1
|
Heo JN, Kim DY, Lim SG, Lee K, Suk K, Lee WH. ER stress differentially affects pro-inflammatory changes induced by mitochondrial dysfunction in the human monocytic leukemia cell line, THP-1. Cell Biol Int 2019; 43:313-322. [PMID: 30632648 DOI: 10.1002/cbin.11103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/05/2019] [Indexed: 12/11/2022]
Abstract
The functional and physical interaction between mitochondria and the endoplasmic reticulum (ER) has been the subject of intense study. To test the effect of this interaction on macrophage inflammatory activation, the human macrophage-like monocytic leukemia cell line THP-1 was treated with oligomycin, rotenone, or sodium azide, which induce mitochondrial dysfunction (MD) by blocking the electron transport chain (ETC). MD induced by these agents triggered activation of various sensors and markers of ER stress. This linkage affected macrophage function since LPS-induced expression of IL-23 was enhanced by the MD inducers, and this enhancing effect was abolished by inhibition of pancreatic endoplasmic reticulum kinase (PERK) activity. This MD-mediated ER stress may be universal since it was observed in human embryonic kidney HEK293 cells and colon cancer SW480 cells. On the other hand, MD regulated LPS-induced activation of the AKT/GSK3β/β-catenin pathway in a manner not affected by inhibition of PERK or inositol-requiring enzyme 1α (IRE1α) activities. These results indicate that the occurrence of MD can lead to ER stress and these two events, separately or in combination, can affect various cellular processes.
Collapse
Affiliation(s)
- Jae-Nyoung Heo
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Yeon Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Geun Lim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kiboo Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
2
|
Fitzpatrick T, Huang S. 3'-UTR-located inverted Alu repeats facilitate mRNA translational repression and stress granule accumulation. Nucleus 2012; 3:359-69. [PMID: 22688648 DOI: 10.4161/nucl.20827] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alu repeats within human genes may potentially alter gene expression. Here, we show that 3'-UTR-located inverted Alu repeats significantly reduce expression of an AcGFP reporter gene. Mutational analysis demonstrates that the secondary structure, but not the primary nucleotide sequence, of the inverted Alu repeats is critical for repression. The expression levels and nucleocytoplasmic distribution of reporter mRNAs with or without 3'-UTR inverted Alu repeats are similar; suggesting that reporter gene repression is not due to changes in mRNA levels or mRNA nuclear sequestration. Instead, reporter gene mRNAs harboring 3'-UTR inverted Alu repeats accumulate in cytoplasmic stress granules. These findings may suggest a novel mechanism whereby 3'-UTR-located inverted Alu repeats regulate human gene expression through sequestration of mRNAs within stress granules.
Collapse
Affiliation(s)
- Terry Fitzpatrick
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
3
|
Kim JK, Lee SM, Suk K, Lee WH. A novel pathway responsible for lipopolysaccharide-induced translational regulation of TNF-α and IL-6 expression involves protein kinase C and fascin. THE JOURNAL OF IMMUNOLOGY 2011; 187:6327-34. [PMID: 22102721 DOI: 10.4049/jimmunol.1100612] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fascin, as a substrate of protein kinase C (PKC), is a well-known cytoskeletal regulatory protein required for cell migration, invasion, and adhesion in normal and cancer cells. In an effort to identify the role of fascin in PKC-mediated cellular signaling, its expression was suppressed by stable transfection of specific short hairpin RNAs (shRNAs) in mouse monocytic leukemia RAW264.7 cells. Suppression of fascin expression resulted in impaired cellular migration and invasion through extracellular matrix proteins. Unexpectedly, the specific shRNA transfectants exhibited a marked reduction in LPS-induced expression of TNF-α and IL-6 by blocking the translation of their mRNAs. Transient transfection assay using a luciferase expression construct containing the 3' untranslated region of TNF-α or IL-6 mRNA revealed a significant reduction in both LPS- and PMA- (the direct activator of PKC) induced reporter activity in cells transfected with fascin-specific shRNA, indicating that fascin-mediated translational regulation targeted 3' untranslated region. Furthermore, LPS-induced translational activation of reporter expression was blocked by a pharmacological inhibitor of PKC, and the dominant-negative form of PKCα attenuated LPS-induced translational activation. The same type of regulation was also observed in the human monocytic leukemia cell line THP-1 and in mouse peritoneal macrophages. These data demonstrate the involvement of fascin in the PKC-mediated translational regulation of TNF-α and IL-6 expression during the LPS response.
Collapse
Affiliation(s)
- Jae-Kwan Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | |
Collapse
|
4
|
Wu Q, Law PY, Wei LN, Loh HH. Post-transcriptional regulation of mouse mu opioid receptor (MOR1) via its 3' untranslated region: a role for microRNA23b. FASEB J 2008; 22:4085-95. [PMID: 18716031 DOI: 10.1096/fj.08-108175] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Expression of the mu opioid receptor (MOR1) protein is regulated temporally and spatially. Although transcription of its gene has been studied extensively, regulation of MOR1 protein production at the level of translation is poorly understood. Using reporter assays, we found that the MOR1 3'-untranslated region (UTR) represses reporter expression at the post-transcriptional level. Suppression by the 3'-UTR of MOR1 is mediated through decreased mRNA association with polysomes, which requires microRNA23b (miRNA23b), a specific miRNA that is expressed in mouse brain and NS20Y mouse neuroblastoma cells. miRNA23b interacts with the MOR1 3'-UTR via a K box motif. By knocking down endogenous miRNA23b in NS20Y cells, we confirmed that miRNA23b inhibits MOR1 protein expression in vivo. This is the first study reporting a translationally repressive role for the MOR1 3'-UTR. We propose a mechanism in which miRNA23b blocks the association of MOR1 mRNA with polysomes, thereby arresting its translation and suppressing the production of MOR1 protein.
Collapse
Affiliation(s)
- Qifang Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
5
|
Bunimov N, Smith JE, Gosselin D, Laneuville O. Translational regulation of PGHS-1 mRNA: 5′ untranslated region and first two exons conferring negative regulation. ACTA ACUST UNITED AC 2007; 1769:92-105. [PMID: 17320986 DOI: 10.1016/j.bbaexp.2007.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/11/2006] [Accepted: 01/17/2007] [Indexed: 11/30/2022]
Abstract
Prostaglandin endoperoxide H synthase-1 gene expression is described as inducible in a few contexts such as differentiation of megakaryoblastic MEG-01 cells into platelet-like structures. In the MEG-01 cells model of PGHS-1 gene induction, we previously reported a delay in protein synthesis and identified the translational step of gene expression as being regulated. In the current study, we mapped PGHS-1 mRNA sequences regulating translational efficiency and identified an RNA binding protein. The 5'UTR and first two exons of the PGHS-1 5' mRNA decreased the synthesis of Luciferase protein by approximately 80% without significant changes in mRNA levels when compared to controls. Both the PGHS-1 5'-UTR and the first two exons were required for activity. Sucrose density gradient fractionations of cytoplasmic extracts from MEG-01 cells infected with reporter constructs, either controls or containing PGHS-1 sequence, presented a similar profile of distribution of reporter transcripts between polysomal and non-polysomal fractions. RNA/protein interaction studies revealed nucleolin binding to the 135 nt PGHS-1 sequence. Mutation of the two NRE elements located in the 5'end of PGHS-1 mRNA sequence partially reduced the negative activity of the 135 nt sequence. Stable secondary structures predicted at the 5' end of the transcript are potentially involved in translational regulation. We propose that the 5'end of PGHS-1 mRNA represses translation and could delay the synthesis of PGHS-1 enzyme.
Collapse
Affiliation(s)
- Natalia Bunimov
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
6
|
Sartor A, Kossoris JB, Wilcox R, Shearer R, Zeneberg AE, Zhao P, Lazdins I, Burnatowska-Hledin MA. Truncated form of VACM-1/cul-5 with an extended 3' untranslated region stimulates cell growth via a MAPK-dependent pathway. Biochem Biophys Res Commun 2006; 343:1086-93. [PMID: 16581022 DOI: 10.1016/j.bbrc.2006.02.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 02/26/2006] [Indexed: 10/24/2022]
Abstract
We have sequenced a 4.9kb clone (KLB22) which shares 99% sequence homology with the rabbit vasopressin-activated calcium mobilizing (VACM-1) protein. The 5' terminus sequence of KLB22 cDNA (nucleotides 1-1961) is continuous and overlapping with nucleotides 1226-3186 of the VACM-1 cDNA sequence. The 3'UTR of KLB22 cDNA extends beyond the 3'UTR of VACM-1 by 2999nt. KLB22 cDNA encodes a 497 amino acid protein, which putatively begins at Met 284 of the 780 amino acid VACM-1 protein. The in vitro translation of KLB22 cDNA yields a 59kDa protein. When expressed in cos-1 cells, the truncated VACM-1 protein localizes to the nucleus. KLB22 cDNA transfected cells show increased growth rates and increased levels of phosphorylated MAPK when compared to the vector or to VACM-1 cDNA transfected cells. Finally, in vivo, KLB22 protein expression is tissue specific and can be detected in kidney and in heart atrium. These results suggest that truncated VACM-1 cDNA (KLB22) increases cell proliferation through a MAPK pathway.
Collapse
Affiliation(s)
- Ashleigh Sartor
- Departments of Biology and Chemistry, Hope College, Holland, MI 49423, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kandasamy K, Joseph K, Subramaniam K, Raymond JR, Tholanikunnel BG. Translational control of beta2-adrenergic receptor mRNA by T-cell-restricted intracellular antigen-related protein. J Biol Chem 2004; 280:1931-43. [PMID: 15536087 DOI: 10.1074/jbc.m405937200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular expression of the beta(2)-adrenergic receptor (beta(2)-AR) is suppressed at the translational level by 3'-untranslated region (UTR) sequences. To test the possible role of 3'-UTR-binding proteins in translational suppression of beta(2)-AR mRNA, we expressed the full-length 3'-UTR or the adenylate/uridylate-rich (A+U-rich element (ARE)) RNA from the 3'-UTR sequences of beta(2)-AR in cell lines that endogenously express this receptor. Reversal of beta(2)-adrenergic receptor translational repression by retroviral expression of 3'-UTR sequences suggested that ARE RNA-binding proteins are involved in translational suppression of beta(2)-adrenergic receptor expression. Using a 20-nucleotide ARE RNA from the receptor 3'-UTR as an affinity ligand, we purified the proteins that bind to these sequences. T-cell-restricted intracellular antigen-related protein (TIAR) was one of the strongly bound proteins identified by this method. UV-catalyzed cross-linking experiments using in vitro transcribed 3'-UTR RNA and glutathione S-transferase-TIAR demonstrated multiple binding sites for this protein on beta(2)-AR 3'-UTR sequences. The distal 340-nucleotide region of the 3'-UTR was identified as a target RNA motif for TIAR binding by both RNA gel shift analysis and immunoprecipitation experiments. Overexpression of TIAR resulted in suppression of receptor protein synthesis and a significant shift in endogenously expressed beta(2)-AR mRNA toward low molecular weight fractions in sucrose gradient polysome fractionation. Taken together, our results provide the first evidence for translational control of beta(2)-AR mRNA by TIAR.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Department of Medicine and Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina 29425-2221, USA
| | | | | | | | | |
Collapse
|
8
|
Small KM, Mialet-Perez J, Seman CA, Theiss CT, Brown KM, Liggett SB. Polymorphisms of cardiac presynaptic alpha2C adrenergic receptors: Diverse intragenic variability with haplotype-specific functional effects. Proc Natl Acad Sci U S A 2004; 101:13020-5. [PMID: 15319474 PMCID: PMC516511 DOI: 10.1073/pnas.0405074101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presynaptic alpha2C adrenergic receptors (AR) act to inhibit norepinephrine release in cardiac and other presynaptic nerves. We have recently shown that a genetic variant in the alpha2CAR coding region (Del322-325), which renders the receptor partially uncoupled from Gi, is a risk factor for heart failure. However, variability of heart failure phenotypes and a dominance of Del322-325 in those of African descent led us to hypothesize that other regions of this gene have functional polymorphisms. In a multiethnic population, we found 20 polymorphisms within 4,625 bp of contiguous sequence of this intronless gene encompassing the promoter, 5' UTR, coding, and 3' UTR. These polymorphisms occur in 24 distinct haplotypes with complex organizations, including multiple 5'-upstream polymorphisms in regions known to direct expression, a 3' UTR substitution polymorphism within an insertion/deletion sequence, and the radical coding polymorphism that deletes four amino acids. Relatively low linkage disequilibrium between many polymorphisms, few cosmopolitan haplotypes, prevalent ethnic-specific haplotypes, and substantial genetic divergence among haplotypes was noted. The dysfunctional Del322-325 allele was partitioned into multiple haplotypes, with frequencies of 48% to 2%. The functional implications of the haplotypes were ascertained by whole-gene transfections of human neuronal cells, where haplotype was significantly related (P < 0.001) to expression levels of receptor transcript and protein. Expression varied by as much as approximately 50% by haplotype, and such studies enabled haplotype clustering by phenotypic, rather than genotypic, similarities. Thus, depending on phenotype, expression-specific haplotypes may amplify, attenuate, or dominate the cardiomyopathic effect attributed to the alpha2CDel322-325 marker.
Collapse
Affiliation(s)
- Kersten M Small
- Departments of Medicine and Pharmacology and the CardioPulmonary Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | | | | | | | | | | |
Collapse
|
9
|
Subramaniam K, Chen K, Joseph K, Raymond JR, Tholanikunnel BG. The 3′-Untranslated Region of the β2-Adrenergic Receptor mRNA Regulates Receptor Synthesis. J Biol Chem 2004; 279:27108-15. [PMID: 15107422 DOI: 10.1074/jbc.m401352200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta(2)-Adrenergic receptors (beta(2)-ARs) are low abundance integral membrane proteins that mediate the effects of catecholamines at the cell surface. Post-transcriptional regulation of beta(2)-AR is dependent, in part, on sequences within the 5'- and 3'-untranslated regions (UTRs) of the receptor mRNA. In this work, we demonstrate that 3'-UTR sequences regulate the translation of the receptor mRNA. Deletion of the 3'-UTR sequences resulted in 2-2.5-fold increases in receptor expression. The steadystate levels of beta(2)-AR mRNA did not change significantly in the presence or absence of the 3'-UTR, suggesting that the translation of the receptor mRNA is suppressed by 3'-UTR sequences. Introduction of the receptor 3'-UTR sequences into the 3'-UTR of a heterologous reporter gene (luciferase) resulted in a 70% decrease in reporter gene expression without significant changes in luciferase mRNA levels. Sucrose density gradient fractionation of cytoplasmic extracts from Chinese hamster ovary cells transfected with full-length receptor cDNA demonstrated that the receptor transcripts were distributed between polysomal and non-polysomal fractions. Deletion of 3'-UTR sequences from the receptor cDNA resulted in a clear shift in the distribution of receptor mRNA toward the polysomal fractions, favoring increased translation. The 3'-UTR sequences of the receptor mRNA were sufficient to shift the distribution of luciferase mRNA from predominantly polysomal fractions toward non-polysomal fractions in cells transfected with the chimeric luciferase construct. Taken together, our results provide the first evidence for translational control of beta(2)-AR expression by 3'-UTR sequences. Presumably, this occurs by affecting the receptor mRNA localization.
Collapse
Affiliation(s)
- Kothandharaman Subramaniam
- Department of Medicine and the Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina 29425-2221, USA
| | | | | | | | | |
Collapse
|
10
|
Thekkumkara TJ, Linas SL. Evidence for involvement of 3'-untranslated region in determining angiotensin II receptor coupling specificity to G-protein. Biochem J 2003; 370:631-9. [PMID: 12431186 PMCID: PMC1223184 DOI: 10.1042/bj20020960] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2002] [Revised: 11/04/2002] [Accepted: 11/13/2002] [Indexed: 11/17/2022]
Abstract
The mRNA 3'-untranslated region (3'-UTR) of many genes has been identified as an important regulator of the mRNA transcript itself as well as the translated product. Previously, we demonstrated that Chinese-hamster ovary-K1 cells stably expressing angiotensin receptor subtypes (AT(1A)) with and without 3'-UTR differed in AT(1A) mRNA content and its coupling with intracellular signalling pathways. Moreover, RNA mobility-shift assay and UV cross-linking studies using the AT(1A) 3'-UTR probe identified a major mRNA-binding protein complex of 55 kDa in Chinese-hamster ovary-K1 cells. In the present study, we have determined the functional significance of the native AT(1A) receptor 3'-UTR in rat liver epithelial (WB) cell lines by co-expressing the AT(1A) 3'-UTR sequence 'decoy' to compete with the native receptor 3'-UTR for its mRNA-binding proteins. PCR analysis using specific primers for the AT(1A) receptor and [(125)I]angiotensin II (AngII)-binding studies demonstrated the expression of the native AT(1A) receptors in WB (B(max)=2.7 pmol/mg of protein, K(d)=0.56 nM). Northern-blot analysis showed a significant increase in native receptor mRNA expression in 3'-UTR decoy-expressing cells, confirming the role of 3'-UTR in mRNA destabilization. Compared with vehicle control, AngII induced DNA and protein synthesis in wild-type WB as measured by [(3)H]thymidine and [(3)H]leucine incorporation respectively. Activation of [(3)H]thymidine and [(3)H]leucine correlated with a significant increase in cell number (cellular hyperplasia). In these cells, AngII stimulated GTPase activity by AT(1) receptor coupling with G-protein alpha i. We also delineated that functional coupling of AT(1A) receptor with G-protein alpha i is an essential mechanism for AngII-mediated cellular hyperplasia in WB by specifically blocking G-protein alpha i activation. In contrast with wild-type cells, stable expression of the 3'-UTR 'decoy' produced AngII-stimulated protein synthesis and cellular hypertrophy as demonstrated by a significant increase in [(3)H]leucine incorporation and no increase in [(3)H]thymidine incorporation and cell number. Furthermore, [(125)I]AngII cross-linking and immunoprecipitation studies using specific G-protein alpha antibodies showed that in wild-type cells, the AT(1A) receptor coupled with G-protein alpha i, whereas in cells expressing the 3'-UTR 'decoy', the AT(1A) receptor coupled with G-protein alpha q. These findings indicate that the 3'-UTR-mediated changes in receptor function may be mediated in part by a switch from G-protein alpha i to G-protein alpha q coupling of the receptor. Our results suggest that the 3'-UTR-mediated post-transcriptional modification of the AT(1A) receptor is critical for regulating tissue-specific receptor functions.
Collapse
Affiliation(s)
- Thomas J Thekkumkara
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | | |
Collapse
|
11
|
Kirigiti P, Bai Y, Yang YF, Li X, Li B, Brewer G, Machida CA. Agonist-mediated down-regulation of rat beta1-adrenergic receptor transcripts: role of potential post-transcriptional degradation factors. Mol Pharmacol 2001; 60:1308-24. [PMID: 11723238 DOI: 10.1124/mol.60.6.1308] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human beta1-adrenergic receptor (AR) and hamster beta2-AR transcripts can be post-transcriptionally regulated at the level of mRNA stability and undergo accelerated agonist-mediated degradation via interaction of their 3' untranslated regions (UTR) with RNA binding proteins. Using RNase protection assays, we have determined that chronic isoproterenol exposure of rat C6 glioma cells results in the accelerated reduction of beta1-AR mRNAs. To determine the role of cellular environment on the agonist-independent and agonist-mediated degradation of beta1-AR mRNAs, we transfected rat beta1-AR expression recombinants into both hamster DDT1MF2 cells and rat L6 cells. The rat beta1-AR mRNAs in the two transfectant cell pools retain longer agonist-independent half-lives than in the C6 environment and undergo accelerated degradation upon chronic agonist exposure. Using UV-cross-linking/immunoblot and immunoprecipitation analyses, we have determined that the rat beta1-AR 3' UTR recognizes a predominant M(r) 39,000 component, identified as the mammalian elav-like protein HuR, and several other minor components, including the heteronuclear protein hnRNP A1. HuR levels are more highly expressed in C6 cells than in DDT1MF2 and L6 cells and are induced after chronic isoproterenol treatment. Furthermore, C6 transfectants containing an HuR expression recombinant exhibit reduced beta1-AR mRNA half-lives that were statistically comparable with half-lives identified in isoproterenol-treated C6 cells. These results imply that HuR plays a potential role in the agonist-independent and agonist-mediated down-regulation of beta1-AR mRNAs.
Collapse
MESH Headings
- 3' Untranslated Regions/metabolism
- Adrenergic beta-Agonists/pharmacology
- Animals
- Antigens, Surface
- Base Sequence
- Blotting, Western
- Cricetinae
- Dactinomycin/pharmacology
- Down-Regulation/drug effects
- ELAV Proteins
- ELAV-Like Protein 1
- Glioma
- Half-Life
- Heterogeneous Nuclear Ribonucleoprotein A1
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B
- Heterogeneous-Nuclear Ribonucleoproteins
- Isoproterenol/pharmacology
- Molecular Sequence Data
- Molecular Weight
- Polyadenylation/genetics
- Protein Binding
- Protein Denaturation
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Ribonucleoproteins/metabolism
- Signal Transduction
- Transcription, Genetic/drug effects
- Transfection
- Tumor Cells, Cultured
- Ultraviolet Rays
Collapse
Affiliation(s)
- P Kirigiti
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University West Campus, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Lee WY, Loflin P, Clancey CJ, Peng H, Lever JE. Cyclic nucleotide regulation of Na+/glucose cotransporter (SGLT1) mRNA stability. Interaction of a nucleocytoplasmic protein with a regulatory domain in the 3'-untranslated region critical for stabilization. J Biol Chem 2000; 275:33998-4008. [PMID: 10950955 DOI: 10.1074/jbc.m005040200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Expression of the Na(+)-coupled glucose cotransporter SGLT1 is regulated post-transcriptionally at the level of mRNA stability. We have previously demonstrated that cAMP-dependent stabilization of the SGLT1 message was correlated with the protein phosphorylation-dependent binding of cytoplasmic proteins to a uridine-rich sequence (URE) in the 3'-untranslated region (UTR). In the present study, the regulatory role of the URE was demonstrated by inserting it into the 3'-UTR of a beta-globin reporter minigene under the control of the tetracycline-regulated promoter. The resultant chimeric globin/SGLT1 mRNA expressed after transfection into LLC-PK1 cells exhibited a decreased half-life compared with the beta-globin control, indicating that the URE serves a destabilizing function. Activation of protein kinase A stabilized the chimeric message but not the beta-globin control, indicating the presence of a regulatory stabilizing sequence within the URE. A 38-kDa nucleocytoplasmic protein was identified that recognized a 12-nucleotide binding site within the URE. A mutation in this binding site that prevented protein binding assayed in vitro by UV cross-linking also prevented protein kinase A-dependent stabilization of the chimeric message assayed in vivo. These findings identify the interaction between a 38-kDa nucleocytoplasmic protein and a regulatory uridine-rich sequence in the 3'-UTR as critical for cAMP-mediated SGLT1 message stabilization.
Collapse
Affiliation(s)
- W Y Lee
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, Texas 77225, USA
| | | | | | | | | |
Collapse
|
13
|
Görlach A, Camenisch G, Kvietikova I, Vogt L, Wenger RH, Gassmann M. Efficient translation of mouse hypoxia-inducible factor-1alpha under normoxic and hypoxic conditions. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:125-34. [PMID: 10978514 DOI: 10.1016/s0167-4781(00)00172-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The heterodimeric hypoxia-inducible factor-1 (HIF-1), consisting of the subunits HIF-1alpha and HIF-1beta/ARNT, is a master transcriptional regulator of oxygen homeostasis. Under hypoxic conditions, HIF-1alpha levels very rapidly increase, mostly due to protein stabilization. However, translational regulation of HIF-1alpha has not been directly analyzed so far. Mouse HIF-1alpha exists as two mRNA isoforms (termed mHIF-1alphaI.1 and mHIF-1alphaI. 2) containing structurally different 5'-termini which might modulate translation initiation. Whereas the in vitro translation efficiency of these two mRNA isoforms was about equal, the mHIF-1alphaI.2 5'-untranslated region (5'-UTR) conferred significantly higher in vivo luciferase reporter gene activity than the mHIF-1alphaI.1 5'-UTR. Similar corresponding luciferase mRNA levels indicate translational rather than transcriptional alterations. Reporter gene expression was not affected upon exposure of transiently transfected cells to hypoxia (1% oxygen). Direct assessment of translational regulation by polysomal profile analysis of HeLaS3 cells showed that HIF-1alpha (and to a lower extent ARNT) mRNA was found mainly in the translationally active polyribosomal fractions under both normoxic and hypoxic conditions. In contrast, the association of mRNAs for beta-actin and ribosomal protein L28 with the polyribosomal fractions was substantially reduced under hypoxic conditions, suggesting decreased overall protein synthesis. Thus, efficient translation of mouse HIF-1alpha in a situation where the general translation efficiency is reduced represents a prerequisite for the very rapid accumulation of HIF-1alpha protein upon exposure to hypoxia.
Collapse
Affiliation(s)
- A Görlach
- Institute of Physiology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Ciullo M, Del Pozzo G, Autiero M, Guardiola J. Downstream sequence adjacent to AUG affects translation of chloramphenicol acetyl transferase in eukaryotic cells. DNA Cell Biol 2000; 19:39-46. [PMID: 10668790 DOI: 10.1089/104454900314690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CAT gene is widely used as a reporter in eukaryotic systems because of the efficient translation of its mRNA. We report here that a sequence occurring in the CAT mRNA at +15 nucleotides from CAT AUG is essential for translation. This sequence includes a stem-loop structure, which, however, exhibits a calculated stability significantly lower than that required for a hairpin to act as an enhancer of translation in vitro. Replacement of this region with the corresponding sequence from mRNAs that are normally translated in eukaryotic systems drastically reduced translation of CAT in COS cells, although the consensus sequence around the AUG, known to be required for high-level translation initiation, was conserved. These observations may be relevant for the exploitation of the CAT reporter system for analysis of the mechanisms of translation initiation by means of fusion constructs.
Collapse
Affiliation(s)
- M Ciullo
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | |
Collapse
|
15
|
Flügge G. Regulation of monoamine receptors in the brain: dynamic changes during stress. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:145-213. [PMID: 10603576 DOI: 10.1016/s0074-7696(08)62705-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Monoamine receptors are membrane-bound receptors that are coupled to G-proteins. Upon stimulation by agonists, they initiate a cascade of intracellular events that guide biochemical reactions of the cell. In the central nervous system, they undergo diverse regulatory processes, among which are receptor desensitization, internalization into the cell, and downregulation. These processes vary among different types of monoamine receptors. alpha 2-Adrenoceptors are often downregulated by agonists, and beta-adrenoceptors are internalized rapidly. Others, such as serotonin1A-receptors, are controlled tightly by steroid hormones. Expression of these receptors is reduced by the "stress hormones" glucocorticoids, whereas gonadal hormones such as testosterone can counterbalance the glucocorticoid effects. Because of this, the pattern of monoamine receptors in certain brain regions undergoes dynamic changes when there are elevated concentrations of agonists or when the hormonal milieu changes. Stress is a physiological situation accompanied by the high activity of brain monoaminergic systems and dramatic changes in peripheral hormones. Resulting alterations in monoamine receptors are considered to be in part responsible for changes in the behavior of an individual.
Collapse
Affiliation(s)
- G Flügge
- German Primate Center, Göttingen, Germany
| |
Collapse
|
16
|
Aronov S, Marx R, Ginzburg I. Identification of 3'UTR region implicated in tau mRNA stabilization in neuronal cells. J Mol Neurosci 1999; 12:131-45. [PMID: 10527457 DOI: 10.1007/bf02736927] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tau, a neuronal microtubule-associated protein (MAP) plays an important role in the formation and maintenance of neuronal polarity. Tau mRNA is a stable message and exhibits a relatively long half-life in neuronal cells. The regulation of mRNA stability is a crucial determinant in controlling mRNA steady-state levels in neuronal cells and thereby influences gene expression. The half-lives of specific mRNAs may be dependent on specific sequences located at their 3'untranslated region (UTR), which in turn, may be recognized by tissue-specific proteins. To identify the sequence elements involved in tau mRNA stabilization, selected regions of the 3'UTR were subcloned downstream to c-fos reporter mRNA or to the coding region of the tau mRNA. Using stably transfected neuronal cells, we have demonstrated that a fragment of 240 bp (H fragment) located in the 3'UTR can stabilize c-fos and tau mRNAs. Analysis of stably transfected cells indicated that the transfected tau mRNAs are associated with the microtubules of neuronal cells, suggesting that this association may play a role in tau mRNA stabilization. This step may be a prerequisite in the multistep process leading to the subcellular localization of tau mRNA in neuronal cells.
Collapse
Affiliation(s)
- S Aronov
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
17
|
Ioannidis P, Courtis N, Havredaki M, Michailakis E, Tsiapalis CM, Trangas T. The polyadenylation inhibitor cordycepin (3'dA) causes a decline in c-MYC mRNA levels without affecting c-MYC protein levels. Oncogene 1999; 18:117-25. [PMID: 9926926 DOI: 10.1038/sj.onc.1202255] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Study of the distribution of the poly(A) tail length of c-myc mRNA in several cell lines revealed a distinct, prevailing population with short poly(A) tails, derived through sequential deadenylation. To elucidate the possible in vivo function of this distinct short tailed c-myc mRNA population, the polyadenylation inhibitor cordycepin was used. This resulted in a decline in steady state c-myc mRNA levels with the remaining messenger mostly oligoadenylated. However, c-MYC proteins did not follow the reduction of the c-myc mRNA. On the other hand, in cells exposed to physiological agents known to downregulate c-myc expression, the reduction of mRNA steady state levels, was reflected upon c-MYC protein levels. The dissociation between c-myc mRNA and protein levels caused by cordycepin was not due to the stabilization of the c-MYC proteins and was not an indiscriminate effect since in the presence of cordycepin, c-fos mRNA and protein levels concomitantly declined. Our data indicate that under these conditions, a long poly(A) tail is not instrumental for c-myc mRNA translation and furthermore, the discrepancy in the steady state of c-myc mRNA level: c-MYC protein ratio between control cells and cells treated with cordycepin indicates that c-myc mRNA is subjected to translational control.
Collapse
Affiliation(s)
- P Ioannidis
- Papanikolaou Research Center of Oncology, St Savvas Hospital, Athens, Greece
| | | | | | | | | | | |
Collapse
|
18
|
Kavety B, Morgan JI. Characterization of transcript processing of the gene encoding precerebellin-1. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 63:98-104. [PMID: 9838062 DOI: 10.1016/s0169-328x(98)00264-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Precerebellin-1 (Cbln1) is a cerebellum-specific protein that shares significant sequence identity with the globular domains of the complement components C1qA, B and C, suggesting some common aspects of function and/or structure. As the C1q complex is composed of heterotrimers of C1qA, B and C it was hypothesized that multiple precerebellins may exist in a ternary complex. Northern blotting for cbln1 revealed multiple bands that could represent further family members or alternatively spliced variants. To discriminate these alternatives, probes derived from different regions of the cbln1 gene were used to identify and clone the transcripts detected on Northern blots. Four independent transcripts were repeatedly cloned from an adult mouse cerebellum cDNA library. Upon sequencing, all of these clones were found to be derived from the cbln1 gene and no additional precerebellin-related genes were isolated. Moreover, these clones accounted for the four cbln1-hybridizing bands (1.9, 2. 2, 3.2 and 5.5 kb) detected on Northern blots of adult cerebellum RNA. With one possible exception, these clones were all derived through alterations in the 3'-untranslated region (3'-UTR) of cbln1 that did not affect the coding sequence. This was achieved by the use of two polyadenylation sites and alternative (non-canonical) splicing in the 3'-UTR. Some additional variation in mRNA structure is provided by the use of alternative transcription start sites in cbln1. The possible significance of this level of diversity in the 3'-UTR is discussed.
Collapse
Affiliation(s)
- B Kavety
- Department of Developmental Neurobiology, 332 N. Lauderdale St., St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
19
|
Spicher A, Guicherit OM, Duret L, Aslanian A, Sanjines EM, Denko NC, Giaccia AJ, Blau HM. Highly conserved RNA sequences that are sensors of environmental stress. Mol Cell Biol 1998; 18:7371-82. [PMID: 9819424 PMCID: PMC109319 DOI: 10.1128/mcb.18.12.7371] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1998] [Accepted: 08/19/1998] [Indexed: 01/29/2023] Open
Abstract
The putative function of highly conserved regions (HCRs) within 3' untranslated regions (3'UTRs) as regulatory RNA sequences was efficiently and quantitatively assessed by using modular retroviral vectors. This strategy led to the identification of HCRs that alter gene expression in response to oxidative or mitogenic stress. Databases were screened for UTR sequences of >100 nucleotides that had retained 70% identity over more than 300 million years of evolution. The effects of 10 such HCRs on a standard reporter mRNA or protein were studied. To this end, we developed a modular retroviral vector that can allow for a direct comparison of the effects of different HCRs on gene expression independent of their gene-intrinsic 5'UTR, promoter, protein coding region, or poly(A) sequence. Five of the HCRs tested decreased mRNA steady-state levels 2- to 10-fold relative to controls, presumably by altering mRNA stability. One HCR increased translation, and one decreased translation. Elevated mitogen levels caused four HCRs to increase protein levels twofold. One HCR increased protein levels fourfold in response to hypoxia. Although nonconserved UTR sequences may also have a role, these results provide evidence that sequences that are highly conserved during evolution are good candidates for RNA motifs with posttranscriptional regulatory functions in gene expression.
Collapse
Affiliation(s)
- A Spicher
- Department of Molecular Pharmacology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305-5332, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu SY, Redmond TM. Role of the 3'-untranslated region of RPE65 mRNA in the translational regulation of the RPE65 gene: identification of a specific translation inhibitory element. Arch Biochem Biophys 1998; 357:37-44. [PMID: 9721181 DOI: 10.1006/abbi.1998.0817] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we demonstrated that explanted bovine retinal pigment epithelium (RPE) cells lose RPE65 protein, a major microsomal protein specific to RPE, while the RPE65 mRNA remains, suggesting posttranscriptional regulation of RPE65 expression in vitro. Accordingly, we analyze here the effect of the 5'- and 3'-untranslated regions (UTRs) of RPE65 mRNA on translational efficiency using in vitro translation systems. We compared the levels of translation products and mRNA stability among RPE65 transcripts containing deletions of the 5'- and 3'-UTRs. First, the 5'-UTR does not affect translational efficiency. However, the 3'-UTR does influence translation efficiency. A putative translation inhibitory element (TIE) is contained within the 170-nucleotide (nt) sequence downstream of the stop codon. There is also a weak destabilizing effect that is associated with the region 3' to the putative TIE. But the effect of this is much less than that of the TIE. This TIE, however, does not inhibit translation of the heterologous chloramphenicol acetyltransferase gene, suggesting that a specific interaction with the upstream RPE65 coding sequence, or its product, may be required. Thus, the posttranscriptional regulation of RPE65 mRNA expression observed in cultured RPE may be via a mechanism of translational inhibition.
Collapse
Affiliation(s)
- S Y Liu
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
21
|
Knapp M, Wong AH, Schoots O, Guan HC, Van Tol HH. Promoter-independent regulation of cell-specific dopamine receptor expression. FEBS Lett 1998; 434:108-14. [PMID: 9738461 DOI: 10.1016/s0014-5793(98)00961-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we describe the construction of recombinant adenoviruses expressing dopamine D2 and D4 receptors, and their ability to mediate high levels of heterologous expression in a variety of cell types in vitro and in vivo for at least 7 days post infection. These experiments demonstrated that maximum receptor expression is achieved generally within 24 h and remains constant thereafter. Maximum expression levels were highly variable between cell lines and dependent on infection efficiency and promoter strength. Correction for these two variables revealed differences in relative expression levels between cell lines varying by two orders of magnitude. Our results indicate that in addition to gene transcription, post-transcriptional mechanisms play a dominant role in determining dopamine receptor levels in this system.
Collapse
Affiliation(s)
- M Knapp
- Laboratory of Molecular Neurobiology, Clarke Institute of Psychiatry, University of Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|