1
|
Cueny RR, Voter AF, McKenzie AM, Morgenstern M, Myers KS, Place MM, Peters JM, Coon JJ, Keck JL. Altering translation allows E. coli to overcome chemically stabilized G-quadruplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607615. [PMID: 39185182 PMCID: PMC11343134 DOI: 10.1101/2024.08.12.607615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
G-quadruplex (G4) structures can form in guanine-rich DNA or RNA and have been found to modulate cellular processes including replication, transcription, and translation. Many studies on the cellular roles of G4s have focused on eukaryotic systems, with far fewer probing bacterial G4s. Using a chemical-genetic approach, we identified genes in Escherichia coli that are important for growth in G4-stabilizing conditions. Reducing levels of elongation factor Tu or slowing translation elongation with chloramphenicol suppress the effects of G4 stabilization. In contrast, reducing expression of certain translation termination or ribosome recycling proteins is detrimental to growth in G4-stabilizing conditions. Proteomic and transcriptomic analyses demonstrate that ribosome assembly factors and other proteins involved in translation are less abundant in G4-stabilizing conditions. Our integrated systems approach allowed us to propose a model for how RNA G4s can present barriers to E. coli growth and that reducing the rate of translation can compensate for G4-related stress.
Collapse
Affiliation(s)
- Rachel R Cueny
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew F Voter
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aidan M McKenzie
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marcel Morgenstern
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison Wisconsin, USA
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael M Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J Coon
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - James L Keck
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Gumina JM, Richardson AE, Shojiv MH, Chambers AE, Sandwith SN, Reisinger MA, Karns TJ, Osborne TL, Alashi HN, Anderson QT, Sharlow ME, Seiler DC, Rogers EM, Bartosik AR, Smaldino MA, Vaughn JP, Wang YH, Smaldino PJ, Haney RA. Differential Gene Expression following DHX36/ G4R1 Knockout Is Associated with G-Quadruplex Content and Cancer. Int J Mol Sci 2024; 25:1753. [PMID: 38339029 PMCID: PMC10855491 DOI: 10.3390/ijms25031753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
G-quadruplexes (G4s) are secondary DNA and RNA structures stabilized by positive cations in a central channel formed by stacked tetrads of Hoogsteen base-paired guanines. G4s form from G-rich sequences across the genome, whose biased distribution in regulatory regions points towards a gene-regulatory role. G4s can themselves be regulated by helicases, such as DHX36 (aliases: G4R1 and RHAU), which possess the necessary activity to resolve these stable structures. G4s have been shown to both positively and negatively regulate gene expression when stabilized by ligands, or through the loss of helicase activity. Using DHX36 knockout Jurkat cell lines, we identified widespread, although often subtle, effects on gene expression that are associated with the presence or number of observed G-quadruplexes in promoters or gene regions. Genes that significantly change their expression, particularly those that show a significant increase in RNA abundance under DHX36 knockout, are associated with a range of cellular functions and processes, including numerous transcription factors and oncogenes, and are linked to several cancers. Our work highlights the direct and indirect role of DHX36 in the transcriptome of T-lymphocyte leukemia cells and the potential for DHX36 dysregulation in cancer.
Collapse
Affiliation(s)
- Joseph M. Gumina
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | | | | - Taylor J. Karns
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Tyler L. Osborne
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Hasna N. Alashi
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | | | - Dylan C. Seiler
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Evan M. Rogers
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Anna R. Bartosik
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | - Yuh-Hwa Wang
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Robert A. Haney
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| |
Collapse
|
3
|
Dabral P, Uppal T, Verma SC. G-quadruplexes of KSHV oriLyt play important roles in promoting lytic DNA replication. Microbiol Spectr 2023; 11:e0531622. [PMID: 37800915 PMCID: PMC10714766 DOI: 10.1128/spectrum.05316-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/15/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Biological processes originating from the DNA and RNA can be regulated by the secondary structures present in the stretch of nucleic acids, and the G-quadruplexes are shown to regulate transcription, translation, and replication. In this study, we identified the presence of multiple G-quadruplex sites in the region (oriLyt) of Kaposi's sarcoma-associated herpesvirus (KSHV) DNA, which is essential for DNA replication during the lytic cycle. We demonstrated the roles of these G-quadruplexes through multiple biochemical and biophysical assays in controlling replication and efficient virus production. We demonstrated that KSHV achieves this by recruiting RecQ1 (helicase) at those G-quadruplex sites for efficient viral DNA replication. Analysis of the replicated DNA through nucleoside labeling and immunostaining showed a reduced initiation of DNA replication in cells with a pharmacologic stabilizer of G-quadruplexes. Overall, this study confirmed the role of the G-quadruplex in regulating viral DNA replication, which can be exploited for controlling viral DNA replication.
Collapse
Affiliation(s)
- Prerna Dabral
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
4
|
Cueny RR, McMillan SD, Keck JL. G-quadruplexes in bacteria: insights into the regulatory roles and interacting proteins of non-canonical nucleic acid structures. Crit Rev Biochem Mol Biol 2022; 57:539-561. [PMID: 36999585 PMCID: PMC10336854 DOI: 10.1080/10409238.2023.2181310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 04/01/2023]
Abstract
G-quadruplexes (G4s) are highly stable, non-canonical DNA or RNA structures that can form in guanine-rich stretches of nucleic acids. G4-forming sequences have been found in all domains of life, and proteins that bind and/or resolve G4s have been discovered in both bacterial and eukaryotic organisms. G4s regulate a variety of cellular processes through inhibitory or stimulatory roles that depend upon their positions within genomes or transcripts. These include potential roles as impediments to genome replication, transcription, and translation or, in other contexts, as activators of genome stability, transcription, and recombination. This duality suggests that G4 sequences can aid cellular processes but that their presence can also be problematic. Despite their documented importance in bacterial species, G4s remain understudied in bacteria relative to eukaryotes. In this review, we highlight the roles of bacterial G4s by discussing their prevalence in bacterial genomes, the proteins that bind and unwind G4s in bacteria, and the processes regulated by bacterial G4s. We identify limitations in our current understanding of the functions of G4s in bacteria and describe new avenues for studying these remarkable nucleic acid structures.
Collapse
Affiliation(s)
- Rachel R. Cueny
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Sarah D. McMillan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
5
|
Chang-Gu B, Venkatesan S, Russell R. Kinetics measurements of G-quadruplex binding and unfolding by helicases. Methods 2022; 204:1-13. [PMID: 35483547 PMCID: PMC10034854 DOI: 10.1016/j.ymeth.2022.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 01/28/2023] Open
Abstract
G-quadruplex structures (G4s) form readily in DNA and RNA and play diverse roles in gene expression and other processes, and their inappropriate formation and stabilization are linked to human diseases. G4s are inherently long-lived, such that their timely unfolding depends on a suite of DNA and RNA helicase proteins. Biochemical analysis of G4 binding and unfolding by individual helicase proteins is important for establishing their levels of activity, affinity, and specificity for G4s, including individual G4s of varying sequence and structure. Here we describe a set of simple, accessible methods in which electrophoretic mobility shift assays (EMSA) are used to measure the kinetics of G4 binding, dissociation, and unfolding by helicase proteins. We focus on practical considerations and the pitfalls that are most likely to arise when these methods are used to study the activities of helicases on G4s.
Collapse
Affiliation(s)
- Bruce Chang-Gu
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712, United States
| | - Sneha Venkatesan
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712, United States
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712, United States.
| |
Collapse
|
6
|
Lockd promotes myoblast proliferation and muscle regeneration via binding with DHX36 to facilitate 5' UTR rG4 unwinding and Anp32e translation. Cell Rep 2022; 39:110927. [PMID: 35675771 DOI: 10.1016/j.celrep.2022.110927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/10/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Adult muscle stem cells, also known as satellite cells (SCs), play pivotal roles in muscle regeneration, and long non-coding RNA (lncRNA) functions in SCs remain largely unknown. Here, we identify a lncRNA, Lockd, which is induced in activated SCs upon acute muscle injury. We demonstrate that Lockd promotes SC proliferation; deletion of Lockd leads to cell-cycle arrest, and in vivo repression of Lockd in mouse muscles hinders regeneration process. Mechanistically, we show that Lockd directly interacts with RNA helicase DHX36 and the 5'end of Lockd possesses the strongest binding with DHX36. Furthermore, we demonstrate that Lockd stabilizes the interaction between DHX36 and EIF3B proteins; synergistically, this complex unwinds the RNA G-quadruplex (rG4) structure formed at Anp32e mRNA 5' UTR and promotes the translation of ANP32E protein, which is required for myoblast proliferation. Altogether, our findings identify a regulatory Lockd/DHX36/Anp32e axis that promotes myoblast proliferation and acute-injury-induced muscle regeneration.
Collapse
|
7
|
Cooperative Analysis of Structural Dynamics in RNA-Protein Complexes by Single-Molecule Förster Resonance Energy Transfer Spectroscopy. Molecules 2020; 25:molecules25092057. [PMID: 32354083 PMCID: PMC7248720 DOI: 10.3390/molecules25092057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
RNA-protein complexes (RNPs) are essential components in a variety of cellular processes, and oftentimes exhibit complex structures and show mechanisms that are highly dynamic in conformation and structure. However, biochemical and structural biology approaches are mostly not able to fully elucidate the structurally and especially conformationally dynamic and heterogeneous nature of these RNPs, to which end single molecule Förster resonance energy transfer (smFRET) spectroscopy can be harnessed to fill this gap. Here we summarize the advantages of strategic smFRET studies to investigate RNP dynamics, complemented by structural and biochemical data. Focusing on recent smFRET studies of three essential biological systems, we demonstrate that investigation of RNPs on a single molecule level can answer important functional questions that remained elusive with structural or biochemical approaches alone: The complex structural rearrangements throughout the splicing cycle, unwinding dynamics of the G-quadruplex (G4) helicase RHAU, and aspects in telomere maintenance regulation and synthesis.
Collapse
|
8
|
Tracking RNA with light: selection, structure, and design of fluorescence turn-on RNA aptamers. Q Rev Biophys 2019; 52:e8. [PMID: 31423956 DOI: 10.1017/s0033583519000064] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorescence turn-on aptamers, in vitro evolved RNA molecules that bind conditional fluorophores and activate their fluorescence, have emerged as RNA counterparts of the fluorescent proteins. Turn-on aptamers have been selected to bind diverse fluorophores, and they achieve varying degrees of specificity and affinity. These RNA-fluorophore complexes, many of which exceed the brightness of green fluorescent protein and their variants, can be used as tags for visualizing RNA localization and transport in live cells. Structure determination of several fluorescent RNAs revealed that they have diverse, unrelated overall architectures. As most of these RNAs activate the fluorescence of their ligands by restraining their photoexcited states into a planar conformation, their fluorophore binding sites have in common a planar arrangement of several nucleobases, most commonly a G-quartet. Nonetheless, each turn-on aptamer has developed idiosyncratic structural solutions to achieve specificity and efficient fluorescence turn-on. The combined structural diversity of fluorophores and turn-on RNA aptamers has already produced combinations that cover the visual spectrum. Further molecular evolution and structure-guided engineering is likely to produce fluorescent tags custom-tailored to specific applications.
Collapse
|
9
|
MOV10L1 Binds RNA G-Quadruplex in a Structure-Specific Manner and Resolves It More Efficiently Than MOV10. iScience 2019; 17:36-48. [PMID: 31252377 PMCID: PMC6600044 DOI: 10.1016/j.isci.2019.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
MOV10L1 and its paralog MOV10 are evolutionally conserved RNA helicases involved in distinct RNA regulatory pathways. The testis-specific MOV10L1 is essential for spermatogenesis and PIWI-interacting RNAs biogenesis, whereas MOV10 is ubiquitous and multifunctional. Although both proteins have been implied to correlate with RNA G-quadruplex (RG4) in vivo, their capabilities in binding and resolving RG4 and their respective biological significance remain unclear. Herein, we comprehensively characterize and compare the activities of these two helicases on various nucleic acid substrates in vitro, with a focus on RG4 structure. We find that both MOV10L1 and MOV10 are able to resolve RG4, with MOV10L1 being more efficient in that. In contrast to MOV10, MOV10L1 prefers to bind to a junction between single-stranded RNA and RG4, which is mediated by both its N and C termini. Furthermore, we show that RG4 unwinding by MOV10L1 facilitates the cleavage of this specific RNA structure by an endonuclease. Both MOV10L1 and MOV10 can resolve RG4 structure in an ATP-dependent manner MOV10L1 unwinds RG4 more efficiently than MOV10 MOV10L1 preferentially binds to an ssRNA-RG4 junction RG4 unwinding by MOV10L1 facilitates its endonucleolytic cleavage
Collapse
|
10
|
Lerner LK, Sale JE. Replication of G Quadruplex DNA. Genes (Basel) 2019; 10:genes10020095. [PMID: 30700033 PMCID: PMC6409989 DOI: 10.3390/genes10020095] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
A cursory look at any textbook image of DNA replication might suggest that the complex machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA sequences can adopt non-B form secondary structures and these have the potential to impede progression of the replisome. A picture is emerging in which the maintenance of processive DNA replication requires the action of a significant number of additional proteins beyond the core replisome to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the replisome from causing genetic and epigenetic instability. This review considers the circumstances in which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these impediments in the light of recent advances in our understanding of its structure and operation and the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s), and on the helicases that promote their resolution.
Collapse
Affiliation(s)
- Leticia Koch Lerner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
11
|
Yangyuoru PM, Bradburn DA, Liu Z, Xiao TS, Russell R. The G-quadruplex (G4) resolvase DHX36 efficiently and specifically disrupts DNA G4s via a translocation-based helicase mechanism. J Biol Chem 2017; 293:1924-1932. [PMID: 29269411 DOI: 10.1074/jbc.m117.815076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Single-stranded DNA (ssDNA) and RNA regions that include at least four closely spaced runs of three or more consecutive guanosines strongly tend to fold into stable G-quadruplexes (G4s). G4s play key roles as DNA regulatory sites and as kinetic traps that can inhibit biological processes, but how G4s are regulated in cells remains largely unknown. Here, we developed a kinetic framework for G4 disruption by DEAH-box helicase 36 (DHX36), the dominant G4 resolvase in human cells. Using tetramolecular DNA and RNA G4s with four to six G-quartets, we found that DHX36-mediated disruption is highly efficient, with rates that depend on G4 length under saturating conditions (kcat) but not under subsaturating conditions (kcat/Km ). These results suggest that a step during G4 disruption limits the kcat value and that DHX36 binding limits kcat/Km Similar results were obtained for unimolecular DNA G4s. DHX36 activity depended on a 3' ssDNA extension and was blocked by a polyethylene glycol linker, indicating that DHX36 loads onto the extension and translocates 3'-5' toward the G4. DHX36 unwound dsDNA poorly compared with G4s of comparable intrinsic lifetime. Interestingly, we observed that DHX36 has striking 3'-extension sequence preferences that differ for G4 disruption and dsDNA unwinding, most likely arising from differences in the rate-limiting step for the two activities. Our results indicate that DHX36 disrupts G4s with a conventional helicase mechanism that is tuned for great efficiency and specificity for G4s. The dependence of DHX36 on the 3'-extension sequence suggests that the extent of formation of genomic G4s may not track directly with G4 stability.
Collapse
Affiliation(s)
- Philip M Yangyuoru
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712 and
| | - Devin A Bradburn
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712 and
| | - Zhonghua Liu
- the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tsan Sam Xiao
- the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Rick Russell
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712 and
| |
Collapse
|
12
|
Gueddouda NM, Mendoza O, Gomez D, Bourdoncle A, Mergny JL. G-quadruplexes unfolding by RHAU helicase. Biochim Biophys Acta Gen Subj 2017; 1861:1382-1388. [PMID: 28065761 DOI: 10.1016/j.bbagen.2017.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 11/17/2022]
Abstract
G-quadruplexes (G4) are RNA and DNA secondary structures formed by the stacking of guanine quartets in guanine rich sequences. Quadruplex-prone motifs may be found in key genomic regions such as telomeres, ribosomal DNA, transcriptional activators and regulators or oncogene promoters. A number of proteins involved in various biological processes are able to interact with G4s. Among them, proteins dedicated to nucleic acids unwinding such as WRN, BLM, FANCJ or PIF1, can unfold G4 structures. Mutations of these helicases are linked to genome instability and to increases in cancer risks. Here, we present a high-throughput fluorescence-based reliable, inexpensive and fast assay to study G4/RHAU interaction. RHAU is an RNA helicase known as the major source of G4 resolution in HeLa cells. Our assay allows to monitor the unfolding properties of RHAU towards DNA and RNA quadruplexes in parallel and to screen for the optimal conditions for its activity. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
| | - Oscar Mendoza
- Univ. Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33607 Pessac, France
| | - Dennis Gomez
- Univ. Toulouse, IPBS, CNRS UMR 5089, 205 route de Narbonne, 31077 Toulouse, France
| | - Anne Bourdoncle
- Univ. Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33607 Pessac, France.
| | - Jean-Louis Mergny
- Univ. Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33607 Pessac, France.
| |
Collapse
|
13
|
Mendoza O, Bourdoncle A, Boulé JB, Brosh RM, Mergny JL. G-quadruplexes and helicases. Nucleic Acids Res 2016; 44:1989-2006. [PMID: 26883636 PMCID: PMC4797304 DOI: 10.1093/nar/gkw079] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022] Open
Abstract
Guanine-rich DNA strands can fold in vitro into non-canonical DNA structures called G-quadruplexes. These structures may be very stable under physiological conditions. Evidence suggests that G-quadruplex structures may act as ‘knots’ within genomic DNA, and it has been hypothesized that proteins may have evolved to remove these structures. The first indication of how G-quadruplex structures could be unfolded enzymatically came in the late 1990s with reports that some well-known duplex DNA helicases resolved these structures in vitro. Since then, the number of studies reporting G-quadruplex DNA unfolding by helicase enzymes has rapidly increased. The present review aims to present a general overview of the helicase/G-quadruplex field.
Collapse
Affiliation(s)
- Oscar Mendoza
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Anne Bourdoncle
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Jean-Baptiste Boulé
- CNRS UMR 7196, INSERM U1154, MNHN, F-75005 Paris, France Sorbonne Universités, F-75005 Paris, France
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jean-Louis Mergny
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| |
Collapse
|
14
|
Tippana R, Xiao W, Myong S. G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic Acids Res 2014; 42:8106-14. [PMID: 24920827 PMCID: PMC4081081 DOI: 10.1093/nar/gku464] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The quadruplex forming G-rich sequences are unevenly distributed throughout the human genome. Their enrichment in oncogenic promoters and telomeres has generated interest in targeting G-quadruplex (GQ) for an anticancer therapy. Here, we present a quantitative analysis on the conformations and dynamics of GQ forming sequences measured by single molecule fluorescence. Additionally, we relate these properties to GQ targeting ligands and G4 resolvase 1 (G4R1) protein binding. Our result shows that both the loop (non-G components) length and sequence contribute to the conformation of the GQ. Real time single molecule traces reveal that the folding dynamics also depend on the loop composition. We demonstrate that GQ-stabilizing small molecules, N-methyl mesoporphyrin IX (NMM), its analog, NMP and the G4R1 protein bind selectively to the parallel GQ conformation. Our findings point to the complexity of GQ folding governed by the loop length and sequence and how the GQ conformation determines the small molecule and protein binding propensity.
Collapse
Affiliation(s)
- Ramreddy Tippana
- Bioengineering Department, University of Illinois, 1304 W. Springfield Ave., Urbana, IL 61801, USA
| | - Weikun Xiao
- Bioengineering Department, University of Illinois, 1304 W. Springfield Ave., Urbana, IL 61801, USA
| | - Sua Myong
- Bioengineering Department, University of Illinois, 1304 W. Springfield Ave., Urbana, IL 61801, USA Biophysics and Computational Biology, 1110 W. Green St., Urbana, IL 61801, USA Institute for Genomic Biology, 1206 Gregory Drive, Urbana, IL 61801, USA Physics Frontier Center (Center of Physics for Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
15
|
Vummidi BR, Alzeer J, Luedtke NW. Fluorescent Probes for G-Quadruplex Structures. Chembiochem 2013; 14:540-58. [DOI: 10.1002/cbic.201200612] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 12/19/2022]
|
16
|
Cavaliere P, Pagano B, Granata V, Prigent S, Rezaei H, Giancola C, Zagari A. Cross-talk between prion protein and quadruplex-forming nucleic acids: a dynamic complex formation. Nucleic Acids Res 2012; 41:327-39. [PMID: 23104426 PMCID: PMC3592392 DOI: 10.1093/nar/gks970] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prion protein (PrP) is involved in lethal neurodegenerative diseases, and many issues remain unclear about its physio-pathological role. Quadruplex-forming nucleic acids (NAs) have been found to specifically bind to both PrP cellular and pathological isoforms. To clarify the relevance of these interactions, thermodynamic, kinetic and structural studies have been performed, using isothermal titration calorimetry, surface plasmon resonance and circular dichroism methodologies. Three quadruplex-forming sequences, d(TGGGGT), r(GGAGGAGGAGGA), d(GGAGGAGGAGGA), and various forms of PrP were selected for this study. Our results showed that these quadruplexes exhibit a high affinity and specificity toward PrP, with KD values within the range 62÷630 nM, and a weaker affinity toward a PrP-β oligomer, which mimics the pathological isoform. We demonstrated that the NA quadruplex architecture is the structural determinant for the recognition by both PrP isoforms. Furthermore, we spotted both PrP N-terminal and C-terminal domains as the binding regions involved in the interaction with DNA/RNAs, using several PrP truncated forms. Interestingly, a reciprocally induced structure loss was observed upon PrP–NA interaction. Our results allowed to surmise a quadruplex unwinding-activity of PrP, that may have a feedback in vivo.
Collapse
Affiliation(s)
- Paola Cavaliere
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli Federico II, Naples 80134, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Grinnell KL, Chichger H, Braza J, Duong H, Harrington EO. Protection against LPS-induced pulmonary edema through the attenuation of protein tyrosine phosphatase-1B oxidation. Am J Respir Cell Mol Biol 2011; 46:623-32. [PMID: 22180868 DOI: 10.1165/rcmb.2011-0271oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One hallmark of acute lung injury is the disruption of the pulmonary endothelial barrier. Such disruption correlates with increased endothelial permeability, partly through the disruption of cell-cell contacts. Protein tyrosine phosphatases (PTPs) are known to affect the stability of both cell-extracellular matrix adhesions and intercellular adherens junctions (AJs). However, evidence for the role of select PTPs in regulating endothelial permeability is limited. Our investigations noted that the inhibition of PTP1B in cultured pulmonary endothelial cells (ECs), as well as in the vasculature of intact murine lungs via the transient overexpression of a catalytically inactive PTP1B, decreased the baseline resistance of cultured EC monolayers and increased the formation of edema in murine lungs, respectively. In addition, we observed that the overexpression of wild-type PTP1B enhanced basal barrier function in vitro. Immunohistochemical analyses of pulmonary ECs and the coimmunoprecipitation of murine lung homogenates demonstrated the association of PTP1B with the AJ proteins β-catenin, p120-catenin, and VE-cadherin both in vitro and ex vivo. Using LPS in a model of sepsis-induced acute lung injury, we showed that reactive oxygen species were generated in response to LPS, which correlated with enhanced PTP1B oxidation, inhibited phosphatase activity, and attenuation of the interactions between PTP1B and β-catenin, as well as enhanced β-catenin tyrosine phosphorylation. Finally, the overexpression of a cytosolic PTP1B fragment, shown to be resistant to nicotinamide adenine dinucleotide phosphate-reduced oxidase-4 (Nox4)-mediated oxidation, significantly attenuated LPS-induced endothelial barrier dysfunction and the formation of lung edema, and preserved the associations of PTP1B with AJ protein components, independent of PTP1B phosphatase activity. We conclude that PTP1B plays an important role in maintaining the pulmonary endothelial barrier, and PTP1B oxidation appears to contribute to sepsis-induced pulmonary vascular dysfunction, possibly through the disruption of AJs.
Collapse
Affiliation(s)
- Katie L Grinnell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI 02908, USA
| | | | | | | | | |
Collapse
|
18
|
Deepa P, Kolandaivel P, Senthilkumar K. Structural properties and the effect of interaction of alkali (Li+, Na+, K+) and alkaline earth (Be2+, Mg2+, Ca2+) metal cations with G and SG-tetrads. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Huang W, Smaldino PJ, Zhang Q, Miller LD, Cao P, Stadelman K, Wan M, Giri B, Lei M, Nagamine Y, Vaughn JP, Akman SA, Sui G. Yin Yang 1 contains G-quadruplex structures in its promoter and 5'-UTR and its expression is modulated by G4 resolvase 1. Nucleic Acids Res 2011; 40:1033-49. [PMID: 21993297 PMCID: PMC3273823 DOI: 10.1093/nar/gkr849] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional protein with regulatory potential in tumorigenesis. Ample studies demonstrated the activities of YY1 in regulating gene expression and mediating differential protein modifications. However, the mechanisms underlying YY1 gene expression are relatively understudied. G-quadruplexes (G4s) are four-stranded structures or motifs formed by guanine-rich DNA or RNA domains. The presence of G4 structures in a gene promoter or the 5′-UTR of its mRNA can markedly affect its expression. In this report, we provide strong evidence showing the presence of G4 structures in the promoter and the 5′-UTR of YY1. In reporter assays, mutations in these G4 structure forming sequences increased the expression of Gaussia luciferase (Gluc) downstream of either YY1 promoter or 5′-UTR. We also discovered that G4 Resolvase 1 (G4R1) enhanced the Gluc expression mediated by the YY1 promoter, but not the YY1 5′-UTR. Consistently, G4R1 binds the G4 motif of the YY1 promoter in vitro and ectopically expressed G4R1 increased endogenous YY1 levels. In addition, the analysis of a gene array data consisting of the breast cancer samples of 258 patients also indicates a significant, positive correlation between G4R1 and YY1 expression.
Collapse
Affiliation(s)
- Weiwei Huang
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Giri B, Smaldino PJ, Thys RG, Creacy SD, Routh ED, Hantgan RR, Lattmann S, Nagamine Y, Akman SA, Vaughn JP. G4 resolvase 1 tightly binds and unwinds unimolecular G4-DNA. Nucleic Acids Res 2011; 39:7161-78. [PMID: 21586581 PMCID: PMC3167620 DOI: 10.1093/nar/gkr234] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It has been previously shown that the DHX36 gene product, G4R1/RHAU, tightly binds tetramolecular G4-DNA with high affinity and resolves these structures into single strands. Here, we test the ability of G4R1/RHAU to bind and unwind unimolecular G4-DNA. Gel mobility shift assays were used to measure the binding affinity of G4R1/RHAU for unimolecular G4-DNA-formed sequences from the Zic1 gene and the c-Myc promoter. Extremely tight binding produced apparent K(d)'s of 6, 3 and 4 pM for two Zic1 G4-DNAs and a c-Myc G4-DNA, respectively. The low enzyme concentrations required for measuring these K(d)'s limit the precision of their determination to upper boundary estimates. Similar tight binding was not observed in control non-G4 forming DNA sequences or in single-stranded DNA having guanine-rich runs capable of forming tetramolecular G4-DNA. Using a peptide nucleic acid (PNA) trap assay, we show that G4R1/RHAU catalyzes unwinding of unimolecular Zic1 G4-DNA into an unstructured state capable of hybridizing to a complementary PNA. Binding was independent of adenosine triphosphate (ATP), but the PNA trap assay showed that unwinding of G4-DNA was ATP dependent. Competition studies indicated that unimolecular Zic1 and c-Myc G4-DNA structures inhibit G4R1/RHAU-catalyzed resolution of tetramolecular G4-DNA. This report provides evidence that G4R1/RHAU tightly binds and unwinds unimolecular G4-DNA structures.
Collapse
Affiliation(s)
- Banabihari Giri
- Department of Cancer Biology and the Comprehensive Cancer Center of Wake Forest University School of Medicine, Winston-Salem, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sissi C, Gatto B, Palumbo M. The evolving world of protein-G-quadruplex recognition: a medicinal chemist's perspective. Biochimie 2011; 93:1219-30. [PMID: 21549174 PMCID: PMC7126356 DOI: 10.1016/j.biochi.2011.04.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 04/20/2011] [Indexed: 01/02/2023]
Abstract
The physiological and pharmacological role of nucleic acids structures folded into the non canonical G-quadruplex conformation have recently emerged. Their activities are targeted at vital cellular processes including telomere maintenance, regulation of transcription and processing of the pre-messenger or telomeric RNA. In addition, severe conditions like cancer, fragile X syndrome, Bloom syndrome, Werner syndrome and Fanconi anemia J are related to genomic defects that involve G-quadruplex forming sequences. In this connection G-quadruplex recognition and processing by nucleic acid directed proteins and enzymes represents a key event to activate or deactivate physiological or pathological pathways. In this review we examine protein-G-quadruplex recognition in physiologically significant conditions and discuss how to possibly exploit the interactions' selectivity for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Claudia Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, Padua, Italy
| | | | | |
Collapse
|
22
|
Abstract
Alternate DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by sequences that are widely distributed throughout the human genome. G-quadruplex secondary structures, formed by the stacking of planar quartets composed of four guanines that interact by Hoogsteen hydrogen bonding, can affect cellular DNA replication and transcription, and influence genomic stability. The unique metabolism of G-rich chromosomal regions that potentially form quadruplexes may influence a number of biological processes including immunoglobulin gene rearrangements, promoter activation and telomere maintenance. A number of human diseases are characterized by telomere defects, and it is proposed that G-quadruplex structures which form at telomere ends play an important role in telomere stability. Evidence from cellular studies and model organisms suggests that diseases with known defects in G4 DNA helicases are likely to be perturbed in telomere maintenance and cellular DNA replication. In this minireview, we discuss the connections of G-quadruplex nucleic acids to human genetic diseases and cancer based on the recent literature.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | | |
Collapse
|
23
|
Shi S, Zhao J, Geng X, Yao T, Huang H, Liu T, Zheng L, Li Z, Yang D, Ji L. Molecular “light switch” for G-quadruplexes and i-motif of human telomeric DNA: [Ru(phen)2(dppz)]2+. Dalton Trans 2010; 39:2490-3. [DOI: 10.1039/b916094a] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Creacy SD, Routh ED, Iwamoto F, Nagamine Y, Akman SA, Vaughn JP. G4 resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates. J Biol Chem 2008; 283:34626-34. [PMID: 18842585 DOI: 10.1074/jbc.m806277200] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quadruplex structures that result from stacking of guanine quartets in nucleic acids possess such thermodynamic stability that their resolution in vivo is likely to require specific recognition by specialized enzymes. We previously identified the major tetramolecular quadruplex DNA resolving activity in HeLa cell lysates as the gene product of DHX36 (Vaughn, J. P., Creacy, S. D., Routh, E. D., Joyner-Butt, C., Jenkins, G. S., Pauli, S., Nagamine, Y., and Akman, S. A. (2005) J. Biol Chem. 280, 38117-38120), naming the enzyme G4 Resolvase 1 (G4R1). G4R1 is also known as RHAU, an RNA helicase associated with the AU-rich sequence of mRNAs. We now show that G4R1/RHAU binds to and resolves tetramolecular RNA quadruplex as well as tetramolecular DNA quadruplex structures. The apparent K(d) values of G4R1/RHAU for tetramolecular RNA quadruplex and tetramolecular DNA quadruplex were exceptionally low: 39 +/- 6 and 77 +/- 6 Pm, respectively, as measured by gel mobility shift assay. In competition studies tetramolecular RNA quadruplex structures inhibited tetramolecular DNA quadruplex structure resolution by G4R1/RHAU more efficiently than tetramolecular DNA quadruplex structures inhibited tetramolecular RNA quadruplex structure resolution. Down-regulation of G4R1/RHAU in HeLa T-REx cells by doxycycline-inducible short hairpin RNA caused an 8-fold loss of RNA and DNA tetramolecular quadruplex resolution, consistent with G4R1/RHAU representing the major tetramolecular quadruplex helicase activity for both RNA and DNA structures in HeLa cells. This study demonstrates for the first time the RNA quadruplex resolving enzymatic activity associated with G4R1/RHAU and its exceptional binding affinity, suggesting a potential novel role for G4R1/RHAU in targeting in vivo RNA quadruplex structures.
Collapse
Affiliation(s)
- Steven D Creacy
- Department of Cancer Biology and the Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
25
|
Gray DM, Wen JD, Gray CW, Repges R, Repges C, Raabe G, Fleischhauer J. Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities. Chirality 2008; 20:431-40. [PMID: 17853398 DOI: 10.1002/chir.20455] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Circular dichroism (CD) spectroscopy is widely used to characterize the structures of DNA G-quadruplexes. CD bands at 200-300 nm have been empirically related to G-quadruplexes having parallel or antiparallel sugar-phosphate backbones. We propose that a more fundamental interpretation of the origin of the CD bands is in the stacking interactions of neighboring G-quartets, which can have the same or opposing polarities of hydrogen bond acceptors and donors. From an empirical summation of CD spectra of the d(G)5 G-quadruplex and of the thrombin binding aptamer that have neighboring G-quartets with the same and opposite polarities, respectively, the spectra of aptamers selected by the Ff gene 5 protein (g5p) appear to arise from a combination of the two types of polarities of neighboring G-quartets. The aptamer CD spectra resemble the spectrum of d(G3T4G3), in which two adjacent quartets have the same and two have opposite polarities. Quantum-chemical spectral calculations were performed using a matrix method, based on guanine chromophores oriented as in d(G3T4G3). The calculations show that the two types of G-quartet stacks have CD spectra with features resembling experimental spectra of the corresponding types of G-quadruplexes.
Collapse
Affiliation(s)
- Donald M Gray
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Juskowiak B. Analytical potential of the quadruplex DNA-based FRET probes. Anal Chim Acta 2006; 568:171-80. [PMID: 17761258 DOI: 10.1016/j.aca.2005.12.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 12/12/2005] [Accepted: 12/29/2005] [Indexed: 11/17/2022]
Abstract
DNA exhibits structural flexibility and may adopt also tetraplex structures known as guanine-quadruplexes or G-quadruplexes. These G-quadruplexes have recently received great attention because G-rich sequences are often found in genome and because of their potential links to mechanisms that relate to cancer, HIV, and other diseases. The unique structure of quadruplexes has also stimulated development of new analytical and bioanalytical assays based on fluorescence resonance energy transfer (FRET). Intramolecular folding of a flexible single-stranded DNA molecule into a compact G-quadruplex is a structural transition leading to closer proximity of its 5'- and 3'-ends. Thus, labeling both ends of a DNA strand with donor and acceptor fluorophores enables monitoring the quadruplex formation process by means of the FRET signal. This review shows how FRET technique contributes to G-quadruplex research and focuses mainly on analytical applications of FRET-labeled quadruplexes. Applications include studies of structural transitions of quadruplexes, FRET-based selection of ligands that bind to quadruplexes, design of molecular probes for protein recognition and development of sensors for detection of potassium ions in aqueous solution.
Collapse
Affiliation(s)
- Bernard Juskowiak
- Department of Analytical Chemistry, Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznan, Poland.
| |
Collapse
|
27
|
Oganesian L, Moon IK, Bryan TM, Jarstfer MB. Extension of G-quadruplex DNA by ciliate telomerase. EMBO J 2006; 25:1148-59. [PMID: 16511573 PMCID: PMC1409729 DOI: 10.1038/sj.emboj.7601006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 01/25/2006] [Indexed: 02/03/2023] Open
Abstract
Telomeric DNA can fold into four-stranded structures known as G-quadruplexes. Here we investigate the ability of G-quadruplex DNA to serve as a substrate for recombinant Tetrahymena and native Euplotes telomerase. Inter- and intramolecular G-quadruplexes were gel-purified and their stability examined using native gel electrophoresis, circular dichroism (CD) and thermal denaturation. While intermolecular G-quadruplexes were highly stable, they were excellent substrates for both ciliate telomerases in primer extension assays. In contrast, intramolecular G-quadruplexes formed in K+ exhibited biphasic unfolding and were not extended by ciliate telomerases. Na+-stabilised intramolecular G-quadruplexes were extended by telomerase owing to their rapid rate of dissociation. The Tetrahymena telomerase protein component bound to inter- but not intramolecular K+-stabilised G-quadruplexes. This study provides evidence that parallel intermolecular G-quadruplexes can serve as substrates for telomerase in vitro, their extension being mediated through direct interactions between this higher-order structure and telomerase.
Collapse
Affiliation(s)
| | - Ian K Moon
- School of Pharmacy, Division of Medicinal Chemistry and Natural Products, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tracy M Bryan
- Children's Medical Research Institute, Sydney, Australia
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia. Tel.: +61 2 9687 2800; Fax: +61 2 9687 2120; E-mail:
| | - Michael B Jarstfer
- School of Pharmacy, Division of Medicinal Chemistry and Natural Products, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Pharmacy, Division of Medicinal Chemistry and Natural Products, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA. Tel.: +1 919 966 6422; Fax: +1 919 966 0204; E-mail:
| |
Collapse
|
28
|
Vaughn JP, Creacy SD, Routh ED, Joyner-Butt C, Jenkins GS, Pauli S, Nagamine Y, Akman SA. The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates. J Biol Chem 2005; 280:38117-20. [PMID: 16150737 DOI: 10.1074/jbc.c500348200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
G4-DNA is a highly stable alternative DNA structure that can form spontaneously in guanine-rich regions of single-stranded DNA under physiological conditions. Since a number of biological processes create such single-stranded regions, G4-DNA occurrence must be regulated. To date, resolution of tetramolecular G4-DNA into single strands (G4-resolvase activity) has been observed only in recombinant RecQ DNA helicases. We previously reported that human cell lysates possess tetramolecular G4-DNA resolving activity (Harrington, C., Lan, Y., and Akman, S. (1997) J. Biol Chem. 272, 24631-24636). Here we report the first complete purification of a major non-RecQ, NTP-dependent G4-DNA resolving enzyme from human cell lysates. This enzyme is identified as the DEXH helicase product of gene DHX36 (also known as RHAU). G4-DNA resolving activity was captured from HeLa cell lysates on G4-DNA affinity beads and further purified by gel filtration chromatography. The DHX36 gene product was identified by mass spectrometric sequencing of a tryptic digest from the protein band on SDS-PAGE associated with activity. DHX36 was cloned within a His(6)-tagging vector, expressed, and purified from Escherichia coli. Inhibition and substrate resolution assays showed that recombinant DHX36 protein displayed robust, highly specific G4-DNA resolving activity. Immunodepletion of HeLa lysates by a monoclonal antibody to the DHX36 product removed ca. 77% of the enzyme from lysates and reduced G4-DNA resolving activity to 46.0 +/- 0.4% of control, demonstrating that DHX36 protein is responsible for the majority of tetramolecular G4-DNA resolvase activity.
Collapse
Affiliation(s)
- James P Vaughn
- Department of Cancer Biology and the Comprehensive Cancer Center of Wake Forest Medical Center, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Métifiot M, Leon O, Tarrago-Litvak L, Litvak S, Andréola ML. Targeting HIV-1 integrase with aptamers selected against the purified RNase H domain of HIV-1 RT. Biochimie 2005; 87:911-9. [PMID: 16164998 DOI: 10.1016/j.biochi.2005.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/10/2005] [Accepted: 03/18/2005] [Indexed: 11/17/2022]
Abstract
Several in vitro strategies have been developed to selectively screen for nucleic acid sequences that bind to specific proteins. We previously used the SELEX procedure to search for aptamers against HIV-1 RNase H activity associated with reverse transcriptase (RT) and human RNase H1. Aptamers containing G-rich sequences were selected in both cases. To investigate whether the interaction with G-rich oligonucleotides (ODNs) was a characteristic of these enzymes, a second in vitro selection was performed with an isolated RNase H domain of HIV-1 RT (p15) as a target and a new DNA library. In this work we found that the second SELEX led again to the isolation of G-rich aptamers. But in contrast to the first selection, these latter ODNs were not able to inhibit the RNase H activity of either the p15 domain or the RNase H embedded in the complete RT. On the other hand, the aptamers from the first SELEX that were inhibitors of the RT-associated RNase H did not inhibit the activity of the isolated p15 domain. This suggests that the active conformation of both RNase H domains is different according to the presence or absence of the DNA polymerase domain. HIV-1 RNase H and integrase both belong to the phosphotransferase family and share structural similarities. An interesting result was obtained when the DNA aptamers initially raised against p15 RNase H were assayed against HIV-1 integrase. In contrast to RNase H, the HIV-1 integrase was inhibited by these aptamers. Our results point out that prototype structures can be exploited to develop inhibitors of two related enzymes.
Collapse
Affiliation(s)
- Mathieu Métifiot
- UMR 5097 CNRS, Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
30
|
Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:49-132. [PMID: 16096027 DOI: 10.1016/s0079-6603(04)79002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Anuradha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
31
|
Zhou T, Chen G, Wang Y, Zhang Q, Yang M, Li T. Synthesis of unimolecularly circular G-quadruplexes as prospective molecular probes. Nucleic Acids Res 2004; 32:e173. [PMID: 15591017 PMCID: PMC535693 DOI: 10.1093/nar/gnh162] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synthesis of unimolecularly circular G-quadruplex has been accomplished for the first time during our investigation on the template basis of G-quadruplex through chemical ligations of guanine-rich linear sequences of oligodeoxyribonucleotides. The uniqueness of this newly designed circularization course is its self-recognition and self-templating on the scale of individual strand of oligodeoxyribonucleotide in which the same linear sequence serves both as a template and as a substrate simultaneously. The results from our exonuclease and DNAse hydrolysis studies confirm that there is indeed absence of open termini within the structure of the identified circular product. Our subsequent investigation on the loop-size effect indicates that the unimolecularly circular G-quadruplex possessing two or more thymine nucleotides within their connecting loops is readily attainable, while the linear sequence with a single thymine nucleotide between guanine tracts is not a proper precursor for our ligation reaction. In addition, conformation dependency of the circularization course as well as the effects of alkali ions, pH values and concentration of potassium ions on the circularization reaction are examined during our investigation. The implication of our current studies and possible application of the obtained unimolecularly circular G-quadruplex in certain biological processes are also discussed in this report.
Collapse
Affiliation(s)
- Tianyan Zhou
- Department of Pharmaceutics, School of Pharmacy, Peking University, 38 Xueyuan Road, Hiandian District, Beijing 100083
| | | | | | | | | | | |
Collapse
|
32
|
Van Dyke MW, Nelson LD, Weilbaecher RG, Mehta DV. Stm1p, a G4 quadruplex and purine motif triplex nucleic acid-binding protein, interacts with ribosomes and subtelomeric Y' DNA in Saccharomyces cerevisiae. J Biol Chem 2004; 279:24323-33. [PMID: 15044472 DOI: 10.1074/jbc.m401981200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae protein Stm1 was originally identified as a G4 quadruplex and purine motif triplex nucleic acid-binding protein. However, more recent studies have suggested a role for Stm1p in processes ranging from antiapoptosis to telomere maintenance. To better understand the biological role of Stm1p and its potential for G(*)G multiplex binding, we used epitope-tagged protein and immunological methods to identify the subcellular localization and protein and nucleic acid partners of Stm1p in vivo. Indirect immunofluorescence microscopy indicated that Stm1p is primarily a cytoplasmic protein, although a small percentage is also present in the nucleus. Conventional immunoprecipitation found that Stm1p is associated with ribosomal proteins and rRNA. This association was verified by rate zonal separation through sucrose gradients, which showed that Stm1p binds exclusively to mature 80 S ribosomes and polysomes. Chromatin immunoprecipitation experiments found that Stm1p preferentially binds telomere-proximal Y' element DNA sequences. Taken together, our data suggest that Stm1p is primarily a ribosome-associated protein, but one that can also interact with DNA, especially subtelomeric sequences. We discuss the implications of our findings in relation to prior genetic, genomic, and proteomic studies that have identified STM1 and/or Stm1p as well as the possible biological role of Stm1p.
Collapse
Affiliation(s)
- Michael W Van Dyke
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
33
|
Zhang XY, Cao EH, Zhang Y, Chou C, Bai C. K+ and Na+-induced self-assembly of telomeric oligonucleotide d(TTAGGG)n. J Biomol Struct Dyn 2003; 20:693-702. [PMID: 12643772 DOI: 10.1080/07391102.2003.10506886] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The telomeric DNA oligomers, d(TTAGGG)(n), where n=1, 2, 4, could self-associate into the multi-stranded structures in appropriate condition, exhibited different CD spectra. The presense of Na(+) was more advantage to facilitate the formation of anti-parallel conformation, but the presense of K(+) enhanced their thermal stability. Spectroscopic analysis of 3, 3'-diethyloxadicarbocyanine (DODC) showed the formation of hairpin quadruplex structures for d(TTAGGG)(2) and d(TTAGGG)(4), but d(TTAGGG) could not. The four-stranded tetraplexes and branched nanowire formed in the presense of K(+) or Na(+) alone were observed by atomic force microscopy (AFM). The ability of d(TTAGGG)(n) to self-assemble into four-stranded tetraplexes and nanowires depends strongly on the number of repeating units and ionic environment. A model to explain how these structures formed is proposed.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- Centre for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, P. R. China
| | | | | | | | | |
Collapse
|
34
|
La Porta CAM, Porro D, Comolli R. Higher levels of melanin and inhibition of cdk2 activity in primary human melanoma cells WM115 overexpressing nPKCdelta. Melanoma Res 2002; 12:297-307. [PMID: 12170178 DOI: 10.1097/00008390-200208000-00001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many studies have attempted to define the state of differentiation of melanoma cells and to correlate it with other critical parameters of malignancy such as the tumorigenic and metastatic nature of the cells. In the present paper we focused on the possible relationships between the novel protein kinase C isoform nPKCdelta, melanin synthesis and proliferative capacity in a primary human melanoma cell line WM115. Cells were transfected to produce overexpression of this isoform and the effects on melanin synthesis, cyclin-E dependent kinase (cdk2) activity and cyclin E expression were studied. It was shown that translocation of nPKCdelta into the nucleus affects melanin synthesis and inhibits cdk2 activity. As a compensatory effect, the level of cyclin E increases. In view of these results we suggest a model for the role of nPKCdelta in melanoma cells that may offer a new therapeutic perspective.
Collapse
Affiliation(s)
- Caterina A M La Porta
- Department of General Physiology and Biochemistry, Section of General Pathology, University of Milan, Celoria 26, 20133 Milan, Italy.
| | | | | |
Collapse
|
35
|
Mergny JL, Riou JF, Mailliet P, Teulade-Fichou MP, Gilson E. Natural and pharmacological regulation of telomerase. Nucleic Acids Res 2002; 30:839-65. [PMID: 11842096 PMCID: PMC100331 DOI: 10.1093/nar/30.4.839] [Citation(s) in RCA: 273] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 11/29/2001] [Accepted: 11/29/2001] [Indexed: 01/14/2023] Open
Abstract
The extremities of eukaryotic chromosomes are called telomeres. They have a structure unlike the bulk of the chromosome, which allows the cell DNA repair machinery to distinguish them from 'broken' DNA ends. But these specialised structures present a problem when it comes to replicating the DNA. Indeed, telomeric DNA progressively erodes with each round of cell division in cells that do not express telomerase, a specialised reverse transcriptase necessary to fully duplicate the telomeric DNA. Telomerase is expressed in tumour cells but not in most somatic cells and thus telomeres and telomerase may be proposed as attractive targets for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U 201, CNRS UMR 8646, 43 rue Cuvier, F-75005 Paris, France.
| | | | | | | | | |
Collapse
|
36
|
Abstract
To be functional, nucleic acids need to adopt particular three-dimensional structures. For a long time DNA was regarded as a rigid and passive molecule with the sole purpose to store genetic information, but experimental data has now accumulated that indicates the full dynamic repertoire of this macromolecule. During the last decade, four-stranded DNA structures known as G-quadruplexes, or DNA tetraplexes, have emerged as a three-dimensional structure of special interest. Motifs for the formation of G-quadruplex DNA structures are widely dispersed in eukaryotic genomes, and are abundant in regions of biological significance, for example, at telomeres, in the promoters of many important genes, and at recombination hotspots, to name but a few in man. Here I explore the plethora of G-quadruplex DNA structures, and discuss their possible biological functions as well as the proteins that interact with them.
Collapse
Affiliation(s)
- T Simonsson
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
37
|
Arthanari H, Bolton PH. Functional and dysfunctional roles of quadruplex DNA in cells. CHEMISTRY & BIOLOGY 2001; 8:221-30. [PMID: 11306347 DOI: 10.1016/s1074-5521(01)00007-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A number of biological roles have been proposed for quadruplex, also referred to as G4 or tetraplex, DNA. The presence of quadruplex DNA may lead to errors in some biological processes and be required in others. Proteins that interact with quadruplex DNA have been identified including those that cause Bloom's and Werner's syndromes. There are small molecules that specifically bind to quadruplex DNA, inhibit telomerase, and are cytotoxic towards tumor cells indicating a role for quadruplex DNA in telomere function. It is now possible to make testable proposals for the possible biological implications of quadruplex DNA in replication, transcription, and recombination as well as possible routes to therapeutic intervention.
Collapse
Affiliation(s)
- H Arthanari
- Chemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
38
|
Arimondo PB, Riou JF, Mergny JL, Tazi J, Sun JS, Garestier T, Hélène C. Interaction of human DNA topoisomerase I with G-quartet structures. Nucleic Acids Res 2000; 28:4832-8. [PMID: 11121473 PMCID: PMC115246 DOI: 10.1093/nar/28.24.4832] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because of their role in the control of the topological state of DNA, topoisomerases are ubiquitous and vital enzymes, which participate in nearly all events related to DNA metabolism including replication and transcription. We show here that human topoisomerase I (Topo I) plays an unexpected role of 'molecular matchmaker' for G-quartet formation. G-quadruplexes are multi-stranded structures held together by square planes of four guanines ('G-quartets') interacting by forming Hoogsteen hydrogen bonds. Topo I is able to promote the formation of four-stranded intermolecular DNA structures when added to single-stranded DNA containing a stretch of at least five guanines. We provide evidence that these complexes are parallel G-quartet structures, mediated by tetrads of hydrogen-bonded guanine. In addition, Topo I binds specifically to pre-formed parallel and anti-parallel G4-DNA.
Collapse
Affiliation(s)
- P B Arimondo
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle CNRS UMR 8646, INSERM U201, 43 rue Cuvier, 75231 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Circular dichroism spectroscopic studies on structures formed by telomeric DNA sequencesin vitro. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/bf02909687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Lu Q, Henderson E. Two Tetrahymena G-DNA-binding proteins, TGP1 and TGP3, share novel motifs and may play a role in micronuclear division. Nucleic Acids Res 2000; 28:2993-3001. [PMID: 10908364 PMCID: PMC102678 DOI: 10.1093/nar/28.15.2993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
G-DNA is a four-stranded DNA structure with diverse putative biological roles. We have previously purified and cloned a novel G-DNA-binding protein TGP1 from the ciliate Tetrahymena thermophila. Here we report the molecular cloning of TGP3, an additional G-DNA-binding protein from the same organism. The TGP3 cDNA encodes a 365 amino acid protein that is homologous to TGP1 (34% identity and 44% similarity). The proteins share a sequence pattern that contains two novel repetitive and homologous motifs flanking an extensively hydrophilic and basic region. A nuclear fractionation experiment showed that TGP1 and TGP3 activities are localized predominantly in the nuclear fraction. To further investigate the biological roles of the proteins in vivo, we have generated separate macronuclear gene knockout (KO) strains (TGP1KO and TGP3KO) for each of the two genes. Southern blot analysis demonstrated that the macronuclear copies of each gene were completely disrupted. Mobility shift assays showed that the corresponding G-DNA-binding activity for each protein was abolished in the KO strains. Growth analysis showed that both KO strains grew at near wild-type rates, indicating that neither of the genes is essential for cell growth. Nevertheless, nuclear staining analysis revealed that both TGP1KO and TGP3KO cells have an increased occurrence (more than 2-fold) of extra micronuclei, implying faulty control of micronuclear division in the KO cells.
Collapse
Affiliation(s)
- Q Lu
- Department of Zoology and Genetics, Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
41
|
Harrington EO, Doyle KE, Brunelle JL, Ware JA. Endothelial proliferation, migration, and differentiation are blunted by conditionally expressed protein kinase C pseudosubstrate peptides. Biochem Biophys Res Commun 2000; 271:499-508. [PMID: 10799325 DOI: 10.1006/bbrc.2000.2655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptides based on the pseudosubstrate (PS) sequence of conventional protein kinase C isoenzymes (alpha, beta, gamma) specifically inhibit PKC activity in permeabilized cells, but whether PS can be used to study the role of PKC in the proliferation or migration of intact endothelial cells (EC) and angiogenesis is unknown. Peptides based on the PKCeta pseudosubstrate (etaPS) sequence were 3.5- to 8-fold more potent in inhibiting the PKCalpha, delta, epsilon, or eta kinase activity than was the peptide based on the PKCalpha pseudosubstrate (alphaPS) sequence. Thus, etaPS was conditionally overexpressed in intact EC and compared to alphaPS. Serum-induced growth of EC expressing etaPS was significantly slower than that of control EC. etaPS EC demonstrated slower rate of serum stimulated migration than that of either control or alphaPS EC. Expression of either etaPS or alphaPS produced slower rates of PMA induced EC migration, as compared to control EC. In an in vitro three-dimensional assay in which EC organize into capillary tubules, the EC that expressed etaPS formed fewer such tubules. This study shows that pseudosubstrate inhibitors derived from PKCeta are more potent both in vitro and in vivo than one based on the conventional isoenzyme PKCalpha. These data further support a role for PKC in proliferation and migration of intact EC, and angiogenesis.
Collapse
Affiliation(s)
- E O Harrington
- Vascular Biology Unit, Harvard Medical School, Boston, Massachusetts, 02215, USA.
| | | | | | | |
Collapse
|
42
|
Lacroix L, Liénard H, Labourier E, Djavaheri-Mergny M, Lacoste J, Leffers H, Tazi J, Hélène C, Mergny JL. Identification of two human nuclear proteins that recognise the cytosine-rich strand of human telomeres in vitro. Nucleic Acids Res 2000; 28:1564-75. [PMID: 10710423 PMCID: PMC102786 DOI: 10.1093/nar/28.7.1564] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1999] [Revised: 02/09/2000] [Accepted: 02/09/2000] [Indexed: 11/14/2022] Open
Abstract
Most studies on the structure of DNA in telomeres have been dedicated to the double-stranded region or the guanosine-rich strand and consequently little is known about the factors that may bind to the telomere cytosine-rich (C-rich) strand. This led us to investigate whether proteins exist that can recognise C-rich sequences. We have isolated several nuclear factors from human cell extracts that specifically bind the C-rich strand of vertebrate telomeres [namely a d(CCCTAA)(n)repeat] with high affinity and bind double-stranded telomeric DNA with a 100xreduced affinity. A biochemical assay allowed us to characterise four proteins of apparent molecular weights 66-64, 45 and 35 kDa, respectively. To identify these polypeptides we screened alambdagt11-based cDNA expression library, obtained from human HeLa cells using a radiolabelled telomeric oligonucleotide as a probe. Two clones were purified and sequenced: the first corresponded to the hnRNP K protein and the second to the ASF/SF2 splicing factor. Confirmation of the screening results was obtained with recombinant proteins, both of which bind to the human telomeric C-rich strand in vitro.
Collapse
Affiliation(s)
- L Lacroix
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U 201, CNRS UMR 8646, 43 rue Cuvier, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Muniyappa K, Anuradha S, Byers B. Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol Cell Biol 2000; 20:1361-9. [PMID: 10648621 PMCID: PMC85284 DOI: 10.1128/mcb.20.4.1361-1369.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA molecules containing stretches of contiguous guanine residues can assume a stable configuration in which planar quartets of guanine residues joined by Hoogsteen pairing appear in a stacked array. This conformation, called G4 DNA, has been implicated in several aspects of chromosome behavior including immunoglobulin gene rearrangements, promoter activation, and telomere maintenance. Moreover, the ability of the yeast SEP1 gene product to cleave DNA in a G4-DNA-dependent fashion, as well as that of the SGS1 gene product to unwind G4 DNA, has suggested a crucial role for this structure in meiotic synapsis and recombination. Here, we demonstrate that the HOP1 gene product, which plays a crucial role in the formation of synaptonemal complex in Saccharomyces cerevisiae, binds robustly to G4 DNA. The apparent dissociation constant for interaction with G4 DNA is 2 x 10(-10), indicative of binding that is about 1,000-fold stronger than to normal duplex DNA. Oligonucleotides of appropriate sequence bound Hop1 protein maximally if the DNA was first subjected to conditions favoring the formation of G4 DNA. Furthermore, incubation of unfolded oligonucleotides with Hop1 led to their transformation into G4 DNA. Methylation interference experiments confirmed that modifications blocking G4 DNA formation inhibit Hop1 binding. In contrast, neither bacterial RecA proteins that preferentially interact with GT-rich DNA nor histone H1 bound strongly to G4 DNA or induced its formation. These findings implicate specific interactions of Hop1 protein with G4 DNA in the pathway to chromosomal synapsis and recombination in meiosis.
Collapse
Affiliation(s)
- K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
44
|
Gu J, Leszczynski J, Bansal M. A new insight into the structure and stability of Hoogsteen hydrogen-bonded G-tetrad: an ab initio SCF study. Chem Phys Lett 1999. [DOI: 10.1016/s0009-2614(99)00821-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Sanlaville D, Baumann C, Lapierre JM, Romana S, Collot N, Cacheux V, Turleau C, Tachdjian G. De novo inverted duplication 9p21pter involving telomeric repeated sequences. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 83:125-31. [PMID: 10190483 DOI: 10.1002/(sici)1096-8628(19990312)83:2<125::aid-ajmg8>3.0.co;2-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report on clinical and cytogenetic findings in a boy with partial 9p duplication, dup(9)(p21pter). Clinical manifestations included facial and hand anomalies and mental retardation. Fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) were used to characterize further and confirm the conventional banding data. Investigation by FISH using whole chromosome 9 paint probe showed that the additional material was derived from chromosome 9. Using CGH, a region of gain was found in the chromosome segment 9p21pter. YACs and telomeric probes confirmed the duplicated region. Using the all-human telomeric sequences probe, intrachromosomal telomeric signal was noted on the short arm of the abnormal chromosome 9. Mechanism of formation of the duplication, including intrachromosomal telomeric sequences, is discussed.
Collapse
Affiliation(s)
- D Sanlaville
- Unité de Cytogénétique, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Marco-Haviv Y, Baran N, Manor H. DNA molecules can drive the assembly of other DNA molecules into specific four-stranded structures. J Mol Biol 1999; 286:45-56. [PMID: 9931248 DOI: 10.1006/jmbi.1998.2461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single-stranded DNA molecules containing clustered G-repeats can be assembled into various four-stranded structures linked by G-quartets. Here, we report that such molecules can also drive the assembly of other DNA molecules containing G-repeats into specific four-stranded structures. In these assays, the oligonucleotides 5'-CAGGCTGAGCAGGTACGGGGGAGCTGGGGTAGATTGGAATGTAG-3' (oligo D) and 5'-CGGGGGAGCTGGGGT-3' (oligo B), consisting of sequences found in immunoglobulin switch regions, were annealed in a buffer containing K+ and the annealing products were analyzed by polyacrylamide gel electrophoresis. This analysis revealed that whereas annealing of each oligo alone produced four-stranded structures designated D2 and B2, annealing of mixtures containing both oligos produced additional complexes designated D2* and B2*. D2* and B2* were found to contain only D molecules and only B molecules, respectively. The yield of D2* increased and the yield of B2* decreased, as the concentration ratio oligo B/oligo D was increased. These results indicated that B can drive the assembly of D into D2* and D can drive the assembly of B into B2*. Further studies revealed that while the assembly of D2 followed a second order kinetics, the B-driven assembly of D2* followed a first order kinetics. Dimethyl sulfate footprinting indicated that both D2 and D2* are four-stranded structures containing two parallel and two antiparallel chains. In addition, annealing of D mixed with various B mutants showed that only mutants containing two G-clusters can drive the assembly of D2*. Based on these data, we propose that in the process of D2* assembly, a four-stranded intermediate containing B and D is formed and then dissociates into D2* and B in a rate-limiting first order reaction. Driver mechanisms of this type may cause formation of specific four-stranded structures at G-rich chromosomal sites, thereby regulating processes such as recombination and telomere synthesis.
Collapse
Affiliation(s)
- Y Marco-Haviv
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | | |
Collapse
|
47
|
Simonsson T, Pecinka P, Kubista M. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res 1998; 26:1167-72. [PMID: 9469822 PMCID: PMC147388 DOI: 10.1093/nar/26.5.1167] [Citation(s) in RCA: 476] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The c-myc oncogene is one of the most commonly malfunctioning genes in human cancers, and is an attractive target for anti-gene therapy. Although synthetic oligonucleotides designed to silence c-myc expression via one of its major control elements function well in vitro, their mode of action has been indefinite. Here we show that the targeted control element adopts an intrastrand fold-back DNA tetraplex, which requires potassium ions for stability in vitro. We believe formation of the tetraplex is important for c-myc activation in vivo, and propose a transcription initiation mechanism that explains how anti-gene therapy silence c-myc at the molecular level.
Collapse
Affiliation(s)
- T Simonsson
- Department of Biochemistry, Lundberg Institute, Chalmers University of Technology, Medicinaregatan 9C, SE-413 90 Goteborg, Sweden.
| | | | | |
Collapse
|