1
|
Zhang L, Cheng Q, Zhang L, Wang Y, Merrill GF, Ilani T, Fass D, Arnér ESJ, Zhang J. Serum thioredoxin reductase is highly increased in mice with hepatocellular carcinoma and its activity is restrained by several mechanisms. Free Radic Biol Med 2016; 99:426-435. [PMID: 27581528 DOI: 10.1016/j.freeradbiomed.2016.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 02/02/2023]
Abstract
Increased thioredoxin reductase (TrxR) levels in serum were recently identified as possible prognostic markers for human prostate cancer or hepatocellular carcinoma. We had earlier shown that serum levels of TrxR protein are very low in healthy mice, but can in close correlation to alanine aminotransferase (ALT) increase more than 200-fold upon chemically induced liver damage. We also found that enzymatic TrxR activity in serum is counteracted by a yet unidentified oxidase activity in serum. In the present study we found that mice carrying H22 hepatocellular carcinoma tumors present highly increased levels of TrxR in serum, similarly to that reported in human patients. In this case ALT levels did not parallel those of TrxR. We also discovered here that the TrxR-antagonistic oxidase activity in serum is due to the presence of quiescin Q6 sulfhydryl oxidase 1 (QSOX1). We furthermore found that the chemotherapeutic agents cisplatin or auranofin, when given systemically to H22 tumor bearing mice, can further inhibit TrxR activities in serum. The TrxR serum activity was also inhibited by endogenous electrophilic inhibitors, found to increase in tumor-bearing mice and to include protoporphyrin IX (PpIX) and 4-hydroxynonenal (HNE). Thus, hepatocellular carcinoma triggers high levels of serum TrxR that are not paralleled by ALT, and TrxR enzyme activity in serum is counteracted by several different mechanisms. The physiological role of TrxR in serum, if any, as well as its potential value as a prognostic marker for tumor progression, needs to be studied further.
Collapse
Affiliation(s)
- Le Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Longjie Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Gary F Merrill
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
2
|
The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion. Biosci Rep 2015; 35:BSR20150236. [PMID: 26464515 PMCID: PMC4660583 DOI: 10.1042/bsr20150236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022] Open
Abstract
Thioredoxin reductase (TrxR1) is involved in redox homoeostasis and cellular differentiation. In the present study, we demonstrate that overexpression of TrxR1 affects genes associated with differentiation and that differentiation increased TrxR1 expression. The TrxR1 splice variant TXNRD1_v2 was also studied in this context. The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1.
Collapse
|
3
|
|
4
|
Arnér ESJ. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim Biophys Acta Gen Subj 2009; 1790:495-526. [PMID: 19364476 DOI: 10.1016/j.bbagen.2009.01.014] [Citation(s) in RCA: 498] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/30/2009] [Indexed: 02/07/2023]
Abstract
Thioredoxin systems, involving redox active thioredoxins and thioredoxin reductases, sustain a number of important thioredoxin-dependent pathways. These redox active proteins support several processes crucial for cell function, cell proliferation, antioxidant defense and redox-regulated signaling cascades. Mammalian thioredoxin reductases are selenium-containing flavoprotein oxidoreductases, dependent upon a selenocysteine residue for reduction of the active site disulfide in thioredoxins. Their activity is required for normal thioredoxin function. The mammalian thioredoxin reductases also display surprisingly multifaceted properties and functions beyond thioredoxin reduction. Expressed from three separate genes (in human named TXNRD1, TXNRD2 and TXNRD3), the thioredoxin reductases can each reduce a number of different types of substrates in different cellular compartments. Their expression patterns involve intriguingly complex transcriptional mechanisms resulting in several splice variants, encoding a number of protein variants likely to have specialized functions in a cell- and tissue-type restricted manner. The thioredoxin reductases are also targeted by a number of drugs and compounds having an impact on cell function and promoting oxidative stress, some of which are used in treatment of rheumatoid arthritis, cancer or other diseases. However, potential specific or essential roles for different forms of human or mouse thioredoxin reductases in health or disease are still rather unclear, although it is known that at least the murine Txnrd1 and Txnrd2 genes are essential for normal development during embryogenesis. This review is a survey of current knowledge of mammalian thioredoxin reductase function and expression, with a focus on human and mouse and a discussion of the striking complexity of these proteins. Several yet open questions regarding their regulation and roles in different cells or tissues are emphasized. It is concluded that the intriguingly complex regulation and function of mammalian thioredoxin reductases within the cellular context and in intact mammals strongly suggests that their functions are highly fi ne-tuned with the many pathways involving thioredoxins and thioredoxin-related proteins. These selenoproteins furthermore propagate many functions beyond a reduction of thioredoxins. Aberrant regulation of thioredoxin reductases, or a particular dependence upon these enzymes in diseased cells, may underlie their presumed therapeutic importance as enzymatic targets using electrophilic drugs. These reductases are also likely to mediate several of the effects on health and disease that are linked to different levels of nutritional selenium intake. The thioredoxin reductases and their splice variants may be pivotal components of diverse cellular signaling pathways, having importance in several redox-related aspects of health and disease. Clearly, a detailed understanding of mammalian thioredoxin reductases is necessary for a full comprehension of the thioredoxin system and of selenium dependent processes in mammals.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
5
|
Nishimoto M, Sakaue M, Hara S. Short-Interfering RNA-Mediated Silencing of Thioredoxin Reductase 1 Alters the Sensitivity of HeLa Cells toward Cadmium. Biol Pharm Bull 2006; 29:543-6. [PMID: 16508163 DOI: 10.1248/bpb.29.543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian thioredoxin reductase (TrxR) is a selenocysteine-containing flavoprotein that regulates the thioredoxin system, one of the major systems that maintain the intracellular redox balance. We previously reported that cytosolic TrxR (TrxR1), one of three mammalian TrxR isozymes, was induced by treatment with cadmium. In the present study, to study the role of cadmium-induced TrxR1 in cellular defense, we silenced the expression of TrxR1 in HeLa cells by using small interfering RNA and examined the effect of TrxR1 silencing on the sensitivity of the cells toward cadmium. We found that the gene silencing of TrxR1 had a dual effect on cadmium-induced cell death, depending on the concentration of cadmium. The TrxR1 silencing increased the sensitivity toward a low dose (less than 10 microM) of cadmium but decreased the sensitivity toward a high dose of cadmium. These results suggested that TrxR1 might play an important role in the cellular defense system against cadmium in two ways. TrxR1 might rescue the cells from a low dose of cadmium-induced moderate injury, while it might promote the death of cells severely injured by a high dose of cadmium.
Collapse
Affiliation(s)
- Michie Nishimoto
- Department of Public Health and Molecular Toxicology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | |
Collapse
|
6
|
Sakurai A, Nishimoto M, Himeno S, Imura N, Tsujimoto M, Kunimoto M, Hara S. Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. J Cell Physiol 2005; 203:529-37. [PMID: 15521073 DOI: 10.1002/jcp.20246] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thioredoxin reductase (TrxR) is a selenoprotein that catalyzes the reduction of the active site disulfide of thioredoxin (Trx), which regulates the redox status of the cells. In the present study, we found that TrxR1, one of the three TrxR isozymes, was induced by cadmium as well as tumor necrosis factor alpha (TNFalpha) in bovine arterial endothelial cells (BAEC), and investigated the mechanism of cadmium-induced TrxR1 expression. We here showed that cadmium, differently from TNFalpha, enhanced the promoter activity of the 5'-flanking region of human TrxR1 gene (nucleotides -1692 to +49). Deletion and site-directed mutation of antioxidant responsive element (ARE) (nucleotides -62 to -48) in this region abolished the response to cadmium. Overexpression of NF-E2-related factor-2 (Nrf2) augmented the TrxR1 promoter activity. In contrast, overexpression of the dominant negative mutant of Nrf2 suppressed cadmium-induced activation of TrxR1 promoter through the ARE. Chromatin immunoprecipitation (ChIP) assays showed that anti-Nrf2 antibody precipitated ARE from the chromatin of the cadmium-treated cells. These results indicated that cadmium-induced TrxR1 gene expression is mediated by the activation of Nrf2 transcription factor and its binding to ARE in the TrxR1 gene promoter. We further found that in addition to cadmium, the activators of Nrf2, such as diethyl maleate (DEM) and arsenite, induced both TrxR1 and Trx gene expression in BAEC. Nrf2 might play an important role in the regulation of the cellular Trx system consisting of Trx and TrxR.
Collapse
Affiliation(s)
- Atsuko Sakurai
- Department of Public Health and Molecular Toxicology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Nalvarte I, Damdimopoulos AE, Nystöm C, Nordman T, Miranda-Vizuete A, Olsson JM, Eriksson L, Björnstedt M, Arnér ESJ, Spyrou G. Overexpression of Enzymatically Active Human Cytosolic and Mitochondrial Thioredoxin Reductase in HEK-293 Cells. J Biol Chem 2004; 279:54510-7. [PMID: 15471857 DOI: 10.1074/jbc.m408494200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian thioredoxin reductases (TrxR) are selenoproteins containing a catalytically active selenocysteine residue (Sec) and are important enzymes in cellular redox control. The cotranslational incorporation of Sec, necessary for activity, is governed by a stem-loop structure in the 3'-untranslated region of the mRNA and demands adequate selenium availability. The complicated translation machinery required for Sec incorporation is a major obstacle in isolating mammalian cell lines stably overexpressing selenoproteins. In this work we report on the development and characterization of stably transfected human embryonic kidney 293 cells that overexpress enzymatically active selenocysteine-containing cytosolic TrxR1 or mitochondrial TrxR2. We demonstrate that the overexpression of selenium-containing TrxR1 results in lower expression and activity of the endogenous selenoprotein glutathione peroxidase and that the activity of overexpressed TrxRs, rather than the protein amount, can be increased by selenium supplementation in the cell growth media. We also found that the TrxR-overexpressing cells grew slower over a wide range of selenium concentrations, which was an effect apparently not related to increased apoptosis nor to fatally altered intracellular levels of reactive oxygen species. Most surprisingly, the TrxR1- or TrxR2-overexpressing cells also induced novel expression of the epithelial markers CK18, CK-Cam5.2, and BerEP4, suggestive of a stimulation of cellular differentiation.
Collapse
Affiliation(s)
- Ivan Nalvarte
- Department of Biosciences at Novum, Center for Biotechnology, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Damdimopoulos AE, Miranda-Vizuete A, Treuter E, Gustafsson JA, Spyrou G. An Alternative Splicing Variant of the Selenoprotein Thioredoxin Reductase Is a Modulator of Estrogen Signaling. J Biol Chem 2004; 279:38721-9. [PMID: 15199063 DOI: 10.1074/jbc.m402753200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selenoprotein thioredoxin reductase (TrxR1) is an integral part of the thioredoxin system. It serves to transfer electrons from NADPH to thioredoxin leading to its reduction. Interestingly, recent work has indicated that thioredoxin reductase can regulate the activity of transcription factors such as p53, hypoxia-inducible factor, and AP-1. Here, we describe that an alternative splicing variant of thioredoxin reductase (TrxR1b) containing an LXXLL peptide motif, is implicated in direct binding to nuclear receptors. In vitro interaction studies revealed direct interaction of the TrxR1b with the estrogen receptors alpha and beta. Confocal microscopy analysis showed nuclear colocalization of the TrxR1b with both estrogen receptor alpha and beta in estradiol-17beta-treated cells. Transcriptional studies demonstrated that TrxR1b can affect estrogen-dependent gene activation differentially at classical estrogen response elements as compared with AP-1 response elements. Based on these results, we propose a model where thioredoxin reductase directly influences the estrogen receptor-coactivator complex assembly on non-classical estrogen response elements such as AP-1. In summary, our results suggest that TrxR1b is an important modulator of estrogen signaling.
Collapse
|
9
|
Furman C, Rundlöf AK, Larigauderie G, Jaye M, Bricca G, Copin C, Kandoussi AM, Fruchart JC, Arnér ESJ, Rouis M. Thioredoxin reductase 1 is upregulated in atherosclerotic plaques: specific induction of the promoter in human macrophages by oxidized low-density lipoproteins. Free Radic Biol Med 2004; 37:71-85. [PMID: 15183196 DOI: 10.1016/j.freeradbiomed.2004.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 03/01/2004] [Accepted: 04/16/2004] [Indexed: 12/17/2022]
Abstract
Uptake of modified low-density lipoproteins (LDLs) by macrophages in the arterial wall is an important event in atherogenesis. Indeed, oxidatively modified LDLs (oxLDLs) are known to affect various cellular processes by modulating oxidation-sensitive signaling pathways. Here we found that the ubiquitous 55 kDa selenoprotein thioredoxin reductase 1 (TrxR1), which is a key enzyme for cellular redox control and antioxidant defense, was upregulated in human atherosclerotic plaques and expressed in foam cells. Using reverse transcription polymerase chain reaction analysis, we also found that oxLDLs, but not native LDLs (nLDLs), dose-dependently increased TrxR1 mRNA in human monocyte-derived macrophages (HMDMs). This stimulating effect was specific for oxLDLs, as pro-inflammatory factors, such as lipopolysaccharides (LPSs), interleukin-1beta (IL-1beta), interleukin-6 (Il-6), and tumor necrosis factor alpha (TNFalpha), under the same conditions, failed to induce TrxR1 mRNA levels to the same extent. Moreover, phorbol ester-differentiated THP-1 cells or HMDMs transiently transfected with TrxR1 promoter fragments linked to a luciferase reporter gene allowed identification of a defined promoter region as specifically responding to the phospholipid component of oxLDLs (p <.05 vs. phospholipid component of nLDLs). Gel mobility shift analyses identified a short 40-nucleotide stretch of the promoter carrying AP-1 and HoxA5 consensus motifs that responded with an altered shift pattern in THP-1 cells treated with oxLDLs, however, without evident involvement of either the Fos, Jun, Nrf2 or HoxA5 transcription factors.
Collapse
Affiliation(s)
- C Furman
- INSERM U-545, and Institut Pasteur de Lille, 59019 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rundlöf AK, Janard M, Miranda-Vizuete A, Arnér ESJ. Evidence for intriguingly complex transcription of human thioredoxin reductase 1. Free Radic Biol Med 2004; 36:641-56. [PMID: 14980707 DOI: 10.1016/j.freeradbiomed.2003.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 12/04/2003] [Accepted: 12/05/2003] [Indexed: 11/27/2022]
Abstract
Human thioredoxin reductase 1 (TrxR1, the TXNRD1 gene product) is a ubiquitously expressed selenoprotein with many important redox regulatory functions. In this study, we have further characterized the recently identified core promoter region of TXNRD1. One critical Sp1/Sp3 site was found to be important in A549 and HeLa cells, whereas another Sp1/Sp3 site and one Oct1 site bound transcription factors but were, nonetheless, dispensable for transcription. We also experimentally identified several 5'-region TXNRD1 transcript variants using 5'-RACE with cDNA derived from different tissues, and we analyzed all available TXNRD1-derived EST sequences. The results show that the core promoter governs transcription of the clear majority of TXNRD1 transcripts but also that alternative promoters may be activated under rare conditions or in specific cell types. Furthermore, extensive alternative splicing occured in the 5' region of TXNRD1. In total, 21 different transcripts were identified, potentially encoding five isoforms of TrxR1 carrying alternative N-terminal domains. One isoform encompassed a glutaredoxin domain, whereas another encoded a predicted mitochondrial localization signal. These results reveal that the human thioredoxin system is intriguingly complex. Cell-specific transcription of the TXNRD1 gene encoding different isoforms of TrxR1 must be taken into account to fully understand the functions of the human thioredoxin system.
Collapse
Affiliation(s)
- Anna-Klara Rundlöf
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
11
|
Rundlöf AK, Arnér ESJ. Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid Redox Signal 2004; 6:41-52. [PMID: 14980055 DOI: 10.1089/152308604771978336] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) are generated as toxic by-products of aerobic metabolism, but are also essential biomolecules in cell signaling. The thioredoxin (Trx) system is a major enzymatic system modulating ROS levels and is important for redox regulation of cellular function. It consists of Trx and thioredoxin reductase (TrxR), which reduces Trx using NADPH. Most, if not all, of the functions of Trx depend on the activity of TrxR. Mammalian TrxR enzymes are selenoproteins with broad substrate specificities, and alteration of cytosolic TrxR1 expression and activity is likely to be an important determinant for the control of cellular redox regulation. TrxR1 activity in cells seems to be modulated by an intricate interplay, involving a housekeeping type promoter in combination with alternative splice variants and transcriptional start sites, posttranscriptional regulation through AU-rich elements, inactivation by electrophilic agents and by itself modulating the effects of several key signaling molecules. TrxR1 activity is also intimately linked with several aspects of selenium metabolism, and hence selenoprotein function in general. Here, we summarize the current knowledge of these different levels of TrxR1 regulation in diverse cell types and in response to growth and signaling events.
Collapse
Affiliation(s)
- Anna-Klara Rundlöf
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
12
|
Jurado J, Prieto-Alamo MJ, Madrid-Rísquez J, Pueyo C. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse. J Biol Chem 2003; 278:45546-54. [PMID: 12954614 DOI: 10.1074/jbc.m307866200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This work provides the first absolute expression patterns of genes coding for all known components of both thioredoxin (Trx) and glutaredoxin (Grx) systems in mouse: Trx1, Trx2, Grx1, Grx2, TrxR1, TrxR2, thioredoxin/glutathione reductase, and glutathione reductase. We devised a novel assay that, combining the advantages of multiplex and real-time PCR, streamlines the quantitation of the actual mRNA copy numbers in whole-animal experiments. Quantitations reported establish differences among adult organs and embryonic stages, compare mRNA decay rates, explore the significance of alternative mRNA isoforms derived from TrxR1 and Grx2 genes, and examine the time-course expression upon superoxide stress promoted by paraquat. Collectively, these quantitations show: i) unique expression profiles for each transcript and mouse organ examined, yet with some general trends like the higher amounts of mRNA species coding for thioredoxins than those coding for the reductases that control their redox states and activities; ii) continuous expression during embryogenesis with outstanding up-regulations of Trx1 and TrxR1 mRNAs in specific temporal sequences; iii) drastic differences in mRNA stability, liver decay rates range from 2.8 h (thioredoxin/glutathione reductase) to >/= 35 h (Trx1 and Trx2), and directly correlate with mRNA steady-state values; iv) testis-specific differences in the amounts (relative to total isoforms) of transcripts yielding the mitochondrial Grx2a and 67-kDa TrxR1 variants; and v) coordinated up-regulation of TrxR1 and glutathione reductase mRNAs in response to superoxide stress in an organ-specific manner. Further insights into in vivo roles of these redox systems should be gained from more focused studies of the mechanisms underlying the vast differences reported here at the transcript level.
Collapse
Affiliation(s)
- Juan Jurado
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | | | | |
Collapse
|
13
|
Sakurai A, Yuasa K, Shoji Y, Himeno S, Tsujimoto M, Kunimoto M, Imura N, Hara S. Overexpression of thioredoxin reductase 1 regulates NF-?B activation. J Cell Physiol 2003; 198:22-30. [PMID: 14584040 DOI: 10.1002/jcp.10377] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Thioredoxin reductase (TrxR) is a flavoprotein that contains a C-terminal penultimate selenocysteine (Sec) and has an ability to reduce thioredoxin (Trx), which regulates the activity of NF-kappa B. To date, three TrxR isozymes, TrxR1, TrxR2, and TrxR3, have been identified. In the present study, we found that among these isozymes only TrxR1 was induced by tumor necrosis factor-alpha (TNF alpha) in vascular endothelial cells. Furthermore, the overexpression of TrxR1 enhanced TNF alpha-induced DNA-binding activity of NF-kappa B and NF-kappa B-dependent gene expression. The catalytic Sec residue of TrxR1, which is essential for reducing Trx, was required for this NF-kappa B activation, and aurothiomalate, an inhibitor of TrxR, suppressed TNF alpha-induced activation of NF-kappa B and the expression of NF-kappa B-targeted proinflammatory genes such as E-selectin and cyclooxygenase-2. These results suggest that TrxR1 may act as a positive regulator of NF-kappa B and may play an important role in the cellular inflammatory response.
Collapse
Affiliation(s)
- Atsuko Sakurai
- Department of Public Health and Molecular Toxicology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Koishi R, Yoshimura C, Kohama T, Serizawa N. Leustroducsin B activates nuclear factor-kappaB via the acidic sphingomyelinase pathway in human bone marrow-derived stromal cell line KM-102. J Interferon Cytokine Res 2002; 22:343-50. [PMID: 12034042 DOI: 10.1089/107999002753675776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The novel colony-stimulating factor (CSF) inducer leustroducsin B (LSN-B), which was isolated from Streptomyces platensis, has been shown to have potent cytokine-inducing activities in clonal human bone marrow-derived stromal cell line KM-102 and in primary human bone marrow-derived stromal cells. In this study, we investigated the signal transduction pathway of LSN-B using luciferase expression plasmids linked to the 5'-flanking region of interleukin-8 (IL-8) and that of the IL-11 gene. In KM-102 cells, LSN-B induced luciferase activity both in the wild-type and in the activated protein 1 (AP-1) site point-mutated IL-8 promoter. The mutation in the nuclear factor-kappaB (NF-kappaB) site abrogated LSN-B-stimulated induction of the reporter gene. LSN-B-inducing activity was inhibited by (1) N-acetyl-L-cysteine, a well-characterized antioxidant, (2) cationic amphiphilic drugs, inhibitors of acidic sphingomyelinase (A-SMase), and (3) D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). These observations suggest that LSN-B potentiates the A-SMase-mediated signaling pathway to stimulate NF-kappaB. In contrast, LSN-B did not induce IL-11 promoter-driven luciferase activity. The observed increase in IL-11 mRNA stability by LSN-B indicates that the inducible production of IL-11 by LSN-B is regulated at the posttranscriptional level. In addition, inhibition of LSN-B-mediated induction of IL-11 production by cationic amphiphilic drugs and D609 in KM-102 cells demonstrates that increased IL-11 mRNA stability by LSN-B might be mediated via NF-kappaB activation. From these results, we suggest that LSN-B induces cytokine production through at least two separate mechanisms, at the transcriptional level and at the posttranscriptional level via NF-kappaB activation.
Collapse
Affiliation(s)
- Ryuta Koishi
- Biomedical Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan.
| | | | | | | |
Collapse
|
15
|
Osborne SA, Tonissen KF. Genomic organisation and alternative splicing of mouse and human thioredoxin reductase 1 genes. BMC Genomics 2001; 2:10. [PMID: 11737861 PMCID: PMC60534 DOI: 10.1186/1471-2164-2-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2001] [Accepted: 11/22/2001] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Thioredoxin reductase (TR) is a redox active protein involved in many cellular processes as part of the thioredoxin system. Presently there are three recognised forms of mammalian thioredoxin reductase designated as TR1, TR3 and TGR, that represent the cytosolic, mitochondrial and novel forms respectively. In this study we elucidated the genomic organisation of the mouse (Txnrd1) and human thioredoxin reductase 1 genes (TXNRD1) through library screening, restriction mapping and database mining. RESULTS The human TXNRD1 gene spans 100 kb of genomic DNA organised into 16 exons and the mouse Txnrd1 gene has a similar exon/intron arrangement. We also analysed the alternative splicing patterns displayed by the mouse and human thioredoxin reductase 1 genes and mapped the different mRNA isoforms with respect to genomic organisation. These isoforms differ at the 5' end and encode putative proteins of different molecular mass. Genomic DNA sequences upstream of mouse exon 1 were compared to the human promoter to identify conserved elements. CONCLUSIONS The human and mouse thioredoxin reductase 1 gene organisation is highly conserved and both genes exhibit alternative splicing at the 5' end. The mouse and human promoters share some conserved sequences.
Collapse
Affiliation(s)
- Simone A Osborne
- School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Kathryn F Tonissen
- School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
16
|
Rundlöf AK, Carlsten M, Arnér ES. The core promoter of human thioredoxin reductase 1: cloning, transcriptional activity, and Oct-1, Sp1, and Sp3 binding reveal a housekeeping-type promoter for the AU-rich element-regulated gene. J Biol Chem 2001; 276:30542-51. [PMID: 11375392 DOI: 10.1074/jbc.m101452200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selenoprotein thioredoxin reductase 1 (TrxR1) carries many vital antioxidant and redox regulatory functions. Its mRNA levels are known to be post-transcriptionally modulated via AUUUA motifs (AU-rich elements (AREs)), but the promoter yet remains unknown. Here we have cloned and determined the sequence of a 0.8-kilobase pair human genomic fragment containing the proximal promoter for TrxR1, which has transcriptional activity in several different cell types. The core promoter (-115 to +167) had an increased GC content and lacked TATA or CCAAT boxes. It contained a POU motif binding the Oct-1 transcription factor and two sites binding Sp1 and Sp3, which were identified with electrophoretic mobility shift assays using crude nuclear extracts of A549 cells. The TrxR1 promoter fulfills the typical criteria of a housekeeping gene. To our knowledge this is the first housekeeping-type promoter characterized for a gene with post-transcriptional regulation via ARE motifs generally possessed by transiently expressed proto-oncogenes, nuclear transcription factors, or cytokines and influencing mRNA stability in response to diverse exogenous factors. Expression of TrxR1 as an ARE-regulated housekeeping gene agrees with a role for the enzyme to maintain a balance between intracellular signaling via reactive oxygen species and protection of cells from excessive oxidative damage.
Collapse
Affiliation(s)
- A K Rundlöf
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Garcia-Allan C, Lord PG, Loughlin JM, Orton TC, Sidaway JE. Identification of phenobarbitone-modulated genes in mouse liver by differential display. J Biochem Mol Toxicol 2000; 14:65-72. [PMID: 10630419 DOI: 10.1002/(sici)1099-0461(2000)14:2<65::aid-jbt1>3.0.co;2-#] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The molecular basis of how rodent nongenotoxic hepatocarcinogens such as phenobarbitone cause liver-tumor formation is poorly understood. An early effect of phenobarbitone exposure is to induce hepatocyte proliferation transiently, and there is evidence that this may be important for subsequent tumor development. In this investigation, we have used the differential display reverse transcriptase polymerase chain reaction technique to analyze differential gene expression in male C57B1/10J mouse liver during the mitogenic phase of the phenobarbitone response. Seventy-seven putative differentially expressed cDNAs were isolated by differential display, and 13 of them were subsequently confirmed as being differentially expressed (both increased and decreased by phenobarbitone). Seven of the cDNAs were homologous to known mouse or human genes (carboxylesterase, coagulation factor X, amine N-sulphotransferase, human protein disulphide isomerase-related protein, cytochrome c oxidase subunit IV, golgin-245, thioredoxin reductase, betaine-homocysteine methyl transferase) and the remainder were novel. The expression pattern of the sulphotransferase was further characterized, and in mouse liver it was found to be significantly induced by phenobarbitone and not by five other rodent nongenotoxic hepatocarcinogens. In summary, the technique has enabled the identification of previously uncharacterized genes whose expression patterns are differentially altered by phenobarbitone in the mouse liver.
Collapse
Affiliation(s)
- C Garcia-Allan
- Pharmaceuticals AstraZeneca, Safety of Medicines Department, Macclesfield, Cheshire, UK
| | | | | | | | | |
Collapse
|
18
|
Abstract
The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases.
Collapse
|
19
|
Sahaf B, Rosén A. Secretion of 10-kDa and 12-kDa thioredoxin species from blood monocytes and transformed leukocytes. Antioxid Redox Signal 2000; 2:717-26. [PMID: 11213477 DOI: 10.1089/ars.2000.2.4-717] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thioredoxins (TRX) are ubiquitous, small redox-active proteins with multiple functions, including antioxidant, cytoprotective, and chemoattractant activities. In addition to a 12-kDa intracellular form, extracellular 10-kDa and 12-kDa TRX have been defined. The biological activities of the 10-kDa TRX were previously measured as eosinophil cytotoxicity enhancing activity or B-cell stimulatory activity. Cytotrophoblastic cell lines also release a 10-kDa TRX form. To study the biological role of 10-kDa TRX, we established two highly sensitive enzyme-linked immuno-spot assays (ELISPOT), which detect secreted truncated 10-kDa and full-length 12-kDa TRX at the single cell level. TRX secretion was investigated in several cell lines including the T-helper cell hybridoma MP6, the Jurkat T-cell leukemia, the U-937 myelomonocytic leukemia, and the 3B6, EBV-transformed, lymphoblastoid B-cell line. The highest number of secreting cells was found in 3B6 cultures, median = 34 (quartiles, 27-39) per well (10(5) cells). Peripheral blood monocytes isolated from healthy donors secreted significantly more TRX after stimulation with ionomycin, phorbol myristate acetate (PMA), fMLP, and lipopolysaccharide (LPS), compared to unstimulated cells. Oxidative stress induced by thioloxidant diamide also induced the secretion of both truncated and full-length TRX measured in ELISPOT (p = 0.047 and p = 0.031, respectively). The biological activity of the truncated and full-length forms was tested in a cell migration assay. Truncated TRX was devoid of protein disulfide reductase activity, but retained strong chemoattractant activity for human monocytes, in the same range as full-length TRX, as previously reported (Bertini et al., 1999).
Collapse
Affiliation(s)
- B Sahaf
- Department of Biomedicine and Surgery, Division of Cell Biology, Linköping University, S-581 85 Linköping, Sweden
| | | |
Collapse
|
20
|
Gorlatov SN, Stadtman TC. Human selenium-dependent thioredoxin reductase from HeLa cells: properties of forms with differing heparin affinities. Arch Biochem Biophys 1999; 369:133-42. [PMID: 10462449 DOI: 10.1006/abbi.1999.1356] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TrxRl form of thioredoxin reductase (TrxR) was the major form of the enzyme isolated from HeLa cells grown in a fermentor at 35 degrees C under controlled aeration conditions favorable to growth, nominally 30% of saturation of dissolved oxygen or 8 ml of oxygen in a liter of medium. This TrxR1 form was not retained on a heparin affinity matrix, it contained one selenium per subunit, was highly active catalytically, and showed strong cross-reactivity with anti-rat liver TrxR1 polyclonal antibodies. At higher aeration, 50% of saturation of dissolved oxygen or 12 ml of oxygen in a liter of medium, HeLa cell growth was slower and additional TrxR forms that bound to heparin were present in purified enzyme preparations. A minor component, TrxR2, the mitochondrial form of TrxR, was detected in the heparin-bound enzyme fraction. One enzyme form that contained less selenium (ca. 0.5 Se per TrxR subunit) was only about 50% as active with thioredoxin or 5,5'dithiobis(2-nitrobenzoic acid) as substrate. Cross-reactivity of this form with anti-rat liver TrxR1 polyclonal antibodies was very weak. The isoelectric point of the low Se enzyme, 5.85, was higher than that, 5.2-5.4, of normal Se content enzyme. Affinity of purified fully active TrxR1 to heparin could be induced by reduction with NADPH or tris-(2-carboxyethyl)phosphine (TCEP). Under anaerobic conditions there was complete retention of Se indicating that an enzyme conformation change effected by reduction was involved. The TCEP-reduced enzyme form was very oxygen labile and upon exposure to air both the Se content and catalytic activity decreased by about 50%. Addition of millimolar concentrations of NADPH or NADP(+) to the TCEP-reduced enzyme gave full protection from oxygen inactivation. TrxR1 exhibited weak peroxidase activity with H(2)O(2) as substrate in the presence of an NADPH-generating system but this activity was unstable. Specific alkylation of the selenocysteine residue of TrxR1 which completely inhibits the NADPH-dependent reduction of disulfides also destroyed peroxidase activity.
Collapse
Affiliation(s)
- S N Gorlatov
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892-0320, USA
| | | |
Collapse
|
21
|
Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem 1999; 274:24522-30. [PMID: 10455115 DOI: 10.1074/jbc.274.35.24522] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular generation of reactive oxygen species, together with the thioredoxin and glutathione systems, is thought to participate in redox signaling in mammalian cells. The activity of thioredoxin is dependent on the redox status of thioredoxin reductase (TR), the activity of which in turn is dependent on a selenocysteine residue. Two mammalian TR isozymes (TR2 and TR3), in addition to that previously characterized (TR1), have now been identified in humans and mice. All three TR isozymes contain a selenocysteine residue that is located in the penultimate position at the carboxyl terminus and which is encoded by a UGA codon. The generation of reactive oxygen species in a human carcinoma cell line was shown to result in both the oxidation of the selenocysteine in TR1 and a subsequent increase in the expression of this enzyme. These observations identify the carboxyl-terminal selenocysteine of TR1 as a cellular redox sensor and support an essential role for mammalian TR isozymes in redox-regulated cell signaling.
Collapse
Affiliation(s)
- Q A Sun
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Since the recent discovery of selenocysteine as the 21st amino acid in protein, the field of selenium biology has rapidly expanded. Twelve mammalian selenoproteins have been characterized to date and each contains selenocysteine that is incorporated in response to specific UGA code words. These selenoproteins have different cellular functions, but in those selenoproteins for which the function is known, selenocysteine is located at the active center. The presence of selenocysteine at critical sites in naturally occurring selenoproteins provides an explanation for the important role of selenium in human health and development. This review describes known mammalian selenoproteins and discusses recent developments and future directions in the selenium field.
Collapse
Affiliation(s)
- V N Gladyshev
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.
| | | |
Collapse
|
23
|
Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:405-12. [PMID: 10215850 DOI: 10.1046/j.1432-1327.1999.00286.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated a 1918-bp cDNA from a human adrenal cDNA library which encodes a novel thioredoxin reductase (TrxR2) of 521 amino acid residues with a calculated molecular mass of 56.2 kDa. It is highly homologous to the previously described cytosolic enzyme (TrxR1), including the conserved active site CVNVGC and the FAD-binding and NADPH-binding domains. However, human TrxR2 differs from human TrxR1 by the presence of a 33-amino acid extension at the N-terminus which has properties characteristic of a mitochondrial translocation signal. Northern-blot analysis identified one mRNA species of 2.2 kb with highest expression in prostate, testis and liver. We expressed human TrxR2 as a fusion protein with green fluorescent protein and showed that in vivo it is localized in mitochondria. Removal of the mitochondrial targeting sequence abolishes the mitochondrial translocation. Finally, we determined the genomic organization of the human TrxR2 gene, which consists of 18 exons spanning about 67 kb, and its chromosomal localization at position 22q11.2.
Collapse
Affiliation(s)
- A Miranda-Vizuete
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
24
|
Arnér ES, Zhong L, Holmgren A. Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Methods Enzymol 1999; 300:226-39. [PMID: 9919525 DOI: 10.1016/s0076-6879(99)00129-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- E S Arnér
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Zhong L, Arnér ES, Ljung J, Aslund F, Holmgren A. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J Biol Chem 1998; 273:8581-91. [PMID: 9535831 DOI: 10.1074/jbc.273.15.8581] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the sequence of 23 peptides from bovine thioredoxin reductase covering 364 amino acid residues. The result was used to identify a rat cDNA clone (2.19 kilobase pairs), which contained an open reading frame of 1496 base pairs encoding a protein with 498 residues. The bovine and rat thioredoxin reductase sequences revealed a close homology to glutathione reductase including the conserved active site sequence (Cys-Val-Asn-Val-Gly-Cys). This also confirmed the identity of a previously published putative human thioredoxin reductase cDNA clone. Moreover, one peptide of the bovine enzyme contained a selenocysteine residue in the motif Gly-Cys-SeCys-Gly (where SeCys represents selenocysteine). This motif was conserved at the carboxyl terminus of the rat and human enzymes, provided that TGA in the sequence GGC TGC TGA GGT TAA, being identical in both cDNA clones, is translated as selenocysteine and that TAA confers termination of translation. The 3'-untranslated region of both cDNA clones contained a selenocysteine insertion sequence that may form potential stem loop structures typical of eukaryotic selenocysteine insertion sequence elements required for the decoding of UGA as selenocysteine. Carboxypeptidase Y treatment of bovine thioredoxin reductase after reduction by NADPH released selenocysteine from the enzyme with a concomitant loss of enzyme activity measured as reduction of thioredoxin or 5,5'-dithiobis(2-nitrobenzoic acid). This showed that the carboxyl-terminal motif was essential for the catalytic activity of the enzyme.
Collapse
Affiliation(s)
- L Zhong
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
26
|
Schütze N, Bachthaler M, Lechner A, Köhrle J, Jakob F. Identification by differential display PCR of the selenoprotein thioredoxin reductase as a 1 alpha,25(OH)2-vitamin D3-responsive gene in human osteoblasts--regulation by selenite. Biofactors 1998; 7:299-310. [PMID: 9666318 DOI: 10.1002/biof.5520070402] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
1 alpha, 25(OH)2 vitamin D3 (1,25(OH)2D3) is a potent hormone, stimulating bone cell growth and differentiation. In order to detect novel targets for 1,25(OH)2D3 action, we applied differential display PCR (ddPCR) to human fetal osteoblasts (FOB cells). By ddPCR analysis, we identified the selenoprotein thioredoxin reductase (TRR) as a 1,25(OH)2D3-responsive gene. In FOB cells, the response of TRR mRNA steady state levels to 1,25(OH)2D3 was fast and transient. Maximal stimulation was observed after one hour of 1,25(OH)2D3 treatment, thereafter TRR steady state mRNA levels declined to control levels. This transient response of TRR mRNA was not reflected at the TRR enzyme activity level upon treatment with 1,25(OH)2D3 for up to 48 h. Sodium selenite added to differentiated FOB cells increased TRR enzyme activity 2.6-fold, whereas no selenite effect on TRR mRNA steady state levels was measurable. Our data might provide a link between the induction of a differentiation program by 1,25(OH)2D3 and the expression of the selenium responsive TRR system in human osteoblasts.
Collapse
Affiliation(s)
- N Schütze
- Medizinische Poliklinik, Universität Würzburg, Germany
| | | | | | | | | |
Collapse
|