and in vivo methods to study mitochondrial protein import in plants. In vitro synthesized precursor proteins can be imported in vitro into isolated mitochondria (single organelle import). However, missorting of chloroplast precursors in vitro into isolated mitochondria has been observed. A novel dual import system for simultaneous import of proteins into isolated mitochondria and chloroplasts followed by reisolation of the organelles is superior over the single import system as it abolishes the mistargeting. Precursor proteins can also be imported into the mitochondria in vivo using an intact cellular system. In vivo approaches include import of transiently expressed fusion constructs containing a presequence or a full-length precursor protein fused to a reporter gene, most commonly the green fluorescence protein (GFP) in protoplasts or in an Agrobacterium-mediated system in intact tobacco leaves.
Collapse
Affiliation(s)
- Shashi Bhushan
- Department for Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
13
|
Pavlov PF, Rudhe C, Bhushan S, Glaser E. In vitro and in vivo protein import into plant mitochondria. Methods Mol Biol 2007; 372:297-314. [PMID: 18314735 DOI: 10.1007/978-1-59745-365-3_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In plants, the majority of mitochondrial and chloroplast proteins are nuclear encoded, synthesized on cytosolic polyribosomes, and then imported into the organelle. Most of the nuclear encoded precursor proteins contain an N-terminal extension called signal or targeting peptide that directs the protein to the correct organelle. Here, we describe in vitro and in vivo methods to study mitochondrial protein import. In a common single-organelle in vitro import procedure, transcribed/translated precursor proteins are imported into isolated mitochondria. A novel semi-in vivo system for simultaneous import of precursor proteins into isolated mitochondria and chloroplasts, called a dual-import system, is superior to the single-import system as it abolishes mistargeting of chloroplast precursors into mitochondria as observed in a single-organelle import system. Precursor proteins can also be imported into the organelles in vivo using an intact cellular system. In vivo approaches include import of transiently expressed fusion constructs containing a targeting peptide or a precursor protein fused to a reporter gene, most commonly the green fluorescence protein in protoplasts or in an Agrobacterium-mediated system in intact tobacco leaves.
Collapse
Affiliation(s)
- Pavel F Pavlov
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Science, Stockholm University, Sweden
| | | | | | | |
Collapse
|
14
|
Xu C, Fan J, Froehlich JE, Awai K, Benning C. Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. THE PLANT CELL 2005; 17:3094-110. [PMID: 16199613 PMCID: PMC1276032 DOI: 10.1105/tpc.105.035592] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphatidate (PA) is a central metabolite of lipid metabolism and a signaling molecule in many eukaryotes, including plants. Mutations in a permease-like protein, TRIGALACTOSYLDIACYLGLYCEROL1 (TGD1), in Arabidopsis thaliana caused the accumulation of triacylglycerols, oligogalactolipids, and PA. Chloroplast lipids were altered in their fatty acid composition consistent with an impairment of lipid trafficking from the endoplasmic reticulum (ER) to the chloroplast and a disruption of thylakoid lipid biosynthesis from ER-derived precursors. The process mediated by TGD1 appears to be essential as mutation of the protein caused a high incidence of embryo abortion. Isolated tgd1 mutant chloroplasts showed a decreased ability to incorporate PA into galactolipids. The TGD1 protein was localized to the inner chloroplast envelope and appears to be a component of a lipid transporter. As even partial disruption of TGD1 function has drastic consequences on central lipid metabolism, the tgd1 mutant provides a tool to explore regulatory mechanisms governing lipid homeostasis and lipid trafficking in plants.
Collapse
Affiliation(s)
- Changcheng Xu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
15
|
Clausen C, Ilkavets I, Thomson R, Philippar K, Vojta A, Möhlmann T, Neuhaus E, Fulgosi H, Soll J. Intracellular localization of VDAC proteins in plants. PLANTA 2004; 220:30-7. [PMID: 15258762 DOI: 10.1007/s00425-004-1325-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 05/28/2004] [Indexed: 05/08/2023]
Abstract
Voltage-dependent anion channels (VDACs) are porin-type beta-barrel diffusion pores. They are prominent in the outer membrane of mitochondria and facilitate metabolite exchange between the organelle and the cytosol. Here we studied the subcellular distribution of a plant VDAC-like protein between plastids and mitochondria in green and non-green tissue. Using in vitro studies of dual-import into mitochondria and chloroplasts as well as transient expression of fluorescence-labeled polypeptides, it could be clearly demonstrated that this VDAC isoform targets exclusively to mitochondria and not to plastids. Our results support the idea that plastids evolved a concept of solute exchange with the cytosol different from that of mitochondria.
Collapse
Affiliation(s)
- Cathrin Clausen
- Department Biologie I, Ludwig-Maximilians-Universität München, Menzingerstr. 67, 80638 München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Khazi FR, Edmondson AC, Nielsen BL. An Arabidopsis homologue of bacterial RecA that complements an E. coli recA deletion is targeted to plant mitochondria. Mol Genet Genomics 2003; 269:454-63. [PMID: 12768414 DOI: 10.1007/s00438-003-0859-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 04/28/2003] [Indexed: 11/30/2022]
Abstract
Homologous recombination results in the exchange and rearrangement of DNA, and thus generates genetic variation in living organisms. RecA is known to function in all bacteria as the central enzyme catalyzing strand transfer and has functional homologues in eukaryotes. Most of our knowledge of homologous recombination in eukaryotes is limited to processes in the nucleus. The mitochondrial genomes of higher plants contain repeated sequences that are known to undergo frequent rearrangements and recombination events. However, very little is known about the proteins involved or the biochemical mechanisms of DNA recombination in plant mitochondria. We provide here the first report of an Arabidopsis thaliana homologue of Escherichia coli RecA that is targeted to mitochondria. The mt recA gene has a putative mitochondrial presequence identified from the A. thaliana genome database. This nuclear gene encodes a predicted product that shows highest sequence homology to chloroplast RecA and RecA proteins from proteobacteria. When fused to the GFP coding sequence, the predicted presequence was able to target the fusion protein to isolated mitochondria but not to chloroplasts. The mitochondrion-specific localization of the mt recA gene product was confirmed by Western analysis using polyclonal antibodies raised against a synthetic peptide from a unique region of the mature mtRecA. The Arabidopsis mt recA gene partially complemented a recA deletion in E. coli, enhancing survival after exposure to DNA-damaging agents. These results suggest a possible role for mt recA in homologous recombination and/or repair in Arabidopsis mitochondria.
Collapse
Affiliation(s)
- F R Khazi
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
17
|
Chabregas SM, Luche DD, Van Sluys MA, Menck CFM, Silva-Filho MC. Differential usage of two in-frame translational start codons regulates subcellular localization of Arabidopsis thaliana THI1. J Cell Sci 2003; 116:285-91. [PMID: 12482914 DOI: 10.1242/jcs.00228] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arabidopsis thaliana THI1 is encoded by a single nuclear gene and directed simultaneously to mitochondria and chloroplasts from a single major transcript. In vitro transcription/translation experiments revealed the presence of two translational products by the differential usage of two in-frame translational start codons. The coupling site-specific mutations on the THI1 encoding sequence with green fluorescent protein (GFP) gene fusions showed that translation initiation at the first AUG directs translocation of THI1 to chloroplasts. However, when translation starts from the second AUG, THI1 is addressed to mitochondria. Analysis of the translation efficiency of thi1 mRNA revealed that the best context for translation initiation is to use the first AUG. In addition, a suboptimal context in the vicinity of the second AUG initiation codon, next to a stable stem-and-loop structure that is likely to slow translation, has been noted. The fact that translation preferentially occurs in the first AUG of this protein suggests a high requirement for TH1 in chloroplasts. Although the frequency of upstream AUG translation is higher, according to the first AUG rule, initiation at the second AUG deviates significantly from Kozak's consensus. It suggests leaky ribosomal scanning, reinitiation or the internal entry of ribosomes to assure mitochondrial protein import.
Collapse
Affiliation(s)
- Sabrina M Chabregas
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Caixa Postal 83, 13400-970, Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
18
|
Rudhe C, Clifton R, Whelan J, Glaser E. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency. J Mol Biol 2002; 324:577-85. [PMID: 12460562 DOI: 10.1016/s0022-2836(02)01133-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.
Collapse
Affiliation(s)
- Charlotta Rudhe
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
19
|
Vothknecht UC, Soll J. Chloroplast quest: a journey from the cytosol into the chloroplast and beyond. Rev Physiol Biochem Pharmacol 2002; 145:181-222. [PMID: 12224527 DOI: 10.1007/bfb0116432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Chloroplasts are characteristic organelles of plants and algae and the site of oxygenic photosynthesis. They are surrounded by a double membrane and possess an internal membrane system, the thylakoids, on which the photosynthetic machinery is located. They originated more than 1.2 billion years ago from an endosymbiotic event between an already photosynthetic ancestor of present day cyanobacteria and a mitochondriate host cell. During the transformation of the internalized cyanobacterium into a cell organelle most of the genetic information of the endosymbiot got lost or was transferred into the nucleus of the host. Chloroplast proteins encoded by nuclear genes are synthesized on cytoplasmic ribosomes and have to be relocated into the organelle. This is achieved by a proteinaceous import machinery in the outer and inner envelope of the chloroplasts. Proteins destined for the thylakoid membrane and the thylakoid lumen are further translocated by several different pathways into or across this membrane. The subject of this review is the quest of nuclear encoded chloroplast proteins into the organelle and to their final suborganellar location.
Collapse
Affiliation(s)
- Ute C Vothknecht
- Botanisches Institut, Ludwig-Maximilian-Universität München, Menzinger Str. 67, D-80638 München, Germany
| | | |
Collapse
|
20
|
Abstract
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Biology, University of Leicester, UK.
| | | |
Collapse
|
21
|
Rudhe C, Chew O, Whelan J, Glaser E. A novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:213-20. [PMID: 12000457 DOI: 10.1046/j.1365-313x.2002.01280.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Most chloroplast and mitochondrial precursor proteins are targeted specifically to either chloroplasts or mitochondria. However, there is a group of proteins that are dual targeted to both organelles. We have developed a novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts (dual import system). The mitochondrial precursor of alternative oxidase, AOX was specifically targeted only to mitochondria. The chloroplastic precursor of small subunit of pea ribulose bisphosphate carboxylase/oxygenase, Rubisco, was mistargeted to pea mitochondria in a single import system, but was imported only into chloroplasts in the dual import system. The dual targeted glutathione reductase GR precursor was targeted to both mitochondria and chloroplasts in both systems. The GR pre-sequence could support import of the mature Rubisco protein into mitochondria and chloroplasts in the single import system but only into chloroplasts in the dual import system. Although the GR pre-sequence could support import of the mature portion of the mitochondrial FAd subunit of the ATP synthase into mitochondria and chloroplasts, mature AOX protein was only imported into mitochondria under the control of the GR pre-sequence in both systems. These results show that the novel dual import system is superior to the single import system as it abolishes mistargeting of chloroplast precursors into pea mitochondria observed in a single organelle import system. The results clearly show that although the GR pre-sequence has dual targeting ability, this ability is dependent on the nature of the mature protein.
Collapse
Affiliation(s)
- Charlotta Rudhe
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
22
|
Abstract
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.
Collapse
Affiliation(s)
- P Jarvis
- Department of Biology, University of Leicester, UK.
| | | |
Collapse
|
23
|
Abstract
Plant cells contain two organelles originally derived from endosymbiotic bacteria: mitochondria and plastids. Their endosymbiotic origin explains why these organelles contain their own DNA, nonetheless only a few dozens of genes are actually encoded by these genomes. Many of the other genes originally present have been transferred to the nuclear genome of the host, the product of their expression being targeted back to the corresponding organelle. Although targeting of proteins to mitochondria and chloroplasts is generally highly specific, an increasing number of examples have been discovered where the same protein is imported into both organelles. The object of this review is to compare and discuss these examples in order to try and identify common features of dual-targeted proteins. The study helps throw some light on the factors determining organelle targeting specificity, and suggests that dual-targeted proteins may well be far more common than once thought.
Collapse
Affiliation(s)
- N Peeters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA.
| | | |
Collapse
|
24
|
Lister R, Chew O, Rudhe C, Lee MN, Whelan J. Arabidopsis thaliana ferrochelatase-I and -II are not imported into Arabidopsis mitochondria. FEBS Lett 2001; 506:291-5. [PMID: 11602264 DOI: 10.1016/s0014-5793(01)02925-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using in vitro import assays into purified mitochondria and chloroplasts we found that Arabidopsis ferrochelatase-I and ferrochelatase-II were not imported into mitochondria purified from Arabidopsis (or several other plants) but were imported into pea leaf chloroplasts. Other dual targeted proteins could be imported into purified mitochondria from Arabidopsis. As only two ferrochelatase genes are present in the completed Arabidopsis genome, the presence of ferrochelatase activity in plant mitochondria needs to be re-evaluated. Previous reports of Arabidopsis ferrochelatase-I import into pea mitochondria are due to the fact that pea leaf (and root) mitochondria appear to import a variety, but not all chloroplast proteins. Thus pea mitochondria are not a suitable system to either study dual targeting, or to distinguish between isozymes present in mitochondria and chloroplasts.
Collapse
Affiliation(s)
- R Lister
- Department of Biochemistry, University of Western Australia, Crawley, Australia
| | | | | | | | | |
Collapse
|
25
|
Fujiwara M, Yoshida S. Chloroplast targeting of chloroplast division FtsZ2 proteins in Arabidopsis. Biochem Biophys Res Commun 2001; 287:462-7. [PMID: 11554751 DOI: 10.1006/bbrc.2001.5588] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plant nuclear genomes encode chloroplast division proteins homologous to the eubacterial cell division protein FtsZ. In higher plants, FtsZ genes constitute a small gene family that consists of two subgroups, FtsZ1 and FtsZ2. It was previously hypothesized that members of one family (FtsZ1) targeted chloroplasts, while members of the other family (FtsZ2) localized in the cytoplasm. We determined the full-length cDNA sequences of two FtsZ2 genes from Arabidopsis thaliana (AtFtsZ2-1 and AtFtsZ2-2) and found that the genes encode polypeptides of 478 and 473 amino acids, respectively, and both contain N-terminal extensions beyond what have previously been predicted. The N-terminal regions of both AtFtsZ2-1 and AtFtsZ2-2 were expressed as green fluorescent protein (GFP) fusions under the cauliflower mosaic virus 35S promoter in bombarded tobacco cells. Confocal laser scanning microscopy revealed both fusions exclusively localized to chloroplasts, demonstrating that the N-terminal regions function as chloroplast-targeting signals in vivo. Thus, FtsZ2 proteins function within chloroplasts.
Collapse
Affiliation(s)
- M Fujiwara
- Plant Functions Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
26
|
Duby G, Oufattole M, Boutry M. Hydrophobic residues within the predicted N-terminal amphiphilic alpha-helix of a plant mitochondrial targeting presequence play a major role in in vivo import. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:539-49. [PMID: 11576437 DOI: 10.1046/j.1365-313x.2001.01098.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A deletion and mutagenesis study was performed on the mitochondrial presequence of the beta-subunit of the F(1)-ATP synthase from Nicotiana plumbaginifolia linked to the green fluorescent protein (GFP). The various constructs were tested in vivo by transient expression in tobacco protoplasts. GFP distribution in transformed cells was analysed in situ by confocal microscopy, and in vitro in subcellular fractions by Western blotting. Despite its being highly conserved in different species, deletion of the C-terminal region (residues 48-54) of the presequence did not affect mitochondrial import. Deletion of the conserved residues 40-47 and the less conserved intermediate region (residues 18-39) resulted in 60% reduction in GFP import, whereas mutation of conserved residues within these regions had little effect. Further shortening of the presequence progressively reduced import, with the construct retaining the predicted N-terminal amphiphilic alpha-helix (residues 1-12) being unable to mediate mitochondrial import. However, point mutation showed that this last region plays an important role through its basic residues and amphiphilicity, but also through its hydrophobic residues. Replacing Arg4 and Arg5 by alanine residues and shifting the Arg5 and Leu6 (in order to disturb amphiphilicity) resulted in reduction of the presequence import efficiency. The most dramatic effects were seen with single or double mutations of the four Leu residues (positions 5, 6, 10 and 11), which resulted in marked reduction or abolition of GFP import, respectively. We conclude that the N-terminal helical structure of the presequence is necessary but not sufficient for efficient mitochondrial import, and that its hydrophobic residues play an essential role in in vivo mitochondrial targeting.
Collapse
Affiliation(s)
- G Duby
- Unité de biochimie physiologique, Université catholique de Louvain, Croix du Sud 2-20, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
27
|
Dirk LM, Williams MA, Houtz RL. Eukaryotic peptide deformylases. Nuclear-encoded and chloroplast-targeted enzymes in Arabidopsis. PLANT PHYSIOLOGY 2001; 127:97-107. [PMID: 11553738 PMCID: PMC117966 DOI: 10.1104/pp.127.1.97] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2001] [Revised: 05/13/2001] [Accepted: 06/14/2001] [Indexed: 05/18/2023]
Abstract
Arabidopsis (ecotype Columbia-0) genes, AtDEF1 and AtDEF2, represent eukaryotic homologs of the essential prokaryotic gene encoding peptide deformylase. Both deduced proteins contain three conserved protein motifs found in the active site of all eubacterial peptide deformylases, and N-terminal extensions identifiable as chloroplast-targeting sequences. Radiolabeled full-length AtDEF1 was imported and processed by isolated pea (Pisum sativum L. Laxton's Progress No. 9) chloroplasts and AtDEF1 and 2 were immunologically detected in Arabidopsis leaf and chloroplast stromal protein extracts. The partial cDNAs encoding the processed forms of Arabidopsis peptide deformylase 1 and 2 (pAtDEF1 and 2, respectively) were expressed in Escherichia coli and purified using C-terminal hexahistidyl tags. Both recombinant Arabidopsis peptide deformylases had peptide deformylase activity with unique kinetic parameters that differed from those reported for the E. coli enzyme. Actinonin, a specific peptide deformylase inhibitor, was effective in vitro against Arabidopsis peptide deformylase 1 and 2 activity, respectively. Exposure of several plant species including Arabidopsis to actinonin resulted in chlorosis and severe reductions in plant growth and development. The results suggest an essential role for peptide deformylase in protein processing in all plant plastids.
Collapse
Affiliation(s)
- L M Dirk
- Department of Horticulture, N-323 Agricultural Science Center North, University of Kentucky, Lexington, Kentucky 40546-0091, USA
| | | | | |
Collapse
|
28
|
Abstract
Plastids originated from an endosymbiotic event between an early eukaryotic host cell and an ancestor of today's cyanobacteria. During the events by which the engulfed endosymbiont was transformed into a permanent organelle, many genes were transferred from the plastidal genome to the nucleus of the host cell. Proteins encoded by these genes are synthesised in the cytosol and subsequently translocated into the plastid. Therefore they contain an N-terminal cleavable transit sequence that is necessary for translocation. The sequence is plastid-specific, thus preventing mistargeting into other organelles. Receptors embedded into the outer envelope of the plastid recognise the transit sequences, and precursor proteins are translocated into the chloroplast by a proteinaceous import machinery located in both the outer and inner envelopes. Inside the stroma the transit sequences are cleaved off and the proteins are further routed to their final locations within the plastid.
Collapse
Affiliation(s)
- U C Vothknecht
- Botanisches Institut der Christian-Albrechts-Universität Kiel, Germany
| | | |
Collapse
|
29
|
Barata RM, Chaparro A, Chabregas SM, González R, Labate CA, Azevedo RA, Sarath G, Lea PJ, Silva-Filho MC. Targeting of the soybean leghemoglobin to tobacco chloroplasts: effects on aerobic metabolism in transgenic plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 155:193-202. [PMID: 10814823 DOI: 10.1016/s0168-9452(00)00219-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Several attempts have been made to alter the aerobic metabolism of plants, especially those related to the oxygenation or carboxylation of Rubisco. However, designing a more efficient Rubisco protein is rather problematic since its structural manipulation leads frequently to an enhancement of oxygenase activity, which is responsible for photorespiratory losses. In order to reduce oxygen availability inside the chloroplast, a chimeric gene consisting of a soybean leghemoglobin cDNA (lba) ligated to the chloroplast targeting signal sequence of the Rubisco small subunit gene, was introduced and expressed in Nicotiana tabacum. Lb was efficiently imported and correctly processed inside the chloroplasts of transgenic tobacco plants. Furthermore, the level of Lb expression in leaf tissue ranged from 0.01 to 0.1%. Analysis of photosynthesis, starch, sucrose and enzymes involved in aerobic metabolism, revealed that despite the high affinity of Lb for oxygen, no significant difference was observed in relation to the control plants. These results suggest that higher Lb concentrations would be required inside the chloroplasts in order to interfere on aerobic metabolism.
Collapse
Affiliation(s)
- RM Barata
- Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Av. Pádua Dias, 11, Caixa Postal 83, 13400-970, Piracicaba, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Neuhaus HE, Wagner R. Solute pores, ion channels, and metabolite transporters in the outer and inner envelope membranes of higher plant plastids. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:307-23. [PMID: 10748262 DOI: 10.1016/s0005-2736(00)00146-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All plant cells contain plastids. Various reactions are located exclusively within these unique organelles, requiring the controlled exchange of a wide range of solutes, ions, and metabolites. In recent years, several proteins involved in import and/or export of these compounds have been characterized using biochemical and electrophysiological approaches, and in addition have been identified at the molecular level. Several solute channels have been identified in the outer envelope membrane. These porin-like proteins in the outer envelope membrane were formerly thought to be quite unspecific, but have now been shown to exhibit significant substrate specificity and to be highly regulated. Therefore, the inter-envelope membrane space is not as freely accessible as previously thought. Transport proteins in the inner envelope membrane have been characterized in more detail. It has been proved unequivocally that a family of proteins (including triose phosphate-/phosphoenolpyruvate-, and glucose 6-phosphate-specific transporters) permit the exchange of inorganic phosphate and phosphorylated intermediates. A new type of plastidic 2-oxoglutarate/malate transporter has been identified and represents the first carrier with 12 putative transmembrane domains, to be located in the inner envelope membrane. The plastidic ATP/ADP transporter also contains 12 putative transmembrane domains and possesses striking structural similarity to ATP/ADP transporters found in intracellular, human pathogenic bacteria.
Collapse
Affiliation(s)
- H E Neuhaus
- Pflanzenphysiologie, Universität Kaiserslautern, Postfach 3049, D-67653, Kaiserslautern, Germany.
| | | |
Collapse
|
31
|
Hedtke B, Meixner M, Gillandt S, Richter E, Börner T, Weihe A. Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:557-561. [PMID: 10205908 DOI: 10.1046/j.1365-313x.1999.00393.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The recent identification of phage-type RNA polymerases encoded in the nuclear genome of higher plants has provided circumstantial evidence for functioning of these polymerases in the transcription of the mitochondrial and plastid genomes, as demonstrated by sequence analysis and in vitro import experiments. To determine the subcellular localization of the phage-type organellar RNA polymerases in plants, the putative transit peptides of the RNA polymerases RpoT;1 and RpoT;3 from Arabidopsis thaliana and RpoT from Chenopodium album were fused to the coding sequence of a green fluorescent protein (GFP). The constructs were used to stably transform A. thaliana. Transgenic plants were examined for green fluorescence with epifluorescence and confocal laser scanning microscopy. Plants expressing the GFP fusions under control of the CaMV35S promoter exhibited a distinct subcellular localization of the GFP fluorescence for each of the fusion constructs. In plants expressing GFP fusions with the putative transit peptides of ARAth;RpoT;1 and CHEal;RpoT, fluorescence was found exclusively in mitochondria, both in root and leaf cells. In contrast, GFP fluorescence in plants expressing the ARAth;RpoT;3-GFP construct accumulated in chloroplasts of leaf cells and nongreen plastids (leucoplasts) of root cells. By demonstrating targeting in plants, the data add substantial evidence for the phage-type RNA polymerases from C. album and A. thaliana to function in the transcriptional machinery of mitochondria and plastids.
Collapse
Affiliation(s)
- B Hedtke
- Institute of Biology, Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Tanudji M, Sjöling S, Glaser E, Whelan J. Signals required for the import and processing of the alternative oxidase into mitochondria. J Biol Chem 1999; 274:1286-93. [PMID: 9880497 DOI: 10.1074/jbc.274.3.1286] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The critical residues involved in targeting and processing of the soybean alternative oxidase to plant and animal mitochondria was investigated. Import of various site-directed mutants into soybean mitochondria indicated that positive residues throughout the length of the presequence were important for import, not just those in the predicted region of amphiphilicity. The position of the positive residues in the C-terminal end of the presequence was also important for import. Processing assays of the various constructs with purified spinach mitochondrial processing peptidase showed that all the -2-position mutants had a drastic effect on processing. In contrast to the import assay, the position of the positive residue could be changed for processing. Deletion mutants confirmed the site-directed mutagenesis data in that an amphiphilic alpha-helix was not the only determinant of mitochondrial import in this homologous plant system. Import of these constructs into rat liver mitochondria indicated that the degree of inhibition differed and that the predicted region of amphiphilic alpha-helix was more important with rat liver mitochondria. Processing with a rat liver matrix fraction showed little inhibition. These results are discussed with respect to targeting specificity in plant cells and highlight the need to carry out homologous studies and define the targeting requirements to plant mitochondria.
Collapse
Affiliation(s)
- M Tanudji
- Department of Biochemistry, University of Western Australia, Nedlands 6907, Western Australia, Australia
| | | | | | | |
Collapse
|
33
|
Rensink WA, Pilon M, Weisbeek P. Domains of a transit sequence required for in vivo import in Arabidopsis chloroplasts. PLANT PHYSIOLOGY 1998; 118:691-9. [PMID: 9765555 PMCID: PMC34845 DOI: 10.1104/pp.118.2.691] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/1998] [Accepted: 07/16/1998] [Indexed: 05/18/2023]
Abstract
Nuclear-encoded precursors of chloroplast proteins are synthesized with an amino-terminal cleavable transit sequence, which contains the information for chloroplastic targeting. To determine which regions of the transit sequence are most important for its function, the chloroplast uptake and processing of a full-length ferredoxin precursor and four mutants with deletions in adjacent regions of the transit sequence were analyzed. Arabidopsis was used as an experimental system for both in vitro and in vivo import. The full-length wild-type precursor translocated efficiently into isolated Arabidopsis chloroplasts, and upon expression in transgenic Arabidopsis plants only mature-sized protein was detected, which was localized inside the chloroplast. None of the deletion mutants was imported in vitro. By analyzing transgenic plants, more subtle effects on import were observed. The most N-terminal deletion resulted in a fully defective transit sequence. Two deletions in the middle region of the transit sequence allowed translocation into the chloroplast, although with reduced efficiencies. One deletion in this region strongly reduced mature protein accumulation in older plants. The most C-terminal deletion was translocated but resulted in defective processing. These results allow the dissection of the transit sequence into separate functional regions and give an in vivo basis for a domain-like structure of the ferredoxin transit sequence.
Collapse
Affiliation(s)
- W A Rensink
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | |
Collapse
|
34
|
Akashi K, Grandjean O, Small I. Potential dual targeting of an Arabidopsis archaebacterial-like histidyl-tRNA synthetase to mitochondria and chloroplasts. FEBS Lett 1998; 431:39-44. [PMID: 9684861 DOI: 10.1016/s0014-5793(98)00717-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A cDNA clone encoding a histidyl-tRNA synthetase (HisRS) was characterized from Arabidopsis thaliana. The deduced amino acid sequence (AtHRS1) is surprisingly more similar to HisRSs from archaebacteria than those from eukaryotes and prokaryotes. AtHRS1 has an N-terminal extension with features characteristic of mitochondrial and chloroplast transit peptides. Transient expression assays in tobacco protoplasts clearly demonstrated efficient targeting of a fusion peptide consisting of the first 71 amino acids of AtHRS1 joined to jellyfish green fluorescent protein (GFP) to both mitochondria and chloroplasts. These observations suggest that the AtHisRS1 cDNA encodes both mitochondrial and chloroplast histidyl-tRNA synthetases.
Collapse
Affiliation(s)
- K Akashi
- Station de Génétique et Amélioration des Plantes, INRA, Versailles, France
| | | | | |
Collapse
|
35
|
Gálvez S, Roche O, Bismuth E, Brown S, Gadal P, Hodges M. Mitochondrial localization of a NADP-dependent [corrected] isocitrate dehydrogenase isoenzyme by using the green fluorescent protein as a marker. Proc Natl Acad Sci U S A 1998; 95:7813-8. [PMID: 9636233 PMCID: PMC22766 DOI: 10.1073/pnas.95.13.7813] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1997] [Accepted: 04/13/1998] [Indexed: 02/07/2023] Open
Abstract
In this work, we describe the isolation of a new cDNA encoding an NADP-dependent isocitrate dehydrogenase (ICDH). The nucleotide sequence in its 5' region gives a deduced amino acid sequence indicative of a targeting peptide. However, even if this cDNA clearly encodes a noncytosolic ICDH, it is not possible to say from the targeting peptide sequence to which subcellular compartment the protein is addressed. To respond to this question, we have transformed tobacco plants with a construct containing the entire targeting signal-encoding sequence in front of a modified green fluorescent protein (GFP) gene. This construct was placed under the control of the cauliflower mosaic virus 35S promoter, and transgenic tobacco plants were regenerated. At the same time, and as a control, we also have transformed tobacco plants with the same construct but lacking the nucleotide sequence corresponding to the ICDH-targeting peptide, in which the GFP is retained in the cytoplasm. By optical and confocal microscopy of leaf epiderm and Western blot analyses, we show that the putative-targeting sequence encoded by the cDNA addresses the GFP exclusively into the mitochondria of plant cells. Therefore, we conclude that this cDNA encodes a mitochondrial ICDH.
Collapse
Affiliation(s)
- S Gálvez
- Institut de Biotechnologie des Plantes (Centre National de la Recherche Scientifique ERS569), Bât 630, Université de Paris-Sud, 91405 Orsay Cédex, France
| | | | | | | | | | | |
Collapse
|
36
|
Kindle KL, Lawrence SD. Transit peptide mutations that impair in vitro and in vivo chloroplast protein import do not affect accumulation of the gamma-subunit of chloroplast ATPase. PLANT PHYSIOLOGY 1998; 116:1179-90. [PMID: 9501151 PMCID: PMC35088 DOI: 10.1104/pp.116.3.1179] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/1997] [Accepted: 11/21/1997] [Indexed: 05/18/2023]
Abstract
We have begun to take a genetic approach to study chloroplast protein import in Chlamydomonas reinhardtii by creating deletions in the transit peptide of the gamma-subunit of chloroplast ATPase-coupling factor 1 (CF1-gamma, encoded by AtpC) and testing their effects in vivo by transforming the altered genes into an atpC mutant, and in vitro by importing mutant precursors into isolated C. reinhardtii chloroplasts. Deletions that removed 20 or 23 amino acid residues from the center of the transit peptide reduced in vitro import to an undetectable level but did not affect CF1-gamma accumulation in vivo. The CF1-gamma transit peptide does have an in vivo stroma-targeting function, since chimeric genes in which the stroma-targeting domain of the plastocyanin transit peptide was replaced by the AtpC transit peptide-coding region allowed plastocyanin to accumulate in vivo. To determine whether the transit peptide deletions were impaired in in vivo stroma targeting, mutant and wild-type AtpC transit peptide-coding regions were fused to the bacterial ble gene, which confers bleomycin resistance. Although 25% of the wild-type fusion protein was associated with chloroplasts, proteins with transit peptide deletions remained almost entirely cytosolic. These results suggest that even severely impaired in vivo chloroplast protein import probably does not limit the accumulation of CF1-gamma.
Collapse
Affiliation(s)
- K L Kindle
- Plant Science Center, Biotechnology Program, 151 Biotechnology Building, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|