1
|
Jensen L, Guo Z, Sun X, Jing X, Yang Y, Cao Y. Angiogenesis, signaling pathways, and animal models. Chin Med J (Engl) 2025:00029330-990000000-01523. [PMID: 40254738 DOI: 10.1097/cm9.0000000000003561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Indexed: 04/22/2025] Open
Abstract
ABSTRACT The vasculature plays a critical role in homeostasis and health as well as in the development and progression of a wide range of diseases, including cancer, cardiovascular diseases, metabolic diseases (and their complications), chronic inflammatory diseases, ophthalmic diseases, and neurodegenerative diseases. As such, the growth of the vasculature mediates normal development and physiology, as well as disease, when pathologically induced vessels are morphologically and functionally altered owing to an imbalance of angiogenesis-stimulating and angiogenesis-inhibiting factors. This review offers an overview of the angiogenic process and discusses recent findings that provide additional interesting nuances to this process, including the roles of intussusception and angiovasculogenesis, which may hold promise for future therapeutic interventions. In addition, we review the methodology, including those of in vitro and in vivo assays, which has helped build the vast amount of knowledge on angiogenesis available today and identify important remaining knowledge gaps that should be bridged through future research.
Collapse
Affiliation(s)
- Lasse Jensen
- Department of Health, Medical and Caring Sciences, Unit of Diagnostics and Specialist Medicine, Linköping University, Linköping SE-58183, Sweden
| | - Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325024, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 17165 , Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 17165 , Sweden
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 17165 , Sweden
| |
Collapse
|
2
|
Guo Z, Jing X, Sun X, Sun S, Yang Y, Cao Y. Tumor angiogenesis and anti-angiogenic therapy. Chin Med J (Engl) 2024; 137:2043-2051. [PMID: 39051171 PMCID: PMC11374217 DOI: 10.1097/cm9.0000000000003231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT Anti-angiogenic drugs (AADs), which mainly target the vascular endothelial growth factor-A signaling pathway, have become a therapeutic option for cancer patients for two decades. During this period, tremendous clinical experience of anti-angiogenic therapy has been acquired, new AADs have been developed, and the clinical indications for AAD treatment of various cancers have been expanded using monotherapy and combination therapy. However, improvements in the therapeutic outcomes of clinically available AADs and the development of more effective next-generation AADs are still urgently required. This review aims to provide historical and perspective views on tumor angiogenesis to allow readers to gain mechanistic insights and learn new therapeutic development. We revisit the history of concept initiation and AAD discovery, and summarize the up-to-date clinical translation of anti-angiogenic cancer therapy in this field.
Collapse
Affiliation(s)
- Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| | - Xiaoting Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shishuo Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
3
|
Sadri M, Najafi A, Rahimi A, Behranvand N, Hossein Kazemi M, Khorramdelazad H, Falak R. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe? Int Immunopharmacol 2023; 122:110470. [PMID: 37433246 DOI: 10.1016/j.intimp.2023.110470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Behranvand
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Duan M, Li K, Zhang L, Zhou Y, Bian L, Wang C. Screening, characterization and specific binding mechanism of aptamers against human plasminogen Kringle 5. Bioorg Chem 2023; 137:106579. [PMID: 37149949 DOI: 10.1016/j.bioorg.2023.106579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Plasminogen Kringle 5 is one of the most potent cytokines identified to inhibit the proliferation and migration of vascular endothelial cells. Herein, six aptamer candidates that specifically bind to Kringle 5 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). After 10 rounds of screening against Kringle 5, a highly enriched ssDNA pool was sequenced and the representative aptamers were subjected to binding assays to evaluate their affinity and specificity. The preferred aptamer KG-4, which demonstrated a low dissociation constant (Kd) of ∼ 432 nM and excellent selectivity for Kringle 5. A conserved "motif" of eight bases located at the stem-loop intersection, common to the aptamer, was further confirmed as the recognition element for binding with Kringle 5. The bulge formed by the motif and depression on the lysine binding site of Kringle 5 were both located at the binding interface, and the "induced fit" between their structures played a central role in the recognition process. Kringle 5 interacts KG-4 primarily through enthalpy-driven van der Waals forces and hydrogen bond. The key nucleotides A34 and C35 at motif on KG-4 and the positively charged amino acids in the loop 1 and loop 4 regions on Kringle 5 play a major role in the interaction. Furthermore, KG-4 dose-dependently reduced the proliferation inhibition of vascular endothelial cells by Kringle 5 and had a blocking effect on the function of Kringle 5 in inhibiting migration and promoting apoptosis of vascular endothelial cells in vitro. This study put a new light on protein-aptamer binding mechanism and may provide insight into the treatment of ischemic diseases by target depletion of Kringle 5.
Collapse
Affiliation(s)
- Meijiao Duan
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kewei Li
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ling Zhang
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yaqi Zhou
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Cuiling Wang
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
5
|
Gao X, Jiang P, Wei X, Zhang W, Zheng J, Sun S, Yao H, Liu X, Zhang Q. Novel fusion protein PK5-RL-Gal-3C inhibits hepatocellular carcinoma via anti-angiogenesis and cytotoxicity. BMC Cancer 2023; 23:154. [PMID: 36793021 PMCID: PMC9930235 DOI: 10.1186/s12885-023-10608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Galectin-3 (Gal-3), the only chimeric β-galactosides-binding lectin, consists of Gal-3N (N-terminal regulatory peptide) and Gal-3C (C-terminal carbohydrate-recognition domain). Interestingly, Gal-3C could specifically inhibit endogenous full-length Gal-3 to exhibit anti-tumor activity. Here, we aimed to further improve the anti-tumor activity of Gal-3C via developing novel fusion proteins. METHODS PK5 (the fifth kringle domain of plasminogen) was introduced to the N-terminus of Gal-3C via rigid linker (RL) to generate novel fusion protein PK5-RL-Gal-3C. Then, we investigated the anti-tumor activity of PK5-RL-Gal-3C in vivo and in vitro by using several experiments, and figured out their molecular mechanisms in anti-angiogenesis and cytotoxicity to hepatocellular carcinoma (HCC). RESULTS Our results show that PK5-RL-Gal-3C can inhibit HCC both in vivo and in vitro without obvious toxicity, and also significantly prolong the survival time of tumor-bearing mice. Mechanically, we find that PK5-RL-Gal-3C inhibits angiogenesis and show cytotoxicity to HCC. In detail, HUVEC-related and matrigel plug assays indicate that PK5-RL-Gal-3C plays an important role in inhibiting angiogenesis by regulating HIF1α/VEGF and Ang-2 both in vivo and in vitro. Moreover, PK5-RL-Gal-3C induces cell cycle arrest at G1 phase and apoptosis with inhibition of Cyclin D1, Cyclin D3, CDK4, and Bcl-2, but activation of p27, p21, caspase-3, -8 and -9. CONCLUSION Novel fusion protein PK5-RL-Gal-3C is potent therapeutic agent by inhibiting tumor angiogenesis in HCC and potential antagonist of Gal-3, which provides new strategy for exploring novel antagonist of Gal-3 and promotes their application in clinical treatment.
Collapse
Affiliation(s)
- Xiaoge Gao
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Pin Jiang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Medical Oncology of Huangmei People’s Hospital, Huanggang, Hubei Province 435500 People’s Republic of China
| | - Xiaohuan Wei
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Wei Zhang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Jiwei Zheng
- grid.417303.20000 0000 9927 0537Department of Oral Medicine, School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004 People’s Republic of China
| | - Shishuo Sun
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Hong Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650118, People's Republic of China.
| | - Xiangye Liu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province, 210000, People's Republic of China.
| |
Collapse
|
6
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Zhang J, Wang Z, Wang J, Zhang R, Dong X, Bian L. Investigation of binding mechanism for human plasminogen Kringle 5 with its potential receptor vWA1 domain in Cochlin by bio-specific technologies and molecular dynamic simulation. Bioorg Chem 2022; 127:105989. [DOI: 10.1016/j.bioorg.2022.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
8
|
Zhang J, Wang K, Xue P, Chen X, Bian L. Molecular recognition and interaction between human plasminogen Kringle 5 and voltage-dependent anion channel-1 by biological specificity technologies and molecular dynamic simulation. Biophys Chem 2021; 280:106710. [PMID: 34741992 DOI: 10.1016/j.bpc.2021.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Voltage-dependent anion channel-l (VDAC-1) can bind with plasminogen Kringle 5 as the cell surface receptor and induce cell apoptosis, but the detailed information of binding is not clear yet. Thus, the mutual recognition and binding were investigated here utilizing frontal affinity chromatography, surface plasma resonance, mutation analysis combining molecular dynamics simulation. The results showed that Kringle 5 binds with VDAC-1 in equimolar driven mainly by electrostatic force, with 15 amino acid residues participating in Kringle 5 and 21 in VDAC-1. The observed conformational changes indicated the automatic structure regulation providing these two proteins suitable conformations and spatial surroundings for the tighter and stabler binding. Moreover, Glu29 in Kringle 5 was speculated as the key residue maintaining the largest energy contribution. Therefore, this work provided precise information for the recognition and binding of Kringle 5 with VDAC-1 that is valuable for the corresponding treatment of tumours or other angiogenic diseases.
Collapse
Affiliation(s)
- Jiaxin Zhang
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Kun Wang
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Pengli Xue
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Xiu Chen
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
9
|
Yao X, Chen C, Zhang J, Xu Y, Xiong S, Gu Q, Xu X, Suo Y. Novel Peptide NT/K-CRS Derived from Kringle Structure of Neurotrypsin Inhibits Neovascularization In Vitro and In Vivo. J Ocul Pharmacol Ther 2021; 37:412-420. [PMID: 34252290 DOI: 10.1089/jop.2020.0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose: To assess the anti-neovascularization effect of a novel peptide NT/K-CRS derived from the kringle domain of neurotrypsin in vitro and in vivo. Methods: Primary human umbilical vein endothelial cells (HUVECs) were treated with vascular endothelial growth factor (VEGF) in advance. Cell migration, lumen formation, and cell proliferation assays were performed to determine the anti-neovascularization effect of NT/K-CRS in HUVECs. TUNEL and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium tests were conducted to evaluate cell viability. Chick chorioallantoic membrane and oxygen-induced retinopathy model were established to assess the anti-angiogenic role of NT/K-CRS in vivo. Results: The in vitro results showed that NT/K-CRS effectively decreased VEGF-induced cell migration and endothelial tube formation, with no significant effect on cell proliferation and cell viability. In addition, NT/K-CRS showed great efficacy in angiogenesis inhibition in chicken embryos. The cytokine release syndrome (CRS) peptide also inhibited retinal neovascularization and improved retinal blood perfusion in oxygen-treated mouse pups through intravitreal injection. Conclusions: NT/K-CRS peptide derived from the kringle domain of neurotrypsin can strongly inhibit neovascularization in vitro and vivo. This novel peptide may become a promising therapeutic agent for neovascular-related ocular diseases.
Collapse
Affiliation(s)
- Xieyi Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuyu Xiong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yan Suo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| |
Collapse
|
10
|
Neill T, Kapoor A, Xie C, Buraschi S, Iozzo RV. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 2021; 100-101:118-149. [PMID: 33838253 PMCID: PMC8355044 DOI: 10.1016/j.matbio.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Yao X, Chen C, Zhang J, Xu Y, Xiong S, Gu Q, Xu X, Suo Y. Novel Peptide NT/K-CFY Derived from Kringle Structure of Neurotrypsin Inhibits Neovascularization. Curr Eye Res 2021; 46:1551-1558. [PMID: 33870816 DOI: 10.1080/02713683.2021.1907417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: To assess the anti-neovascularization effect of a novel peptide NT/K-CFY derived from the kringle domain of neurotrypsin.Materials and Methods: Cell migration, lumen formation and cell proliferation assays were performed to determine the anti-neovascularization effect of NT/K-CFY in primary human umbilical vein endothelial cells (HUVECs). Chick chorioallantoic membrane (CAM) and oxygen-induced retinopathy (OIR) models were established to assess the anti-angiogenic role of NT/K-CFY in vivo. The retinal expression of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) was examined by western blot and real-time PCR in OIR model.Results: The in vitro results showed that NT/K-CFY effectively and safely decreased VEGF-induced cell migration, cell proliferation and tube formation in HUVECs. In addition, NT/K-CFY showed certain efficacy in angiogenesis inhibition in chicken embryos and oxygen-treated mouse pups. Moreover, the CFY peptide also improved retinal blood perfusion and reversed the abnormal expression of VEGF and PEDF in OIR mouse model.Conclusion: NT/K-CFY peptide strongly inhibits neovascularization in vitro and vivo. This novel peptide may become a promising therapeutic agent for ocular angiogenesis-related diseases.
Collapse
Affiliation(s)
- Xieyi Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuyu Xiong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yan Suo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| |
Collapse
|
12
|
Tao QR, Chu YM, Wei L, Tu C, Han YY. Antiangiogenic therapy in diabetic nephropathy: A double‑edged sword (Review). Mol Med Rep 2021; 23:260. [PMID: 33655322 PMCID: PMC7893700 DOI: 10.3892/mmr.2021.11899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes and the associated complications are becoming a serious global threat and an increasing burden to human health and the healthcare systems. Diabetic nephropathy (DN) is the primary cause of end-stage kidney disease. Abnormal angiogenesis is well established to be implicated in the morphology and pathophysiology of DN. Factors that promote or inhibit angiogenesis serve an important role in DN. In the present review, the current issues associated with the vascular disease in DN are highlighted, and the challenges in the development of treatments are discussed.
Collapse
Affiliation(s)
- Qian-Ru Tao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ying-Ming Chu
- Department of Integrated Traditional Chinese Medicine, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuan-Yuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
13
|
PRODUCTION AND APPLICATION OF ANGIOSTATINS FOR THE TREATMENT OF OCULAR NEOVASCULAR DISEASES. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Angiostatins comprise a group of kringle-containing proteolytically-derived fragments of plasminogen/plasmin, which act as potent inhibitory mediators of endothelial cells proliferation and migration. Angiostatins are involved in modulation of vessel growth in healthy tissues and various pathological conditions associated with aberrant neovascularization. The aim of the present paper was to summarize available information, including our own experimental data, on prospects of angiostatin application for treatment of ocular neovascular diseases (OND), focusing on retinal pathologies and corneal injury. In particular, literature data on prospective and retrospective studies, clinical trials and animal models relating to the pathophysiology, investigation and management of OND are described. Special emphasis was made on the laboratory approaches of production of different angiostatin isoforms, as well as comparison of antiangiogenic capacities of native and recombinant angiostatin polypeptides. Several studies reported that angiostatins may completely abolish pathologic angiogenesis in diabetic proliferative retinopathy without affecting normal retinal vessel development and without exhibiting adverse side effects. Angiostatins have been tested as a tool for corneal antiangiogenesis target therapy in order to manage diverse ocular surface pathological conditions induced by traumas, chemical burns, previous surgery, chronic contact lens wear, autoimmune diseases, keratitis and viral infections (herpes, COVID-19), corneal graft rejection, etc. Among all known angiostatin species, isolated K5 plasminogen fragment was shown to display the most potent inhibitory activity against proliferation of endothelial cells via triggering multiple signaling pathways, which lead to cell death and resulting angiogenesis suppression. Application of adenoviral genetic construct encoding angiostatin K5 as a promising tool for OND treatment illustrates a vivid example of upcoming revolution in local gene therapy. Further comprehensive studies are necessary to elucidate the clinical potential and optimal regimes of angiostatinbased intervention modalities for treating ocular neovascularization.
Collapse
|
14
|
Smalley H, Rowe JM, Nieto F, Zeledon J, Pollard K, Tomich JM, Fleming SD. Beta2 glycoprotein I-derived therapeutic peptides induce sFlt-1 secretion to reduce melanoma vascularity and growth. Cancer Lett 2020; 495:66-75. [PMID: 32891714 PMCID: PMC7899169 DOI: 10.1016/j.canlet.2020.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/11/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
Melanoma, a form of skin cancer, is one of the most common cancers in young men and women. Tumors require angiogenesis to provide oxygen and nutrients for growth. Pro-angiogenic molecules such as VEGF and anti-angiogenic molecules such as sFlt-1 control angiogenesis. In addition, the serum protein, Beta2 Glycoprotein I (β2-GPI) induces or inhibits angiogenesis depending on conformation and concentration. β2-GPI binds to proteins and negatively charged phospholipids on hypoxic endothelial cells present in the tumor microenvironment. We hypothesized that peptides derived from the binding domain of β2-GPI would regulate angiogenesis and melanoma growth. In vitro analyses determined the peptides reduced endothelial cell migration and sFlt-1 secretion. In a syngeneic, immunocompetent mouse melanoma model, β2-GPI-derived peptides also reduced melanoma growth in a dose-dependent response with increased sFlt-1 and attenuated vascular markers compared to negative controls. Importantly, administration of peptide with sFlt-1 antibody resulted in tumor growth. These data demonstrate the therapeutic potential of novel β2-GPI-derived peptides to attenuate tumor growth and endothelial migration is sFlt-1 dependent.
Collapse
Affiliation(s)
- Haley Smalley
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jennifer M Rowe
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Fernando Nieto
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jazmin Zeledon
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kellyn Pollard
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - John M Tomich
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
15
|
Ninkovic S, Harrison SJ, Quach H. Glucose-regulated protein 78 (GRP78) as a potential novel biomarker and therapeutic target in multiple myeloma. Expert Rev Hematol 2020; 13:1201-1210. [PMID: 32990063 DOI: 10.1080/17474086.2020.1830372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Glucose-regulated protein 78 (GRP78) is a stress-inducible molecular chaperone expressed within the endoplasmic reticulum where it acts as a master regulator of the unfolded protein response (UPR) pathway. At times of ER stress, activation of the UPR, a multimolecular pathway, limits proteotoxicity induced by misfolded proteins. In malignancies, including multiple myeloma which is characterized by an accumulation of misfolded immunoglobulins, GRP78 expression is increased, with notable translocation of GRP78 to the cell surface. Studies suggest cell-surface GRP78 (csGRP78) to be of prognostic significance with emerging evidence that it interacts with a myriad of co-ligands to activate signaling pathways promoting cell proliferation and survival or apoptosis. AREAS COVERED This review focuses on the role of ER and csGRP78 in physiology and oncogenesis in multiple myeloma, addressing factors that shift the balance in GRP78 signaling from survival to apoptosis. The role of GRP78 as a potential prognostic biomarker is explored and current therapeutics in development aimed at targeting csGRP78 are addressed. We conducted a PubMed literature search using the keywords 'GRP78,' 'multiple myeloma' reviewing studies prior to 2020. EXPERT OPINION Cell-surface GRP78 expression is a potential novel prognostic biomarker in myeloma and targeting of csGRP78 is promising and requires further investigation.
Collapse
Affiliation(s)
- Slavisa Ninkovic
- Department of Haematology, St. Vincent's Hospital Melbourne , Fitzroy, Australia.,Department of Medicine, University of Melbourne , Fitzroy, Australia
| | - Simon J Harrison
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital , Melbourne, Australia.,Sir Peter MacCallum Dept of Oncology, University of Melbourne , Parkville, Australia
| | - Hang Quach
- Department of Haematology, St. Vincent's Hospital Melbourne , Fitzroy, Australia.,Department of Medicine, University of Melbourne , Fitzroy, Australia
| |
Collapse
|
16
|
Zhang Y, Zhang R, Bai J, Liu W, Yang J, Bian L. Human laminin α3 chain G1 domain is a receptor for plasminogen Kringle 5 on human endothelial cells by biological specificity technologies and molecular dynamic. J Chromatogr A 2020; 1620:460986. [DOI: 10.1016/j.chroma.2020.460986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/30/2022]
|
17
|
Apolipoprotein(a), an enigmatic anti-angiogenic glycoprotein in human plasma: A curse or cure? Pharmacol Res 2020; 158:104858. [PMID: 32430285 DOI: 10.1016/j.phrs.2020.104858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is a finely co-ordinated, multi-step developmental process of the new vascular structure. Even though angiogenesis is regularly occurring in physiological events such as embryogenesis, in adults, it is restricted to specific tissue sites where rapid cell-turnover and membrane synthesis occurs. Both excessive and insufficient angiogenesis lead to vascular disorders such as cancer, ocular diseases, diabetic retinopathy, atherosclerosis, intra-uterine growth restriction, ischemic heart disease, stroke etc. Occurrence of altered lipid profile and vascular lipid deposition along with vascular disorders is a hallmark of impaired angiogenesis. Among lipoproteins, lipoprotein(a) needs special attention due to the presence of a multi-kringle protein subunit, apolipoprotein(a) [apo(a)], which is structurally homologous to many naturally occurring anti-angiogenic proteins such as plasminogen and angiostatin. Researchers have constructed different recombinant forms of apo(a) (rhLK68, rhLK8, RHACK2, KV-11, and AU-6) and successfully exploited its potential to inhibit unwanted angiogenesis during tumor metastasis and retinal neovascularization. Similar to naturally occurring anti-angiogenic proteins, apo(a) can directly interfere with angiogenic signaling pathways. Besides this, apo(a) can also exert its anti-angiogenic effect indirectly by inducing endothelial cell apoptosis, by inhibiting endothelial progenitor cell functions or by upregulating nuclear factors in endothelial cells via apo(a)-bound oxPLs. However, the impact of the anti-angiogenic potential of native apo(a) during physiological angiogenesis in embryos and wounded tissues is not yet explored. In this context, we review the studies so far done to demonstrate the anti-angiogenic activity of apo(a) and the recent developments in using apo(a) as a therapeutic agent to treat impaired angiogenesis during vascular disorders, with emphasis on the gaps in the literature.
Collapse
|
18
|
Cell Surface GRP78 as a Death Receptor and an Anticancer Drug Target. Cancers (Basel) 2019; 11:cancers11111787. [PMID: 31766302 PMCID: PMC6896222 DOI: 10.3390/cancers11111787] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Cell surface GRP78 (csGRP78, glucose-regulated protein 78 kDa) is preferentially overexpressed in aggressive, metastatic, and chemo-resistant cancers. GRP78 is best studied as a chaperone protein in the lumen of endoplasmic reticulum (ER), facilitating folding and secretion of the newly synthesized proteins and regulating protein degradation as an ER stress sensor in the unfolded protein pathway. As a cell surface signal receptor, multiple csGRP78 ligands have been discovered to date, and they trigger various downstream cell signaling pathways including pro-proliferative, pro-survival, and pro-apoptotic pathways. In this perspective, we evaluate csGRP78 as a cell surface death receptor and its prospect as an anticancer drug target. The pro-apoptotic ligands of csGRP78 discovered so far include natural proteins, monoclonal antibodies, and synthetic peptides. Even the secreted GRP78 itself was recently found to function as a pro-apoptotic ligand for csGRP78, mediating pancreatic β-cell death. As csGRP78 is found to mainly configur as an external peripheral protein on cancer cell surface, how it can transmit death signals to the cytoplasmic environment remains enigmatic. With the recent encouraging results from the natural csGRP78 targeting pro-apoptotic monoclonal antibody PAT-SM6 in early-stage cancer clinical trials, the potential to develop a novel class of anticancer therapeutics targeting csGRP78 is becoming more compelling.
Collapse
|
19
|
Hao J, Xie W, Li H, Li R. Prostate Cancer-Specific of DD3-driven Oncolytic Virus-harboring mK5 Gene. Open Med (Wars) 2018; 14:1-9. [PMID: 30613790 PMCID: PMC6310915 DOI: 10.1515/med-2019-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in Western male population. In this study, we insert mK5 (the mutational kringle5 of human plasminogen) into a DD3-promoted (differential display code 3) oncolytic adenovirus to construct OncoAd.mK5.DD3. E1A.dE1B, briefly, OAd.DD3.mK5. DD3 is one of the most prostate cancer specific promoters which can transcriptionally control adenoviral replication. mK5 has been proved to be able to inhibit the tumor angiogenesis and inhibit cell proliferation. Our results suggested that targeting PCa with OAd.DD3.mK5 elicited strong antitumor effect.
Collapse
Affiliation(s)
- Jiali Hao
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang SciTech University, Hangzhou 310018, China
| | - Wenjie Xie
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang SciTech University, Hangzhou 310018, China
| | - Hui Li
- Shanghai Yuansong biotechnology Co., Ltd., Shanghai, China
| | - Runsheng Li
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|
20
|
Liu S, Romano V, Steger B, Kaye SB, Hamill KJ, Willoughby CE. Gene-based antiangiogenic applications for corneal neovascularization. Surv Ophthalmol 2018; 63:193-213. [DOI: 10.1016/j.survophthal.2017.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
|
21
|
Plasminogen kringle 5 suppresses gastric cancer via regulating HIF-1α and GRP78. Cell Death Dis 2017; 8:e3144. [PMID: 29072683 PMCID: PMC5682690 DOI: 10.1038/cddis.2017.528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/26/2023]
Abstract
Inhibition of tumour angiogenesis has an important role in antitumour therapy. However, a recent study indicates that antiangiogenesis therapy may lead to glucose-related protein 78 (GRP78) associated antiapoptotic resistance. The present study aims to elucidate the dual effects of plasminogen kringle 5 (K5) on tumour angiogenesis and apoptosis induction by targeting hypoxia-inducible factor 1α (HIF-1α) and GRP78. Co-immunoprecipitation and western blotting were used for examining the ubiquitination of HIF-1α and analysing angiogenesis and apoptosis-associated proteins. K5 promoted the sumo/ubiquitin-mediated proteasomal degradation of HIF-1α by upregulating von Hippel-Lindau protein under hypoxia, resulting in the reduction of vascular endothelial growth factor and thus suppressing tumour angiogenesis. Furthermore, K5 decreased GRP78 expression via downregulation of phosphorylated extracellular-regulated protein kinase, leading to caspase-7 cleavage and tumour cell apoptosis. Blocking voltage-dependent anion channel abrogated the effects of K5 on both HIF-1α and GRP78. K5 significantly inhibited the growth of gastric carcinoma xenografts by inhibiting both angiogenesis and apoptosis. The dual effects suggest that K5 might be a promising bio-therapeutic agent in the treatment of gastric cancer, particularly in patients who exhibit the induction of GRP78.
Collapse
|
22
|
Baek YY, Lee DK, Kim J, Kim JH, Park W, Kim T, Han S, Jeoung D, You JC, Lee H, Won MH, Ha KS, Kwon YG, Kim YM. Arg-Leu-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget 2017; 8:11763-11777. [PMID: 28052029 PMCID: PMC5355302 DOI: 10.18632/oncotarget.14343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/03/2016] [Indexed: 02/06/2023] Open
Abstract
The tetrapeptide Arg-Leu-Tyr-Glu (RLYE) is known to inhibit vascular endothelial growth factor-A (VEGF-A)-induced angiogenesis in vitro. Herein, we examined its underlying mechanism and antitumor activity associated with vascular remodeling. RLYE inhibited VEGF-A-induced angiogenesis in a mouse model and suppressed VEGF-A-induced angiogenic signal cascades in human endothelial cells. However, RLYE showed no inhibitory effect on VEGF-A-induced proliferation and migration of multiple myeloma cells expressing VEGF receptor (VEGFR)-1, but not VEGFR-2. In addition, RLYE showed no inhibitory effect on angiogenic activities induced by VEGF-B, basic fibroblast growth factor, epithermal growth factor, sphingosine-1-phosphate, and placental growth factor. RLYE bound specifically to VEGFR-2 at the VEGF-A binding site, thereby blocking VEGF-A-VEGFR-2 binding and VEGF-A-induced VEGFR-2 internalization. The RLYE peptide inhibited tumor growth and metastasis via suppression of tumor angiogenesis in tumor-bearing mice. Moreover, RLYE showed a synergistic effect of the cytotoxic agent irinotecan on tumor cell apoptosis and tumor progression via tumor vessel normalization due to stabilization of VE-cadherin-mediated adherens junction, improvement of pericyte coverage, and inhibition of vascular leakage in tumors. Our results suggest that RLYE can be used as an antiangiogenic and tumor blood vessel remodeling agent for inhibition of tumor growth and metastasis by antagonizing VEGFR-2, with the synergistic anti-cancer effect via enhancement of drug delivery and therapeutic efficacy.
Collapse
Affiliation(s)
- Yi-Yong Baek
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Dong-Keon Lee
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Joohwan Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Ji-Hee Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Wonjin Park
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Taesam Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Sanghwa Han
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Ji Chang You
- Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Hansoo Lee
- Department of and Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702, South Korea
| |
Collapse
|
23
|
Liang YK, Bian LJ. Voltage-Dependent Anion Channel-1, a Possible Ligand of Plasminogen Kringle 5. PLoS One 2016; 11:e0164834. [PMID: 27749918 PMCID: PMC5066947 DOI: 10.1371/journal.pone.0164834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/30/2016] [Indexed: 11/18/2022] Open
Abstract
Kringle 5, the fifth fragment of plasminogen, is known to be important for inhibiting the proliferation and migration of vascular endothelial cell (VEC), while not having any effects on normal endothelial cells. Therefore, it may be a potential tumor therapy candidate. However, the ligand of the Kringle 5 in VEC has not yet been identified. In this study, the possible ligand of Kringle 5 in vitro was screened and validated using Ph.D.-7 phage display peptide library with molecular docking, along with surface plasma resonance (SPR). After four rounds of panning, the specific clones of Kringle 5 were confirmed using enzyme-linked immunosorbent assay (ELISA). The gene sequence analysis showed that they expressed the common amino sequence IGNSNTL. Then, using a NCBI BLAST, 103 matching sequences were found. Following the molecular docking evaluation and considering the acting function and pathway of the plasminogen Kringle 5 in the human body, the most promising candidate was determined to be voltage-dependent anion channel-1 (VDAC-1), which was able to bind to Kringle 5 at -822.65 J·mol-1 of the binding energy at the residues of Lys12, Thr19, Ser57, Thr188, Arg139, Asn214, Ser240 and Lys274. A strong dose-dependent interaction occurred between the VDAC-1 and Kringle 5 (binding constant 2.43 × 103 L·mol-1) in SPR observation. Therefore, this study proposed that VDAC-1 was a potential ligand of plasminogen Kringle 5, and also demonstrated that the screening and validation of protein ligand using phage display peptide library with the molecular docking, along with SPR, was a practicable application.
Collapse
Affiliation(s)
- Yin-ku Liang
- College of Life Sciences, Northwest University, Xi’an 710069, P. R. China
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, P. R. China
- Shaanxi Province Key Laboratory of Bio-Resource, Shaanxi University of Technology, Hanzhong 723000, P. R. China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi province, Shaanxi University of Technology, Hanzhong 723000, P. R. China
| | - Liu-jiao Bian
- College of Life Sciences, Northwest University, Xi’an 710069, P. R. China
- * E-mail:
| |
Collapse
|
24
|
Yan G, Yang D, Yu Y, Xue J, Jia Y, Sun X, Wang B, Zhao Z, Wang M. Pharmacokinetics of gene recombined angiogenesis inhibitor Kringle 5 in vivo using 131I specific markers and SPECT/CT. J Pharm Anal 2016; 6:313-317. [PMID: 29403998 PMCID: PMC5762626 DOI: 10.1016/j.jpha.2016.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 11/18/2022] Open
Abstract
The previous pharmacokinetic methods can be only limited to drug analysis in vitro, which provide less information on the distribution and metabolismof drugs, and limit the interpretation and assessment of pharmacokinetics, the determination of metabolic principles, and evaluation of treatment effect. The objective of the study was to investigate the pharmacokinetic characteristics of gene recombination angiogenesis inhibitor Kringle 5 in vivo. The SPECT/CT and specific 131I-Kringle 5 marked by Iodogen method were both applied to explore the pharmacokinetic characteristics of 131I-Kringle 5 in vivo, and to investigate the dynamic distributions of 131I-Kringle 5 in target organs. Labeling recombinant angiogenesis inhibitor Kringle 5 using 131I with longer half-life and imaging in vivo using SPECT instead of PET, could overcome the limitations of previous methods. When the doses of 131I-Kringle 5 were 10.0, 7.5 and 5.0 g/kg, respectively, the two-compartment open models can be determined within all the metabolic process in vivo. There were no significant differences in t1/2α, t1/2β, apparent volume of distribution and CL between those three levels. The ratio of AUC(0~∞) among three different groups of 10.0, 7.5 and 5.0 g/kg was 2.56:1.44:1.0, which was close to the ratio (2:1.5:1.0). It could be clear that in the range of 5.0-10.0 g/kg, Kringle 5 was characterized by the first-order pharmacokinetics. Approximately 30 min after 131I-Kringle 5 was injected, 131I-Kringle 5 could be observed to concentrate in the heart, kidneys, liver and other organs by means of planar imaging and tomography. After 1 h of being injected, more radionuclide retained in the bladder, but not in intestinal. It could be concluded that 131I-Kringle 5 is mainly excreted through the kidneys. About 2 h after the injection of 131I-Kringle 5, the radionuclide in the heart, kidneys, liver and other organs was gradually reduced, while more radionuclide was concentrated in the bladder. The radionuclide was completely metabolized within 24 h, and the distribution of radioactivity in rats was similar to normal levels. In our study, the specific marker 131I-Kringle 5 and SPECT/CT were successfully used to explore pharmacokinetic characteristics of Kringle 5 in rats. The study could provide a new evaluation platform of the specific, in vivo and real-time functional imaging and pharmacokinetics for the clinical application of 131I-Kringle 5.
Collapse
Affiliation(s)
- Ge Yan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Danrong Yang
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yan Yu
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jianjun Xue
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yifan Jia
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xuanzi Sun
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Boyu Wang
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zewei Zhao
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Maode Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Corresponding author.
| |
Collapse
|
25
|
Guzyk MM, Tykhomyrov AA, Nedzvetsky VS, Prischepa IV, Grinenko TV, Yanitska LV, Kuchmerovska TM. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats. Neurochem Res 2016; 41:2526-2537. [DOI: 10.1007/s11064-016-1964-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023]
|
26
|
SHI SHUO, ZHANG MIN, GUO RUI, ZHANG MIAO, HU JIAJIA, XI YUN, MIAO YING, LI BIAO. 131I therapy mediated by sodium/iodide symporter combined with kringle 5 has a synergistic therapeutic effect on glioma. Oncol Rep 2015; 35:691-8. [DOI: 10.3892/or.2015.4420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/14/2015] [Indexed: 11/05/2022] Open
|
27
|
The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis. Biochem Biophys Res Commun 2015; 463:532-7. [DOI: 10.1016/j.bbrc.2015.05.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022]
|
28
|
Tykhomyrov AA, Shram SI, Grinenko TV. [Role of angiostatins in diabetic complications]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:41-56. [PMID: 25762598 DOI: 10.18097/pbmc20156101041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Angiogenesis is a process through which new blood vessels form from pre-existing vessels. Angiogenesis is regulated by a number of factors of peptide nature. Disbalance of angiogenic system appears to be the major causative factor contributing vascular abnormalities in diabetes mellitus, resulting in various complications. Angiostatins, which are kringle-containing fragments of plasminogen/plasmin, are known to be powerful physiological inhibitors of neovascularization. In the present review, current literature data on peculiarities of production of angiostatins and their functioning at diabetes mellitus are summarized and analyzed for the first time. Also, role of angiostatins in the pathogenesis of typical diabetic complications, including retinopathies, nephropathies and cardiovascular diseases, is discussed. Data presented in this review may be useful for elaboration of novel effective approaches for diagnostics and therapy of vascular abnormalities in diabetes mellitus.
Collapse
|
29
|
Li L, Yao YC, Gu XQ, Che D, Ma CQ, Dai ZY, Li C, Zhou T, Cai WB, Yang ZH, Yang X, Gao GQ. Plasminogen kringle 5 induces endothelial cell apoptosis by triggering a voltage-dependent anion channel 1 (VDAC1) positive feedback loop. J Biol Chem 2014; 289:32628-38. [PMID: 25296756 DOI: 10.1074/jbc.m114.567792] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human plasminogen kringle 5 (K5) is known to display its potent anti-angiogenesis effect through inducing endothelial cell (EC) apoptosis, and the voltage-dependent anion channel 1 (VDAC1) has been identified as a receptor of K5. However, the exact role and underlying mechanisms of VDAC1 in K5-induced EC apoptosis remain elusive. In the current study, we showed that K5 increased the protein level of VDAC1, which initiated the mitochondrial apoptosis pathway of ECs. Our findings also showed that K5 inhibited the ubiquitin-dependent degradation of VDAC1 by promoting the phosphorylation of VDAC1, possibly at Ser-12 and Thr-107. The phosphorylated VDAC1 was attenuated by the AKT agonist, glycogen synthase kinase (GSK) 3β inhibitor, and siRNA, suggesting that K5 increased VDAC1 phosphorylation via the AKT-GSK3β pathway. Furthermore, K5 promoted cell surface translocation of VDAC1, and binding between K5 and VDAC1 was observed on the plasma membrane. HKI protein blocked the impact of K5 on the AKT-GSK3β pathway by competitively inhibiting the interaction of K5 and cell surface VDAC1. Moreover, K5-induced EC apoptosis was suppressed by VDAC1 antibody. These data show for the first time that K5-induced EC apoptosis is mediated by the positive feedback loop of "VDAC1-AKT-GSK3β-VDAC1," which may provide new perspectives on the mechanisms of K5-induced apoptosis.
Collapse
Affiliation(s)
- Lei Li
- From the Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, the Department of Reproductive Medicine Center, Key Laboratory for Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150
| | - Ya-Chao Yao
- the Laboratory Center of Guangdong NO.2 Provincial People's Hospital, Guangzhou 510317
| | - Xiao-Qiong Gu
- the Department of Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou 510623
| | - Di Che
- From the Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080
| | - Cai-Qi Ma
- From the Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080
| | - Zhi-Yu Dai
- From the Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080
| | - Cen Li
- From the Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080
| | - Ti Zhou
- From the Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080
| | - Wei-Bin Cai
- From the Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080
| | - Zhong-Han Yang
- From the Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080
| | - Xia Yang
- From the Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, the China Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, and
| | - Guo-Quan Gao
- From the Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, the Key Laboratory of Functional Molecules from Marine Microorganisms, Sun Yat-sen University, Department of Education of Guangdong Province, Guangzhou 510080, China
| |
Collapse
|
30
|
Wang H, Yang Z, Gu J. Therapeutic Targeting of Angiogenesis with a Recombinant CTT Peptide–Endostatin Mimic–Kringle 5 Protein. Mol Cancer Ther 2014; 13:2674-87. [PMID: 25127900 DOI: 10.1158/1535-7163.mct-14-0266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Biomimetic Materials/chemistry
- Biomimetic Materials/pharmacology
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/drug therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation/drug effects
- Endostatins/chemistry
- Endostatins/pharmacology
- HEK293 Cells
- HeLa Cells
- Humans
- Kringles
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/drug therapy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Random Allocation
- Recombinant Fusion Proteins/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Houbin Wang
- National Key Laboratory of Protein and Plant Gene Research, LSC, Peking University, Beijing, China
| | - Zhigang Yang
- Department of Hematology, Affiliated Hospital of Guangdong Medical College, Guangzhou, China
| | - Jun Gu
- National Key Laboratory of Protein and Plant Gene Research, LSC, Peking University, Beijing, China. Department of Hematology, Affiliated Hospital of Guangdong Medical College, Guangzhou, China.
| |
Collapse
|
31
|
Plasmid transfer of plasminogen K1-5 reduces subcutaneous hepatoma growth by affecting inflammatory factors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:656527. [PMID: 24895598 PMCID: PMC4034484 DOI: 10.1155/2014/656527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022]
Abstract
There is evidence that plasminogen K1-5 (PlgK1-5) directly affects tumour cells and inflammation. Therefore, we analysed if PlgK1-5 has immediate effects on hepatoma cells and inflammatory factors in vitro and in vivo. In vitro, effects of plasmid encoding PlgK1-5 (pK1-5) on Hepa129, Hepa1-6, and HuH7 cell viability, apoptosis, and proliferation as well as VEGF and TNF-alpha expression and STAT3-phosphorylation were investigated. In vivo, tumour growth, proliferation, vessel density, and effects on vascular endothelial growth factor (VEGF) and tumour necrosis factor alpha (TNF-alpha) expression were examined following treatment with pK1-5. In vivo, pK1-5 halved cell viability; cell death was increased by up to 15% compared to the corresponding controls. Proliferation was not affected. VEGF, TNF-alpha, and STAT3-phosphorylation were affected following treatment with pK1-5. In vivo, ten days after treatment initiation, pK1-5 reduced subcutaneous tumour growth by 32% and mitosis by up to 77% compared to the controls. Vessel density was reduced by 50%. TNF-alpha levels in tumour and liver tissue were increased, whereas VEGF levels in tumours and livers were reduced after pK1-5 treatment. Taken together, plasmid gene transfer of PlgK1-5 inhibits hepatoma (cell) growth not only by reducing vessel density but also by inducing apoptosis, inhibiting proliferation, and triggering inflammation.
Collapse
|
32
|
Tykhomyrov AA, Shram SI, Grinenko TV. The role of angiostatins in diabetic complications. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s1990750814020140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
The Kringle Domain of Tissue-Type Plasminogen Activator Inhibits Extracellular Matrix-Induced Adhesion and Migration of Endothelial Cells. Biosci Biotechnol Biochem 2014; 72:2303-8. [DOI: 10.1271/bbb.80152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Ahn JH, Yu HK, Lee HJ, Hong SW, Kim SJ, Kim JS. Suppression of colorectal cancer liver metastasis by apolipoprotein(a) kringle V in a nude mouse model through the induction of apoptosis in tumor-associated endothelial cells. PLoS One 2014; 9:e93794. [PMID: 24699568 PMCID: PMC3974802 DOI: 10.1371/journal.pone.0093794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
The formation of liver metastases in colorectal cancer patients is the primary cause of patient death. Current therapies directed at liver metastasis from colorectal cancer have had minimal impact on patient outcomes. Therefore, the development of alternative treatment strategies for liver metastasis is needed. In the present study, we demonstrated that recombinant human apolipoprotein(a) kringle V, also known as rhLK8, induced the apoptotic turnover of endothelial cells in vitro through the mitochondrial apoptosis pathway. The interaction of rhLK8 with glucose-regulated protein 78 (GRP78) may be involved in the induction of apoptosis because the inhibition of GRP78 by GRP78-specific antibodies or siRNA knockdown inhibited the rhLK8-mediated apoptosis of human umbilical vein endothelial cells in vitro. Next, to evaluate the effects of rhLK8 on angiogenesis and metastasis, an experimental model of liver metastasis was established by injecting a human colorectal cancer cell line, LS174T, into the spleens of BALB/c nude mice. The systemic administration of rhLK8 significantly suppressed liver metastasis from human colorectal cancer cells and improved host survival compared with controls. The combination of rhLK8 and 5-fluorouracil substantially increased these survival benefits compared with either therapy alone. Histological observation showed significant induction of apoptosis among tumor-associated endothelial cells in liver metastases from rhLK8-treated mice compared with control mice. Collectively, these results suggest that the combination of rhLK8 with conventional chemotherapy may be a promising approach for the treatment of patients with life-threatening colorectal cancer liver metastases.
Collapse
Affiliation(s)
- Jin-Hyung Ahn
- Cancer Biology Team, Mogam Biotechnology Research Institute, Yongin, Republic of Korea
| | - Hyun-Kyung Yu
- Cancer Biology Team, Mogam Biotechnology Research Institute, Yongin, Republic of Korea
| | - Ho-Jeong Lee
- Cancer Biology Team, Mogam Biotechnology Research Institute, Yongin, Republic of Korea
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Soon Won Hong
- Department of Pathology, Gangnam Sevrance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Sun Jin Kim
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JSK); (SJK)
| | - Jang-Seong Kim
- Cancer Biology Team, Mogam Biotechnology Research Institute, Yongin, Republic of Korea
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (JSK); (SJK)
| |
Collapse
|
35
|
Zhang M, Guo R, Shi S, Miao Y, Zhang Y, Li B. Baculovirus vector-mediated transfer of sodium iodide symporter and plasminogen kringle 5 genes for tumor radioiodide therapy. PLoS One 2014; 9:e92326. [PMID: 24647588 PMCID: PMC3960225 DOI: 10.1371/journal.pone.0092326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
Background Both tumor cells and their supporting endothelial cells should be considered for targeted cell killing when designing cancer treatments. Here we investigated the feasibility of combining radioiodide and antiangiogenic therapies after baculovirus-mediated transfer of genes encoding the sodium iodide symporter (NIS) and plasminogen kringle 5 (K5). Methods A recombinant baculovirus containing the NIS gene under control of the human telomerase reverse transcriptase (hTERT) promoter and the K5 gene driven by the early growth response 1 (Egr1) promoter was developed. Dual-luciferase reporter assay was performed to confirm the activation of hTERT transcription. NIS and K5 gene expression were identified by Western blot and Real-Time PCR. Functional NIS activity in baculovirus-infected Hela cells was confirmed by the uptake of 125I and cytotoxicity of 131I. The apoptotic effect of 131I-induced K5 on baculovirus-infected human umbilical vein endothelial cells (HUVECs) was analyzed by a flow cytometry-based assay. In vivo, NIS reporter gene imaging and therapeutic experiments with 131I were performed. Finally, the microvessel density (MVD) in tumors after treatment was determined by CD31 immunostaining. Results The activation of hTERT transcription was specifically up-regulated in tumor cells. NIS gene expression markedly increased in baculovirus-infected HeLa cells, but not in MRC5 cells. The Hela cells showed a significant increase of 125I uptake, which was inhibited by NaClO4, and a notably decreased cell survival rate by 131I treatment. Expression of the K5 gene induced by 131I was elevated in a dose- and time-dependent manner and resulted in the apoptosis of HUVECs. Furthermore, 131I SPECT imaging clearly showed cervical tumor xenografts infected with recombinant baculovirus. Following therapy, tumor growth was significantly retarded. CD31 immunostaining confirmed a significant decrease of MVD. Conclusion The recombinant baculovirus supports a promising strategy of NIS-based raidoiodide therapy combined with K5-based antiangiogenic therapy by targeting both the tumor and its supporting vessels.
Collapse
Affiliation(s)
- Min Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Guo
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Shi
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Miao
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
36
|
Melo PM, Bagnaresi P, Paschoalin T, Hirata IY, Gazarini ML, Carmona AK. Plasmodium falciparum proteases hydrolyze plasminogen, generating angiostatin-like fragments. Mol Biochem Parasitol 2014; 193:45-54. [DOI: 10.1016/j.molbiopara.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 12/27/2022]
|
37
|
Abstract
Breast cancer is the most prevalent cancer in women, with over 200,000 new cases diagnosed each year. Over 70% of breast cancers express the estrogen receptor-α, and drugs targeting these receptors such as tamoxifen or Faslodex(®) often fail to cure these patients. Many estrogen receptor-positive tumors lose drug sensitivity, making endocrine resistance a major clinical problem. Recently, investigation into the molecular mechanisms of endocrine resistance has highlighted a causative role of the unfolded protein response in antiestrogen resistance. In particular, the master regulator of the unfolded protein response, GRP78, was observed to be elevated in endocrine-resistant breast cancer and directly affected antiestrogen therapy responsiveness. GRP78 was found to impact many different cellular processes that may affect breast cancer survival. Recently, various compounds have been reported to affect GRP78 activity and it may be advantageous to combine these drugs with antiestrogens to overcome endocrine therapy resistance.
Collapse
|
38
|
Bian L, Ji X, Hu W. Isolation and purification of recombinant human plasminogen Kringle 5 by liquid chromatography and ammonium sulfate salting-out. Biomed Chromatogr 2013; 28:957-65. [PMID: 24311387 DOI: 10.1002/bmc.3101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/27/2013] [Accepted: 11/05/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Liujiao Bian
- College of Life Science; Northwest University; Xi'an 710069 China
| | - Xu Ji
- College of Life Science; Northwest University; Xi'an 710069 China
| | - Wei Hu
- Emergency Department; Shaan'xi Provincial People's Hospital; Xi'an 710068 China
| |
Collapse
|
39
|
Acidic/neutral amino acid residues substitution in NH2 terminal of plasminogen kringle 5 exerts enhanced effects on corneal neovascularization. Cornea 2013; 32:680-8. [PMID: 23343948 DOI: 10.1097/ico.0b013e3182781ec9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Recent results showed that plasminogen kringle 5 (K5) has improved inhibitory effect on human umbilical vein endothelial cells (HUVECs) viability when 5 acidic amino acids in NH2 terminal outside kringle domain were replaced by 5 serine residues (mutant K5, mK5). This study was designed to identify the enhanced antiangiogenic activity of mK5 in corneal neovascularization (CNV). METHODS Alkali burn-induced CNV was induced and treated with K5 and mK5 for 11 days. CNV and inflammation were evaluated by the CNV area and the inflammatory index, respectively. At the end of treatment, the corneas were removed for terminal deoxynucleotidyl transferase dUTP nick end labeling detection and immunohistochemistry. The effects of mK5 and K5 on HUVECs apoptosis were tested by MTT, BrdU, and flow cytometry. The expression levels of pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) were detected by Western blot. RESULTS In a rat model of CNV induced by alkali, topical treatment with mK5 significantly decreased the neovascular area and inflammation compared with the wild-type K5-treated group. Meanwhile, mK5 and K5 specifically inhibited the HUVECs proliferation and induced vascular endothelial cell apoptosis in vitro and in vivo, and mK5 exerted higher apoptosis induction. Toward the mechanism of action, both mK5 and K5 significantly upregulated the expression of PEDF and mildly downregulated the expression of VEGF. The elevation of PEDF/VEGF ratio induced by mK5 was higher than that by K5. CONCLUSIONS These findings suggest that mK5 has more effective therapeutic potential in CNV than wild-type K5.
Collapse
|
40
|
Tysome JR, Lemoine NR, Wang Y. Update on oncolytic viral therapy - targeting angiogenesis. Onco Targets Ther 2013; 6:1031-40. [PMID: 23940420 PMCID: PMC3737009 DOI: 10.2147/ott.s46974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) have the ability to selectively replicate in and lyse cancer cells. Angiogenesis is an essential requirement for tumor growth. Like OVs, the therapeutic effect of many angiogenesis inhibitors has been limited, leading to the development of more effective approaches to combine antiangiogenic therapy with OVs. Angiogenesis can be targeted either directly by OV infection of vascular endothelial cells, or by arming OVs with antiangiogenic transgenes, which are subsequently expressed locally in the tumor microenvironment. In this review, we describe the development and targeting of OVs, the role of angiogenesis in cancer, and the progress made in arming viruses with antiangiogenic transgenes. Future developments required to optimize this approach are addressed.
Collapse
Affiliation(s)
- James R Tysome
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom ; Department of Otolaryngology, Cambridge University Hospitals, Cambridge, United Kingdom ; Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, People's Republic of China
| | | | | |
Collapse
|
41
|
Wang R, Zhang K, Li S, Tong Z, Li G, Zhao Z, Zhao Y, Liu F, Lin X, Wang Z, Jiang Z. Apolipoprotein (a) impairs endothelial progenitor cell-mediated angiogenesis. DNA Cell Biol 2013; 32:243-51. [PMID: 23581552 DOI: 10.1089/dna.2013.1963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Improvement of blood flow and promotion of angiogenesis are important therapeutic measures for the treatment of ischemic peripheral vascular diseases. Since apolipoprotein (a) (apo (a)) is a glycoprotein with repetitive kringle domains exhibiting 75% to 98% structural homology with plasminogen (Plg), apo (a) may also have a negative effect on endothelial progenitor cell (EPC)-induced angiogenesis through Plg-like inhibitory effects on EPC proliferation, adhesion, migration, and angiogenesis. To evaluate the effect of apo (a) on EPCs-induced angiogenesis, EPCs were isolated from the bone marrow of apo (a) transgenic mice, wild-type litter mates, and normal mice. These cells were cultured without or with apo (a) before transplantation. Hindlimb ischemia models were surgically induced in mice, which then received an intravenous injection of 3×10(5) EPCs. At 3, 7, and 14 days post EPC transplantation, the adhesion, migration abilities, and capillary density in calf muscles were assessed. Results indicate that apo (a) significantly reduced the adhesion and migration abilities of EPCs. Furthermore, the tubule-like formation of EPCs on Matrigel gels was damaged. In vivo experiments showed the homing of EPCs to ischemic peripheral vascular, and the number of capillary vessels decreased significantly in apo(a) transgenic mice. This study demonstrated that apo (a) could attenuate the adhesion, migration, and homing abilities of EPCs and could impair the angiogenesis ability of EPCs.
Collapse
Affiliation(s)
- Ren Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu L, Boffa MB, Koschinsky ML. Apolipoprotein(a) inhibits in vitro tube formation in endothelial cells: identification of roles for Kringle V and the plasminogen activation system. PLoS One 2013; 8:e52287. [PMID: 23326327 PMCID: PMC3543409 DOI: 10.1371/journal.pone.0052287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/16/2012] [Indexed: 02/07/2023] Open
Abstract
Elevated plasma concentrations of lipoprotein(a) are associated with increased risk for atherothrombotic diseases. Apolipoprotein(a), the unique glycoprotein component of lipoprotein(a), is characterized by the presence of multiple kringle domains, and shares a high degree of sequence homology with the serine protease zymogen plasminogen. It has been shown that angiostatin, a proteolytic fragment of plasminogen containing kringles 1–4, can effectively inhibit angiogenesis. Moreover, proteolytic fragments of plasminogen containing kringle 5 are even more potent inhibitors of angiogenesis than angiostatin. Despite its strong similarity with plasminogen, the role of apolipoprotein(a) in angiogenesis remains controversial, with both pro- and anti-angiogenic effects reported. In the current study, we evaluated the ability of apolipoprotein(a) to inhibit VEGF- and angiopoietin-induced tube formation in human umbilical cord endothelial cells. A 17 kringle-containing form of recombinant apo(a) (17K), corresponding to a well-characterized, physiologically-relevant form of the molecule, effectively inhibited tube formation induced by either VEGF or angiopoietin-1. Using additional recombinant apolipoprotein(a) (r-apo(a)) variants, we demonstrated that this effect was dependent on the presence of an intact lysine-binding site in kringle V domain of apo(a), but not on the presence of the functional lysine-binding site in apo(a) kringle IV type 10; sequences within in the amino-terminal half of the molecule were also not required for the inhibitory effects of apo(a). We also showed that the apo(a)-mediated inhibition tube formation could be reversed, in part by the addition of plasmin or urokinase plasminogen activator, or by removal of plasminogen from the system. Further, we demonstrated that apo(a) treated with glycosidases to remove sialic acid was significantly less effective in inhibiting tube formation. This is the first report of a functional role for the glycosylation of apo(a) although the mechanisms underlying this observation remain to be determined in the context of angiogenesis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | - Michael B. Boffa
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
- * E-mail:
| | - Marlys L. Koschinsky
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
43
|
Cai WB, Zhang Y, Cheng R, Wang Z, Fang SH, Xu ZM, Yang X, Yang ZH, Ma JX, Shao CK, Gao GQ. Dual inhibition of plasminogen kringle 5 on angiogenesis and chemotaxis suppresses tumor metastasis by targeting HIF-1α pathway. PLoS One 2012; 7:e53152. [PMID: 23300882 PMCID: PMC3534244 DOI: 10.1371/journal.pone.0053152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 11/26/2012] [Indexed: 11/26/2022] Open
Abstract
We had demonstrated that plasminogen kringle 5 (K5), a potent angiogenic inhibitor, inhibited retinal neovascularization and hepatocellular carcinoma growth by anti-angiogenesis. The current study investigated the effects and the underlying mechanisms of K5 on both tumor growth and spontaneous pulmonary metastasis in Lewis lung carcinoma (LLC) implanted mouse model. Similarly, K5 could decrease expression of VEGF in LLC cells and grafted tissues and suppress tumor angiogenesis and growth. K5 had no direct effect on proliferation and apoptosis of LLC. However, K5 could significantly inhibit SDF-1α-induced chemotaxis movement of LLC cells and resulted in a great reduction of surface metastatic nodules and micrometastases in the lungs of LLC tumor-bearing mice. K5 also decreased expression of chemokine (C-X-C motif) receptor 4 (CXCR4) in LLC cells and grafted tissues. Furthermore, K5 down-regulated SDF-1α expression in metastatic lung tissues of LLC-bearing mice. Therefore, K5 may suppress tumor pulmonary metastasis through inhibiting SDF-1α-CXCR4 chemotaxis movement and down-regulation of VEGF. Moreover, the role of hypoxia inducible factor-1α (HIF-1α), a crucial transcriptional factor for both VEGF and CXCR4 expression, was evaluated. The siRNA of HIF-1α attenuated expression of VEGF and CXCR4 and inhibited LLC migration. K5 decreased HIF-1α protein level and impaired nuclear HIF-1α accumulation. These results showed for the first time that K5 inhibits LLC growth and metastasis via the dual effects of anti-angiogenesis and suppression of tumor cell motility by targeting the pivotal molecule, HIF-1α.
Collapse
Affiliation(s)
- Wei-Bin Cai
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rui Cheng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zheng Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shu-Huan Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- DME Center, Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zu-Min Xu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, China
| | - Zhong-Han Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Chun-Kui Shao
- Department of Pathology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (GQG); (CKS)
| | - Guo-Quan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- * E-mail: (GQG); (CKS)
| |
Collapse
|
44
|
Gonzalez-Gronow M, Ray R, Wang F, Pizzo SV. The voltage-dependent anion channel (VDAC) binds tissue-type plasminogen activator and promotes activation of plasminogen on the cell surface. J Biol Chem 2012; 288:498-509. [PMID: 23161549 DOI: 10.1074/jbc.m112.412502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The voltage-dependent anion channel (VDAC), a major pore-forming protein in the outer membrane of mitochondria, is also found in the plasma membrane of a large number of cells where in addition to its role in regulating cellular ATP release and volume control it is important for maintaining redox homeostasis. Cell surface VDAC is a receptor for plasminogen kringle 5, which promotes partial closure of the channel. In this study, we demonstrate that VDAC binds tissue-type plasminogen activator (t-PA) on human neuroblastoma SK-N-SH cells. Binding of t-PA to VDAC induced a decrease in K(m) and an increase in the V(max) for activation of its substrate, plasminogen (Pg). This resulted in accelerated Pg activation when VDAC, t-PA, and Pg were bound together. VDAC is also a substrate for plasmin; hence, it mimics fibrin activity. Binding of t-PA to VDAC occurs between a t-PA fibronectin type I finger domain located between amino acids Ile(5) and Asn(37) and a VDAC region including amino acids (20)GYGFG(24). These VDAC residues correspond to a GXXXG repeat motif commonly found in amyloid β peptides that is necessary for aggregation when these peptides form fibrillar deposits on the cell surface. Furthermore, we also show that Pg kringle 5 is a substrate for the NADH-dependent reductase activity of VDAC. This ternary complex is an efficient proteolytic complex that may facilitate removal of amyloid β peptide deposits from the normal brain and cell debris from injured brain tissue.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
45
|
Targeted antivascular therapy with the apolipoprotein(a) kringle V, rhLK8, inhibits the growth and metastasis of human prostate cancer in an orthotopic nude mouse model. Neoplasia 2012; 14:335-43. [PMID: 22577348 DOI: 10.1593/neo.12380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
Antivascular therapy has emerged as a rational strategy to improve the treatment of androgen-independent prostate cancer owing to the necessity of establishing a vascular network for the growth and progression of the primary and metastatic tumor. We determined whether recombinant human apolipoprotein(a) kringle V, rhLK8, produces therapeutic efficacy in an orthotopic human prostate cancer animal model. Fifty thousand androgen-independent human prostate cancer cells (PC-3MM2) were injected into the prostate of nude mice. After 3 days, these mice were randomized to receive the vehicle solution (intraperitoneally [i.p.], daily), paclitaxel (8 mg/kg i.p., weekly), rhLK8 (50 mg/kg i.p., daily), or a combination of paclitaxel and rhLK8 for 4 weeks. Treatment with paclitaxel or rhLK8 alone did not show significant therapeutic effects on tumor incidence or on tumor size compared with the control group. The combination of rhLK8 and paclitaxel significantly reduced tumor size and incidence of lymph node metastasis. Significant reduction in microvessel density and cellular proliferation and induction of apoptosis of tumor cells, and tumor-associated endothelial cells, were also achieved. Similarly, PC-3MM2 tumors growing in the tibia showed significant suppression of tumor growth and lymph node metastasis by the combination treatment with rhLK8 and paclitaxel. The integrity of the bone was significantly preserved, and apoptosis of tumor cells and tumor-associated endothelial cells was increased. In conclusion, these results suggest that targeting the tumor microenvironment with the antivascular effect of rhLK8 combined with conventional cytotoxic chemotherapy could be a new and effective approach in the treatment of androgen-independent prostate cancer and their metastases.
Collapse
|
46
|
Schmitz V, Sauerbruch T, Raskopf E. Anti-tumoural effects of PlgK1-5 are directly linked to reduced ICAM expression, resulting in hepatoma cell apoptosis. Int J Colorectal Dis 2012; 27:1029-38. [PMID: 22451253 DOI: 10.1007/s00384-012-1418-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE Angiostatin and angiostatin-like molecules are known as anti-angiogenic factors, which inhibit endothelial cell functions resulting in reduced tumour growth. Recent data indicate that these molecules, especially PlgK1-5, directly affect tumour cells, which could explain the strong anti-tumoural effects of PlgK1-5. Therefore, we have analysed whether PlgK1-5 alters tumour cell functions and expression levels of cell adhesion molecules in murine and human hepatoma cells in vitro and in vivo. METHODS First, effects on tumour growth, proliferation and apoptosis were investigated in vivo in a subcutaneous tumour model. In vitro, effects of PlgK1-5 on tumour cell apoptosis, clonal expansion, migration, corresponding ICAM expression and intracellular signal transduction in murine Hepa129 and human HuH7 hepatoma cells have been analysed. RESULTS In vivo, subcutaneous tumour growth was reduced by 75% in PlgK1-5-treated animals compared to the controls. This was accompanied by increased tumour cell apoptosis (up to 33%) and decreased tumour cell proliferation (by up to 21%). In vitro, PlgK1-5 induced apoptosis in hepatoma cells, corresponding to increased caspase-8 cleavage and reduced AKT phosphorylation. Migration and clonal expansion was also diminished in PlgK1-5-treated Hepa129, corresponding to decreased ICAM expression levels. CONCLUSIONS Here, we show that PlgK1-5 directly affects tumour cells by decreasing cell adhesion resulting-at least partly-in apoptosis. This is mediated by altered intracellular signal transduction and by activation of the caspase cascade. These findings further underscore the potential therapeutic role of PlgK1-5 in the treatment of HCC.
Collapse
Affiliation(s)
- Volker Schmitz
- Department of Internal Medicine I, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | | | | |
Collapse
|
47
|
Lin YL, Tsai MJ, Lo MJ, Chang SE, Shih YH, Lee MJ, Kuo HS, Kuo WC, Huang WC, Cheng H, Huang MC. Evaluation of the antiangiogenic effect of Kringle 1-5 in a rat glioma model. Neurosurgery 2012; 70:479-89; discussion 489-90. [PMID: 21796002 DOI: 10.1227/neu.0b013e31822f3aea] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Kringle 1-5 (K1-5) is a potent antiangiogenesis factor for treating breast cancer and hepatocellular carcinoma. However, its use in treating brain tumors has not been studied. OBJECTIVE To evaluate whether K1-5 is effective at treating gliomas. METHODS The effects of K1-5 on cell morphology and cytotoxicity with or without lipopolysaccharide were tested in primary mixed neuronal-glial cultures. The antiglioma activity of K1-5 was evaluated by intra-arterial administration of K1-5 at 4 days after implantation of C6 glioma cells into the rat hippocampus. In 1 group of animals, tumor size, tumor vasculature, and tumor histology were evaluated on day 12. Animal survival was assessed in the other group. RESULTS In vitro studies showed that K1-5 did not induce cytotoxicity in neurons and glia. In vivo studies demonstrated that K1-5 reduced vessel length and vessel density and inhibited perivascular tumor invasion. In addition, K1-5 normalized vessel morphology, decreased expression of hypoxia-inducible factor-1α and vascular endothelial growth factor, decreased tumor hypoxia, and decreased pseudopalisading necrosis. The average tumor volume was smaller in the treated than in the untreated group. Furthermore, animals treated with K1-5 survived significantly longer. CONCLUSION Kringle 1-5 effectively reduces the growth of malignant gliomas in the rat. Although still far from translation in humans, K1-5 might be a possible future alternative treatment option for patients with gliomas.
Collapse
Affiliation(s)
- Yi-Lo Lin
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Joshi KK, Nanda JS, Kumar P, Sahni G. Substrate kringle-mediated catalysis by the streptokinase-plasmin activator complex: Critical contribution of kringle-4 revealed by the mutagenesis approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:326-33. [DOI: 10.1016/j.bbapap.2011.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/18/2011] [Accepted: 10/19/2011] [Indexed: 10/16/2022]
|
49
|
Gu X, Yao Y, Cheng R, Zhang Y, Dai Z, Wan G, Yang Z, Cai W, Gao G, Yang X. Plasminogen K5 activates mitochondrial apoptosis pathway in endothelial cells by regulating Bak and Bcl-x(L) subcellular distribution. Apoptosis 2011; 16:846-55. [PMID: 21656147 DOI: 10.1007/s10495-011-0618-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plasminogen Kringle 5(K5) is a proteolytic fragment of plasminogen, which displays potent anti-angiogenic activities. K5 has been shown to induce apoptosis in proliferating endothelial cells; however the exact mechanism has not been well explored. The present study was designed to elucidate the possible molecular mechanism of K5-induced endothelial cell apoptosis. Our results showed that K5 inhibited basic fibroblast growth factors activated in human umbilical vein endothelial cells (HUVECs), indicating proliferation in a dose-dependent manner and induced endothelial cell death via apoptosis. K5 exposure activated caspase 7, 8 and 9. These results suggested that both the intrinsic mitochondrial apoptosis pathway and extrinsic pathway might be involved in K5-induced apoptosis. K5 reduced mitochondrial membrane potential (MMP) of HUVECs, demonstrating mitochondrial depolarization in HUVECs. K5 increased the ratio of Bak to Bcl-x(L) on mitochondria, decreased the ratio in cytosol, and had no effect on the total amounts of these proteins. K5 also did not effect on Bax/Bcl-2 distribution. K5 increased the ratio of Bak to Bcl-x(L) on mitochondrial that resulted in mitochondrial depolarization, cytochrome c release and consequently the cleavage of caspase 9. These results suggested that K5 induces endothelial cell apoptosis at least in part via activating mitochondrial apoptosis pathway. The regulation of K5 on Bak and Bcl-x(L) distribution may play an important role in endothelial cell apoptosis. These results provide further insight into the anti-angiogenesis roles of K5 in angiogenesis-related ocular diseases and solid tumors.
Collapse
Affiliation(s)
- Xiaoqiong Gu
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jin J, Zhou KK, Park K, Hu Y, Xu X, Zheng Z, Tyagi P, Kompella UB, Ma JX. Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. Invest Ophthalmol Vis Sci 2011; 52:6230-7. [PMID: 21357401 DOI: 10.1167/iovs.10-6229] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the inhibitory effects of the nanoparticle-mediated delivery of plasminogen kringle 5 (K5) on choroidal neovascularization (CNV) and retinal inflammation. METHODS CNV was induced by laser in adult rats. Nanoparticles with an expression plasmid of K5 (K5-NP) were injected into the vitreous. K5 expression was detected by immunohistochemistry. The CNV area was measured after fluorescein angiography. Retinal vascular permeability was quantified with Evans blue as a tracer. Expression of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, and intercellular adhesion molecule (ICAM)-1 was measured by Western blot analysis or ELISA and real-time RT-PCR. RESULTS Intense K5 expression was detected in the retina 2 weeks after the injection of K5-NP. Areas of CNV were significantly decreased in the K5-NP treatment group compared with that in the control-NP group. The K5-NP injection also significantly reduced vascular permeability. The expression of VEGF was downregulated by K5-NP at both the protein and mRNA levels. Moreover, K5-NP also inhibited expression of TNF-α and ICAM-1. Similarly, K5-NP decreased retinal levels of total β-catenin. In cultured cells, K5-NP suppressed hypoxia-induced secretion of MCP-1 and TNF-α. CONCLUSIONS K5 has a novel anti-inflammatory activity. K5-NP mediates a sustained inhibitory effect on CNV and thus has therapeutic potential for age-related macular degeneration.
Collapse
Affiliation(s)
- Ji Jin
- Department of Ophthalmology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|