1
|
Wunderle V, Wilhelm T, Boukeileh S, Goßen J, Margreiter MA, Sakurov R, Capellmann S, Schwoerer M, Ahmed N, Bronneberg G, Arock M, Martin C, Schubert T, Levi-Schaffer F, Rossetti G, Tirosh B, Huber M. KIRA6 is an Effective and Versatile Mast Cell Inhibitor of IgE-mediated Activation. Eur J Immunol 2024:e202451348. [PMID: 39676406 DOI: 10.1002/eji.202451348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Mast cell (MC)-driven allergic diseases are constantly expanding and require the development of novel pharmacological MC stabilizers. Allergen/antigen (Ag)-triggered activation via crosslinking of the high-affinity receptor for IgE (FcεRI) is fundamentally regulated by SRC family kinases, for example, LYN and FYN, exhibiting positive and negative functions. We report that KIRA6, an inhibitor for the endoplasmic reticulum stress sensor IRE1α, suppresses IgE-mediated MC activation by inhibiting both LYN and FYN. KIRA6 attenuates Ag-stimulated early signaling and effector functions such as degranulation and proinflammatory cytokine production/secretion in murine bone marrow-derived MCs. Moreover, Ag-triggered bronchoconstriction in an ex vivo model and IgE-mediated stimulation of human MCs were repressed by KIRA6. The interaction of KIRA6 with three MC-relevant tyrosine kinases, LYN, FYN, and KIT, and the potential of KIRA6 structure as a pharmacophore for the development of respective single-, dual-, or triple-specificity inhibitors, was evaluated by homology modeling and molecular dynamics simulations. We found that KIRA6 particularly strongly binds the inactive state of LYN, FYN, and KIT with comparable affinities. In conclusion, our data suggest that the chemical structure of KIRA6 as a pharmacophore can be further developed to obtain an effective MC stabilizer.
Collapse
Affiliation(s)
- Veronika Wunderle
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Shatha Boukeileh
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonas Goßen
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael A Margreiter
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roman Sakurov
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sandro Capellmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Maike Schwoerer
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nabil Ahmed
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Gina Bronneberg
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | | - Giulia Rossetti
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Neurology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Boaz Tirosh
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Kerketta R, Erasmus MF, Wilson BS, Halasz AM, Edwards JS. Spatial Stochastic Model of the Pre-B Cell Receptor. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:683-693. [PMID: 35482702 PMCID: PMC10123485 DOI: 10.1109/tcbb.2022.3166149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Survival and proliferation of immature B lymphocytes requires expression and tonic signaling of the pre-B cell receptor (pre-BCR). This low level, ligand-independent signaling is likely achieved through frequent, but short-lived, homo interactions. Tonic signaling is also central in the pathology of precursor B acute lymphoblastic leukemia (B-ALL). In order to understand how repeated, transient events can lead to sustained signaling and to assess the impact of receptor accumulation induced by the membrane landscape, we developed a spatial stochastic model of receptor aggregation and downstream signaling events. Our rule- and agent-based model builds on previous mature BCR signaling models and incorporates novel parameters derived from single particle tracking of pre-BCR on surfaces of two different B-ALL cell lines, 697 and Nalm6. Live cell tracking of receptors on the two cell lines revealed characteristic differences in their dimer dissociation rates and diffusion coefficients. We report here that these differences affect pre-BCR aggregation and consequent signal initiation events. Receptors on Nalm6 cells, which have a lower off-rate and lower diffusion coefficient, more frequently form higher order oligomers than pre-BCR on 697 cells, resulting in higher levels of downstream phosphorylation in the Nalm6 cell line.
Collapse
|
3
|
Spassov DS, Ruiz-Saenz A, Piple A, Moasser MM. A Dimerization Function in the Intrinsically Disordered N-Terminal Region of Src. Cell Rep 2019; 25:449-463.e4. [PMID: 30304684 PMCID: PMC6226010 DOI: 10.1016/j.celrep.2018.09.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/09/2018] [Accepted: 09/12/2018] [Indexed: 01/30/2023] Open
Abstract
The mode of regulation of Src kinases has been elucidated by crystallographic studies identifying conserved structured protein modules involved in an orderly set of intramolecular associations and ligand interactions. Despite these detailed insights, much of the complex behavior and diversity in the Src family remains unexplained. A key missing piece is the function of the unstructured N-terminal region. We report here the function of the N-terminal region in binding within a hydrophobic pocket in the kinase domain of a dimerization partner. Dimerization substantially enhances autophosphorylation and phosphorylation of selected substrates, and interfering with dimerization is disruptive to these functions. Dimerization and Y419 phosphorylation are codependent events creating a bistable switch. Given the versatility inherent in this intrinsically disordered region, its multisite phosphorylations, and its divergence within the family, the unique domain likely functions as a central signaling hub overseeing much of the activities and unique functions of Src family kinases. Spassov et al. report that Src exists in cells and functions as a dimer and that dimerization and autophosphorylation are codependent events. Through a comprehensive structure-function analysis, they show that the dimer is an asymmetric dimer held through the interaction of the myristoylated N-terminal unique domain of one partner with a hydrophobic pocket in the kinase domain of another.
Collapse
Affiliation(s)
- Danislav S Spassov
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ana Ruiz-Saenz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amit Piple
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark M Moasser
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Felce JH, Sezgin E, Wane M, Brouwer H, Dustin ML, Eggeling C, Davis SJ. CD45 exclusion- and cross-linking-based receptor signaling together broaden FcεRI reactivity. Sci Signal 2018; 11:11/561/eaat0756. [PMID: 30563863 DOI: 10.1126/scisignal.aat0756] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For many years, the high-affinity receptor for immunoglobulin E (IgE) FcεRI, which is expressed by mast cells and basophils, has been widely held to be the exemplar of cross-linking (that is, aggregation dependent) signaling receptors. We found, however, that FcεRI signaling could occur in the presence or absence of receptor cross-linking. Using both cell and cell-free systems, we showed that FcεRI signaling was stimulated by surface-associated monovalent ligands through the passive, size-dependent exclusion of the receptor-type tyrosine phosphatase CD45 from plasma membrane regions of FcεRI-ligand engagement. Similarly to the T cell receptor, FcεRI signaling could also be initiated in a ligand-independent manner. These data suggest that a simple mechanism of CD45 exclusion-based receptor triggering could function together with cross-linking-based FcεRI signaling, broadening mast cell and basophil reactivity by enabling these cells to respond to both multivalent and surface-presented monovalent antigens. These findings also strengthen the case that a size-dependent, phosphatase exclusion-based receptor triggering mechanism might serve generally to facilitate signaling by noncatalytic immune receptors.
Collapse
Affiliation(s)
- James H Felce
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Madina Wane
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Heather Brouwer
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Simon J Davis
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK. .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
Gast M, Preisinger C, Nimmerjahn F, Huber M. IgG-Independent Co-aggregation of FcεRI and FcγRIIB Results in LYN- and SHIP1-Dependent Tyrosine Phosphorylation of FcγRIIB in Murine Bone Marrow-Derived Mast Cells. Front Immunol 2018; 9:1937. [PMID: 30210494 PMCID: PMC6119721 DOI: 10.3389/fimmu.2018.01937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/06/2018] [Indexed: 12/30/2022] Open
Abstract
Activation of the high-affinity receptor for IgE (FcεRI) follows a bell-shaped dose-response curve. Upon supra-optimal stimulation, mast cell effector responses are down-regulated by inhibitory molecules like the SH2-containing inositol-5'-phosphatase SHIP1 and the SRC-family-kinase LYN. To identify further molecules involved in a negative regulatory signalosome, we screened for proteins showing the same pattern of tyrosine phosphorylation as SHIP1, which is tyrosine-phosphorylated strongest upon supra-optimal antigen (Ag) stimulation. The low-affinity IgG receptor, FcγRIIB, was found to be most strongly phosphorylated under supra-optimal conditions. This phosphorylation is the consequence of passive, Ag/IgE-dependent and progressive co-localization of FcεRI and FcγRIIB, which is not dependent on IgG. Upon supra-optimal FcεRI cross-linking, FcγRIIB phosphorylation is executed by LYN and protected from dephosphorylation by SHIP1. Analysis of FcγRIIB-deficient bone marrow-derived mast cells revealed an ambiguous phenotype upon FcεRI cross-linking. Absence of FcγRIIB significantly diminished the level of SHIP1 phosphorylation and resulted in augmented Ca2+ mobilization. Though, degranulation and IL-6 production were only weakly altered. Altogether our data establish the LYN/FcγRIIB/SHIP1 signalosome in the context of FcεRI activation, particularly at supra-optimal Ag concentrations. The fact that SHIP1 tyrosine phosphorylation/activation not only depends on FcγRIIB, highlights the necessity for its tight backup control.
Collapse
Affiliation(s)
- Mathias Gast
- Medical Faculty, Institute of Biochemistry and Molecular Immunology, RWTH Aachen University, Aachen, Germany
| | | | - Falk Nimmerjahn
- Institute of Genetics at the Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Huber
- Medical Faculty, Institute of Biochemistry and Molecular Immunology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Nunes de Miranda SM, Wilhelm T, Huber M, Zorn CN. Differential Lyn-dependence of the SHIP1-deficient mast cell phenotype. Cell Commun Signal 2016; 14:12. [PMID: 27206658 PMCID: PMC4874025 DOI: 10.1186/s12964-016-0135-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/13/2016] [Indexed: 01/02/2023] Open
Abstract
Background Antigen (Ag)/IgE-mediated mast cell (MC) responses play detrimental roles in allergic diseases. MC activation via the high-affinity receptor for IgE (FcεRI) is controlled by the Src family kinase Lyn. Lyn-deficient (-/-) bone marrow-derived MCs (BMMCs) have been shown by various laboratories to exert stronger activation of the PI3K pathway, degranulation, and production of pro-inflammatory cytokines compared to wild-type (wt) cells. This mimics the phenotype of BMMCs deficient for the SH2-containing inositol-5’-phosphatase 1 (SHIP1). In this line, Lyn has been demonstrated to tyrosine-phosphorylate and activate SHIP1, thereby constituting a negative feedback control of PI3K-mediated signals. However, several groups have also reported on Lyn-/- BMMCs degranulating weaker than wt BMMCs. Results Lyn-/- BMMCs, which show a suppressed degranulation response, were found to exhibit abrogated tyrosine phosphorylation of SHIP1 as well. This indicated that even in the presence of reduced SHIP1 function MC degranulation is dependent on Lyn function. In contrast to the reduced immediate secretory response, pro-inflammatory cytokine production was augmented in Lyn-/- BMMCs. For closer analysis, Lyn/SHIP1-double-deficient (dko) BMMCs were generated. In support of the dominance of Lyn deficiency, dko BMMCs degranulated significantly weaker than SHIP1-/- BMMCs. This coincided with reduced LAT1 and PLC-γ1 phosphorylation as well as Ca2+ mobilization in those cells. Interestingly, activation of the NFκB pathway followed the same pattern as measured by IκBα phosphorylation/degradation as well as induction of NFκB target genes. This suggested that Ag-triggered NFκB activation involves a Ca2+-dependent step. Indeed, IκBα phosphorylation/degradation and NFκB target gene induction were controlled by the Ca2+-dependent phosphatase calcineurin. Conclusions Lyn deficiency is dominant over SHIP1 deficiency in MCs with respect to Ag-triggered degranulation and preceding signaling events. Moreover, the NFκB pathway and respective targets are activated in a Lyn- and Ca2+-dependent manner, reinforcing the importance of Lyn for MC activation. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0135-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susana M Nunes de Miranda
- Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Pauwelsstraße 30, Aachen, 52074, Germany.
| | - Carolin N Zorn
- Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Pauwelsstraße 30, Aachen, 52074, Germany
| |
Collapse
|
7
|
Blank U, Charles N, Benhamou M. The high-affinity immunoglobulin E receptor as pharmacological target. Eur J Pharmacol 2016; 778:24-32. [PMID: 26130123 DOI: 10.1016/j.ejphar.2015.05.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/29/2015] [Accepted: 05/17/2015] [Indexed: 01/02/2023]
|
8
|
Terada T, Takahashi T, Arikawa H, Era S. Analysis of the conformation and thermal stability of the high-affinity IgE Fc receptor β chain polymorphic proteins. Biosci Biotechnol Biochem 2016; 80:1356-61. [PMID: 26940508 DOI: 10.1080/09168451.2016.1153958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The high-affinity IgE Fc receptor (FcεRI) β chain acts as a signal amplifier through the immunoreceptor tyrosine-based activation motif in its C-terminal intracellular region. Polymorphisms in FcεRI β have been linked to atopy, asthma, and allergies. We investigated the secondary structure, conformation, and thermal stability of FcεRI β polymorphic (β-L172I, β-L174V, and β-E228G) proteins. Polymorphisms did not affect the secondary structure and conformation of FcεRI β. However, we calculated Gibbs free energy of unfolding (ΔGunf) and significant differences were observed in ΔGunf values between the wild-type FcεRI β (β-WT) and β-E228G. These results suggested that β-E228G affected the thermal stability of FcεRI β. The role of β-E228G in biological functions and its involvement in allergic reactions have not yet been elucidated in detail; therefore, differences in the thermal stability of β-E228G may affect the function of FcεRI β.
Collapse
Affiliation(s)
- Tomoyoshi Terada
- a Department of Physiology and Biophysics , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Teppei Takahashi
- a Department of Physiology and Biophysics , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Hajime Arikawa
- a Department of Physiology and Biophysics , Gifu University Graduate School of Medicine , Gifu , Japan.,b Department of Early Childhood Education , Chubu-gakuin College , Seki , Japan
| | - Seiichi Era
- a Department of Physiology and Biophysics , Gifu University Graduate School of Medicine , Gifu , Japan
| |
Collapse
|
9
|
Suzuki R, Scheffel J, Rivera J. New insights on the signaling and function of the high-affinity receptor for IgE. Curr Top Microbiol Immunol 2015; 388:63-90. [PMID: 25553795 DOI: 10.1007/978-3-319-13725-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustering of the high-affinity receptor for immunoglobulin E (FcεRI) through the interaction of receptor-bound immunoglobulin E (IgE) antibodies with their cognate antigen is required to couple IgE antibody production to cellular responses and physiological consequences. IgE-induced responses through FcεRI are well known to defend the host against certain infectious agents and to lead to unwanted allergic responses to normally innocuous substances. However, the cellular and/or physiological response of individuals that produce IgE antibodies may be markedly different and such antibodies (even to the same antigenic epitope) can differ in their antigen-binding affinity. How affinity variation in the interaction of FcεRI-bound IgE antibodies with antigen is interpreted into cellular responses and how the local environment may influence these responses is of interest. In this chapter, we focus on recent advances that begin to unravel how FcεRI distinguishes differences in the affinity of IgE-antigen interactions and how such discrimination along with surrounding environmental stimuli can shape the (patho) physiological response.
Collapse
Affiliation(s)
- Ryo Suzuki
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
10
|
Huber M, Gibbs BF. SHIP1 and the negative control of mast cell/basophil activation by supra-optimal antigen concentrations. Mol Immunol 2015; 63:32-7. [DOI: 10.1016/j.molimm.2014.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
11
|
Dema B, Suzuki R, Rivera J. Rethinking the role of immunoglobulin E and its high-affinity receptor: new insights into allergy and beyond. Int Arch Allergy Immunol 2014; 164:271-9. [PMID: 25227903 DOI: 10.1159/000365633] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunoglobulin E (IgE) and its high-affinity receptor (FcεRI) are well-known participants in the allergic response. The interaction of allergens with FcεRI-bound IgE antibodies is an essential step in mast cell/basophil activation and the subsequent release of allergic mediators. It is known that the affinity of the interaction between an IgE antibody and an allergen may differ, raising the question of whether FcεRI can decipher these differences. If so, do the cellular and physiological outcomes vary? Are the molecular mechanisms initiated by FcεRI similarly under low- or high-affinity interactions? Could the resulting inflammatory response differ? Recent discoveries summarized herein are beginning to shed new light on these important questions. What we have learned from them is that IgE and FcεRI form a complex regulatory network influencing the inflammatory response in allergy and beyond.
Collapse
Affiliation(s)
- Barbara Dema
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
12
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|
13
|
Ryan JJ. Too much of a good thing: beta-chain overexpression blocks FcεRI signalling by capturing Lyn in the cytosol. Clin Exp Allergy 2014; 44:154-6. [PMID: 24447079 DOI: 10.1111/cea.12248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
14
|
Okayama Y, Matsuda A, Kashiwakura JI, Sasaki-Sakamoto T, Nunomura S, Shimokawa T, Yamaguchi K, Takahashi S, Ra C. Highly expressed cytoplasmic FcεRIβ in human mast cells functions as a negative regulator of the FcRγ-mediated cell activation signal. Clin Exp Allergy 2014; 44:238-49. [DOI: 10.1111/cea.12210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Y. Okayama
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - A. Matsuda
- Department of Ophthalmology; Juntendo University School of Medicine; Tokyo Japan
| | - J.-I. Kashiwakura
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - T. Sasaki-Sakamoto
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - S. Nunomura
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - T. Shimokawa
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - K. Yamaguchi
- Department of Urology; Nihon University School of Medicine; Tokyo Japan
| | - S. Takahashi
- Department of Urology; Nihon University School of Medicine; Tokyo Japan
| | - C. Ra
- Department of Microbiology; Nihon University School of Medicine; Tokyo Japan
| |
Collapse
|
15
|
Abstract
Mast cells (MCs) are tissue-resident sentinels of hematopoietic origin that play a prominent role in allergic diseases. They express the high-affinity receptor for IgE (FcεRI), which when cross-linked by multivalent antigens triggers the release of preformed mediators, generation of arachidonic acid metabolites, and the synthesis of cytokines and chemokines. Stimulation of the FcεRI with increasing antigen concentrations follows a characteristic bell-shaped dose-responses curve. At high antigen concentrations, the so-called supra-optimal conditions, repression of FcεRI-induced responses is facilitated by activation and incorporation of negative signaling regulators. In this context, the SH2-containing inositol-5'-phosphatase, SHIP1, has been demonstrated to be of particular importance. SHIP1 with its catalytic and multiple protein interaction sites provides several layers of control for FcεRI signaling. Regulation of SHIP1 function occurs on various levels, e.g., protein expression, receptor and membrane recruitment, competition for protein-protein interaction sites, and activating modifications enhancing the phosphatase function. Apart from FcεRI-mediated signaling, SHIP1 can be activated by diverse unrelated receptor systems indicating its involvement in the regulation of antigen-dependent cellular responses by autocrine feedback mechanisms or tissue-specific and/or (patho-) physiologically determined factors. Thus, pharmacologic engagement of SHIP1 may represent a beneficial strategy for patients suffering from acute or chronic inflammation or allergies.
Collapse
|
16
|
Oppong E, Flink N, Cato ACB. Molecular mechanisms of glucocorticoid action in mast cells. Mol Cell Endocrinol 2013; 380:119-26. [PMID: 23707629 DOI: 10.1016/j.mce.2013.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023]
Abstract
Glucocorticoids are compounds that have successfully been used over the years in the treatment of inflammatory disorders. They are known to exhibit their effects through the glucocorticoid receptor (GR) that acts to downregulate the action of proinflammatory transcription factors such as AP-1 and NF-κB. The GR also exerts anti-inflammatory effects through activation of distinct genes. In addition to their anti-inflammatory actions, glucocorticoids are also potent antiallergic compounds that are widely used in conditions such as asthma and anaphylaxis. Nevertheless the mechanism of action of this hormone in these disorders is not known. In this article, we have reviewed reports on the effects of glucocorticoids in mast cells, one of the important immune cells in allergy. Building on the knowledge of the molecular action of glucocorticoids and the GR in the treatment of inflammation in other cell types, we have made suggestions as to the likely mechanisms of action of glucocorticoids in mast cells. We have further identified some important questions and research directions that need to be addressed in future studies to improve the treatment of allergic disorders.
Collapse
Affiliation(s)
- Emmanuel Oppong
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | | |
Collapse
|
17
|
Cruse G, Beaven MA, Ashmole I, Bradding P, Gilfillan AM, Metcalfe DD. A truncated splice-variant of the FcεRIβ receptor subunit is critical for microtubule formation and degranulation in mast cells. Immunity 2013; 38:906-17. [PMID: 23643722 DOI: 10.1016/j.immuni.2013.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/15/2013] [Indexed: 01/25/2023]
Abstract
Human linkage analyses have implicated the MS4A2-containing gene locus (encoding FcεRIβ) as a candidate for allergy susceptibility. We have identified a truncation of FcεRIβ (t-FcεRIβ) in humans that contains a putative calmodulin-binding domain and thus, we sought to identify the role of this variant in mast cell function. We determined that t-FcεRIβ is critical for microtubule formation and degranulation and that it may perform this function by trafficking adaptor molecules and kinases to the pericentrosomal and Golgi region in response to Ca2+ signals. Mutagenesis studies suggest that calmodulin binding to t-FcεRIβ in the presence of Ca2+ could be critical for t-FcεRIβ function. In addition, gene targeting of t-FcεRIβ attenuated microtubule formation, degranulation, and IL-8 production downstream of Ca2+ signals. Therefore, t-FcεRIβ mediates Ca2+ -dependent microtubule formation, which promotes degranulation and cytokine release. Because t-FcεRIβ has this critical function, it represents a therapeutic target for the downregulation of allergic inflammation.
Collapse
Affiliation(s)
- Glenn Cruse
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Huber M. Activation/Inhibition of mast cells by supra-optimal antigen concentrations. Cell Commun Signal 2013; 11:7. [PMID: 23339289 PMCID: PMC3598417 DOI: 10.1186/1478-811x-11-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/13/2013] [Indexed: 01/12/2023] Open
Abstract
Mast cells (MCs) are tissue resident cells of hemopoietic origin and are critically involved in allergic diseases. MCs bind IgE by means of their high-affinity receptor for IgE (FcεRI). The FcεRI belongs to a family of multi-chain immune recognition receptors and is activated by cross-linking in response to multivalent antigens (Ags)/allergens. Activation of the FcεRI results in immediate release of preformed granular substances (e.g. histamine, heparin, and proteases), generation of arachidonic acid metabolites, and production of pro-inflammatory cytokines. The FcεRI shows a remarkable, bell-shaped dose-response behavior with weak induction of effector responses at both low and high (so-called supra-optimal) Ag concentrations. This is significantly different from many other receptors, which reach a plateau phase in response to high ligand concentrations. To explain this unusual dose-response behavior of the FcεRI, scientists in the past have drawn parallels to so-called precipitin curves resulting from titration of Ag against a fixed concentration of antibody (Ab) in solution (a.k.a. Heidelberger curves). Thus, for high, supra-optimal Ag concentrations one could assume that every IgE-bound FcεRI formed a monovalent complex with “its own Ag”, thus resulting in marginal induction of effector functions due to absence of receptor cross-linking. However, this was never proven to be the case. More recently, careful studies of FcεRI activation and signaling events in MCs in response to supra-optimal Ag concentrations have suggested a molecular explanation for the descending part of this bell-shaped curve. It is obvious now that extensive FcεRI/IgE/Ag clusters are formed and inhibitory molecules and signalosomes are engaged in response to supra-optimal cross-linking (amongst them the Src family kinase Lyn and the inositol-5′-phosphatase SHIP1) and they actively down-regulate MC effector responses. Thus, the analysis of MC signaling triggered by supra-optimal crosslinking holds great potential for identifying novel targets for pharmacologic therapeutic intervention to benefit patients with acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Pauwelsstr, 30, 52074, Aachen, Germany.
| |
Collapse
|
19
|
Veatch SL, Chiang EN, Sengupta P, Holowka DA, Baird BA. Quantitative nanoscale analysis of IgE-FcεRI clustering and coupling to early signaling proteins. J Phys Chem B 2012; 116:6923-35. [PMID: 22397623 DOI: 10.1021/jp300197p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antigen-mediated cross-linking of IgE bound to its receptor, FcεRI, initiates a transmembrane signaling cascade that results in mast cell activation in the allergic response. Using immunogold labeling of intact RBL mast cells and scanning electron microscopy (SEM), we visualize molecular reorganization of IgE-FcεRI and early signaling proteins on both leaflets of the plasma membrane, without the need for ripped off membrane sheets. As quantified by pair correlation analysis, we observe dramatic changes in the nanoscale distribution of IgE-FcεRI after binding of multivalent antigen to stimulate transmembrane signaling, and this is accompanied by similar clustering of Lyn and Syk tyrosine kinases, and adaptor protein LAT. We find that Lyn co-redistributes with IgE-FcεRI into clusters that cross-correlate throughout 20 min of stimulation. Inhibition of tyrosine kinase activity reduces the numbers of both IgE-FcεRI and Lyn in stimulated clusters. Coupling of these proteins is also decreased when membrane cholesterol is reduced either before or after antigen addition. These results provide evidence for involvement of FcεRI phosphorylation and cholesterol-dependent membrane structure in the interactions that accompany IgE-mediated activation of RBL mast cells. More generally, this SEM view of intact cell surfaces provides new insights into the nanoscale organization of receptor-mediated signaling complexes in the plasma membrane.
Collapse
Affiliation(s)
- Sarah L Veatch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | | | |
Collapse
|
20
|
Bugajev V, Bambousková M, Dráberová L, Dráber P. What precedes the initial tyrosine phosphorylation of the high affinity IgE receptor in antigen-activated mast cell? FEBS Lett 2010; 584:4949-55. [PMID: 20828563 DOI: 10.1016/j.febslet.2010.08.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/23/2010] [Accepted: 08/31/2010] [Indexed: 01/24/2023]
Abstract
An interaction of multivalent antigen with its IgE bound to the high-affinity IgE receptor (FcεRI) on the surface of mast cells or basophils initiates a series of signaling events leading to degranulation and release of inflammatory mediators. Earlier studies showed that the first biochemically defined step in this signaling cascade is tyrosine phosphorylation of the FcεRI β subunit by Src family kinase Lyn. However, the processes affecting this step remained elusive. In this review we critically evaluate three current models (transphosphorylation, lipid raft, and our preferential protein tyrosine kinase-protein tyrosine phosphatase interplay model) substantiating three different mechanisms of FcεRI phosphorylation.
Collapse
Affiliation(s)
- Viktor Bugajev
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
21
|
Grochowy G, Hermiston ML, Kuhny M, Weiss A, Huber M. Requirement for CD45 in fine-tuning mast cell responses mediated by different ligand–receptor systems. Cell Signal 2009; 21:1277-86. [DOI: 10.1016/j.cellsig.2009.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 01/09/2023]
|
22
|
Pérez Y, Gairí M, Pons M, Bernadó P. Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 2009; 391:136-48. [PMID: 19520085 DOI: 10.1016/j.jmb.2009.06.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 11/17/2022]
Abstract
The N-terminal regions of the members of Src family of non-receptor protein tyrosine kinases are intrinsically unfolded and contain the maximum sequence divergence among them. In this study, we have addressed the structural characterization by nuclear magnetic resonance of this region of 84 residues that encompasses the SH4 and the unique domains (USrc) of the human c-Src. With this aim, the backbone assignment was performed using (13)C-detected experiments that overcome the spectral resolution problems and the large number of prolines that are typical for intrinsically unfolded proteins. The analysis of the residual dipolar couplings measured for the USrc indicates the presence of a low populated helical structure in the 60-75 region. No long-range contacts between remote fragments of the chain were detected with paramagnetic relaxation enhancement experiments. The structural characterization was extended to two different phosphorylation states of USrc that encompassed three different phosphorylated sites, Ser17, Thr37, and Ser75. The structural and conformational changes upon phosphorylation were monitored through chemical shift perturbations and residual dipolar couplings, indicating that modifications occur at local level and no global rearrangements were apparent. These results suggest a scenario where phosphorylation induces a global electrostatic perturbation that could be involved in the membrane unbinding of c-Src and that could be related with the localization of the enzyme. These observations suggest the unique domain of Src kinases as a source of selectivity and reinforce the relevant role of intrinsically disordered proteins in biological processes.
Collapse
Affiliation(s)
- Yolanda Pérez
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Baldiri Reixac 10, Barcelona, Spain
| | | | | | | |
Collapse
|
23
|
Lee JH, Kim JW, Ko NY, Mun SH, Her E, Kim BK, Han JW, Lee HY, Beaven MA, Kim YM, Choi WS. Curcumin, a constituent of curry, suppresses IgE-mediated allergic response and mast cell activation at the level of Syk. J Allergy Clin Immunol 2008; 121:1225-31. [DOI: 10.1016/j.jaci.2007.12.1160] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 11/25/2022]
|
24
|
Suzuki Y, Yoshimaru T, Inoue T, Nunomura S, Ra C. The high-affinity immunoglobulin E receptor (FcɛRI) regulates mitochondrial calcium uptake and a dihydropyridine receptor-mediated calcium influx in mast cells: Role of the FcɛRIβ chain immunoreceptor tyrosine-based activation motif. Biochem Pharmacol 2008; 75:1492-503. [DOI: 10.1016/j.bcp.2007.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/03/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
|
25
|
Kuehn HS, Gilfillan AM. G protein-coupled receptors and the modification of FcepsilonRI-mediated mast cell activation. Immunol Lett 2007; 113:59-69. [PMID: 17919738 DOI: 10.1016/j.imlet.2007.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 08/16/2007] [Indexed: 12/17/2022]
Abstract
By releasing multiple pro-inflammatory mediators upon activation, mast cells are critical effector cells in the pathogenesis of allergic inflammation. The traditional viewpoint of antigen-dependent mast cell activation is that of a Th(2)-driven process whereby antigen-specific IgE molecules are produced by B cells followed by binding of the IgE to high affinity IgE receptors (FcepsilonRI) expressed on mast cells. Subsequent antigen-dependent aggregation of the FcepsilonRI initiates an intracellular signalling cascade that culminates in mediator release. Mast cell responses, including cell growth, survival, chemotaxis, and cell adhesion, however, can also be regulated by other receptors expressed on mast cells. Furthermore, FcepsilonRI-mediated mast cell mediator release can be significantly modified by ligation of specific classes of these receptors. One such class of receptors is the G protein-coupled receptors (GPCR). In this review, we describe how sub-populations of GPCRs can either enhance or inhibit FcepsilonRI-mediated mast cell activation depending on the particular G protein utilized for relaying signalling. Furthermore, we discuss the potential mechanisms whereby the signalling responses utilized by the FcepsilonRI for mast cell activation are influenced by those initiated by GPCRs to produce these diverse responses.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | | |
Collapse
|
26
|
Holowka D, Sil D, Torigoe C, Baird B. Insights into immunoglobulin E receptor signaling from structurally defined ligands. Immunol Rev 2007; 217:269-79. [PMID: 17498065 DOI: 10.1111/j.1600-065x.2007.00517.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The asymmetrical structure of bent immunoglobulin E (IgE) bound to its high-affinity receptor, Fc epsilon RI, suggests a possible role for this configuration in the regulation of signaling mediated by cross-linking of Fc epsilon RI on the surface of mast cells and basophils. Indeed, the presence of bound IgE strongly influences the capacity of cross-linked Fc epsilon RI dimers to trigger mast cell degranulation, implicating orientational constraints by bound IgE. Bivalent ligands that cross-link by binding to bivalent IgE can form linear and cyclic chains of IgE/Fc epsilon RI complexes, and these exhibit only limited capacity to stimulate downstream signaling and degranulation, whereas structurally analogous trivalent ligands, which can form branched networks of cross-linked IgE/Fc epsilon RI complexes, are more effective at cell activation. Long bivalent ligands with flexible spacers can form intramolecular cross-links with IgE, and these stable 1:1 complexes are very potent inhibitors of mast cell degranulation stimulated by multivalent antigen. In contrast, trivalent ligands with rigid double-stranded DNA spacers effectively stimulate degranulation responses in a length-dependent manner, providing direct evidence for receptor transphosphorylation as a key step in the mechanism of signaling by Fc epsilon RI. Thus, studies with chemically defined oligovalent ligands show important features of IgE receptor cross-linking that regulate signaling, leading to mast cell activation.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA.
| | | | | | | |
Collapse
|
27
|
Lee JH, Kim YM, Kim NW, Kim JW, Her E, Kim BK, Kim JH, Ryu SH, Park JW, Seo DW, Han JW, Beaven MA, Choi WS. Phospholipase D2 acts as an essential adaptor protein in the activation of Syk in antigen-stimulated mast cells. Blood 2006; 108:956-64. [PMID: 16861349 PMCID: PMC1895856 DOI: 10.1182/blood-2005-10-009159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mast cells are responsible for IgE-mediated allergic reactions. Phospholipase D1 (PLD1) and PLD2 regulate mast cell activation, but the mechanisms remain unclear. Here we show that PLD2 associates with and promotes activation of Syk, a key enzyme in mast cell activation. Antigen stimulation resulted in increased association and colocalization of Syk with PLD2 on the plasma membrane as indicated by coimmunoprecipitation and confocal microscopy. This association was dependent on tyrosine phosphorylation of Syk but not on PLD2 activity. In vitro, PLD2 interacted via its Phox homology (PX) domain with recombinant Syk to induce phosphorylation and activation of Syk. Furthermore, overexpression of PLD2 or catalytically inactive PLD2K758R enhanced antigen-induced phosphorylations of Syk and its downstream targets, the adaptor proteins LAT and SLP-76, while expression of a PLD2 siRNA blocked these phosphorylations. Apparently, the interaction of PLD2 with Syk is an early critical event in the activation of mast cells.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 380-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kovarova M, Wassif CA, Odom S, Liao K, Porter FD, Rivera J. Cholesterol deficiency in a mouse model of Smith-Lemli-Opitz syndrome reveals increased mast cell responsiveness. ACTA ACUST UNITED AC 2006; 203:1161-71. [PMID: 16618793 PMCID: PMC2121200 DOI: 10.1084/jem.20051701] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutation of the 3β-hydroxysterol Δ7-reductase gene (Dhcr7−/−) results in Smith-Lemli-Opitz syndrome (SLOS). Patients, and genetically altered mice, are unable to produce cholesterol and accumulate 7-dehydrocholesterol (DHC) in serum and tissue. This causes multiple growth and developmental abnormalities as well as immune system anomalies including allergy. Because cholesterol is a key component of liquid-ordered membranes (lipid rafts) and these domains have been implicated in regulating mast cell activation, we examined whether mast cell responsiveness is altered in this model. Mast cells derived from Dhcr7−/− mice (DHCR KO) showed constitutive cytokine production and hyper-degranulation after stimulation of the high affinity IgE receptor (FcɛRI). DHCR KO mast cells, but not wild-type mast cells, accumulated DHC in lipid rafts. DHC partially disrupted lipid raft stability and displaced Lyn kinase protein and activity from lipid rafts. This led to down-regulation of some Lyn-dependent signaling events but increased Fyn kinase activity and Akt phosphorylation. The Lyn-dependent phosphorylation of Csk-binding protein, which negatively regulates Fyn activity, was decreased. This phenotype reproduces some of the characteristics of Lyn-null mast cells, which also demonstrate hyper-degranulation. These findings provide the first evidence of lipid raft dysfunction in SLOS and may explain the observed association of allergy with SLOS.
Collapse
Affiliation(s)
- Martina Kovarova
- Molecular Inflammation Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Holowka D, Gosse JA, Hammond AT, Han X, Sengupta P, Smith NL, Wagenknecht-Wiesner A, Wu M, Young RM, Baird B. Lipid segregation and IgE receptor signaling: A decade of progress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:252-9. [PMID: 16054713 DOI: 10.1016/j.bbamcr.2005.06.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/11/2005] [Accepted: 06/15/2005] [Indexed: 11/25/2022]
Abstract
Recent work to characterize the roles of lipid segregation in IgE receptor signaling has revealed a mechanism by which segregation of liquid ordered regions from disordered regions of the plasma membrane results in protection of the Src family kinase Lyn from inactivating dephosphorylation by a transmembrane tyrosine phosphatase. Antigen-mediated crosslinking of IgE receptors drives their association with the liquid ordered regions, commonly called lipid rafts, and this facilitates receptor phosphorylation by active Lyn in the raft environment. Previous work showed that the membrane skeleton coupled to F-actin regulates stimulated receptor phosphorylation and downstream signaling processes, and more recent work implicates cytoskeletal interactions with ordered lipid rafts in this regulation. These and other results provide an emerging view of the complex role of membrane structure in orchestrating signal transduction mediated by immune and other cell surface receptors.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853-1301, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vonakis BM, Gibbons SP, Rotté MJ, Brothers EA, Kim SC, Chichester K, MacDonald SM. Regulation of rat basophilic leukemia-2H3 mast cell secretion by a constitutive Lyn kinase interaction with the high affinity IgE receptor (Fc epsilon RI). THE JOURNAL OF IMMUNOLOGY 2005; 175:4543-54. [PMID: 16177098 DOI: 10.4049/jimmunol.175.7.4543] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling through the high affinity IgE receptor is initiated by noncovalently associated Lyn kinase, resulting in the secretion of inflammatory mediators from mast cells. A fraction of the total cellular Lyn is associated via its N-terminal unique domain with the cytoplasmic domain of the Fc epsilonRI beta subunit before receptor aggregation. In the current study, we stably transfected the unique domain of Lyn into rat basophilic leukemia-2H3 mast cells and examined the consequences on Fc epsilonRI-induced signal transduction and mediator secretion to further define the role of the unique domain of Lyn in mast cell secretion. Tyrosine phosphorylation of Fc epsilonRI beta and gamma subunits was partially inhibited in the Lyn unique domain transfectants after Ag stimulation. Ag stimulation of Lyn unique domain transfectants was accompanied by enhanced phosphorylation of MEK and ERK-2, which are required for leukotriene C4 (LTC4) release, and production of LTC4 was increased 3- to 5-fold, compared with cells transfected with vector alone. Conversely, tyrosine phosphorylation of the adaptor protein Gab2, which is essential for mast cell degranulation, was inhibited after Ag stimulation of Lyn unique domain transfectants, and Ag-induced release of histamine was inhibited up to 48%. In rat basophilic leukemia-2H3 cells, Lyn thus plays a dual role by positively regulating Fc epsilonRI phosphorylation and degranulation while negatively regulating LTC4 production. This study provides further evidence that the constitutive interaction between the unique domain of Lyn and the Fc epsilonRI beta subunit is a crucial step in the initiation of Fc epsilonRI signaling and that Lyn is limiting for Fc epsilonRI-induced secretion of inflammatory mediators.
Collapse
Affiliation(s)
- Becky M Vonakis
- Johns Hopkins University Asthma and Allergy Center, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Andruzzi L, Senaratne W, Hexemer A, Sheets ED, Ilic B, Kramer EJ, Baird B, Ober CK. Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:2495-2504. [PMID: 15752045 DOI: 10.1021/la047574s] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The nitroxide-mediated polymerization of styrenic monomers containing oligo(ethylene glycol) (OEGn) moieties was chosen for the preparation of biocompatible polymer brushes tethered to silicon oxide surfaces due to the broad range of monomer structures available and the use of a nonmetallic initiator. These surfaces were characterized by near-edge X-ray absorption fine structure and water contact angle measurements. The biocompatibility of these grown polymer brushes was studied and compared with deposited assemblies of surface-bound OEGn-terminated silanes with selected chain lengths. Grown polymer brushes with short OEGn side chains suppressed protein adsorption significantly more than the deposited assemblies of short OEGn chains, and this was attributed to higher surface coverage by the brushes. Cell adhesion studies confirmed that OEGn-containing polymer brushes are particularly effective in preventing nonspecific adhesion. Studies of protein adsorption and cell localization carried out with specific ligands on surfaces patterned demonstrated the potential of these surface-tethered polymer brushes for the formation of micro- and nanoscale devices.
Collapse
Affiliation(s)
- Luisa Andruzzi
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Furumoto Y, Gonzalez-Espinosa C, Gomez G, Kovarova M, Odom S, Parravicini V, Ryana JJ, Rivera J. Rethinking the role of Src family protein tyrosine kinases in the allergic response: new insights on the functional coupling of the high affinity IgE receptor. Immunol Res 2005; 30:241-53. [PMID: 15477664 DOI: 10.1385/ir:30:2:241] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antigen-induced cross-linking of immunoglobulin E (IgE) antibodies bound to the high-affinity IgE receptor (FcepsilonRI), on mast cells results in the release of mediators that initiate an inflammatory response. This normal immune response has been abducted by immunological adaptation, through the production of IgE antibodies to normally innocuous substances, to cause allergic disease. Therefore, understanding the molecular requirements in IgE-dependent mast-cell activation holds promise for therapeutic intervention in disease. Recent investigation on the functional coupling of FcepsilonRI to the intracellular signaling apparatus has provided paradigm-altering insights on the importance and function of Src family protein tyrosine kinases (Src PTK) in mast-cell activation. In this synopsis, we review the current knowledge on the role of the Src PTKs, Fyn and Lyn, in mast-cell activation and discuss the implications of our findings on allergic disease.
Collapse
Affiliation(s)
- Yasuko Furumoto
- Molecular Inflammation Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Young RM, Zheng X, Holowka D, Baird B. Reconstitution of regulated phosphorylation of FcepsilonRI by a lipid raft-excluded protein-tyrosine phosphatase. J Biol Chem 2004; 280:1230-5. [PMID: 15537644 DOI: 10.1074/jbc.m408339200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To examine the exquisite regulation of IgE-FcepsilonRI tyrosine phosphorylation by Lyn kinase that is stimulated by antigen-mediated cross-linking, we utilized co-expression of FcepsilonRI and Lyn in Chinese hamster ovary cells, which results in high basal levels of Lyn kinase activity and spontaneous phosphorylation of FcepsilonRI. We found that co-expression of a lipid raft-excluded transmembrane tyrosine phosphatase, PTPalpha, suppresses Lyn kinase activity and markedly reduces the level of spontaneous phosphorylation of FcepsilonRI, while facilitating its antigen-stimulated phosphorylation. Other tyrosine phosphatases, including SHP-1, CD45, and a lipid raft-preferring chimeric version of PTPalpha fail to reconstitute antigen-dependent FcepsilonRI phosphorylation. We concluded that both substrate specificity and submembrane location are critical to phosphatase-mediated regulation of Lyn kinase activity that supports activation of FcepsilonRI.
Collapse
Affiliation(s)
- Ryan M Young
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
34
|
Furumoto Y, Nunomura S, Terada T, Rivera J, Ra C. The FcepsilonRIbeta immunoreceptor tyrosine-based activation motif exerts inhibitory control on MAPK and IkappaB kinase phosphorylation and mast cell cytokine production. J Biol Chem 2004; 279:49177-87. [PMID: 15355979 DOI: 10.1074/jbc.m404730200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity IgE Fc receptor (FcepsilonRI) beta chain functions as a signal amplifier and has been linked to atopy, asthma, and allergy. Herein, we report on a previously unrecognized negative regulatory role for the nonconventional beta chain immunoreceptor tyrosine-based activation motif that contains three tyrosine residues (YX5YX3Y). Degranulation and leukotriene production was found to be impaired in cells expressing the mutated FcepsilonRIbeta immunoreceptor tyrosine-based activation motifs FYY, YYF, FYF, and FFF. In contrast, cytokine synthesis and secretion were enhanced in the YFY and FFF mutants. FcepsilonRI phosphorylation and Lyn kinase co-immunoprecipitation was intact in the YFY mutant but was lost in the FYF and FFF mutants. The phosphorylation of Syk, LAT, phospholipase gamma1/2, and Srchomology 2 domain-containing protein phosphatase 2 was intact, whereas the phosphorylation of SHIP-1 was significantly reduced in the YFY mutant cells. The FYF and FFF mutants were defective in phosphorylating all of these molecules. In contrast, the phosphorylation of ERK, p38 MAPK, IkappaB kinase beta (IKKbeta), and nuclear NFkappaB activity was enhanced in the YFY and FFF mutants. These findings show that the FcepsilonRIbeta functions to both selectively amplify (degranulation and leukotriene secretion) and dampen (lymphokine) mast cell effector responses.
Collapse
Affiliation(s)
- Yasuko Furumoto
- Molecular Inflammation Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
35
|
On M, Billingsley JM, Jouvin MH, Kinet JP. Molecular dissection of the FcRbeta signaling amplifier. J Biol Chem 2004; 279:45782-90. [PMID: 15339926 DOI: 10.1074/jbc.m404890200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human high affinity IgE receptors are expressed as two different isoforms: the tetrameric isoform, alphabetagamma(2), or the trimeric isoform, alphagamma(2). The alpha chain is the IgE binding subunit, whereas the FcRbeta and FcRgamma chains are the signaling modules. Both FcRbeta and FcRgamma contain immunoreceptor tyrosine-based activation motifs (ITAM), but the beta ITAM differs from canonical ITAMs in two ways; the spacing between the two canonical tyrosines harbors a third tyrosine, and it is one amino acid shorter than in canonical ITAMs, making it unfit to bind the tandem SH2 of Syk. We have shown that FcRbeta functions as an amplifier of the FcRgamma signaling function. However, the molecular mechanism of this amplification remains unclear. Here we show that mutation of the three tyrosines (Tyr-219, Tyr-225, and Tyr-229) in the beta ITAM essentially converts alphabetagamma(2)into an alphagamma(2) complex in terms of Lyn recruitment, FcRgamma phosphorylation, Syk activation, and calcium mobilization. Tyr-219 is the most critical residue in this regard. In addition, a detailed analysis of the dynamics of calcium mobilization suggests a possible inhibitory role for Tyr-225, which becomes apparent when Tyr-219 is mutated. Thus, the signaling amplification function of FcRbeta is mainly encoded in Tyr-219 and in its capacity to recruit Lyn. In turn, this Tyr-219-mediated Lyn recruitment enhances gamma chain phosphorylation, Syk activation, and calcium mobilization. The two other tyrosines appear to have a modulating function that remains to be fully assessed.
Collapse
Affiliation(s)
- Marina On
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
36
|
Kraft S, Rana S, Jouvin MH, Kinet JP. The role of the FcepsilonRI beta-chain in allergic diseases. Int Arch Allergy Immunol 2004; 135:62-72. [PMID: 15316148 DOI: 10.1159/000080231] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The high affinity receptor for IgE, FcepsilonRI, is a multimeric surface receptor that is expressed exclusively as a tetramer on rodent cells, but exists as a tetramer or trimer on human cells. The tetrameric form is expressed on effector cells of allergic responses such as mast cells and basophils and is composed of an IgE-binding alpha-subunit, a beta-subunit and a gamma-subunit dimer. Complexes lacking the beta-subunit are found on human antigen-presenting cells. On mast cells and basophils, FcepsilonRI is essential for IgE-mediated acute allergic reactions. Crosslinking of FcepsilonRI by IgE and multivalent antigen induces a signaling cascade that culminates in the release of preformed mediators and the synthesis of lipid mediators and cytokines. The beta-subunit functions as an amplifier of FcepsilonRI expression and signaling. As a consequence, strongly enhanced mast cell effector functions and in vivo allergic reactions can be observed in the presence of FcepsilonRIbeta. In contrast, a truncated beta-isoform (betaT) that is produced by alternative splicing acts as an inhibitor of FcepsilonRI surface expression. Thus, by producing two proteins with antagonistic functions, the FcepsilonRIbeta gene could serve as a potent regulator of allergic responses. In addition, the genomic region encompassing the beta-chain has been linked to atopy and a number of polymorphisms within the FcepsilonRIbeta gene are associated with various atopic diseases. It remains to be elucidated how these polymorphisms might affect the allergic phenotype. These functions of the beta-chain together with the described genetic linkages to atopy make it a candidate for a role in the pathophysiology of allergic diseases.
Collapse
Affiliation(s)
- Stefan Kraft
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
37
|
Goldstein B, Faeder JR, Hlavacek WS. Mathematical and computational models of immune-receptor signalling. Nat Rev Immunol 2004; 4:445-56. [PMID: 15173833 DOI: 10.1038/nri1374] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Byron Goldstein
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | |
Collapse
|
38
|
Hess ST, Sheets ED, Wagenknecht-Wiesner A, Heikal AA. Quantitative analysis of the fluorescence properties of intrinsically fluorescent proteins in living cells. Biophys J 2004; 85:2566-80. [PMID: 14507719 PMCID: PMC1303480 DOI: 10.1016/s0006-3495(03)74679-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The main potential of intrinsically fluorescent proteins (IFPs), as noninvasive and site-specific markers, lies in biological applications such as intracellular visualization and molecular genetics. However, photophysical studies of IFPs have been carried out mainly in aqueous solution. Here, we provide a comprehensive analysis of the intracellular environmental effects on the steady-state spectroscopy and excited-state dynamics of green (EGFP) and red (DsRed) fluorescent proteins, using both one- and two-photon excitation. EGFP and DsRed are expressed either in the cytoplasm of rat basophilic leukemia (RBL-2H3) mucosal mast cells or anchored (via LynB protein) to the inner leaflet of the plasma membrane. The fluorescence lifetimes (within approximately 10%) and spectra in live cells are basically the same as in aqueous solution, which indicate the absence of both IFP aggregation and cellular environmental effects on the protein folding under our experimental conditions. However, comparative time-resolved anisotropy measurements of EGFP reveal a cytoplasmic viscosity 2.5 +/- 0.3 times larger than that of aqueous solution at room temperature, and also provide some insights into the LynB-EGFP structure and the heterogeneity of the cytoplasmic viscosity. Further, the oligomer configuration and internal depolarization of DsRed, previously observed in solution, persists upon expression in these cells. DsRed also undergoes an instantaneous three-photon induced color change under 740-nm excitation, with efficiently nonradiative green species. These results confirm the implicit assumption that in vitro fluorescence properties of IFPs are essentially valid for in vivo applications, presumably due to the beta-barrel protection of the embodied chromophore. We also discuss the relevance of LynB-EGFP anisotropy for specialized domains studies in plasma membranes.
Collapse
Affiliation(s)
- Samuel T Hess
- School of Applied and Engineering Physics, Nanobiotechnology Center, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
39
|
Young RM, Holowka D, Baird B. A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J Biol Chem 2003; 278:20746-52. [PMID: 12670955 DOI: 10.1074/jbc.m211402200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane contains ordered lipid domains, commonly called lipid rafts, enriched in cholesterol, sphingolipids, and certain signaling proteins. Lipid rafts play a structural role in signal initiation by the high affinity receptor for IgE. Cross-linking of IgE-receptor complexes by antigen causes their coalescence with lipid rafts, where they are phosphorylated by the Src family tyrosine kinase, Lyn. To understand how lipid rafts participate in functional coupling between Lyn and FcepsilonRI, we investigated whether the lipid raft environment influences the specific activity of Lyn. We used differential detergent solubility and sucrose gradient fractionation to isolate Lyn from raft and nonraft regions of the plasma membrane in the presence or absence of tyrosine phosphatase inhibitors. We show that Lyn recovered from lipid rafts has a substantially higher specific activity than Lyn from nonraft environments. Furthermore, this higher specific activity correlates with increased tyrosine phosphorylation at the active site loop of the kinase domain. Based on these results, we propose that lipid rafts exclude a phosphatase that negatively regulates Lyn kinase activity by constitutive dephosphorylation of the kinase domain tyrosine residue of Lyn. In this model, cross-linking of FcepsilonRI promotes its proximity to active Lyn in a lipid raft environment.
Collapse
Affiliation(s)
- Ryan M Young
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
40
|
Donnadieu E, Jouvin MH, Rana S, Moffatt MF, Mockford EH, Cookson WO, Kinet JP. Competing functions encoded in the allergy-associated F(c)epsilonRIbeta gene. Immunity 2003; 18:665-74. [PMID: 12753743 DOI: 10.1016/s1074-7613(03)00115-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Allergic reactions are triggered via crosslinking of the high-affinity receptor for immunoglobulin E, F(c)epsilonRI. In humans, F(c)epsilonRI is expressed as a tetramer (alphabetagamma(2)) and a trimer (alphagamma(2)). The beta subunit is an amplifier of F(c)epsilonRI surface expression and signaling. Here, we show that as a consequence of alternative splicing, the F(c)epsilonRIbeta gene encodes two proteins with opposing and competing functions. One isoform is the full-length classical beta, the other a novel truncated form, beta(T). In contrast to beta, beta(T) prevents F(c)epsilonRI surface expression by inhibiting alpha chain maturation. Moreover, beta(T) competes with beta to control F(c)epsilonRI surface expression in vitro. We propose that the relative abundance of the products of the beta gene may control the level of F(c)epsilonRI surface expression and thereby influence susceptibility to allergic diseases.
Collapse
Affiliation(s)
- Emmanuel Donnadieu
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Faeder JR, Hlavacek WS, Reischl I, Blinov ML, Metzger H, Redondo A, Wofsy C, Goldstein B. Investigation of early events in Fc epsilon RI-mediated signaling using a detailed mathematical model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3769-81. [PMID: 12646643 DOI: 10.4049/jimmunol.170.7.3769] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aggregation of Fc epsilon RI on mast cells and basophils leads to autophosphorylation and increased activity of the cytosolic protein tyrosine kinase Syk. We investigated the roles of the Src kinase Lyn, the immunoreceptor tyrosine-based activation motifs (ITAMs) on the beta and gamma subunits of Fc epsilon RI, and Syk itself in the activation of Syk. Our approach was to build a detailed mathematical model of reactions involving Fc epsilon RI, Lyn, Syk, and a bivalent ligand that aggregates Fc(epsilon)RI. We applied the model to experiments in which covalently cross-linked IgE dimers stimulate rat basophilic leukemia cells. The model makes it possible to test the consistency of mechanistic assumptions with data that alone provide limited mechanistic insight. For example, the model helps sort out mechanisms that jointly control dephosphorylation of receptor subunits. In addition, interpreted in the context of the model, experimentally observed differences between the beta- and gamma-chains with respect to levels of phosphorylation and rates of dephosphorylation indicate that most cellular Syk, but only a small fraction of Lyn, is available to interact with receptors. We also show that although the beta ITAM acts to amplify signaling in experimental systems where its role has been investigated, there are conditions under which the beta ITAM will act as an inhibitor.
Collapse
Affiliation(s)
- James R Faeder
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Eglite S, Morin JM, Metzger H. Synthesis and secretion of monocyte chemotactic protein-1 stimulated by the high affinity receptor for IgE. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2680-7. [PMID: 12594297 DOI: 10.4049/jimmunol.170.5.2680] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In prior studies aggregation of the high affinity receptors for IgE, Fc epsilon RI, on a rat mast cell line, RBL-2H3, stimulated transcription of the gene for monocyte chemotactic protein-1 (MCP-1) and secretion of the protein. Unexpectedly, those delayed events appeared much less constrained by kinetic proofreading than had been documented for other receptor-initiated responses. The results of the present experiments are consistent with the proposal that the biosynthesis and secretion of MCP-1 result from a soluble messenger formed in the reaction cascades initiated by the receptor, and that Ca(2+) could serve as that messenger. Interestingly, whereas receptor-mediated signals were required for transcription of the gene for MCP-1 and secretion of the chemokine, such signals were not required for the intervening step of translation of its mRNA.
Collapse
Affiliation(s)
- Santa Eglite
- Section on Chemical Immunology, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Strzelecka-Kiliszek A, Kwiatkowska K, Sobota A. Lyn and Syk kinases are sequentially engaged in phagocytosis mediated by Fc gamma R. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6787-94. [PMID: 12471110 DOI: 10.4049/jimmunol.169.12.6787] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent data indicate that phagocytosis mediated by FcgammaRs is controlled by the Src and Syk families of protein tyrosine kinases. In this study, we demonstrate a sequential involvement of Lyn and Syk in the phagocytosis of IgG-coated particles. The particles isolated at the stage of their binding to FcgammaRs (4 degrees C) were accompanied by high amounts of Lyn, in addition to the signaling gamma-chain of FcgammaRs. Simultaneously, the particle binding induced rapid tyrosine phosphorylation of numerous proteins. During synchronized internalization of the particles induced by shifting the cell to 37 degrees C, Syk kinase and Src homology 2-containing tyrosine phosphatase-1 (SHP-1) were associated with the formed phagosomes. At this step, most of the proteins were dephosphorylated, although some underwent further tyrosine phosphorylation. Quantitative immunoelectron microscopy studies confirmed that Lyn accumulated under the plasma membrane beneath the bound particles. High amounts of the gamma-chain and tyrosine-phosphorylated proteins were also observed under the bound particles. When the particles were internalized, the gamma-chain was still detected in the region of the phagosomes, while amounts of Lyn were markedly reduced. In contrast, the vicinity of the phagosomes was heavily decorated with anti-Syk and anti-SHP-1 Abs. The local level of protein tyrosine phosphorylation was reduced. The data indicate that the accumulation of Lyn during the binding of IgG-coated particles to FcgammaRs correlated with strong tyrosine phosphorylation of numerous proteins, suggesting an initiating role for Lyn in protein phosphorylation at the onset of the phagocytosis. Syk kinase and SHP-1 phosphatase are mainly engaged at the stage of particle internalization.
Collapse
|
44
|
Abstract
IgE-dependent activation of mast cells is central to the allergic response. The engagement of IgE-occupied receptors initiates a series of molecular events that cause the release of preformed, and de novo synthesis of, allergic mediators. Recent investigations demonstrate a critical role for non-enzymatic proteins that facilitate the activation and coordination of biochemical signals required for mast cell activation. Among these LAT, SLP-76 and Gab2 are critically important as adapters that facilitate events initiated by IgE receptor-dependent activation of Src family protein tyrosine kinases, Lyn and Fyn. An evaluation of the role of these adapters points to complementary but independent steps in early signaling and the possibility that preference for one or another adaptor complex may result in selective mast cell responses.
Collapse
Affiliation(s)
- Juan Rivera
- Molecular Inflammation Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-1820, USA.
| |
Collapse
|
45
|
Goldstein B, Faeder JR, Hlavacek WS, Blinov ML, Redondo A, Wofsy C. Modeling the early signaling events mediated by FcepsilonRI. Mol Immunol 2002; 38:1213-9. [PMID: 12217386 DOI: 10.1016/s0161-5890(02)00066-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We present a detailed mathematical model of the phosphorylation and dephosphorylation events that occur upon ligand-induced receptor aggregation, for a transfectant expressing FcepsilonRI, Lyn, Syk and endogenous phosphatases that dephosphorylate exposed phosphotyrosines on FcepsilonRI and Syk. Through model simulations we show how changing the ligand concentration, and consequently the concentration of receptor aggregates, can change the nature of a cellular response as well as its amplitude. We illustrate the value of the model in analyzing experimental data by using it to show that the intrinsic rate of dephosphorylation of the FcepsilonRI gamma immunoreceptor tyrosine-based activation motif (ITAM) in rat basophilic leukemia (RBL) cells is much faster than the observed rate, provided that all of the cytosolic Syk is available to receptors.
Collapse
Affiliation(s)
- Byron Goldstein
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Lipid rafts are defined as plasma membrane microdomains enriched with glycosphingolipids and cholesterol which render them insoluble in non-ionic detergents. Many surface receptors are constitutively or inducibly associated with lipid rafts, and it has been suggested that the rafts function as platforms regulating the induction of signaling pathways. The signaling capacity of lipid rafts has been extensively studied in rat basophilic leukemia cells. An aggregation of lipid raft components, such as glycosylphosphatidylinositol (GPI)-anchored glycoproteins (Thy-1 or TEC-21), triggers cell activation events which are similar to, but not identical with activation via the high-affinity IgE receptor (FcepsilonRI). Although FcepsilonRI in resting cells is not associated with lipid rafts, its aggregation induces a weak association with rafts and subsequent activation events. The properties of lipid rafts as well as the molecular mechanisms of their involvement in signal transduction are poorly understood. This review presents a critical analysis of recent results on structure-function relationship of lipid rafts and their regulatory role in signal transduction in mast cells.
Collapse
Affiliation(s)
- Petr Dráber
- Department of Mammalian Genes Expression, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 4, Prague, Czech Republic.
| | | |
Collapse
|
47
|
Abstract
As immunology developed into a discrete discipline, the principal experimental efforts were directed towards uncovering the molecular basis of the specificity exhibited by antibodies and the mechanism by which antigens induced their production. Less attention was given to how antibodies carry out some of their effector functions, although this subject presents an interesting protein-chemical and evolutionary problem; that is, how does a family of proteins that can bind a virtually infinite variety of ligands, many of which the species producing that protein has never encountered, reproducibly initiate an appropriate response? The experimental data persuasively suggested that aggregation of the antibody was a necessary and likely sufficient initiating event, but this only begged the question: how does aggregation induce a response? I used the IgE:mast cell system as a paradigm to investigate this subject. Data from our own group and from many others led to a molecular model that appears to explain how a cell 'senses' that antigen has reacted with the IgE. The model is directly applicable to one of the fundamental questions cited above, i.e. the mechanism by which antigens induce the production of antibodies. Although the model is conceptually simple, incorporating the actual molecular events into a quantitatively accurate scheme represents an enormous challenge.
Collapse
Affiliation(s)
- Henry Metzger
- Section on Chemical Immunology, Arthritis and Rheumatism Branch, NIAMS, NIH, Bethesda, MD 20892-1820, USA.
| |
Collapse
|
48
|
Melendez AJ, Khaw AK. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J Biol Chem 2002; 277:17255-62. [PMID: 11856736 DOI: 10.1074/jbc.m110944200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cell activation triggers Ca(2+) signals and the release of enzyme-containing granules, events that play a major role in allergic/hypersensitivity reactions. However, the precise molecular mechanisms that regulate antigen-triggered degranulation and Ca(2+) fluxes in human mast cells are still poorly understood. Here we show, for the first time, that a receptor can trigger Ca(2+) via two separate molecular mechanisms. Using an antisense approach, we show that IgE-antigen stimulation of human bone marrow-derived mast cells triggers a sphingosine kinase (SPHK) 1-mediated fast and transient Ca(2+) release from intracellular stores. However, phospholipase C (PLC) gamma1 triggers a second (slower) wave of calcium release from intracellular stores, and it is this PLCgamma1-generated signal that is responsible for Ca(2+) entry. Surprisingly, FcepsilonRI (a high affinity receptor for IgE)-triggered mast cell degranulation depends on the first, sphingosine kinase-mediated Ca(2+) signal. These two pathways act independently because antisense knock down of either enzyme does not interfere with the activity of the other enzyme. Of interest, similar to PLCgamma1, SPHK1 translocates rapidly to the membrane after FcepsilonRI cross-linking. Here we also show that SPHK1 activity depends on phospholipase D1 and that FcepsilonRI-triggered mast cell degranulation depends primarily on the activation of both phospholipase D1 and SPHK1.
Collapse
Affiliation(s)
- Alirio J Melendez
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | | |
Collapse
|
49
|
Ohtake H, Ichikawa N, Okada M, Yamashita T. Cutting Edge: Transmembrane phosphoprotein Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains as a negative feedback regulator of mast cell signaling through the FcepsilonRI. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2087-90. [PMID: 11859092 DOI: 10.4049/jimmunol.168.5.2087] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tyrosine phosphorylation in the cytoplasmic domains of FcepsilonRI by the Src family kinase Lyn initiates a signaling cascade leading to mast cell activation. In this study, we show that a recently identified transmembrane protein, Csk-binding protein (Cbp), also known as phospoprotein associated with glycosphingolipid-enriched microdomains (PAG), negatively regulates FcepsilonRI signaling. In rat basophilic leukemia (RBL)-2H3 cells, the levels of tyrosine phosphorylation of Cbp/PAG and its association with Csk, a negative regulator for Lyn, significantly elevate immediately after aggregation of FcepsilonRI. An overexpression of Cbp/PAG in RBL-2H3 cells inhibits FcepsilonRI-mediated cell activation. This is accompanied with decreased levels of tyrosine phosphorylation of FcepsilonRI, association of FcepsilonRI with Lyn, and FcepsilonRI-associated tyrosine kinase activity. These findings combined with the fact that Cbp/PAG, Lyn, and aggregated FcepsilonRI are localized to lipid rafts, suggest that upon FcepsilonRI aggregation Cbp/PAG down-regulates the receptor-associated Lyn activity through relocating Csk to rafts, thereby efficiently mediating feedback inhibition of FcepsilonRI signaling.
Collapse
Affiliation(s)
- Hidenori Ohtake
- Division of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
50
|
Hálová I, Dráberová L, Dráber P. A novel lipid raft-associated glycoprotein, TEC-21, activates rat basophilic leukemia cells independently of the type 1 Fc epsilon receptor. Int Immunol 2002; 14:213-23. [PMID: 11809740 DOI: 10.1093/intimm/14.2.213] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent data suggest that initiation of signal transduction via type 1 Fc epsilon receptor (Fc epsilon RI) and other immunoreceptors is spatially constrained to lipid rafts. In order to better understand the complexity and function of these structures, we prepared mAb against lipid rafts from the rat basophilic leukemia cell line, RBL-2H3, which is extensively used for analysis of Fc epsilon RI-mediated activation. One of the antibodies was found to recognize a novel glycosylphosphatidylinositol-anchored plasma membrane glycoprotein of 250 amino acids, designated TEC-21, containing a cysteine-rich domain homologous to those found in the urokinase plasminogen activator receptor/Ly-6/snake neurotoxin family. TEC-21 is abundant on the surface of RBL-2H3 cells (>10 (6) molecules/cell), but is absent in numerous rat tissues except for testes. Aggregation of TEC-21 on RBL-2H3 cells induced a rapid increase in tyrosine phosphorylation of several substrates including Syk kinase and LAT adaptor, calcium flux, and release of secretory components. Similar but more profound activation events were observed in cells activated via Fc epsilon RI. However, aggregation of TEC-21 did not induce changes in density of IgE-Fc epsilon RI complexes, tyrosine phosphorylation of Fc epsilon RI beta and gamma subunits, and co-aggregation of Lyn kinase. TEC-21-induced activation events were also observed in Fc epsilon RI(-) mutants of RBL-2H3 cells. Thus, TEC-21 is a novel lipid raft component of RBL-2H3 cells whose aggregation induces activation independently of Fc epsilon RI.
Collapse
Affiliation(s)
- Ivana Hálová
- Department of Mammalian Genes Expression, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | |
Collapse
|