1
|
Stewart RG, Marquis MJ, Jo S, Aberra A, Cook V, Whiddon Z, Ferns M, Sack JT. A Kv2 inhibitor combination reveals native neuronal conductances consistent with Kv2/KvS heteromers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578214. [PMID: 38352561 PMCID: PMC10862871 DOI: 10.1101/2024.01.31.578214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heterotetramers with Kv2.1 ( KCNB1 ) or Kv2.2 ( KCNB2 ). Mammals have 10 KvS subunits: Kv5.1 ( KCNF1 ), Kv6.1 ( KCNG1 ), Kv6.2 ( KCNG2 ), Kv6.3 ( KCNG3 ), Kv6.4 ( KCNG4 ), Kv8.1 ( KCNV1 ), Kv8.2 ( KCNV2 ), Kv9.1 ( KCNS1 ), Kv9.2 ( KCNS2 ), and Kv9.3 ( KCNS3 ). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS channels and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find that little of the Kv2 conductance is carried by KvS-containing channels. In contrast, conductances consistent with KvS-containing channels predominate over Kv2-only channels in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs targeting KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.
Collapse
|
2
|
Ferns M, van der List D, Vierra NC, Lacey T, Murray K, Kirmiz M, Stewart RG, Sack JT, Trimmer JS. Electrically silent KvS subunits associate with native Kv2 channels in brain and impact diverse properties of channel function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577135. [PMID: 38328147 PMCID: PMC10849721 DOI: 10.1101/2024.01.25.577135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Voltage-gated K+ channels of the Kv2 family are highly expressed in brain and play dual roles in regulating neuronal excitability and in organizing endoplasmic reticulum - plasma membrane (ER-PM) junctions. Studies in heterologous cells suggest that the two pore-forming alpha subunits Kv2.1 and Kv2.2 assemble with "electrically silent" KvS subunits to form heterotetrameric channels with distinct biophysical properties. Here, using mass spectrometry-based proteomics, we identified five KvS subunits as components of native Kv2.1 channels immunopurified from mouse brain, the most abundant being Kv5.1. We found that Kv5.1 co-immunoprecipitates with Kv2.1 and to a lesser extent with Kv2.2 from brain lysates, and that Kv5.1 protein levels are decreased by 70% in Kv2.1 knockout mice and 95% in Kv2.1/2.2 double knockout mice. Multiplex immunofluorescent labelling of rodent brain sections revealed that in neocortex Kv5.1 immunolabeling is apparent in a large percentage of Kv2.1 and Kv2.2-positive layer 2/3 neurons, and in a smaller percentage of layer 5 and 6 neurons. At the subcellular level, Kv5.1 is co-clustered with Kv2.1 and Kv2.2 at ER-PM junctions in cortical neurons, although clustering of Kv5.1-containing channels is reduced relative to homomeric Kv2 channels. We also found that in heterologous cells coexpression with Kv5.1 reduces the clustering and alters the pharmacological properties of Kv2.1 channels. Together, these findings demonstrate that the Kv5.1 electrically silent subunit is a component of a substantial fraction of native brain Kv2 channels, and that its incorporation into heteromeric channels can impact diverse aspects of Kv2 channel function.
Collapse
Affiliation(s)
- Michael Ferns
- Dept. of Anesthesiology and Pain Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Deborah van der List
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Nicholas C. Vierra
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Taylor Lacey
- Dept. of Anesthesiology and Pain Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Karl Murray
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Dept. of Psychiatry and Behavioral Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Michael Kirmiz
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Robert G. Stewart
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Jon T. Sack
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - James S. Trimmer
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
3
|
Kodirov SA. Adam, amigo, brain, and K channel. Biophys Rev 2023; 15:1393-1424. [PMID: 37975011 PMCID: PMC10643815 DOI: 10.1007/s12551-023-01163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
Voltage-dependent K+ (Kv) channels are diverse, comprising the classical Shab - Kv2, Shaker - Kv1, Shal - Kv4, and Shaw - Kv3 families. The Shaker family alone consists of Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv1.6, and Kv1.7. Moreover, the Shab family comprises two functional (Kv2.1 and Kv2.2) and several "silent" alpha subunits (Kv2.3, Kv5, Kv6, Kv8, and Kv9), which do not generate K current. However, e.g., Kv8.1, via heteromerization, inhibits outward currents of the same family or even that of Shaw. This property of Kv8.1 is similar to those of designated beta subunits or non-selective auxiliary elements, including ADAM or AMIGO proteins. Kv channels and, in turn, ADAM may modulate the synaptic long-term potentiation (LTP). Prevailingly, Kv1.1 and Kv1.5 are attributed to respective brain and heart pathologies, some of which may occur simultaneously. The aforementioned channel proteins are apparently involved in several brain pathologies, including schizophrenia and seizures.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, TX 78520 USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, 197341 Russia
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| |
Collapse
|
4
|
Veale EL, Golluscio A, Grand K, Graham JM, Mathie A. A KCNB1 gain of function variant causes developmental delay and speech apraxia but not seizures. Front Pharmacol 2022; 13:1093313. [PMID: 36618935 PMCID: PMC9810754 DOI: 10.3389/fphar.2022.1093313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: Numerous pathogenic variants in KCNB1, which encodes the voltage-gated potassium channel, KV2.1, are linked to developmental and epileptic encephalopathies and associated with loss-of-function, -regulation, and -expression of the channel. Here we describe a novel de novo variant (P17T) occurring in the KV2.1 channel that is associated with a gain-of-function (GoF), with altered steady-state inactivation and reduced sensitivity to the selective toxin, guanxitoxin-1E and is clinically associated with neurodevelopmental disorders, without seizures. Methods: The autosomal dominant variant was identified using whole exome sequencing (WES). The functional effects of the KCNB1 variant on the encoded KV2.1 channel were investigated using whole-cell patch-clamp recordings. Results: We identified a de novo missense variant in the coding region of the KCNB1 gene, c.49C>A which encodes a p.P17T mutation in the N-terminus of the voltage-gated, KV2.1 potassium channel. Electrophysiological studies measuring the impact of the variant on the functional properties of the channel, identified a gain of current, rightward shifts in the steady-state inactivation curve and reduced sensitivity to the blocker, guanxitoxin-1E. Interpretation: The clinical evaluation of this KCNB1 mutation describes a novel variant that is associated with global developmental delays, mild hypotonia and joint laxity, but without seizures. Most of the phenotypic features described are reported for other variants of the KCNB1 gene. However, the absence of early-onset epileptic disorders is a much less common occurrence. This lack of seizure activity may be because other variants reported have resulted in loss-of-function of the encoded KV2.1 potassium channel, whereas this variant causes a gain-of-function.
Collapse
Affiliation(s)
- Emma L. Veale
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, United Kingdom
| | - Alessia Golluscio
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, United Kingdom
| | - Katheryn Grand
- Department of Pediatrics, Harbor-UCLA Medical Center, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - John M. Graham
- Department of Pediatrics, Harbor-UCLA Medical Center, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States,*Correspondence: Alistair Mathie, ; John M. Graham Jr.,
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, United Kingdom,School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, United Kingdom,*Correspondence: Alistair Mathie, ; John M. Graham Jr.,
| |
Collapse
|
5
|
Daghbouche-Rubio N, López-López JR, Pérez-García MT, Cidad P. Vascular smooth muscle ion channels in essential hypertension. Front Physiol 2022; 13:1016175. [PMID: 36213221 PMCID: PMC9540222 DOI: 10.3389/fphys.2022.1016175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension is a highly prevalent chronic disease and the major risk factor for cardiovascular diseases, the leading cause of death worldwide. Hypertension is characterized by an increased vascular tone determined by the contractile state of vascular smooth muscle cells that depends on intracellular calcium levels. The interplay of ion channels determine VSMCs membrane potential and thus intracellular calcium that controls the degree of contraction, vascular tone and blood pressure. Changes in ion channels expression and function have been linked to hypertension, but the mechanisms and molecular entities involved are not completely clear. Furthermore, the literature shows discrepancies regarding the contribution of different ion channels to hypertension probably due to differences both in the vascular preparation and in the model of hypertension employed. Animal models are essential to study this multifactorial disease but it is also critical to know their characteristics to interpret properly the results obtained. In this review we summarize previous studies, using the hypertensive mouse (BPH) and its normotensive control (BPN), focused on the identified changes in the expression and function of different families of ion channels. We will focus on L-type voltage-dependent Ca2+ channels (Cav1.2), canonical transient receptor potential channels and four different classes of K+ channels: voltage-activated (Kv), large conductance Ca2+-activated (BK), inward rectifiers (Kir) and ATP-sensitive (KATP) K+ channels. We will describe the role of these channels in hypertension and we will discuss the importance of integrating individual changes in a global context to understand the complex interplay of ion channels in hypertension.
Collapse
|
6
|
Sun C, Li N, Wang QQ, Yan LY, Ba SK, Zhang SS, He QX, Chen XQ, Gong WL, Zhu Q, Liu KC. Whole-genome sequencing identifies a deletion mutation in the unknown-functional KCNG2 from familial sick sinus syndrome. Physiol Genomics 2022; 54:141-152. [DOI: 10.1152/physiolgenomics.00132.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sick sinus syndrome (SSS) is a term used for a variety of disorders defined by abnormal cardiac impulse formation and by abnormal propagation from the heart's sinoatrial node. In this study, we present a case from a Chinese family in which two closely related individuals had the symptoms and electrocardiographic evidence of SSS. We hypothesized that multiple individuals affected by the disease in the family was an indication of its genetic predisposition, and thus performed high-throughput sequencing for the participants from the family to detect potential disease-associated variants. One of the potential variants that was identified was a KCNG2 gene variant (NC_000018.9: g.77624068_77624079del). Further bioinformatic analysis showed that the observed variant may be a pathogenic mutation. The results of protein-protein docking and whole-cell patch clamp measurements implied that the deletion variant in KCNG2 could affect its binding the Kv2.1 protein, and finally affect the function of Kv channel, which is an important determinant in regulation of heartbeat. Therefore, we inferred that the variable KCNG2 gene may affect the function of Kv channel by changing the binding conformation of KCNG2 and Kv2.1 proteins and then adversely affect propagation from the sinoatrial node and cardiac impulse formation by changing the action potential repolarization of heart cells. In summary, our findings suggested that the dominant KCNG2 deletion variant in the examined Chinese family with SSS may be a potential disease-associated variant.
Collapse
Affiliation(s)
- Chen Sun
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Ning Li
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Qian-Qian Wang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Yi Yan
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Kang Ba
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Shan-Shan Zhang
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Qiu Xia He
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Xi Qiang Chen
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Wei Li Gong
- Key Laboratory for Biosensors of Shandong Province, Qilu University of Technology, Jinan, China
| | - Qing Zhu
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ke Chun Liu
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| |
Collapse
|
7
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
8
|
Ren J, Guo J, Zhu S, Wang Q, Gao R, Zhao C, Feng C, Qin C, He Z, Qin C, Wang Z, Zang L. The Role of Potassium Channels in Chronic Stress-Induced Brain Injury. Biol Pharm Bull 2021; 44:169-180. [PMID: 33239494 DOI: 10.1248/bpb.b20-00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic stress-induced brain injury (CSBI) is the organic damage of brain tissue caused by long-term psychological and environmental stress. However, there is no effective drug for the treatment of CSBI. The present study aimed to investigate possible mechanisms of CSBI and to explore related therapeutic targets. A rat model of CSBI was established by combining chronic restraint and cold water immersion. Our CSBI model was validated via Nissl staining, Western blotting, and behavioral tests. RNA sequencing (RNA-seq) was used to identify differentially expressed genes (DEGs) within brain tissue during CSBI. Both Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed to determine signaling pathways associated with CSBI-induced DEGs. Agonists/antagonists were used to validate the pharmacodynamics of potential therapeutic targets. A combination of chronic restraint and cold water immersion successfully induced a rat model of CSBI, as indicated by various markers of brain injury and cell apoptosis that were verified via Nissl staining, Western blotting, and behavioral tests. RNA-seq analysis identified 1131 DEGs in CSBI rats. Of these DEGs, 553 genes were up-regulated and 778 genes were down-regulated. GO and KEGG pathway analyses revealed that significant DEGs were predominantly related to membrane-bound ion channels, among which the potassium channel function was found to be significantly affected. Pharmacological experiments revealed that retigabine, a voltage-gated potassium channel opener, demonstrated a protective effect in CSBI rats. Taken together, our findings suggest that potassium channel function is disrupted in CSBI, and that potassium channel regulators may function as anti-CSBI drugs.
Collapse
Affiliation(s)
- Jianhui Ren
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Jiquan Guo
- Department of Respiratory, Guangdong Provincial People's Hospital
| | - Shuguang Zhu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Guangdong Pharmaceutical College
| | - Qiyou Wang
- Orthopedics, Third Affiliated Hospital of Sun Yat-Sen University
| | - Ruiping Gao
- School of Clinical Medicine, First Affiliated Hospital of Guangdong Pharmaceutical College
| | - Chunhe Zhao
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Chuyu Feng
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Cuiying Qin
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Zhenfeng He
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Changyun Qin
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Zhanle Wang
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Linquan Zang
- School of Pharmacy, Guangdong Pharmaceutical University
| |
Collapse
|
9
|
Khoubza L, Chatelain FC, Feliciangeli S, Lesage F, Bichet D. Physiological roles of heteromerization: focus on the two-pore domain potassium channels. J Physiol 2021; 599:1041-1055. [PMID: 33347640 DOI: 10.1113/jp279870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Potassium channels form the largest family of ion channels with more than 80 members involved in cell excitability and signalling. Most of them exist as homomeric channels, whereas specific conditions are required to obtain heteromeric channels. It is well established that heteromerization of voltage-gated and inward rectifier potassium channels affects their function, increasing the diversity of the native potassium currents. For potassium channels with two pore domains (K2P ), homomerization has long been considered the rule, their polymodal regulation by a wide diversity of physical and chemical stimuli being responsible for the adaptation of the leak potassium currents to cellular needs. This view has recently evolved with the accumulation of evidence of heteromerization between different K2P subunits. Several functional intragroup and intergroup heteromers have recently been identified, which contribute to the functional heterogeneity of this family. K2P heteromerization is involved in the modulation of channel expression and trafficking, promoting functional and signalling diversity. As illustrated in the Abstract Figure, heteromerization of TREK1 and TRAAK provides the cell with more possibilities of regulation. It is becoming increasingly evident that K2P heteromers contribute to important physiological functions including neuronal and cardiac excitability. Since heteromerization also affects the pharmacology of K2P channels, this understanding helps to establish K2P heteromers as new therapeutic targets for physiopathological conditions.
Collapse
Affiliation(s)
- Lamyaa Khoubza
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| | - Franck C Chatelain
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| | - Sylvain Feliciangeli
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France.,Inserm, 101 rue de Tolbiac, 75013, Paris, France
| | - Florian Lesage
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France.,Inserm, 101 rue de Tolbiac, 75013, Paris, France
| | - Delphine Bichet
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| |
Collapse
|
10
|
Abstract
Essential tremor (ET) is a neurological movement disorder characterised by bilateral limb kinetic/postural tremor, with or without tremor in other body parts including head, voice and lower limbs. Since no causative genes for ET have been identified, it is likely that the disorder occurs as a result of complex genetic factors interacting with various cellular and environmental factors that can result in abnormal function of circuitry involving the cerebello-thalamo-cortical pathway. Genetic analyses have uncovered at least 14 loci and 11 genes that are related to ET, as well as various risk or protective genetic factors. Limitations in ET genetic analyses include inconsistent disease definition, small sample size, varied ethnic backgrounds and many other factors that may contribute to paucity of relevant genetic data in ET. Genetic analyses, coupled with functional and animal studies, have led to better insights into possible pathogenic mechanisms underlying ET. These genetic studies may guide the future development of genetic testing and counselling, and specific, pathogenesis-targeted, therapeutic strategies.
Collapse
|
11
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
12
|
Jędrychowska J, Korzh V. Kv2.1 voltage-gated potassium channels in developmental perspective. Dev Dyn 2019; 248:1180-1194. [PMID: 31512327 DOI: 10.1002/dvdy.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 11/11/2022] Open
Abstract
Kv2.1 voltage-gated potassium channels consist of two types of α-subunits: (a) electrically-active Kcnb1 α-subunits and (b) silent or modulatory α-subunits plus β-subunits that, similar to silent α-subunits, also regulate electrically-active subunits. Voltage-gated potassium channels were traditionally viewed, mainly by electrophysiologists, as regulators of the electrical activity of the plasma membrane in excitable cells, a role that is performed by transmembrane protein domains of α-subunits that form the electric pore. Genetic studies revealed a role for this region of α-subunits of voltage-gated potassium channels in human neurodevelopmental disorders, such as epileptic encephalopathy. The N- and C-terminal domains of α-subunits interact to form the cytoplasmic subunit of heterotetrameric potassium channels that regulate electric pores. Subsequent animal studies revealed the developmental functions of Kcnb1-containing voltage-gated potassium channels and illustrated their role during brain development and reproduction. These functions of potassium channels are discussed in this review in the context of regulatory interactions between electrically-active and regulatory subunits.
Collapse
Affiliation(s)
- Justyna Jędrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Bar C, Barcia G, Jennesson M, Le Guyader G, Schneider A, Mignot C, Lesca G, Breuillard D, Montomoli M, Keren B, Doummar D, Billette de Villemeur T, Afenjar A, Marey I, Gerard M, Isnard H, Poisson A, Dupont S, Berquin P, Meyer P, Genevieve D, De Saint Martin A, El Chehadeh S, Chelly J, Guët A, Scalais E, Dorison N, Myers CT, Mefford HC, Howell KB, Marini C, Freeman JL, Nica A, Terrone G, Sekhara T, Lebre A, Odent S, Sadleir LG, Munnich A, Guerrini R, Scheffer IE, Kabashi E, Nabbout R. Expanding the genetic and phenotypic relevance of
KCNB1
variants in developmental and epileptic encephalopathies: 27 new patients and overview of the literature. Hum Mutat 2019; 41:69-80. [DOI: 10.1002/humu.23915] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Claire Bar
- Department of Pediatric Neurology, Reference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParis France
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163Imagine InstituteParis France
- Université Paris Descartes‐Sorbonne Paris CitéParis France
| | - Giulia Barcia
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163Imagine InstituteParis France
- Université Paris Descartes‐Sorbonne Paris CitéParis France
- Department of genetics, Necker Enfants Malades hospitalAssistance Publique‐Hôpitaux de ParisParis France
| | | | - Gwenaël Le Guyader
- Department of geneticsUniversity hospital PoitiersPoitiers Cedex France
- EA3808‐NEUVACOD Unité Neurovasculaire et Troubles Cognitifs, Pôle Biologie SantéUniversité de PoitiersPoitiers France
| | - Amy Schneider
- Department of Medicine, Epilepsy Research Centre, Austin HealthThe University of MelbourneHeidelberg Victoria Australia
| | - Cyril Mignot
- Institut du Cerveau et de la Moelle épinière, INSERM, U 1127, CNRS UMR 7225Sorbonne Universités UPMC Univ Paris 06 UMR S 1127 Paris France
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié‐SalpêtrièreGRC UPMC (Déficience Intellectuelle et Autisme)Paris France
| | - Gaetan Lesca
- Department of geneticsHospices Civils de LyonLyon France
- Neurosciences centre of Lyon, INSERM U1028, UMR CNRS 5292Université Claude Bernard Lyon 1Bron Cedex France
| | - Delphine Breuillard
- Department of Pediatric Neurology, Reference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParis France
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's HospitalUniversity of FlorenceFlorence Italy
| | - Boris Keren
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié‐SalpêtrièreGRC UPMC (Déficience Intellectuelle et Autisme)Paris France
| | - Diane Doummar
- Department of Pediatric Neurology, Hôpital Armand TrousseauAP‐HPParis France
| | | | - Alexandra Afenjar
- Département de Génétique et Embryologie Médicale, Pathologies Congénitales du Cervelet‐LeucoDystrophies, Centre de Référence déficiences intellectuelles de causes rares, AP‐HP, Hôpital Armand Trousseau, GRC n°19Sorbonne UniversitéParis France
| | - Isabelle Marey
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié‐SalpêtrièreGRC UPMC (Déficience Intellectuelle et Autisme)Paris France
| | | | | | - Alice Poisson
- Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders, Centre Hospitalier le Vinatier and EDR‐Psy TeamCentre National de la Recherche Scientifique & Lyon 1 Claude Bernard UniversityVilleurbanne France
| | - Sophie Dupont
- Institut du Cerveau et de la Moelle épinière, INSERM, U 1127, CNRS UMR 7225Sorbonne Universités UPMC Univ Paris 06 UMR S 1127 Paris France
- Epileptology and Rehabilitation department, GH Pitie‐Salpêtrière‐Charles FoixAP‐HPParis France
| | - Patrick Berquin
- Department of pediatric neurology Amiens‐Picardie university hospitalUniversité de Picardie Jules VerneAmiens France
| | - Pierre Meyer
- Department of pediatric neurologyMontpellier university hospitalMontpellier France
- PhyMedExp, U1046 INSERMUMR9214 CNRSMontpellier France
| | - David Genevieve
- Service de génétique clinique et du Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de référence maladies rares anomalies du développementCHU MontpellierMontpellier France
| | - Anne De Saint Martin
- Department of Pediatric NeurologyStrasbourg University HospitalStrasbourg France
| | - Salima El Chehadeh
- Department of genetics, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg France
| | - Jamel Chelly
- Department of genetics, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg France
| | - Agnès Guët
- Department of PediatricLouis‐Mourier HospitalColombes France
| | - Emmanuel Scalais
- Department of Pediatric Neurology, Centre Hospitalier de LuxembourgLuxembourg CityLuxembourg City Luxembourg
| | - Nathalie Dorison
- Department of pediatric NeurosurgeryRothschild Foundation HospitalParis France
| | - Candace T. Myers
- Department of PediatricsUniversity of WashingtonSeattle Washington
| | - Heather C. Mefford
- Department of Pediatrics, Division of Genetic MedicineUniversity of WashingtonSeattle Washington
| | - Katherine B. Howell
- Departments of Neurology and Paediatrics, Royal Children's HospitalUniversity of MelbourneMelbourne Victoria Australia
- Murdoch Children's Research InstituteMelbourne Victoria Australia
| | - Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's HospitalUniversity of FlorenceFlorence Italy
| | - Jeremy L. Freeman
- Departments of Neurology and Paediatrics, Royal Children's HospitalUniversity of MelbourneMelbourne Victoria Australia
- Murdoch Children's Research InstituteMelbourne Victoria Australia
| | - Anca Nica
- Department of Neurology, Center for Clinical Research (CIC 1414)Rennes University HospitalRennes France
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Section of Pediatrics‐Child Neurology UnitFederico II UniversityNaples Italy
| | - Tayeb Sekhara
- Department of Pediatric NeurologyC.H.I.R.E.CBrussels Belgium
| | - Anne‐Sophie Lebre
- Department of genetics, Maison Blanche hospitalUniversity hospital, ReimsReims France
| | - Sylvie Odent
- Reference Centre for Rare Developmental AbnormalitiesCLAD‐Ouest, CHU RennesRennes France
- Institute of genetics and developmentCNRS UMR 6290, Rennes universityRennes France
| | - Lynette G. Sadleir
- Department of Paediatrics and Child HealthUniversity of OtagoWellington New Zealand
| | - Arnold Munnich
- Université Paris Descartes‐Sorbonne Paris CitéParis France
- Department of genetics, Necker Enfants Malades hospitalAssistance Publique‐Hôpitaux de ParisParis France
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's HospitalUniversity of FlorenceFlorence Italy
| | - Ingrid E. Scheffer
- Department of Medicine, Epilepsy Research Centre, Austin HealthThe University of MelbourneHeidelberg Victoria Australia
- Departments of Neurology and Paediatrics, Royal Children's HospitalUniversity of MelbourneMelbourne Victoria Australia
- The Florey Institute of Neurosciences and Mental HealthHeidelberg Victoria Australia
| | - Edor Kabashi
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163Imagine InstituteParis France
- Université Paris Descartes‐Sorbonne Paris CitéParis France
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParis France
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163Imagine InstituteParis France
- Université Paris Descartes‐Sorbonne Paris CitéParis France
| |
Collapse
|
14
|
Ciotu CI, Tsantoulas C, Meents J, Lampert A, McMahon SB, Ludwig A, Fischer MJM. Noncanonical Ion Channel Behaviour in Pain. Int J Mol Sci 2019; 20:E4572. [PMID: 31540178 PMCID: PMC6770626 DOI: 10.3390/ijms20184572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Jannis Meents
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UR, UK
| | - Andreas Ludwig
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Ranjan R, Logette E, Marani M, Herzog M, Tâche V, Scantamburlo E, Buchillier V, Markram H. A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (Kv) Family. Front Cell Neurosci 2019; 13:358. [PMID: 31481875 PMCID: PMC6710402 DOI: 10.3389/fncel.2019.00358] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/19/2019] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated potassium (Kv) channels, encoded by 40 genes, repolarize all electrically excitable cells, including plant, cardiac, and neuronal cells. Although these genes were fully sequenced decades ago, a comprehensive kinetic characterization of all Kv channels is still missing, especially near physiological temperature. Here, we present a standardized kinetic map of the 40 homomeric Kv channels systematically characterized at 15, 25, and 35°C. Importantly, the Kv kinetics at 35°C differ significantly from commonly reported kinetics, usually performed at room temperature. We observed voltage-dependent Q10 for all active Kv channels and inherent heterogeneity in kinetics for some of them. Kinetic properties are consistent across different host cell lines and conserved across mouse, rat, and human. All electrophysiology data from all Kv channels are made available through a public website (Channelpedia). This dataset provides a solid foundation for exploring kinetics of heteromeric channels, roles of auxiliary subunits, kinetic modulation, and for building accurate Kv models.
Collapse
Affiliation(s)
- Rajnish Ranjan
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Emmanuelle Logette
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michela Marani
- Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mirjia Herzog
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Valérie Tâche
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Enrico Scantamburlo
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Valérie Buchillier
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Montalbetti N, Rooney JG, Rued AC, Carattino MD. Molecular determinants of afferent sensitization in a rat model of cystitis with urothelial barrier dysfunction. J Neurophysiol 2019; 122:1136-1146. [PMID: 31314637 DOI: 10.1152/jn.00306.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The internal surface of the urinary bladder is covered by the urothelium, a stratified epithelium that forms an impermeable barrier to urinary solutes. Increased urothelial permeability is thought to contribute to symptom generation in several forms of cystitis by sensitizing bladder afferents. In this report we investigate the physiological mechanisms that mediate bladder afferent hyperexcitability in a rat model of cystitis induced by overexpression in the urothelium of claudin-2 (Cldn2), a tight junction-associated protein upregulated in bladder biopsies from patients with interstitial cystitis/bladder pain syndrome. Patch-clamp studies showed that overexpression of Cldn2 in the urothelium sensitizes a population of isolectin GS-IB4-negative [IB4(-)] bladder sensory neurons with tetrodotoxin-sensitive (TTX-S) action potentials. Gene expression analysis revealed a significant increase in mRNA levels of the delayed-rectifier voltage-gated K+ channel (Kv)2.2 and the accessory subunit Kv9.1 in this population of bladder sensory neurons. Consistent with this finding, Kv2/Kv9.1 channel activity was greater in IB4(-) bladder sensory neurons from rats overexpressing Cldn2 in the urothelium than in control counterparts. Likewise, current density of TTX-S voltage-gated Na+ (Nav) channels was greater in sensitized neurons than in control counterparts. Significantly, guangxitoxin-1E (GxTX-1E), a selective blocker of Kv2 channels, blunted the repetitive firing of sensitized IB4(-) sensory neurons. In summary, our studies indicate that an increase in the activity of TTX-S Nav and Kv2/Kv9.1 channels mediates repetitive firing of sensitized bladder sensory neurons in rats with increased urothelial permeability.NEW & NOTEWORTHY Hyperexcitability of sensitized bladder sensory neurons in a rat model of interstitial cystitis/bladder pain syndrome (IC/BPS) results from increased activity of tetrodotoxin-sensitive voltage-gated Na+ and delayed-rectifier voltage-gated K+ (Kv)2/Kv9.1 channels. Of major significance, our studies indicate that Kv2/Kv9.1 channels play a major role in symptom generation in this model of IC/BPS by maintaining the sustained firing of the sensitized bladder sensory neurons.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James G Rooney
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna C Rued
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Abstract
Voltage-gated potassium (Kv) channels are increasingly recognised as key regulators of nociceptive excitability. Kcns1 is one of the first potassium channels to be associated with neuronal hyperexcitability and mechanical sensitivity in the rat, as well as pain intensity and risk of developing chronic pain in humans. Here, we show that in mice, Kcns1 is predominantly expressed in the cell body and axons of myelinated sensory neurons positive for neurofilament-200, including Aδ-fiber nociceptors and low-threshold Aβ mechanoreceptors. In the spinal cord, Kcns1 was detected in laminae III to V of the dorsal horn where most sensory A fibers terminate, as well as large motoneurons of the ventral horn. To investigate Kcns1 function specifically in the periphery, we generated transgenic mice in which the gene is deleted in all sensory neurons but retained in the central nervous system. Kcns1 ablation resulted in a modest increase in basal mechanical pain, with no change in thermal pain processing. After neuropathic injury, Kcns1 KO mice exhibited exaggerated mechanical pain responses and hypersensitivity to both noxious and innocuous cold, consistent with increased A-fiber activity. Interestingly, Kcns1 deletion also improved locomotor performance in the rotarod test, indicative of augmented proprioceptive signalling. Our results suggest that restoring Kcns1 function in the periphery may be of some use in ameliorating mechanical and cold pain in chronic states.
Collapse
|
18
|
8q22.2q22.3 Microdeletion Syndrome Associated with Hearing Loss and Intractable Epilepsy. Case Rep Genet 2019; 2019:7608348. [PMID: 30733878 PMCID: PMC6348808 DOI: 10.1155/2019/7608348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 12/02/2018] [Indexed: 11/17/2022] Open
Abstract
8q22.2q22.3 microdeletion syndrome has been described in only seven patients. We present a new case from Colombia. The characteristics of this condition are developmental delay, microcephaly, seizures, and typical facial dysmorphism. We discuss the clinical phenotype of the patient presenting relevant findings like hearing loss and severe epilepsy and the possible relations between the phenotype and the genes involved in the microdeletion. We describe a female with developmental delay, microcephaly, epilepsy, severe short stature, impaired speech, facial dysmorphism, and congenital deafness. A minimal/maximal deletion of 5.238 Mb and 5.374Mb, respectively, at 8q22.2q22.3 was diagnosed using a genome-wide array. The clinical phenotype is similar to the others seven patients previously reported; however, the severity of epilepsy and the concomitant hearing loss is remarkable, characteristics previously observed independently in only two patients. The KCNS2 gene is located in the deleted regions (8q22.2). Therefore it is a possible candidate for explaining the complex neurologic phenotype.
Collapse
|
19
|
López-López JR, Cidad P, Pérez-García MT. Kv channels and vascular smooth muscle cell proliferation. Microcirculation 2018; 25. [PMID: 29110368 DOI: 10.1111/micc.12427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
Kv channels are present in virtually all VSMCs and strongly influence contractile responses. However, they are also instrumental in the proliferative, migratory, and secretory functions of synthetic, dedifferentiated VSMCs upon PM. In fact, Kv channels not only contribute to all these processes but also are active players in the phenotypic switch itself. This review is focused on the role(s) of Kv channels in VSMC proliferation, which is one of the best characterized functions of dedifferentiated VSMCs. VSMC proliferation is a complex process requiring specific Kv channels at specific time and locations. Their identification is further complicated by their large diversity and the differences in expression across vascular beds. Of interest, both conserved changes in some Kv channels and vascular bed-specific regulation of others seem to coexist and participate in VSMC proliferation through complementary mechanisms. Such a system will add flexibility to the process while providing the required robustness to preserve this fundamental cellular response.
Collapse
Affiliation(s)
- José R López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - M Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
20
|
Abstract
Kobertz comments on the family of “silent” Kv2-related regulatory subunits and a new study investigating their assembly idiosyncrasies.
Collapse
Affiliation(s)
- William R Kobertz
- Department of Biochemistry and Molecular Pharmacology, Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
21
|
Pisupati A, Mickolajczyk KJ, Horton W, van Rossum DB, Anishkin A, Chintapalli SV, Li X, Chu-Luo J, Busey G, Hancock WO, Jegla T. The S6 gate in regulatory Kv6 subunits restricts heteromeric K + channel stoichiometry. J Gen Physiol 2018; 150:1702-1721. [PMID: 30322883 PMCID: PMC6279357 DOI: 10.1085/jgp.201812121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/03/2018] [Accepted: 09/26/2018] [Indexed: 11/24/2022] Open
Abstract
Atypical substitutions in the S6 activation gate sequence distinguish “regulatory” Kv subunits, which cannot homotetramerize due to T1 self-incompatibility. Pisupati et al. show that such substitutions in Kv6 work together with self-incompatibility to restrict Kv2:Kv6 heteromeric stoichiometry to 3:1. The Shaker-like family of voltage-gated K+ channels comprises four functionally independent gene subfamilies, Shaker (Kv1), Shab (Kv2), Shaw (Kv3), and Shal (Kv4), each of which regulates distinct aspects of neuronal excitability. Subfamily-specific assembly of tetrameric channels is mediated by the N-terminal T1 domain and segregates Kv1–4, allowing multiple channel types to function independently in the same cell. Typical Shaker-like Kv subunits can form functional channels as homotetramers, but a group of mammalian Kv2-related genes (Kv5.1, Kv6s, Kv8s, and Kv9s) encodes subunits that have a “silent” or “regulatory” phenotype characterized by T1 self-incompatibility. These channels are unable to form homotetramers, but instead heteromerize with Kv2.1 or Kv2.2 to diversify the functional properties of these delayed rectifiers. While T1 self-incompatibility predicts that these heterotetramers could contain up to two regulatory (R) subunits, experiments show a predominance of 3:1R stoichiometry in which heteromeric channels contain a single regulatory subunit. Substitution of the self-compatible Kv2.1 T1 domain into the regulatory subunit Kv6.4 does not alter the stoichiometry of Kv2.1:Kv6.4 heteromers. Here, to identify other channel structures that might be responsible for favoring the 3:1R stoichiometry, we compare the sequences of mammalian regulatory subunits to independently evolved regulatory subunits from cnidarians. The most widespread feature of regulatory subunits is the presence of atypical substitutions in the highly conserved consensus sequence of the intracellular S6 activation gate of the pore. We show that two amino acid substitutions in the S6 gate of the regulatory subunit Kv6.4 restrict the functional stoichiometry of Kv2.1:Kv6.4 to 3:1R by limiting the formation and function of 2:2R heteromers. We propose a two-step model for the evolution of the asymmetric 3:1R stoichiometry, which begins with evolution of self-incompatibility to establish the regulatory phenotype, followed by drift of the activation gate consensus sequence under relaxed selection to limit stoichiometry to 3:1R.
Collapse
Affiliation(s)
- Aditya Pisupati
- Department of Biology, Pennsylvania State University, University Park, PA.,Medical Scientist Training Program, College of Medicine, Pennsylvania State University, Hershey, PA
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA
| | - William Horton
- Department of Animal Science, Pennsylvania State University, University Park, PA
| | - Damian B van Rossum
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA.,Division of Experimental Pathology, Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Xiaofan Li
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Jose Chu-Luo
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Gregory Busey
- Department of Biology, Pennsylvania State University, University Park, PA
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA
| | - Timothy Jegla
- Department of Biology, Pennsylvania State University, University Park, PA .,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
22
|
Hoofwijk DMN, van Reij RRI, Rutten BP, Kenis G, Buhre WF, Joosten EA. Genetic polymorphisms and their association with the prevalence and severity of chronic postsurgical pain: a systematic review. Br J Anaesth 2018; 117:708-719. [PMID: 27956669 DOI: 10.1093/bja/aew378] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although several patient characteristic, clinical, and psychological risk factors for chronic postsurgical pain (CPSP) have been identified, genetic variants including single nucleotide polymorphisms have also become of interest as potential risk factors for the development of CPSP. The aim of this review is to summarize the current evidence on genetic polymorphisms associated with the prevalence and severity of CPSP in adult patients. METHODS A systematic review of the literature was performed, and additional literature was obtained by reference tracking. The primary outcome was CPSP, defined as pain at least 2 months after the surgery. Studies performed exclusively in animals were excluded. RESULTS Out of the 1001 identified studies, 14 studies were selected for inclusion. These studies described 5269 participants in 17 cohorts. A meta-analysis was not possible because of heterogeneity of data and data analysis. Associations with the prevalence or severity of CPSP were reported for genetic variants in the COMT gene, OPRM1, potassium channel genes, GCH1, CACNG, CHRNA6, P2X7R, cytokine-associated genes, human leucocyte antigens, DRD2, and ATXN1 CONCLUSIONS: Research on the topic of genetic variants associated with CPSP is still in its initial phase. Hypothesis-free, genome-wide association studies on large cohorts are needed in this field. In addition, future studies may also integrate genetic risk factors and patient characteristic, clinical, and psychological predictors for CPSP.
Collapse
Affiliation(s)
- D M N Hoofwijk
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - R R I van Reij
- School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - B P Rutten
- School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - G Kenis
- School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - W F Buhre
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E A Joosten
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
23
|
Abstract
Essential Tremor (ET) is one of the most common neurological diseases, with an estimated 7 million affected individuals in the US; the pathophysiology of the disorder is poorly understood. Recently, we identified a mutation (KCNS2 (Kv9.2), c.1137 T > A, p.(D379E) in an electrically silent voltage-gated K+ channel α-subunit, Kv9.2, in a family with ET, that modulates the activity of Kv2 channels. We have produced transgenic Drosophila lines that express either the human wild type Kv9.2 (hKv9.2) or the ET causing mutant Kv9.2 (hKv9.2-D379E) subunit in all neurons. We show that the hKv9.2 subunit modulates activity of endogenous Drosophila K+ channel Shab. The mutant hKv9.2-D379E subunit showed significantly higher levels of Shab inactivation and a higher frequency of spontaneous firing rate consistent with neuronal hyperexcitibility. We also observed behavioral manifestations of nervous system dysfunction including effects on night time activity and sleep. This functional data further supports the pathogenicity of the KCNS2 (p.D379E) mutation, consistent with our prior observations including co-segregation with ET in a family, a likely pathogenic change in the channel pore domain and absence from population databases. The Drosophila hKv9.2 transgenic model recapitulates several features of ET and may be employed to advance our understanding of ET disease pathogenesis.
Collapse
|
24
|
Bernier M, Wahl D, Ali A, Allard J, Faulkner S, Wnorowski A, Sanghvi M, Moaddel R, Alfaras I, Mattison JA, Tarantini S, Tucsek Z, Ungvari Z, Csiszar A, Pearson KJ, de Cabo R. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet. Aging (Albany NY) 2017; 8:899-916. [PMID: 27070252 PMCID: PMC4931843 DOI: 10.18632/aging.100942] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/30/2016] [Indexed: 01/19/2023]
Abstract
Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress.
Collapse
Affiliation(s)
- Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Devin Wahl
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ahmed Ali
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Joanne Allard
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA.,Department of Physiology and Biophysics, Howard University, College of Medicine, Washington, DC 20059, USA
| | - Shakeela Faulkner
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, 20-093 Lublin, Poland.,Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mitesh Sanghvi
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Irene Alfaras
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Stefano Tarantini
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Zsuzsanna Tucsek
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Zoltan Ungvari
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA.,Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
25
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
26
|
Hong DH, Li H, Kim HW, Kim HS, Son YK, Yang SR, Park JR, Ha KS, Han ET, Hong SH, Firth AL, Na SH, Park WS. Alterations of voltage-dependent K(+) channels in the mesenteric artery during the early and chronic phases of diabetes. Clin Exp Pharmacol Physiol 2017; 43:808-17. [PMID: 27218229 DOI: 10.1111/1440-1681.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022]
Abstract
This study investigated the alteration of voltage-dependent K(+) (Kv) channels in mesenteric arterial smooth muscle cells from control (Long-Evans Tokushima Otsuka [LETO]) and diabetic (Otsuka Long-Evans Tokushima Fatty [OLETF]) rats during the early and chronic phases of diabetes. We demonstrated alterations in the mesenteric Kv channels during the early and chronic phase of diabetes using the patch-clamp technique, the arterial tone measurement system, and RT-PCR in Long-Evans Tokushima (LETO; for control) and Otsuka Long-Evans Tokushima Fatty (OLETF; for diabetes) type 2 diabetic model rats. In the early phase of diabetes, the amplitude of mesenteric Kv currents induced by depolarizing pulses was greater in OLETF rats than in LETO rats. The contractile response of the mesenteric artery induced by the Kv inhibitor, 4-aminopyridine (4-AP), was also greater in OLETF rats. The expression of most Kv subtypes- including Kv1.1, Kv1.2, Kv1.4, Kv1.5, Kv1.6, Kv2.1, Kv3.2, Kv4.1, Kv4.3, Kv5.1, Kv6.2, Kv8.1, Kv9.3, and Kv10.1-were increased in mesenteric arterial smooth muscle from OLETF rats compared with LETO rats. However, in the chronic phase of diabetes, the Kv current amplitude did not differ between LETO and OLETF rats. In addition, the 4-AP-induced contractile response of the mesenteric artery and the expression of Kv subtypes did not differ between the two groups. The increased Kv current amplitude and Kv channel-related contractile response were attributable to the increase in Kv channel expression during the early phase of diabetes. The increased Kv current amplitude and Kv channel-related contractile response were reversed during the chronic phase of diabetes.
Collapse
Affiliation(s)
- Da Hye Hong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongliang Li
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye Won Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Han Sol Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Youn Kyoung Son
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Jeong-Ran Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine, Chuncheon, South Korea.,Institute of Medical Sciences, Kangwon National University, Chuncheon, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Amy L Firth
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Sung Hun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
27
|
Liu X, Hernandez N, Kisselev S, Floratos A, Sawle A, Ionita-Laza I, Ottman R, Louis ED, Clark LN. Identification of candidate genes for familial early-onset essential tremor. Eur J Hum Genet 2016; 24:1009-15. [PMID: 26508575 PMCID: PMC5070884 DOI: 10.1038/ejhg.2015.228] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
Essential tremor (ET) is one of the most common causes of tremor in humans. Despite its high heritability and prevalence, few susceptibility genes for ET have been identified. To identify ET genes, whole-exome sequencing was performed in 37 early-onset ET families with an autosomal-dominant inheritance pattern. We identified candidate genes for follow-up functional studies in five ET families. In two independent families, we identified variants predicted to affect function in the nitric oxide (NO) synthase 3 gene (NOS3) that cosegregated with disease. NOS3 is highly expressed in the central nervous system (including cerebellum), neurons and endothelial cells, and is one of three enzymes that converts l-arginine to the neurotransmitter NO. In one family, a heterozygous variant, c.46G>A (p.(Gly16Ser)), in NOS3, was identified in three affected ET cases and was absent in an unaffected family member; and in a second family, a heterozygous variant, c.164C>T (p.(Pro55Leu)), was identified in three affected ET cases (dizygotic twins and their mother). Both variants result in amino-acid substitutions of highly conserved amino-acid residues that are predicted to be deleterious and damaging by in silico analysis. In three independent families, variants predicted to affect function were also identified in other genes, including KCNS2 (KV9.2), HAPLN4 (BRAL2) and USP46. These genes are highly expressed in the cerebellum and Purkinje cells, and influence function of the gamma-amino butyric acid (GABA)-ergic system. This is in concordance with recent evidence that the pathophysiological process in ET involves cerebellar dysfunction and possibly cerebellar degeneration with a reduction in Purkinje cells, and a decrease in GABA-ergic tone.
Collapse
Affiliation(s)
- Xinmin Liu
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nora Hernandez
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Sergey Kisselev
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Aris Floratos
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Ashley Sawle
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ruth Ottman
- G.H Sergievsky Center, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Lorraine N Clark
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
28
|
|
29
|
Bocksteins E. Kv5, Kv6, Kv8, and Kv9 subunits: No simple silent bystanders. J Gen Physiol 2016; 147:105-25. [PMID: 26755771 PMCID: PMC4727947 DOI: 10.1085/jgp.201511507] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/11/2015] [Indexed: 12/19/2022] Open
Abstract
Members of the electrically silent voltage-gated K(+) (Kv) subfamilies (Kv5, Kv6, Kv8, and Kv9, collectively identified as electrically silent voltage-gated K(+) channel [KvS] subunits) do not form functional homotetrameric channels but assemble with Kv2 subunits into heterotetrameric Kv2/KvS channels with unique biophysical properties. Unlike the ubiquitously expressed Kv2 subunits, KvS subunits show a more restricted expression. This raises the possibility that Kv2/KvS heterotetramers have tissue-specific functions, making them potential targets for the development of novel therapeutic strategies. Here, I provide an overview of the expression of KvS subunits in different tissues and discuss their proposed role in various physiological and pathophysiological processes. This overview demonstrates the importance of KvS subunits and Kv2/KvS heterotetramers in vivo and the importance of considering KvS subunits and Kv2/KvS heterotetramers in the development of novel treatments.
Collapse
Affiliation(s)
- Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology, and Pharmacology, Department for Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
30
|
Trimmer JS. Ion channels and pain: important steps towards validating a new therapeutic target for neuropathic pain. Exp Neurol 2014; 254:190-4. [PMID: 24508559 DOI: 10.1016/j.expneurol.2014.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Affiliation(s)
- James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
31
|
Kv2 dysfunction after peripheral axotomy enhances sensory neuron responsiveness to sustained input. Exp Neurol 2013; 251:115-26. [PMID: 24252178 PMCID: PMC3898477 DOI: 10.1016/j.expneurol.2013.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/21/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injuries caused by trauma are associated with increased sensory neuron excitability and debilitating chronic pain symptoms. Axotomy-induced alterations in the function of ion channels are thought to largely underlie the pathophysiology of these phenotypes. Here, we characterise the mRNA distribution of Kv2 family members in rat dorsal root ganglia (DRG) and describe a link between Kv2 function and modulation of sensory neuron excitability. Kv2.1 and Kv2.2 were amply expressed in cells of all sizes, being particularly abundant in medium-large neurons also immunoreactive for neurofilament-200. Peripheral axotomy led to a rapid, robust and long-lasting transcriptional Kv2 downregulation in the DRG, correlated with the onset of mechanical and thermal hypersensitivity. The consequences of Kv2 loss-of-function were subsequently investigated in myelinated neurons using intracellular recordings on ex vivo DRG preparations. In naïve neurons, pharmacological Kv2.1/Kv2.2 inhibition by stromatoxin-1 (ScTx) resulted in shortening of action potential (AP) after-hyperpolarization (AHP). In contrast, ScTx application on axotomized neurons did not alter AHP duration, consistent with the injury-induced Kv2 downregulation. In accordance with a shortened AHP, ScTx treatment also reduced the refractory period and improved AP conduction to the cell soma during high frequency stimulation. These results suggest that Kv2 downregulation following traumatic nerve lesion facilitates greater fidelity of repetitive firing during prolonged input and thus normal Kv2 function is postulated to limit neuronal excitability. In summary, we have profiled Kv2 expression in sensory neurons and provide evidence for the contribution of Kv2 dysfunction in the generation of hyperexcitable phenotypes encountered in chronic pain states. Kv2.1 and Kv2.2 are expressed in rat dorsal root ganglion neurons. Kv2 subunits are most abundant in myelinated sensory neurons. Kv2.1 and Kv.2 subunits are downregulated in a traumatic nerve injury pain model. Kv2 inhibition ex vivo allows higher firing rates during sustained stimulation. We conclude that Kv2 channels contribute to limiting peripheral neuron excitability.
Collapse
|
32
|
Lin CY, Yang JR, Teng SL, Tsai S, Chen MH. Microarray analysis of gene expression of bone marrow stem cells cocultured with salivary acinar cells. J Formos Med Assoc 2013; 112:713-20. [DOI: 10.1016/j.jfma.2012.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022] Open
|
33
|
Tang YQ, Liang P, Zhou J, Lu Y, Lei L, Bian X, Wang K. Auxiliary KChIP4a suppresses A-type K+ current through endoplasmic reticulum (ER) retention and promoting closed-state inactivation of Kv4 channels. J Biol Chem 2013; 288:14727-41. [PMID: 23576435 DOI: 10.1074/jbc.m113.466052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K(+) channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1-4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12-17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19-21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.
Collapse
Affiliation(s)
- Yi-Quan Tang
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Sensory neuron downregulation of the Kv9.1 potassium channel subunit mediates neuropathic pain following nerve injury. J Neurosci 2013. [PMID: 23197740 DOI: 10.1523/jneurosci.3561-12.2012] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic neuropathic pain affects millions of individuals worldwide, is typically long-lasting, and remains poorly treated with existing therapies. Neuropathic pain arising from peripheral nerve lesions is known to be dependent on the emergence of spontaneous and evoked hyperexcitability in damaged nerves. Here, we report that the potassium channel subunit Kv9.1 is expressed in myelinated sensory neurons, but is absent from small unmyelinated neurons. Kv9.1 expression was strongly and rapidly downregulated following axotomy, with a time course that matches the development of spontaneous activity and pain hypersensitivity in animal models. Interestingly, siRNA-mediated knock-down of Kv9.1 in naive rats led to neuropathic pain behaviors. Diminished Kv9.1 function also augmented myelinated sensory neuron excitability, manifested as spontaneous firing, hyper-responsiveness to stimulation, and persistent after-discharge. Intracellular recordings from ex vivo dorsal root ganglion preparations revealed that Kv9.1 knock-down was linked to lowered firing thresholds and increased firing rates under physiologically relevant conditions of extracellular potassium accumulation during prolonged activity. Similar neurophysiological changes were detected in animals subjected to traumatic nerve injury and provide an explanation for neuropathic pain symptoms, including poorly understood conditions such as hyperpathia and paresthesias. In summary, our results demonstrate that Kv9.1 dysfunction leads to spontaneous and evoked neuronal hyperexcitability in myelinated fibers, coupled with development of neuropathic pain behaviors.
Collapse
|
35
|
Jegla T, Marlow HQ, Chen B, Simmons DK, Jacobo SM, Martindale MQ. Expanded functional diversity of shaker K(+) channels in cnidarians is driven by gene expansion. PLoS One 2012; 7:e51366. [PMID: 23251506 PMCID: PMC3519636 DOI: 10.1371/journal.pone.0051366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/29/2012] [Indexed: 12/27/2022] Open
Abstract
The genome of the cnidarian Nematostella vectensis (starlet sea anemone) provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K+ channel gene family: Shaker (Kv1), Shaw (Kv3) and Shal (Kv4). In order to better understand the physiological significance of these voltage-gated K+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct “silent” or “regulatory” phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2) family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.
Collapse
Affiliation(s)
- Timothy Jegla
- Department of Biology and Huck Institute of Life Sciences, Eberly College of Science, Penn State University, University Park, PA, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Smith KE, Wilkie SE, Tebbs-Warner JT, Jarvis BJ, Gallasch L, Stocker M, Hunt DM. Functional analysis of missense mutations in Kv8.2 causing cone dystrophy with supernormal rod electroretinogram. J Biol Chem 2012; 287:43972-83. [PMID: 23115240 DOI: 10.1074/jbc.m112.388033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in KCNV2 have been proposed as the molecular basis for cone dystrophy with supernormal rod electroretinogram. KCNV2 codes for the modulatory voltage-gated potassium channel α-subunit, Kv8.2, which is incapable of forming functional channels on its own. Functional heteromeric channels are however formed with Kv2.1 in heterologous expression systems, with both α-subunit genes expressed in rod and cone photoreceptors. Of the 30 mutations identified in the KCNV2 gene, we have selected three missense mutations localized in the potassium channel pore and two missense mutations localized in the tetramerization domain for analysis. We characterized the differences between homomeric Kv2.1 and heteromeric Kv2.1/Kv8.2 channels and investigated the influence of the selected mutations on the function of heteromeric channels. We found that two pore mutations (W467G and G478R) led to the formation of nonconducting heteromeric Kv2.1/Kv8.2 channels, whereas the mutations localized in the tetramerization domain prevented heteromer generation and resulted in the formation of homomeric Kv2.1 channels only. Consequently, our study suggests the existence of two distinct molecular mechanisms involved in the disease pathology.
Collapse
Affiliation(s)
- Katie E Smith
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Smith MT, Muralidharan A. Pharmacogenetics of pain and analgesia. Clin Genet 2012; 82:321-30. [PMID: 22779698 DOI: 10.1111/j.1399-0004.2012.01936.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/08/2012] [Accepted: 07/08/2012] [Indexed: 12/19/2022]
Abstract
Pain severity ratings and the analgesic dosing requirements of patients with apparently similar pain conditions may differ considerably between individuals. Contributing factors include those of genetic and environmental origin with epigenetic mechanisms that enable dynamic gene-environment interaction, more recently implicated in pain modulation. Insight into genetic factors underpinning inter-patient variability in pain sensitivity has come from rodent heritability studies as well as familial aggregation and twin studies in humans. Indeed, more than 350 candidate pain genes have been identified as potentially contributing to heritable differences in pain sensitivity. A large number of genetic association studies conducted in patients with a variety of clinical pain types or in humans exposed to experimentally induced pain stimuli in the laboratory setting, have examined the impact of single-nucleotide polymorphisms in various target genes on pain sensitivity and/or analgesic dosing requirements. However, the findings of such studies have generally failed to replicate or have been only partially replicated by independent investigators. Deficiencies in study conduct including use of small sample size, inappropriate statistical methods and inadequate attention to the possibility that between-study differences in environmental factors may alter pain phenotypes through epigenetic mechanisms, have been identified as being significant.
Collapse
Affiliation(s)
- M T Smith
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
38
|
Kanda VA, Abbott GW. KCNE Regulation of K(+) Channel Trafficking - a Sisyphean Task? Front Physiol 2012; 3:231. [PMID: 22754540 PMCID: PMC3385356 DOI: 10.3389/fphys.2012.00231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/08/2012] [Indexed: 11/16/2022] Open
Abstract
Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners.
Collapse
Affiliation(s)
- Vikram A Kanda
- Department of Biology, Manhattan College Riverdale, New York, NY, USA
| | | |
Collapse
|
39
|
Bocksteins E, Snyders DJ. Electrically Silent Kv Subunits: Their Molecular and Functional Characteristics. Physiology (Bethesda) 2012; 27:73-84. [DOI: 10.1152/physiol.00023.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Electrically silent voltage-gated potassium (KvS) α-subunits do not form homotetramers but heterotetramerize with Kv2 subunits, generating functional Kv2/KvS channel complexes in which the KvS subunits modulate the Kv2 current. This poses intriguing questions into the molecular mechanisms by which these KvS subunits cannot form functional homotetramers, why they only interact with Kv2 subunits, and how they modulate the Kv2 current.
Collapse
Affiliation(s)
- Elke Bocksteins
- Department of Biomedical Sciences, Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, Antwerpen, Belgium
| | - Dirk J. Snyders
- Department of Biomedical Sciences, Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
40
|
Hristov KL, Chen M, Soder RP, Parajuli SP, Cheng Q, Kellett WF, Petkov GV. KV2.1 and electrically silent KV channel subunits control excitability and contractility of guinea pig detrusor smooth muscle. Am J Physiol Cell Physiol 2011; 302:C360-72. [PMID: 21998137 DOI: 10.1152/ajpcell.00303.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-gated K(+) (K(V)) channels are implicated in detrusor smooth muscle (DSM) function. However, little is known about the functional role of the heterotetrameric K(V) channels in DSM. In this report, we provide molecular, electrophysiological, and functional evidence for the presence of K(V)2.1 and electrically silent K(V) channel subunits in guinea pig DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of the homotetrameric K(V)2.1, K(V)2.2, and K(V)4.2 as well as the heterotetrameric K(V)2.1/6.3 and K(V)2.1/9.3 channels, was used to examine the role of these K(V) channels in DSM function. RT-PCR indicated mRNA expression of K(V)2.1, K(V)6.2-6.3, K(V)8.2, and K(V)9.1-9.3 subunits in isolated DSM cells. K(V)2.1 protein expression was confirmed by Western blot and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the K(V) current in freshly isolated DSM cells. ScTx1 (100 nM) did not significantly change the steady-state activation and inactivation curves for K(V) current. However, ScTx1 (100 nM) decreased the activation time-constant of the K(V) current at positive voltages. Although our patch-clamp data could not exclude the presence of the homotetrameric K(V)2.1 channels, the biophysical characteristics of the ScTx1-sensitive current were consistent with the presence of heterotetrameric K(V)2.1/silent K(V) channels. Current-clamp recordings showed that ScTx1 (100 nM) did not change the DSM cell resting membrane potential. ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude, muscle force, and muscle tone as well as the amplitude of the electrical field stimulation-induced contractions of isolated DSM strips. Collectively, our data revealed that K(V)2.1-containing channels are important physiological regulators of guinea pig DSM excitability and contractility.
Collapse
Affiliation(s)
- Kiril L Hristov
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Kyle B, Bradley E, Ohya S, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA. Contribution of Kv2.1 channels to the delayed rectifier current in freshly dispersed smooth muscle cells from rabbit urethra. Am J Physiol Cell Physiol 2011; 301:C1186-200. [PMID: 21813710 DOI: 10.1152/ajpcell.00455.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have characterized the native voltage-dependent K(+) (K(v)) current in rabbit urethral smooth muscle cells (RUSMC) and compared its pharmacological and biophysical properties with K(v)2.1 and K(v)2.2 channels cloned from the rabbit urethra and stably expressed in human embryonic kidney (HEK)-293 cells (HEK(Kv2.1) and HEK(Kv2.2)). RUSMC were perfused with Hanks' solution at 37°C and studied using the patch-clamp technique with K(+)-rich pipette solutions. Cells were bathed in 100 nM Penitrem A (Pen A) to block large-conductance Ca(2+)-activated K(+) (BK) currents and depolarized to +40 mV for 500 ms to evoke K(v) currents. These were unaffected by margatoxin, κ-dendrotoxin, or α-dendrotoxin (100 nM, n = 3-5) but were blocked by stromatoxin-1 (ScTx, IC(50) ∼130 nM), consistent with the idea that the currents were carried through K(v)2 channels. RNA was detected for K(v)2.1, K(v)2.2, and the silent subunit K(v)9.3 in urethral smooth muscle. Immunocytochemistry showed membrane staining for both K(v)2 subtypes and K(v)9.3 in isolated RUSMC. HEK(Kv2.1) and HEK(Kv2.2) currents were blocked in a concentration-dependent manner by ScTx, with estimated IC(50) values of ∼150 nM (K(v)2.1, n = 5) and 70 nM (K(v)2.2, n = 6). The mean half-maximal voltage (V(1/2)) of inactivation of the USMC K(v) current was -56 ± 3 mV (n = 9). This was similar to the HEK(Kv2.1) current (-55 ± 3 mV, n = 13) but significantly different from the HEK(Kv2.2) currents (-30 ± 3 mV, n = 11). Action potentials (AP) evoked from RUSMC studied under current-clamp mode were unaffected by ScTx. However, when ScTx was applied in the presence of Pen A, the AP duration was significantly prolonged. Similarly, ScTx increased the amplitude of spontaneous contractions threefold, but only after Pen A application. These data suggest that K(v)2.1 channels contribute significantly to the K(v) current in RUSMC.
Collapse
Affiliation(s)
- B Kyle
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | | | | | | | | | | | | |
Collapse
|
42
|
Kuechler A, Buysse K, Clayton-Smith J, Le Caignec C, David A, Engels H, Kohlhase J, Mari F, Mortier G, Renieri A, Wieczorek D. Five patients with novel overlapping interstitial deletions in 8q22.2q22.3. Am J Med Genet A 2011; 155A:1857-64. [DOI: 10.1002/ajmg.a.34072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 03/23/2011] [Indexed: 11/09/2022]
|
43
|
Nerbonne JM. Molecular Analysis of Voltage‐Gated K
+
Channel Diversity and Functioning in the Mammalian Heart. Compr Physiol 2011. [DOI: 10.1002/cphy.cp020115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Abstract
A recent publication that combined rat gene expression data and a human genetic association study has identified the first genetic risk factor for chronic pain in humans. In four of the five cohorts studied, there was a significant association of an allele within a gene (KCNS1) encoding a potassium channel (Kv9.1) with an increased risk for chronic pain. Identification of genetic risk factors for chronic pain could catalyze new advances in this difficult clinical area that has become a major public health problem. Genomic-medicine-based advances for chronic pain could include the development of a mechanism-based classification system for chronic pain, new treatment options, improved methods for treatment selection and targeted prevention strategies for high-risk individuals.
Collapse
Affiliation(s)
- Ming Zheng
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
45
|
Zhong XZ, Abd-Elrahman KS, Liao CH, El-Yazbi AF, Walsh EJ, Walsh MP, Cole WC. Stromatoxin-sensitive, heteromultimeric Kv2.1/Kv9.3 channels contribute to myogenic control of cerebral arterial diameter. J Physiol 2010; 588:4519-37. [PMID: 20876197 DOI: 10.1113/jphysiol.2010.196618] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cerebral vascular smooth muscle contractility plays a crucial role in controlling arterial diameter and, thereby, blood flow regulation in the brain. A number of K(+) channels have been suggested to contribute to the regulation of diameter by controlling smooth muscle membrane potential (E(m)) and Ca(2+) influx. Previous studies indicate that stromatoxin (ScTx1)-sensitive, Kv2-containing channels contribute to the control of cerebral arterial diameter at 80 mmHg, but their precise role and molecular composition were not determined. Here, we tested if Kv2 subunits associate with 'silent' subunits from the Kv5, Kv6, Kv8 or Kv9 subfamilies to form heterotetrameric channels that contribute to control of diameter of rat middle cerebral arteries (RMCAs) over a range of intraluminal pressure from 10 to 100 mmHg. The predominant mRNAs expressed by RMCAs encode Kv2.1 and Kv9.3 subunits. Co-localization of Kv2.1 and Kv9.3 proteins at the plasma membrane of dissociated single RMCA myocytes was detected by proximity ligation assay. ScTx1-sensitive native current of RMCA myocytes and Kv2.1/Kv9.3 currents exhibited functional identity based on the similarity of their deactivation kinetics and voltage dependence of activation that were distinct from those of homomultimeric Kv2.1 channels. ScTx1 treatment enhanced the myogenic response of pressurized RMCAs between 40 and 100 mmHg, but this toxin also caused constriction between 10 and 40 mmHg that was not previously observed following inhibition of large conductance Ca(2+)-activated K(+) (BK(Ca)) and Kv1 channels. Taken together, this study defines the molecular basis of Kv2-containing channels and contributes to our understanding of the functional significance of their expression in cerebral vasculature. Specifically, our findings provide the first evidence of heteromultimeric Kv2.1/Kv9.3 channel expression in RMCA myocytes and their distinct contribution to control of cerebral arterial diameter over a wider range of E(m) and transmural pressure than Kv1 or BK(Ca) channels owing to their negative range of voltage-dependent activation.
Collapse
Affiliation(s)
- Xi Zoë Zhong
- The Smooth Muscle Research Group, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Stephen G Waxman
- Neuroscience and Regeneration Research Centre, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT 06516, USA.
| |
Collapse
|
47
|
Castle NA. Pharmacological modulation of voltage-gated potassium channels as a therapeutic strategy. Expert Opin Ther Pat 2010; 20:1471-503. [PMID: 20726689 DOI: 10.1517/13543776.2010.513384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE OF THE FIELD The human genome encodes at least 40 distinct voltage-gated potassium channel subtypes, which vary in regional expression, pharmacological and biophysical properties. Voltage-dependent potassium (Kv) channels help orchestrate many of the physiological and pathophysiological processes that promote and sometimes hinder the healthy functioning of our bodies. AREAS COVERED IN THIS REVIEW This review summarizes patent and scientific literature reports from the past decade highlighting the opportunities that Kv channels offer for the development of new therapeutic interventions for a wide variety of disorders. WHAT THE READER WILL GAIN The reader will gain an insight from an analysis of the associations of different Kv family members with disease processes, summary and evaluation of the development of therapeutically relevant pharmacological modulators of these channels, particularly focusing on proprietary agents being developed. TAKE HOME MESSAGE Development of new drugs that target Kv channels continue to be of great interest but is proving to be challenging. Nevertheless, opportunities for Kv channel modulators to have an impact on a wide range of disorders in the future remain an exciting prospect.
Collapse
|
48
|
Costigan M, Belfer I, Griffin RS, Dai F, Barrett LB, Coppola G, Wu T, Kiselycznyk C, Poddar M, Lu Y, Diatchenko L, Smith S, Cobos EJ, Zaykin D, Allchorne A, Gershon E, Livneh J, Shen PH, Nikolajsen L, Karppinen J, Männikkö M, Kelempisioti A, Goldman D, Maixner W, Geschwind DH, Max MB, Seltzer Z, Woolf CJ. Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1. ACTA ACUST UNITED AC 2010; 133:2519-27. [PMID: 20724292 DOI: 10.1093/brain/awq195] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Not all patients with nerve injury develop neuropathic pain. The extent of nerve damage and age at the time of injury are two of the few risk factors identified to date. In addition, preclinical studies show that neuropathic pain variance is heritable. To define such factors further, we performed a large-scale gene profiling experiment which plotted global expression changes in the rat dorsal root ganglion in three peripheral neuropathic pain models. This resulted in the discovery that the potassium channel alpha subunit KCNS1, involved in neuronal excitability, is constitutively expressed in sensory neurons and markedly downregulated following nerve injury. KCNS1 was then characterized by an unbiased network analysis as a putative pain gene, a result confirmed by single nucleotide polymorphism association studies in humans. A common amino acid changing allele, the 'valine risk allele', was significantly associated with higher pain scores in five of six independent patient cohorts assayed (total of 1359 subjects). Risk allele prevalence is high, with 18-22% of the population homozygous, and an additional 50% heterozygous. At lower levels of nerve damage (lumbar back pain with disc herniation) association with greater pain outcome in homozygote patients is P = 0.003, increasing to P = 0.0001 for higher levels of nerve injury (limb amputation). The combined P-value for pain association in all six cohorts tested is 1.14 E-08. The risk profile of this marker is additive: two copies confer the most, one intermediate and none the least risk. Relative degrees of enhanced risk vary between cohorts, but for patients with lumbar back pain, they range between 2- and 3-fold. Although work still remains to define the potential role of this protein in the pathogenic process, here we present the KCNS1 allele rs734784 as one of the first prognostic indicators of chronic pain risk. Screening for this allele could help define those individuals prone to a transition to persistent pain, and thus requiring therapeutic strategies or lifestyle changes that minimize nerve injury.
Collapse
Affiliation(s)
- Michael Costigan
- F.M. Kirby Neurobiology Centre, Children’s Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Amin E, Wright N, Poirier GL, Thomas KL, Erichsen JT, Aggleton JP. Selective lamina dysregulation in granular retrosplenial cortex (area 29) after anterior thalamic lesions: an in situ hybridization and trans-neuronal tracing study in rats. Neuroscience 2010; 169:1255-67. [PMID: 20570608 DOI: 10.1016/j.neuroscience.2010.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 11/26/2022]
Abstract
There is growing evidence that lesions of the anterior thalamic nuclei cause long-lasting intrinsic changes to retrosplenial cortex, with the potential to alter its functional properties. The present study had two goals. The first was to identify the pattern of changes in eight markers, as measured by in-situ hydridisation, in the granular retrosplenial cortex (area Rgb) following anterior thalamic lesions. The second was to use retrograde trans-neuronal tracing methods to identify the potential repercussions of intrinsic changes within granular retrosplenial cortex. In Experiment 1, adult rats received unilateral lesions of the anterior thalamic nuclei and were perfused 4 weeks later. Of the eight markers, four (c-fos, zif268, 5ht2rc, kcnab2) showed a very similar pattern of change, with decreased levels in superficial retrosplenial cortex (lamina II) in the ipsilateral hemisphere but little or no change in deeper layers (lamina V). A fifth marker (cox6b) showed a shift in activity levels in the opposite direction to the previous four markers. Three other markers (cox6a1, CD74, ncs-1) did not appear to change activity levels after surgery. The predominant pattern of change, a decrease in superficial cortical activity, points to potential alterations in plasticity and metabolism. In Experiment 2, wheat germ agglutin (WGA) was injected into the anterior thalamic nuclei in rats given different survival times, sometimes in combination with the retrograde, fluorescent tracer, Fast Blue. Dense aggregations of retrogradely labeled cells were always found in lamina VI of granular retrosplenial cortex, but additional labeled cells in lamina II were only found: (1) in WGA cases, that is never after Fast Blue injections, and (2) after longer WGA survival times (3 days). These layer II Rgb cells are likely to have been trans-neuronally labeled, revealing a pathway from lamina II of Rgb to those deeper retrosplenial cells that project directly to the anterior thalamic nuclei.
Collapse
Affiliation(s)
- E Amin
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| | | | | | | | | | | |
Collapse
|
50
|
Wang Y, He L, Li HD, Xu J, Wu WH. Potassium channel α-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Res 2010; 20:826-37. [DOI: 10.1038/cr.2010.74] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|