1
|
Statin-induced GGPP depletion blocks macropinocytosis and starves cells with oncogenic defects. Proc Natl Acad Sci U S A 2020; 117:4158-4168. [PMID: 32051246 DOI: 10.1073/pnas.1917938117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer cells display novel characteristics which can be exploited for therapeutic advantage. Isolated studies have shown that 1) the mevalonate pathway and 2) increased macropinocytosis are important in tumorigenesis, but a connection between these two observations has not been envisioned. A library screen for compounds that selectively killed Dictyostelium pten - cells identified pitavastatin. Pitavastatin also killed human breast epithelial MCF10A cells lacking PTEN or expressing K-RasG12V, as well as mouse tumor organoids. The selective killing of cells with oncogenic defects was traced to GGPP (geranylgeranyl diphosphate) depletion. Disruption of GGPP synthase in Dictyostelium revealed that GGPP is needed for pseudopod extension and macropinocytosis. Fluid-phase uptake through macropinocytosis is lower in PTEN-deleted cells and, as reported previously, higher in cells expressing activated Ras. Nevertheless, uptake was more sensitive to pitavastatin in cells with either of these oncogenic mutations than in wild-type cells. Loading the residual macropinosomes after pitavastatin with high concentrations of protein mitigated the cell death, indicating that defective macropinocytosis leads to amino acid starvation. Our studies suggest that the dependence of cancer cells on the mevalonate pathway is due to the role of GGPP in macropinocytosis and the reliance of these cells on macropinocytosis for nutrient uptake. Thus, inhibition of the networks mediating these processes is likely to be effective in cancer intervention.
Collapse
|
2
|
Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int J Mol Sci 2019; 20:ijms20092167. [PMID: 31052427 PMCID: PMC6540057 DOI: 10.3390/ijms20092167] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes are key elements for the maintenance of cell architecture and physiology. Beyond a pure barrier separating the inner space of the cell from the outer, the plasma membrane is a scaffold and player in cell-to-cell communication and the initiation of intracellular signals among other functions. Critical to this function is the plasma membrane compartmentalization in lipid microdomains that control the localization and productive interactions of proteins involved in cell signal propagation. In addition, cells are divided into compartments limited by other membranes whose integrity and homeostasis are finely controlled, and which determine the identity and function of the different organelles. Here, we review current knowledge on membrane lipid composition in the plasma membrane and endomembrane compartments, emphasizing its role in sustaining organelle structure and function. The correct composition and structure of cell membranes define key pathophysiological aspects of cells. Therefore, we explore the therapeutic potential of manipulating membrane lipid composition with approaches like membrane lipid therapy, aiming to normalize cell functions through the modification of membrane lipid bilayers.
Collapse
|
3
|
Llavero F, Luque Montoro M, Arrazola Sastre A, Fernández-Moreno D, Lacerda HM, Parada LA, Lucia A, Zugaza JL. Epidermal growth factor receptor controls glycogen phosphorylase in T cells through small GTPases of the RAS family. J Biol Chem 2019; 294:4345-4358. [PMID: 30647127 DOI: 10.1074/jbc.ra118.005997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
We recently uncovered a regulatory pathway of the muscle isoform of glycogen phosphorylase (PYGM) that plays an important role in regulating immune function in T cells. Here, using various enzymatic, pulldown, and immunoprecipitation assays, we describe signaling cross-talk between the small GTPases RAS and RAP1A, member of RAS oncogene family (RAP1) in human Kit 225 lymphoid cells, which, in turn, is regulated by the epidermal growth factor receptor (EGFR). We found that this communication bridge is essential for glycogen phosphorylase (PYG) activation through the canonical pathway because this enzyme is inactive in the absence of adenylyl cyclase type 6 (ADCY6). PYG activation required stimulation of both exchange protein directly activated by cAMP 2 (EPAC2) and RAP1 via RAS and ADCY6 phosphorylation, with the latter being mediated by Raf-1 proto-oncogene, Ser/Thr kinase (RAF1). Consistent with this model, PYG activation was EGFR-dependent and may be initiated by the constitutively active form of RAS. Consequently, PYG activation in Kit 225 T cells could be blocked with specific inhibitors of RAS, EPAC, RAP1, RAF1, ADCY6, and cAMP-dependent protein kinase. Our results establish a new paradigm for the mechanism of PYG activation, which depends on the type of receptor involved.
Collapse
Affiliation(s)
- Francisco Llavero
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain,
| | - Miriam Luque Montoro
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - Alazne Arrazola Sastre
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain.,the Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| | - David Fernández-Moreno
- the Research Institute of the Hospital 12 de Octubre ("i+12"), 28041 Madrid, Spain.,the Faculty of Sports Science, Universidad Europea de Madrid, 28670 Madrid, Spain
| | | | - Luis A Parada
- the Instituto de Patología Experimental, Universidad Nacional de Salta, A4400 Salta, Argentina, and
| | - Alejandro Lucia
- the Research Institute of the Hospital 12 de Octubre ("i+12"), 28041 Madrid, Spain.,the Faculty of Sports Science, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - José L Zugaza
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain, .,the Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
4
|
Giannini M, Primerano C, Berger L, Giannaccini M, Wang Z, Landi E, Cuschieri A, Dente L, Signore G, Raffa V. Nano-topography: Quicksand for cell cycle progression? NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2656-2665. [PMID: 30010000 DOI: 10.1016/j.nano.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 01/01/2023]
Abstract
The 3-D spatial and mechanical features of nano-topography can create alternative environments, which influence cellular response. In this paper, murine fibroblast cells were grown on surfaces characterized by protruding nanotubes. Cells cultured on such nano-structured surface exhibit stronger cellular adhesion compared to control groups, but despite the fact that stronger adhesion is generally believed to promote cell cycle progression, the time cells spend in G1 phase is doubled. This apparent contradiction is solved by confocal microscopy analysis, which shows that the nano-topography inhibits actin stress fiber formation. In turn, this impairs RhoA activation, which is required to suppress the inhibition of cell cycle progression imposed by p21/p27. This finding suggests that the generation of stress fibers, required to impose the homeostatic intracellular tension, rather than cell adhesion/spreading is the limiting factor for cell cycle progression. Indeed, nano-topography could represent a unique tool to inhibit proliferation in adherent well-spread cells.
Collapse
Affiliation(s)
| | | | - Liron Berger
- Department of Biology, Università di Pisa, Pisa, Italy.
| | | | - Zhigang Wang
- Institute for Medical Science and Technology, University of Dundee, Dundee, United Kingdom.
| | - Elena Landi
- Department of Biology, Università di Pisa, Pisa, Italy.
| | - Alfred Cuschieri
- Institute for Medical Science and Technology, University of Dundee, Dundee, United Kingdom.
| | - Luciana Dente
- Department of Biology, Università di Pisa, Pisa, Italy.
| | - Giovanni Signore
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy; NEST, Scuola Normale Superiore, and Istituto Nanoscienze-CNR, Pisa, Italy.
| | | |
Collapse
|
5
|
Wang X, Xu W, Zhan P, Xu T, Jin J, Miu Y, Zhou Z, Zhu Q, Wan B, Xi G, Ye L, Liu Y, Gao J, Li H, Lv T, Song Y. Overexpression of geranylgeranyl diphosphate synthase contributes to tumour metastasis and correlates with poor prognosis of lung adenocarcinoma. J Cell Mol Med 2018; 22:2177-2189. [PMID: 29377583 PMCID: PMC5867137 DOI: 10.1111/jcmm.13493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
This study aimed to evaluate the biological role of geranylgeranyl diphosphate synthase (GGPPS) in the progression of lung adenocarcinoma. GGPPS expression was detected in lung adenocarcinoma tissues by qRT‐PCR, tissue microarray (TMA) and western blotting. The relationships between GGPPS expression and the clinicopathological characteristics and prognosis of lung adenocarcinoma patients were assessed. GGPPS was down‐regulated in SPCA‐1, PC9 and A549 cells using siRNA and up‐regulated in A549 cells using an adenoviral vector. The biological roles of GGPPS in cell proliferation, apoptosis, migration and invasion were determined by MTT and colony formation assays, flow cytometry, and transwell and wound‐healing assays, respectively. In addition, the regulatory roles of GGPPS on the expression of several epithelial‐mesenchymal transition (EMT) markers were determined. Furthermore, the Rac1/Cdc42 prenylation was detected after knockdown of GGPPS in SPCA‐1 and PC9 cells. GGPPS expression was significantly increased in lung adenocarcinoma tissues compared to that in adjacent normal tissues. Overexpression of GGPPS was correlated with large tumours, high TNM stage, lymph node metastasis and poor prognosis in patients. Knockdown of GGPPS inhibited the migration and invasion of lung adenocarcinoma cells, but did not affect cell proliferation and apoptosis. Meanwhile, GGPPS inhibition significantly increased the expression of E‐cadherin and reduced the expression of N‐cadherin and vimentin in lung adenocarcinoma cells. In addition, the Rac1/Cdc42 geranylgeranylation was reduced by GGPPS knockdown. Overexpression of GGPPS correlates with poor prognosis of lung adenocarcinoma and contributes to metastasis through regulating EMT.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Intensive Care Unit, Inner Mongolia People's Hospital, Hohhot, China
| | - Wujian Xu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Tianxiang Xu
- Center of Tumor, Inner Mongolia People's Hospital, Hohhot, China
| | - Jiajia Jin
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yingying Miu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Zejun Zhou
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Guangmin Xi
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Liang Ye
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yafang Liu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Jianwei Gao
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Huijuan Li
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| |
Collapse
|
6
|
Contini A, Ferri N, Bucci R, Lupo MG, Erba E, Gelmi ML, Pellegrino S. Peptide modulators of Rac1/Tiam1 protein-protein interaction: An alternative approach for cardiovascular diseases. Biopolymers 2017; 110. [PMID: 29178143 DOI: 10.1002/bip.23089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023]
Abstract
Rac1 GTPase interaction with guanine nucleotide exchange factor Tiam1 is involved in several cancer types and cardiovascular diseases. Although small molecules interfering with their protein-protein interaction (PPI) were identified and studied, the ability of small peptides and peptide mimics acting as Rac1/Tiam1 PPI inhibitors has not been yet explored. Using computational alanine scanning (CAS), the "hot" interfacial residues have been determined allowing the design of a small library of putative PPI inhibitors. In particular, the insertion of an unnatural alpha, alpha disubstituted amino acid, that is norbornane amino acid, and the side chain stapling have been evaluated regarding both conformational stability and biological activity. REMD calculations and CD studies have indicated that one single norbornane amino acid at the N-terminus is not sufficient to stabilize the helix structure, while the side-chain stapling is a more efficient strategy. Furthermore, both engineered peptides have been found able to reduce Rac1-GTP levels in cultured human smooth muscle cells, while wild type sequence is not active.
Collapse
Affiliation(s)
- Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Emanuela Erba
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| |
Collapse
|
7
|
Ying W, Qimin W, Jinghua L, Jinhong H, Lili W, Chen C, Jianhua Z, Lei T, Xufei L, Yuan Z, Yixiang L, Zongxuan H, Ning L, Lei C, Wenjun L, Zhenggang C. [Effects of geranylgeranyltransferaseⅠsilencing on the proliferation of tongue squamous cancer cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:373-378. [PMID: 28853502 DOI: 10.7518/hxkq.2017.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective This study aims to investigate the effect of geranylgeranyltransferaseⅠ (GGTase-Ⅰ) on the proliferation and growth of tongue squamous cancer cells. Methods Three small interfering RNAs (siRNAs) were designed on the basis of the GGTase-Ⅰ sequence in GeneBank. These siRNAs were then transfected into tongue squamous cancer cells Cal-27. The mRNA and protein expression of GGTase-Ⅰ and RhoA were examined by real-time quantitative polymerase chain reaction and Western blotting, respectively. The expression of Cyclin D1 and p21 were examined by Western blotting. The proliferation and growth ability were analyzed by cell counting kit-8 assay and flow cytometry. Results The mRNA and protein expression of GGTase-Ⅰ in Cal-27 was reduced significantly after the GGTase-Ⅰ siRNAs were transfected (P<0.05). No significant difference in RhoA mRNA and protein expression was detected (P>0.05). Cyclin D1 expression decreased, whereas p21 expression increased significantly. The cell cycle was altered, and the growth-proliferative activity was inhibited (P<0.05). Conclusion GGTase-Ⅰ siRNA can inhibit the expression of GGTase-Ⅰ and the proliferative activity of tongue squamous cancer cells. GGTase-Ⅰ may be a potential target for gene therapy in tongue squamous cell cancer.
Collapse
Affiliation(s)
- Wang Ying
- College of Stomatology, Weifang Medical University, Weifang 261021, China
| | - Wang Qimin
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Li Jinghua
- Central Lab, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Han Jinhong
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China;Dept. of Oral and Maxillofacial Surgery, Yantai Stomatological Hospital, Yantai 264008, China
| | - Wang Lili
- Central Lab, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Chao Chen
- Dept. of Surgery, Qingdao Clinical Hospital Affiliated to Nanjing Medical University, Qingdao 266071, China
| | - Zhou Jianhua
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Tong Lei
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Lu Xufei
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China;Dept. of Stomatology, Pudong Hospital of Jimo City, Qingdao 266234, China
| | - Zhou Yuan
- College of Stomatology, Weifang Medical University, Weifang 261021, China
| | - Liao Yixiang
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| | - He Zongxuan
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Li Ning
- Postgraduate School, Dalian Medical University, Dalian 116044, China
| | - Cao Lei
- Postgraduate School, Dalian Medical University, Dalian 116044, China
| | - Liu Wenjun
- Dept. of Otorhinolaryngology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Chen Zhenggang
- Dept. of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Qingdao 266071, China;Dept. of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
8
|
Inhibiting HDAC1 Enhances the Anti-Cancer Effects of Statins through Downregulation of GGTase-Iβ Expression. Int J Mol Sci 2017; 18:ijms18051010. [PMID: 28481295 PMCID: PMC5454923 DOI: 10.3390/ijms18051010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 02/05/2023] Open
Abstract
Hydroxy-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, namely statins, are potential anti-tumor agents. Previously, we showed that a pan-histone deacetylase (HDAC) inhibitor enhances the anti-tumor effects of the HMG-CoA inhibitor. However, the underlying mechanisms were not fully understood. Cancer cell lines (CAL-27 and SACC-83) were exposed to pan-HDAC inhibitor, or HDAC1 inhibitor, or geranylgeranyl transferase type I (GGTase-I) inhibitor alone or in combination with statin. Cell viability, apoptosis, migration, and invasion were assessed by Cell Count Kit-8, 4′,6-diamidino-2-phenylindole staining, and transwell assay, respectively. A xenograft model was used for assessing tumor growth in vivo. Western blot and real-time PCR were used to assess the expression of genes. We observed that inhibiting HDAC1 could enhance the anti-tumor effects of statins both in vitro and in vivo. Inhibiting HDAC1 blocked the statin-induced upregulation of geranylgeranyl transferase type Iβ subunit (GGTase-Iβ), resulting in an enhancement of the anti-cancer effects of statin. Overexpression of GGTase-Iβ or constitutively active RhoA abolished the enhancement by inhibiting HDAC1 on anti-tumor effects of statins. The HDAC1 inhibitor failed to enhance cytotoxicity in non-tumor primary cells treated with statin. Inhibiting HDAC1 enhanced the anti-cancer effects of statins through downregulation of GGTase-Iβ expression, and thus further inactivation of RhoA. A combination of statin with HDAC1 or GGTase-I inhibitor would be a new strategy for cancer chemotherapy.
Collapse
|
9
|
Pyrazole-based potent inhibitors of GGT1: Synthesis, biological evaluation, and molecular docking studies. Eur J Med Chem 2016; 124:666-676. [DOI: 10.1016/j.ejmech.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022]
|
10
|
Could drugs inhibiting the mevalonate pathway also target cancer stem cells? Drug Resist Updat 2016; 25:13-25. [PMID: 27155373 DOI: 10.1016/j.drup.2016.02.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/12/2015] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly highlight diverse functions of various elements of this mevalonate pathway. We further discuss in detail the role of elements of the mevalonate cascade in stemness, carcinogenesis, cancer progression, metastasis and maintenance of cancer stem cells.
Collapse
|
11
|
Inhibition of Cell Proliferation and Growth of Pancreatic Cancer by Silencing of Carbohydrate Sulfotransferase 15 In Vitro and in a Xenograft Model. PLoS One 2015; 10:e0142981. [PMID: 26642349 PMCID: PMC4671730 DOI: 10.1371/journal.pone.0142981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate E (CS-E), a highly sulfated glycosaminoglycan, is known to promote tumor invasion and metastasis. Because the presence of CS-E is detected in both tumor and stromal cells in pancreatic ductal adenocarcinoma (PDAC), multistage involvement of CS-E in the development of PDAC has been considered. However, its involvement in the early stage of PDAC progression is still not fully understood. In this study, to clarify the direct role of CS-E in tumor, but not stromal, cells of PDAC, we focused on carbohydrate sulfotransferase 15 (CHST15), a specific enzyme that biosynthesizes CS-E, and investigated the effects of the CHST15 siRNA on tumor cell proliferation in vitro and growth in vivo. CHST15 mRNA is highly expressed in the human pancreatic cancer cell lines PANC-1, MIA PaCa-2, Capan-1 and Capan-2. CHST15 siRNA significantly inhibited the expression of CHST15 mRNA in these four cells in vitro. Silencing of the CHST15 gene in the cells was associated with significant reduction of proliferation and up-regulation of the cell cycle inhibitor-related gene p21CIP1/WAF1. In a subcutaneous xenograft tumor model of PANC-1 in nude mice, a single intratumoral injection of CHST15 siRNA almost completely suppressed tumor growth. Reduced CHST15 protein signals associated with tumor necrosis were observed with the treatment with CHST15 siRNA. These results provide evidence of the direct action of CHST15 on the proliferation of pancreatic tumor cells partly through the p21CIP1/WAF1 pathway. Thus, CHST15-CS-E axis-mediated tumor cell proliferation could be a novel therapeutic target in the early stage of PDAC progression.
Collapse
|
12
|
Lu J, Yoshimura K, Goto K, Lee C, Hamura K, Kwon O, Tamanoi F. Nanoformulation of Geranylgeranyltransferase-I Inhibitors for Cancer Therapy: Liposomal Encapsulation and pH-Dependent Delivery to Cancer Cells. PLoS One 2015; 10:e0137595. [PMID: 26352258 PMCID: PMC4564137 DOI: 10.1371/journal.pone.0137595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/18/2015] [Indexed: 12/17/2022] Open
Abstract
Small molecule inhibitors against protein geranylgeranyltransferase-I such as P61A6 have been shown to inhibit proliferation of a variety of human cancer cells and exhibit antitumor activity in mouse models. Development of these inhibitors could be dramatically accelerated by conferring tumor targeting and controlled release capability. As a first step towards this goal, we have encapsulated P61A6 into a new type of liposomes that open and release cargos only under low pH condition. These low pH-release type liposomes were prepared by adjusting the ratio of two types of phospholipid derivatives. Loading of geranylgeranyltransferase-I inhibitor (GGTI) generated liposomes with average diameter of 50–100 nm. GGTI release in solution was sharply dependent on pH values, only showing release at pH lower than 6. Release of cargos in a pH-dependent manner inside the cell was demonstrated by the use of a proton pump inhibitor Bafilomycin A1 that Increased lysosomal pH and inhibited the release of a dye carried in the pH-liposome. Delivery of GGTI to human pancreatic cancer cells was demonstrated by the inhibition of protein geranylgeranylation inside the cell and this effect was blocked by Bafilomycin A1. In addition, GGTI delivered by pH-liposomes induced proliferation inhibition, G1 cell cycle arrest that is associated with the expression of cell cycle regulator p21CIP1/WAF1. Proliferation inhibition was also observed with various lung cancer cell lines. Availability of nanoformulated GGTI opens up the possibility to combine with other types of inhibitors. To demonstrate this point, we combined the liposomal-GGTI with farnesyltransferase inhibitor (FTI) to inhibit K-Ras signaling in pancreatic cancer cells. Our results show that the activated K-Ras signaling in these cells can be effectively inhibited and that synergistic effect of the two drugs is observed. Our results suggest a new direction in the use of GGTI for cancer therapy.
Collapse
Affiliation(s)
- Jie Lu
- Dept. of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Kohei Yoshimura
- DDS Research Laboratory, NOF CORPORATION, Kawasaki, Kanagawa 210–0865, Japan
| | - Koichi Goto
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, Kumamoto, Japan
| | - Craig Lee
- Dept. of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Ken Hamura
- DDS Research Laboratory, NOF CORPORATION, Kawasaki, Kanagawa 210–0865, Japan
| | - Ohyun Kwon
- Dept. of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Fuyuhiko Tamanoi
- Dept. of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, United States of America
- * E-mail:
| |
Collapse
|
13
|
Costa DS, Martino T, Magalhães FC, Justo G, Coelho MG, Barcellos JC, Moura VB, Costa PR, Sabino KC, Dias AG. Synthesis of N-methylarylnitrones derived from alkyloxybenzaldehydes and antineoplastic effect on human cancer cell lines. Bioorg Med Chem 2015; 23:2053-61. [DOI: 10.1016/j.bmc.2015.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 01/26/2023]
|
14
|
Shirakawa R, Horiuchi H. Ral GTPases: crucial mediators of exocytosis and tumourigenesis. J Biochem 2015; 157:285-99. [DOI: 10.1093/jb/mvv029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/07/2015] [Indexed: 11/12/2022] Open
|
15
|
Mi W, Lin Q, Childress C, Sudol M, Robishaw J, Berlot CH, Shabahang M, Yang W. Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration. Oncogene 2014; 34:3095-106. [PMID: 25109332 DOI: 10.1038/onc.2014.251] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/09/2014] [Accepted: 06/15/2014] [Indexed: 12/17/2022]
Abstract
Protein geranylgeranylation (GGylation) is an important biochemical process for many cellular signaling molecules. Previous studies have shown that GGylation is essential for cell survival in many types of cancer. However, the molecular mechanism mediating the cell survival effect remains elusive. In this report, we show that the Hippo pathway mediates GGylation-dependent cell proliferation and migration in breast cancer cells. Blockade of GGylation enhanced phosphorylation of Mst1/2 and Lats1, and inhibited YAP and TAZ activity and the Hippo-YAP/TAZ pathway-dependent transcription. The effect of GGylation blockade on inhibition of breast cancer cell proliferation and migration is dependent on the Hippo-YAP/TAZ signaling, in which YAP appears to regulate cell proliferation and TAZ to regulate cell migration. Furthermore, GGylation-dependent cell proliferation is correlated with the activity of YAP/TAZ in breast cancer cells. Finally, Gγ and RhoA are the GGylated proteins that may transduce GGylation signals to the Hippo-YAP/TAZ pathway. Taken together, our studies have demonstrated that the Hippo-YAP/TAZ pathway is essential for GGylation-dependent cancer cell proliferation and migration.
Collapse
Affiliation(s)
- W Mi
- Weis Center for Research, Danville, PA, USA
| | - Q Lin
- 1] Weis Center for Research, Danville, PA, USA [2] School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | | | - M Sudol
- 1] Weis Center for Research, Danville, PA, USA [2] Department of Medicine, Mount Sinai Medical School, New York, NY, USA
| | - J Robishaw
- Weis Center for Research, Danville, PA, USA
| | - C H Berlot
- Weis Center for Research, Danville, PA, USA
| | - M Shabahang
- Department of General Surgery, Geisinger Clinic, Danville, PA, USA
| | - W Yang
- Weis Center for Research, Danville, PA, USA
| |
Collapse
|
16
|
Qin Y, Chu B, Gong W, Wang J, Tang Z, Shen J, Quan Z. Inhibitory effects of deleted in liver cancer 1 gene on gallbladder cancer growth through induction of cell cycle arrest and apoptosis. J Gastroenterol Hepatol 2014; 29:964-72. [PMID: 24329682 DOI: 10.1111/jgh.12486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM The biological function of tumor suppressor deleted in liver cancer 1 (DLC1) has been investigated in several types of human cancer, but its role in gallbladder cancer (GBC) is yet to be determined. In this research, we conducted in vitro and in vivo analysis to evaluate the inhibitory activities of DLC1 gene against GBC growth. METHODS DLC1 expression in GBC tissues and cell lines was examined by immunohistochemical staining, reverse transcription polymerase chain reaction, and Western blot assay. The in vitro and in vivo effects of ectopic DLC1 expression on cell growth were evaluated. In addition, the effects of ectopic DLC1 expression on cell cycle, apoptosis, and migration were also evaluated. The expressions of cell cycle-related and apoptosis-related proteins were examined. RESULTS The downregulation of DLC1 expression was a common event in GBC tissues and cell lines. Restoration of DLC1 expression in GBC-SD and NOZ cells significantly reduced cell proliferation, migration in vitro, and the ability of these cells to form tumors in vivo. Restoration of DLC1 expression arrested GBC-SD and NOZ cells in G0/G1 phase through inducing p21 in a p53-independent manner. In addition, restoration of DLC1 expression induced extrinsic and intrinsic apoptotic pathway through promoting the expressions of Fas L/FADD, Bax, cytochrome c, cleaved caspase-8, -9, -3, and cleaved poly-(ADP-ribose) polymerase and suppressing bcl-2 expression in GBC-SD and NOZ cells. CONCLUSIONS Our findings suggested that dysregulated expression of DLC1 is involved in proliferation and invasion of GBC cells and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Yiyu Qin
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, Freed DH, Hashemi M, Shojaei S, Zeki AA, Ghavami S. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther 2014; 143:87-110. [PMID: 24582968 DOI: 10.1016/j.pharmthera.2014.02.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/21/2022]
Abstract
The cholesterol biosynthesis pathway, also known as the mevalonate (MVA) pathway, is an essential cellular pathway that is involved in diverse cell functions. The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) is the rate-limiting step in cholesterol biosynthesis and catalyzes the conversion of HMG-CoA to MVA. Given its role in cholesterol and isoprenoid biosynthesis, the regulation of HMGCR has been intensely investigated. Because all cells require a steady supply of MVA, both the sterol (i.e. cholesterol) and non-sterol (i.e. isoprenoid) products of MVA metabolism exert coordinated feedback regulation on HMGCR through different mechanisms. The proper functioning of HMGCR as the proximal enzyme in the MVA pathway is essential under both normal physiologic conditions and in many diseases given its role in cell cycle pathways and cell proliferation, cholesterol biosynthesis and metabolism, cell cytoskeletal dynamics and stability, cell membrane structure and fluidity, mitochondrial function, proliferation, and cell fate. The blockbuster statin drugs ('statins') directly bind to and inhibit HMGCR, and their use for the past thirty years has revolutionized the treatment of hypercholesterolemia and cardiovascular diseases, in particular coronary heart disease. Initially thought to exert their effects through cholesterol reduction, recent evidence indicates that statins also have pleiotropic immunomodulatory properties independent of cholesterol lowering. In this review we will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyltransferase (FTase) inhibition in cardiovascular disease, pulmonary diseases (e.g. asthma and chronic obstructive pulmonary disease (COPD)), and cancer.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Emilia Wiechec
- Dept. Clinical & Experimental Medicine, Division of Cell Biology & Integrative Regenerative Med. Center (IGEN), Linköping University, Sweden
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan Sharma
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, 4C46 HRIC, 3280 Hospital Drive NW, Calgary, Alberta, Canada
| | - Adel Rezaei Moghadam
- Scientific Association of Veterinary Medicine, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Martin Post
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Darren H Freed
- Department of Physiology, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir A Zeki
- U.C. Davis, School of Medicine, U.C. Davis Medical Center, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology & Medicine, Davis, CA, USA.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, St. Boniface Research Centre, Manitoba Institute of Child Health, Biology of Breathing Theme, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
18
|
Zimonjic DB, Chan LN, Tripathi V, Lu J, Kwon O, Popescu NC, Lowy DR, Tamanoi F. In vitro and in vivo effects of geranylgeranyltransferase I inhibitor P61A6 on non-small cell lung cancer cells. BMC Cancer 2013; 13:198. [PMID: 23607551 PMCID: PMC3639152 DOI: 10.1186/1471-2407-13-198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/15/2013] [Indexed: 11/26/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related mortality. Therapies against non-small cell lung cancer (NSCLC) are particularly needed, as this type of cancer is relatively insensitive to chemotherapy and radiation therapy. We recently identified GGTI compounds that are designed to block geranylgeranylation and membrane association of signaling proteins including the Rho family G-proteins. One of the GGTIs is P61A6 which inhibits proliferation of human cancer cells, causes cell cycle effects with G1 accumulation and exhibits tumor-suppressing effects with human pancreatic cancer xenografts. In this paper, we investigated effects of P61A6 on non-small cell lung cancer (NSCLC) cells in vitro and in vivo. Methods Three non-small cell lung cancer cell lines were used to test the ability of P61A6 to inhibit cell proliferation. Further characterization involved analyses of geranylgeranylation, membrane association and activation of RhoA, and anchorage-dependent and –independent growth, as well as cell cycle effects and examination of cell cycle regulators. We also generated stable cells expressing RhoA-F, which bypasses the geranylgeranylation requirement of wild type RhoA, and examined whether the proliferation inhibition by P61A6 is suppressed in these cells. Tumor xenografts of NSCLC cells growing in nude mice were also used to test P61A6’s tumor-suppressing ability. Results P61A6 was shown to inhibit proliferation of NSCLC lines H358, H23 and H1507. Detailed analysis of P61A6 effects on H358 cells showed that P61A6 inhibited geranylgeranylation, membrane association of RhoA and caused G1 accumulation associated with decreased cyclin D1/2. The effects of P61A6 to inhibit proliferation could mainly be ascribed to RhoA, as expression of the RhoA-F geranylgeranylation bypass mutant rendered the cells resistant to inhibition by P61A6. We also found that P61A6 treatment of H358 tumor xenografts growing in nude mice reduced their growth as well as the membrane association of RhoA in the tumors. Conclusion Thus, P61A6 inhibits proliferation of NSCLC cells and causes G1 accumulation associated with decreased cyclin D1/2. The result with the RhoA-F mutant suggests that the effect of P61A6 to inhibit proliferation is mainly through the inhibition of RhoA. P61A6 also shows efficacy to inhibit growth of xenograft tumor.
Collapse
Affiliation(s)
- Drazen B Zimonjic
- Molecular Cytogenetics Section, Lab. of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kaur J, Dutta S, Chang KP, Singh N. A member of the Ras oncogene family, RAP1A, mediates antileishmanial activity of monastrol. J Antimicrob Chemother 2013; 68:1071-80. [PMID: 23292345 PMCID: PMC3625431 DOI: 10.1093/jac/dks507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate the mode of action of monastrol in intracellular Leishmania. Methods Microarray experiments were conducted on an Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array, to determine the genes that encode proteins related to pathological alterations of cell signalling pathways in intracellular Leishmania amastigotes in response to monastrol treatment. Results Monastrol induced unprenylated Rap1A in intracellular Leishmania when exposed to this anticancer drug at the IC50 (10 μM). Monastrol, known to cause mitotic arrest in cancer cells, inhibited Rap1A prenylation (geranylgeranylation) in intracellular Leishmania, which resulted in blockade at the G1 phase of the cell cycle. Growth inhibition, rather than apoptosis, was found to be the mechanism by which monastrol displays antileishmanial activity. Conclusions Prenylation inhibitors (unprenylation) of cell signalling pathways can be exploited in Leishmania parasites as novel therapeutic tools.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Drug Target Discovery & Development Division, Central Drug Research Institute (CSIR), Chattar Manzil Palace, Lucknow, India
| | | | | | | |
Collapse
|
20
|
Novelli G, D'Apice MR. Protein farnesylation and disease. J Inherit Metab Dis 2012; 35:917-26. [PMID: 22307208 DOI: 10.1007/s10545-011-9445-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 12/16/2011] [Accepted: 12/22/2011] [Indexed: 12/19/2022]
Abstract
Prenylation consists of the addition of an isoprenoid group to a cysteine residue located near the carboxyl terminal of a protein. This enzymatic posttranslational modification is important for the maturation and processing of proteins. Both processes are necessary to mediate protein-protein and membrane-protein associations, in addition to regulating the localisation and function of proteins. The severe phenotype of animals deficient in enzymes involved in both prenylation and maturation highlights the significance of these processes. Moreover, alterations in the genes coding for isoprenylated proteins or enzymes that are involved in both prenylation and maturation processes have been found to be the basis of severe human diseases, such as cancer, neurodegenerative disorders, retinitis pigmentosa, and premature ageing syndromes. Recent studies on isoprenylation and postprenylation processing in pathological conditions have unveiled surprising aspects of these modifications and their roles in different cellular pathways. The identification of these enzymes as therapeutic targets has led researchers to validate their effects in vitro and in vivo as antitumour or antiageing agents. This review attempts to summarise the basic aspects of protein isoprenylation and postprenylation, integrating our data with that observed in other studies to provide a comprehensive scenario of progeroid syndromes and the therapeutic avenues.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biopathology and Diagnostic Imaging, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | |
Collapse
|
21
|
Tong JJ, Yan Z, Jian R, Tao H, Hui OT, Jian C. RhoA regulates invasion of glioma cells via the c-Jun NH2-terminal kinase pathway under hypoxia. Oncol Lett 2012; 4:495-500. [PMID: 23741249 DOI: 10.3892/ol.2012.777] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/12/2012] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to investigate the mechanism of glioma cell invasion in hypoxic conditions. We demonstrated that hypoxia increased cell invasion, matrix metalloproteinase-2 (MMP2) activity and time-dependent expression of hypoxia inducible factor-1α (HIF-1α) in human glioma cells. These data suggest that MMP2 may play a significant role in tumor invasion in hypoxic conditions. We investigated the mechanisms involved in the increased MMP2 activity and cell invasion in hypoxic conditions. Increased expression of phospho-Jun NH2-terminal kinase (p-JNK) and phospho-c-Jun (p-c-Jun) in glioma cells induced by hypoxia was detected. Furthermore, this effect may be reduced by inhibiting the JNK signaling pathway. We found that inhibition of RhoA geranylgeranylation by geranylgeranyltransferase inhibitor-2147 (GGTI-2147) or knockdown of RhoA by siRNA against RhoA reduced the expression of p-JNK and p-c-Jun, and decreased MMP2 activity and glioma cell invasion in hypoxic conditions. These data suggest a link among RhoA, JNK, c-Jun and MMP2 activity that is functionally involved in the increased glioma cell invasion induced by hypoxia.
Collapse
Affiliation(s)
- Jiao Jian Tong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The RAS oncogenes (HRAS, NRAS and KRAS) comprise the most frequently mutated class of oncogenes in human cancers (33%), thus stimulating intensive effort in developing anti-Ras inhibitors for cancer treatment. Despite intensive effort, to date, no effective anti-Ras strategies have successfully made it to the clinic. We present an overview of past and ongoing strategies to inhibit oncogenic Ras in cancer. Since approaches to directly target mutant Ras have not been successful, most efforts have focused on indirect approaches to block Ras membrane association or downstream effector signaling. While inhibitors of effector signaling are currently under clinical evaluation, genome-wide unbiased genetic screens have identified novel directions for future anti-Ras drug discovery.
Collapse
|
23
|
Ghavami S, Mutawe MM, Schaafsma D, Yeganeh B, Unruh H, Klonisch T, Halayko AJ. Geranylgeranyl transferase 1 modulates autophagy and apoptosis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 302:L420-8. [PMID: 22160308 DOI: 10.1152/ajplung.00312.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Geranylgeranyl transferase 1 (GGT1) is involved in the posttranslational prenylation of signaling proteins, such as small GTPases. We have shown that blocking the formation of isoprenoids with statins regulates survival of human lung mesenchymal cells; thus, we tested the hypothesis that GGT1 may specifically modulate programmed cell death pathways in these cells. To this end, human airway smooth muscle (HASM) cells were treated with the selective GGT1 inhibitor GGTi-298. Apoptosis was seen using assays for cellular DNA content and caspase activation. Induction of autophagy was observed using transmission electron microscopy, immunoblotting for LC3 lipidation and Atg5-12 complex content, and confocal microscopy to detect formation of lysosome-localized LC3 punctae. Notably, GGT1 inhibition induced expression of p53-dependent proteins, p53 upregulated modulator of apoptosis (Noxa), and damage-regulated autophagy modulator (DRAM), this was inhibited by the p53 transcriptional activation inhibitor cyclic-pifithrin-α. Inhibition of autophagy with bafilomycin-A1 or short-hairpin RNA silencing of Atg7 substantially augmented GGTi-298-induced apoptosis. Overall, we demonstrate for the first time that pharmacological inhibition of GGT1 induces simultaneous p53-dependent apoptosis and autophagy in HASM. Moreover, autophagy regulates apoptosis induction. Thus, our findings identify GGT1 as a key regulator of HASM cell viability.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nat Protoc 2011; 6:1775-91. [PMID: 22036881 DOI: 10.1038/nprot.2011.387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The importance of the post-translational lipid modifications farnesylation and geranylgeranylation in protein localization and function coupled with the critical role of prenylated proteins in malignant transformation has prompted interest in their biology and the development of farnesyl transferase and geranylgeranyl transferase inhibitors (FTIs and GGTIs) as chemical probes and anticancer agents. The ability to measure protein prenylation before and after FTI and GGTI treatment is important to understanding and interpreting the effects of these agents on signal transduction pathways and cellular phenotypes, as well as to the use of prenylation as a biomarker. Here we describe protocols to measure the degree of protein prenylation by farnesyl transferase or geranylgeranyl transferase in vitro, in cultured cells and in tumors from animals and humans. The assays use [(3)H]farnesyl diphosphate and [(3)H]geranylgeranyl diphosphate, electrophoretic mobility shift, membrane association using subcellular fractionation or immunofluorescence of intact cells, [(3)H]mevalonic acid labeling, followed by immunoprecipitation and SDS-PAGE, and in vitro transcription, translation and prenylation in reticulocyte lysates. These protocols require from 1 d (enzyme assays) to up to 3 months (autoradiography of [(3)H]-labeled proteins).
Collapse
|
25
|
Abstract
Protein farnesylation and geranylgeranylation, together referred to as prenylation, are lipid post-translational modifications that are required for the transforming activity of many oncogenic proteins, including some RAS family members. This observation prompted the development of inhibitors of farnesyltransferase (FT) and geranylgeranyl-transferase 1 (GGT1) as potential anticancer drugs. In this Review, we discuss the mechanisms by which FT and GGT1 inhibitors (FTIs and GGTIs, respectively) affect signal transduction pathways, cell cycle progression, proliferation and cell survival. In contrast to their preclinical efficacy, only a small subset of patients responds to FTIs. Identifying tumours that depend on farnesylation for survival remains a challenge, and strategies to overcome this are discussed. One GGTI has recently entered the clinic, and the safety and efficacy of GGTIs await results from clinical trials.
Collapse
Affiliation(s)
- Norbert Berndt
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Andrew D. Hamilton
- University of Oxford, Vice-Chancellor’s Office, Wellington Square, Oxford OX1 2JD, UK
| | - Saïd M. Sebti
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA
- Departments of Oncologic Sciences and Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, USA
| |
Collapse
|
26
|
Edwards DC, McKinnon KM, Fenizia C, Jung KJ, Brady JN, Pise-Masison CA. Inhibition of geranylgeranyl transferase-I decreases cell viability of HTLV-1-transformed cells. Viruses 2011; 3:1815-35. [PMID: 22069517 PMCID: PMC3205383 DOI: 10.3390/v3101815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/26/2011] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL), an aggressive and highly chemoresistant malignancy. Rho family GTPases regulate multiple signaling pathways in tumorigenesis: cytoskeletal organization, transcription, cell cycle progression, and cell proliferation. Geranylgeranylation of Rho family GTPases is essential for cell membrane localization and activation of these proteins. It is currently unknown whether HTLV-1-transformed cells are preferentially sensitive to geranylgeranylation inhibitors, such as GGTI-298. In this report, we demonstrate that GGTI-298 decreased cell viability and induced G2/M phase accumulation of HTLV-1-transformed cells, independent of p53 reactivation. HTLV-1-LTR transcriptional activity was inhibited and Tax protein levels decreased following treatment with GGTI-298. Furthermore, GGTI-298 decreased activation of NF-κB, a downstream target of Rho family GTPases. These studies suggest that protein geranylgeranylation contributes to dysregulation of cell survival pathways in HTLV-1-transformed cells.
Collapse
Affiliation(s)
- Dustin C. Edwards
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
| | - Katherine M. McKinnon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.M.M.); (C.F.)
| | - Claudio Fenizia
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.M.M.); (C.F.)
| | - Kyung-Jin Jung
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
| | - John N. Brady
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
| | - Cynthia A. Pise-Masison
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-435-2499; Fax: +1-301-496-4951
| |
Collapse
|
27
|
Balasis ME, Forinash KD, Chen YA, Fulp WJ, Coppola D, Hamilton AD, Cheng JQ, Sebti SM. Combination of farnesyltransferase and Akt inhibitors is synergistic in breast cancer cells and causes significant breast tumor regression in ErbB2 transgenic mice. Clin Cancer Res 2011; 17:2852-62. [PMID: 21536547 DOI: 10.1158/1078-0432.ccr-10-2544] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Akt activation inhibitor triciribine and the farnesyltransferase inhibitor tipifarnib have modest to little activity in clinical trials when used as single agents. In this article, preclinical data show that the combination is more effective than single agents both in cultured cells and in vivo. Combination index data analysis shows that this combination is highly synergistic at inhibiting anchorage-dependent growth of breast cancer cells. This synergistic interaction is also observed with structurally unrelated inhibitors of Akt (MK-2206) and farnesyltransferase (FTI-2153). The triciribine/tipifarnib synergistic effects are seen with several cancer cell lines including those from breast, leukemia, multiple myeloma and lung tumors with different genetic alterations such as K-Ras, B-Raf, PI3K (phosphoinositide 3-kinase), p53 and pRb mutations, PTEN, pRB and Ink4a deletions, and ErbB receptor overexpression. Furthermore, the combination is synergistic at inhibiting anchorage-independent growth and at inducing apoptosis in breast cancer cells. The combination is also more effective at inhibiting the Akt/mTOR/S6 kinase pathway. In an ErbB2-driven breast tumor transgenic mouse model, the combination, but not single agent, treatment with triciribine and tipifarnib induces significant breast tumor regression. Our findings warrant further investigation of the combination of farnesyltransferase and Akt inhibitors.
Collapse
Affiliation(s)
- Maria E Balasis
- Drug Discovery Department, H Lee Moffitt Cancer Center and Research Institut, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Procino G, Barbieri C, Carmosino M, Tamma G, Milano S, De Benedictis L, Mola MG, Lazo-Fernandez Y, Valenti G, Svelto M. Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Arch 2011; 462:753-66. [PMID: 21858457 DOI: 10.1007/s00424-011-1007-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 01/20/2023]
Abstract
X-linked nephrogenic diabetes insipidus (XNDI), a severe pathological condition characterized by greatly impaired urine-concentrating ability of the kidney, is caused by inactivating mutations in the V2 vasopressin receptor (V2R) gene. The lack of functional V2Rs prevents vasopressin-induced shuttling of aquaporin-2 (AQP2) water channels to the apical plasma membrane of kidney collecting duct principal cells, thus promoting water reabsorption from urine to the interstitium. At present, no specific pharmacological therapy exists for the treatment of XNDI. We have previously reported that the cholesterol-lowering drug lovastatin increases AQP2 membrane expression in renal cells in vitro. Here we report the novel finding that fluvastatin, another member of the statins family, greatly increases kidney water reabsorption in vivo in mice in a vasopressin-independent fashion. Consistent with this observation, fluvastatin is able to increase AQP2 membrane expression in the collecting duct of treated mice. Additional in vivo and in vitro experiments indicate that these effects of fluvastatin are most likely caused by fluvastatin-dependent changes in the prenylation status of key proteins regulating AQP2 trafficking in collecting duct cells. We identified members of the Rho and Rab families of proteins as possible candidates whose reduced prenylation might result in the accumulation of AQP2 at the plasma membrane. In conclusion, these results strongly suggest that fluvastatin, or other drugs of the statin family, may prove useful in the therapy of XNDI.
Collapse
Affiliation(s)
- Giuseppe Procino
- Department of General and Environmental Physiology, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Synergistic Effect of Geranylgeranyltransferase Inhibitor, GGTI, and Docetaxel on the Growth of Prostate Cancer Cells. Prostate Cancer 2011; 2012:989214. [PMID: 22111007 PMCID: PMC3195320 DOI: 10.1155/2012/989214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/08/2011] [Indexed: 11/25/2022] Open
Abstract
Most advanced prostate cancers progress to castration resistant
prostate cancer (CRPC) after a few years of androgen deprivation
therapy and the prognosis of patients with CRPC is poor. Although
docetaxel and cabazitaxel can prolong the survival of patients
with CRPC, inevitable progression appears following those
treatments. It is urgently required to identify better or
alternative therapeutic strategies. The purpose of this study was
to confirm the anti-cancer activity of zoledronic acid (Zol) and
determine whether inhibition of geranylgeranylation in the
mevalonate pathway could be a molecular target of prostate cancer
treatment. We examined the growth inhibitory effect of Zol in
prostate cancer cells (LNCaP, PC3, DU145) and investigated a role
of geranylgeranylation in the anticancer activity of Zol. We,
then, evaluated the growth inhibitory effect of
geranylgeranyltransferase inhibitor (GGTI), and analyzed the
synergy of GGTI and docetaxel by combination index and
isobolographic analysis. Zol inhibited the growth of all prostate
cancer cell lines tested in a dose-dependent manner through
inhibition of geranylgeranylation. GGTI also inhibited the
prostate cancer cell growth and the growth inhibitory effect was
augmented by a combination with docetaxel. Synergism between GGTI
and docetaxel was observed across a broad range of concentrations.
In conclusion, our results demonstrated that GGTI can inhibit the
growth of prostate cancer cells and has synergistic effect with
docetaxel, suggesting its potential role in prostate cancer
treatment.
Collapse
|
30
|
Miller T, Yang F, Wise CE, Meng F, Priester S, Munshi MK, Guerrier, Dostal DE, Glaser SS. Simvastatin stimulates apoptosis in cholangiocarcinoma by inhibition of Rac1 activity. Dig Liver Dis 2011; 43:395-403. [PMID: 21334995 PMCID: PMC3071437 DOI: 10.1016/j.dld.2011.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/03/2011] [Accepted: 01/10/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Simvastatin is a cholesterol-lowering drug that is widely used to prevent and treat atherosclerotic cardiovascular disease. Simvastatin exhibits numerous pleiotropic effects including anti-cancer activity. However, the effect of simvastatin on cholangiocarcinoma has not been evaluated. AIM The aim of our study was to determine the effect of simvastatin on cholangiocarcinoma proliferation. METHODS The effect of simvastatin was evaluated in five human cholangiocarcinoma cell lines (Mz-ChA-1, HuH-28, TFK-1, SG231, and HuCCT1) and normal cholangiocyte cell line (HiBEpiC). RESULTS We found that simvastatin stimulates a reduction in cell viability and apoptosis of cholangiocarcinoma cell lines, whilst in normal human cholangiocytes, HiBEpiC, simvastatin inhibits proliferation with no effect on apoptosis. Simvastatin-induced reduction of cell viability was partially blocked by pre-treatment with metabolites of the mevalonate pathway. In Mz-ChA-1 cells, pre-treatment with cholesterol alone stimulated an increase in the number of viable cells and fully restored cell viability following simvastatin treatment. Treatment with simvastatin triggered the loss of lipid raft localised Rac1 and reduction of Rac1 activity in Mz-ChA-1 cells. This effect was prevented by pre-treatment with cholesterol. CONCLUSION Collectively, our results demonstrate that simvastatin induces cholangiocarcinoma cancer cell death by disrupting Rac1/lipid raft colocalisation and depression of Rac1 activity.
Collapse
Affiliation(s)
- Timothy Miller
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, 702 Southwest HK Dodgen Loop, Temple, Texas USA 76504
| | - Fuquan Yang
- Shengjing Hospital, China Medical University, Shenyang City, Liaoning Province, China, 100004
| | - Candace E. Wise
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, 702 Southwest HK Dodgen Loop, Temple, Texas USA 76504
| | - Fanyin Meng
- Scott & White Digestive Disease Research Center, Scott & White and Texas A&M Health Science Center, College of Medicine, 702 Southwest HK Dodgen Loop, Temple, Texas USA 76504,Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, 702 Southwest HK Dodgen Loop, Temple, Texas USA 76504
| | - Sally Priester
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, 702 Southwest HK Dodgen Loop, Temple, Texas USA 76504
| | - Md Kamruzzaman Munshi
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, 702 Southwest HK Dodgen Loop, Temple, Texas USA 76504
| | - Guerrier
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, 702 Southwest HK Dodgen Loop, Temple, Texas USA 76504
| | - David E. Dostal
- Molecular Cardiology, Scott & White and Texas A&M Health Science Center, College of Medicine, 702 Southwest HK Dodgen Loop, Temple, Texas USA 76504
| | - Shannon S. Glaser
- Scott & White Digestive Disease Research Center, Scott & White and Texas A&M Health Science Center, College of Medicine, 702 Southwest HK Dodgen Loop, Temple, Texas USA 76504,Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, 702 Southwest HK Dodgen Loop, Temple, Texas USA 76504
| |
Collapse
|
31
|
Shimoyama S. Statins are logical candidates for overcoming limitations of targeting therapies on malignancy: their potential application to gastrointestinal cancers. Cancer Chemother Pharmacol 2011; 67:729-39. [DOI: 10.1007/s00280-011-1583-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 01/31/2011] [Indexed: 12/18/2022]
|
32
|
Involvement of RhoA and RalB in geranylgeranyltransferase I inhibitor-mediated inhibition of proliferation and migration of human oral squamous cell carcinoma cells. Cancer Chemother Pharmacol 2010; 68:559-69. [PMID: 21107573 DOI: 10.1007/s00280-010-1520-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/03/2010] [Indexed: 01/28/2023]
Abstract
PURPOSE Geranylgeranyltransferase I is required for the prenylation of the small GTPases. The effect of GGTase I inhibitors (GGTIs) on oral squamous cell carcinoma (SCC) cells was examined. METHODS The GGTI-treated cells were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, flow cytometric analysis, transwell chamber assays, and immunofluorescent staining. Small GTPases were detected by immunoblot analysis, and siRNA were used for silencing RalA and RalB. RESULTS GGTI suppressed the proliferation of oral SCC cells and induced cell cycle arrest at G(1), but the sub-G(1) fraction was small. The expression of the cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1), but not p27(Kip1), was markedly increased by GGTI. There was an apparent increase in the expression and reduction in the membrane localization of RhoA and RalB, but not Ras and RalA. Assays with transwell chambers and wound healing and invasion revealed the migrative and invasive capabilities of SAS cells to be inhibited by GGTI. Actin filaments were rearranged and stress fibers and peripheral cell processes were lost, accompanying cell rounding. siRNA for RalB, but not RalA, significantly suppressed the migration of SAS cells. CONCLUSION These results suggest that GGTI inhibits the geranylgeranylation of RhoA and increases the p21(Waf1/Cip1) level, resulting in cell cycle arrest at G(1) to decrease cell proliferation, and that of RalB to suppress the migration and invasion by oral SCC cells. GGTIs may be useful as inhibitors of invasion and metastasis in cases of oral SCC.
Collapse
|
33
|
Sjogren AKM, Andersson KME, Khan O, Olofsson FJ, Karlsson C, Bergo MO. Inactivating GGTase-I reduces disease phenotypes in a mouse model of K-RAS-induced myeloproliferative disease. Leukemia 2010; 25:186-9. [DOI: 10.1038/leu.2010.242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Müller I, Boyle S, Singer RH, Bickmore WA, Chubb JR. Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells. PLoS One 2010; 5:e11560. [PMID: 20644634 PMCID: PMC2903487 DOI: 10.1371/journal.pone.0011560] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/13/2010] [Indexed: 12/11/2022] Open
Abstract
Despite the distinctive structure of mitotic chromosomes, it has not been possible to visualise individual chromosomes in living interphase cells, where chromosomes spend over 90% of their time. Studies of interphase chromosome structure and dynamics use fluorescence in-situ hybridisation (FISH) on fixed cells, which potentially damages structure and loses dynamic information. We have developed a new methodology, involving photoactivation of labelled histone H3 at mitosis, to visualise individual and specific human chromosomes in living interphase cells. Our data revealed bulk chromosome volume and morphology are established rapidly after mitosis, changing only incrementally after the first hour of G1. This contrasted with the behaviour of specific loci on labelled chromosomes, which showed more progressive reorganisation, and revealed that “looping out” of chromatin from chromosome territories is a dynamic state. We measured considerable heterogeneity in chromosome decondensation, even between sister chromatids, which may reflect local structural impediments to decondensation and could potentially amplify transcriptional noise. Chromosome structure showed tremendous resistance to inhibitors of transcription, histone deacetylation and chromatin remodelling. Together, these data indicate steric constraints determine structure, rather than innate chromosome architecture or function-driven anchoring, with interphase chromatin organisation governed primarily by opposition between needs for decondensation and the space available for this to happen.
Collapse
Affiliation(s)
- Iris Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jonathan R. Chubb
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Krens LL, Baas JM, Gelderblom H, Guchelaar HJ. Therapeutic modulation of k-ras signaling in colorectal cancer. Drug Discov Today 2010; 15:502-16. [PMID: 20594936 DOI: 10.1016/j.drudis.2010.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 04/14/2010] [Accepted: 05/21/2010] [Indexed: 02/07/2023]
Abstract
KRAS has an important role in colorectal carcinogenesis and mutant KRAS leads to a permanently activated k-ras protein. To exert its biological activity, k-ras requires post-translational modification by prenylation. K-ras modulation has become a promising concept for new therapies, mostly by interference with the mevalonate pathway and subsequently by the prenylation of k-ras. Clinical data of agents interfering with the mevalonate pathway and the prenylation of ras are summarized and suggest that these agents might be effective when administered in combination with anticancer drugs that target k-ras. Here, we discuss the novel concept that modulation of k-ras might potentiate EGFR therapy by altering the KRAS phenotype.
Collapse
Affiliation(s)
- Lisanne L Krens
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
36
|
Geranylgeranyl diphosphate depletion inhibits breast cancer cell migration. Invest New Drugs 2010; 29:912-20. [PMID: 20480384 DOI: 10.1007/s10637-010-9446-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/27/2010] [Indexed: 01/04/2023]
Abstract
The objective of this study was to determine whether geranylgeranyl diphosphate synthase inhibition, and therefore geranylgeranyl diphosphate depletion, interferes with breast cancer cell migration. Digeranyl bisphosphonate is a specific geranylgeranyl diphosphate synthase inhibitor. We demonstrate that digeranyl bisphosphonate depleted geranylgeranyl diphosphate and inhibited protein geranylgeranylation in MDA-MB-231 cells. Similar to GGTI-286, a GGTase I inhibitor, digeranyl bisphosphate significantly inhibited migration of MDA-MB-231 cells as measured by transwell assay. Similarly, digeranyl bisphosphonate reduced motility of MDA-MB-231 cells in a time-dependent manner as measured by large scale digital cell analysis system microscopy. Digeranyl bisphosphonate was mildly toxic and did not induce apoptosis. Treatment of MDA-MB-231 cells with digeranyl bisphosphonate decreased membrane while it increased cytosolic RhoA localization. In addition, digeranyl bisphosphonate increased RhoA GTP binding in MDA-MB-231 cells. The specificity of geranylgeranyl diphosphonate synthase inhibition by digeranyl bisphosphonate was confirmed by exogenous addition of geranylgeranyl diphosphate. Geranylgeranyl diphosphate addition prevented the effects of digeranyl bisphosphonate on migration, RhoA localization, and GTP binding to RhoA in MDA-MB-231 cells. These studies suggest that geranylgeranyl diphosphate synthase inhibitors are a novel approach to interfere with cancer cell migration.
Collapse
|
37
|
McFarlane C, Kelvin AA, de la Vega M, Govender U, Scott CJ, Burrows JF, Johnston JA. The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1-S progression. Cancer Res 2010; 70:3329-39. [PMID: 20388806 DOI: 10.1158/0008-5472.can-09-4152] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung, colon, esophagus, and cervix tumor biopsies. We also report that USP17 is tightly regulated during the cell cycle in all the cells examined, being abundantly evident in G(1) and absent in S phase. Moreover, regulated USP17 expression was necessary for cell cycle progression because its depletion significantly impaired G(1)-S transition and blocked cell proliferation. Previously, we have shown that USP17 regulates the intracellular translocation and activation of the GTPase Ras by controlling Ras-converting enzyme 1 (RCE1) activation. RCE1 also regulates the processing of other proteins with a CAAX motif, including Rho family GTPases. We now show that USP17 depletion blocks Ras and RhoA localization and activation. Moreover, our results confirm that USP17-depleted cells have constitutively elevated levels of the cyclin-dependent kinase inhibitors p21(cip1) and p27(kip1), known downstream targets of Ras and RhoA signaling. These observations clearly show that USP17 is tightly regulated during cell division and that its expression is necessary to coordinate cell cycle progression, and thus, it may be considered a promising novel cancer therapeutic target.
Collapse
Affiliation(s)
- Cheryl McFarlane
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical, Queen's University Belfast, Belfast, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Sane KM, Mynderse M, Lalonde DT, Dean IS, Wojtkowiak JW, Fouad F, Borch RF, Reiners JJ, Gibbs RA, Mattingly RR. A novel geranylgeranyl transferase inhibitor in combination with lovastatin inhibits proliferation and induces autophagy in STS-26T MPNST cells. J Pharmacol Exp Ther 2010; 333:23-33. [PMID: 20086055 PMCID: PMC2846025 DOI: 10.1124/jpet.109.160192] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 01/15/2010] [Indexed: 01/22/2023] Open
Abstract
Prenylation inhibitors have gained increasing attention as potential therapeutics for cancer. Initial work focused on inhibitors of farnesylation, but more recently geranylgeranyl transferase inhibitors (GGTIs) have begun to be evaluated for their potential antitumor activity in vitro and in vivo. In this study, we have developed a nonpeptidomimetic GGTI, termed GGTI-2Z [(5-nitrofuran-2-yl)methyl-(2Z,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl 4-chlorobutyl(methyl)phosphoramidate], which in combination with lovastatin inhibits geranylgeranyl transferase I (GGTase I) and GGTase II/RabGGTase, without affecting farnesylation. The combination treatment results in a G(0)/G(1) arrest and synergistic inhibition of proliferation of cultured STS-26T malignant peripheral nerve sheath tumor cells. We also show that the antiproliferative activity of drugs in combination occurs in the context of autophagy. The combination treatment also induces autophagy in the MCF10.DCIS model of human breast ductal carcinoma in situ and in 1c1c7 murine hepatoma cells, where it also reduces proliferation. At the same time, there is no detectable toxicity in normal immortalized Schwann cells. These studies establish GGTI-2Z as a novel geranylgeranyl pyrophosphate derivative that may work through a new mechanism involving the induction of autophagy and, in combination with lovastatin, may serve as a valuable paradigm for developing more effective strategies in this class of antitumor therapeutics.
Collapse
Affiliation(s)
- Komal M Sane
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Peterson YK, Wang XS, Casey PJ, Tropsha A. Discovery of geranylgeranyltransferase-I inhibitors with novel scaffolds by the means of quantitative structure-activity relationship modeling, virtual screening, and experimental validation. J Med Chem 2009; 52:4210-20. [PMID: 19537691 DOI: 10.1021/jm8013772] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geranylgeranylation is critical to the function of several proteins including Rho, Rap1, Rac, Cdc42, and G-protein gamma subunits. Geranylgeranyltransferase type I (GGTase-I) inhibitors (GGTIs) have therapeutic potential to treat inflammation, multiple sclerosis, atherosclerosis, and many other diseases. Following our standard workflow, we have developed and rigorously validated quantitative structure-activity relationship (QSAR) models for 48 GGTIs using variable selection k nearest neighbor (kNN), automated lazy learning (ALL), and partial least squares (PLS) methods. The QSAR models were employed for virtual screening of 9.5 million commercially available chemicals, yielding 47 diverse computational hits. Seven of these compounds with novel scaffolds and high predicted GGTase-I inhibitory activities were tested in vitro, and all were found to be bona fide and selective micromolar inhibitors. Notably, these novel hits could not be identified using traditional similarity search. These data demonstrate that rigorously developed QSAR models can serve as reliable virtual screening tools, leading to the discovery of structurally novel bioactive compounds.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
40
|
Lu J, Chan L, Fiji HDG, Dahl R, Kwon O, Tamanoi F. In vivo antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Mol Cancer Ther 2009; 8:1218-26. [PMID: 19417142 DOI: 10.1158/1535-7163.mct-08-1122] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein geranylgeranyltransferase-I (GGTase-I) catalyzes protein geranylgeranylation, which is critical for the function of proteins such as Rho, Rac, and Ral. We previously identified several small-molecule inhibitors of GGTase-I from an allenoate-derived compound library and showed that these compounds exhibit specific inhibition of GGTase-I resulting in the inhibition of proliferation associated with the induction of G(1) cell cycle arrest of a variety of cancer cell lines. Because inhibition of GGTase-I is expected to suppress tumor growth, we investigated in vivo effects of one of these GGTase-I inhibitors (GGTI), P61A6, by using a human pancreatic cancer xenograft model in mice. The new compound GGTI P61A6 showed an excellent antitumor effect. I.p. administration of P61A6 significantly suppressed tumor growth of the PANC-1 xenograft. Even once per week administration of GGTI was enough to suppress tumor growth. Immunohistochemical examination indicated the inhibition of cell proliferation in the tumors by P61A6 treatment, but neither apoptosis nor antiangiogenesis was observed. Increased cytosolic localization of proteins such as Rap1 and RhoA in tumors was observed. In addition, the enzyme activity of GGTase-I in tumors was inhibited. Pharmacokinetic analysis showed that the plasma half-life of GGTI is ∼6 h, suggesting its prolonged effect. These data suggest that the novel GGTI compound P61A6 is an excellent chemotherapeutic drug candidate for human pancreatic cancer. They also provide evidence that protein GGTase-I may be a valid target for cancer therapy.
Collapse
Affiliation(s)
- Jie Lu
- Department of Microbiology, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
41
|
Blockade of protein geranylgeranylation inhibits Cdk2-dependent p27Kip1 phosphorylation on Thr187 and accumulates p27Kip1 in the nucleus: implications for breast cancer therapy. Mol Cell Biol 2009; 29:2254-63. [PMID: 19204084 DOI: 10.1128/mcb.01029-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We describe the design of a potent and selective peptidomimetic inhibitor of geranylgeranyltransferase I (GGTI), GGTI-2418, and its methyl ester GGTI-2417, which increases the levels of the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) and induces breast tumor regression in vivo. Experiments with p27(Kip1) small interfering RNA in breast cancer cells and p27(Kip1) null murine embryonic fibroblasts demonstrate that the ability of GGTI-2417 to induce cell death requires p27(Kip1). GGTI-2417 inhibits the Cdk2-mediated phosphorylation of p27(Kip1) at Thr187 and accumulates p27(Kip1) in the nucleus. In nude mouse xenografts, GGTI-2418 suppresses the growth of human breast tumors. Furthermore, in ErbB2 transgenic mice, GGTI-2418 increases p27(Kip1) and induces significant regression of breast tumors. We conclude that GGTIs' antitumor activity is, at least in part, due to inhibiting Cdk2-dependent p27(Kip1) phosphorylation at Thr187 and accumulating nuclear p27(Kip1). Thus, GGTI treatment might improve the poor prognosis of breast cancer patients with low nuclear p27(Kip1) levels.
Collapse
|
42
|
Wang H, Song X, Logsdon C, Zhou G, Evans DB, Abbruzzese JL, Hamilton SR, Tan TH, Wang H. Proteasome-mediated degradation and functions of hematopoietic progenitor kinase 1 in pancreatic cancer. Cancer Res 2009; 69:1063-70. [PMID: 19141650 DOI: 10.1158/0008-5472.can-08-1751] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) regulates stress responses, proliferation, and apoptosis in hematopoietic cells. In this study, we examined the expression, regulation, and functions of HPK1 in pancreatic ductal adenocarcinomas (PDA). We found that loss of HPK1 protein expression correlated significantly with the progression of pancreatic intraepithelial neoplasias (P = 0.001) and development of invasive PDA. Similarly, HPK1 protein was not expressed in any of eight PDA cell lines examined but was expressed in immortalized human pancreatic duct epithelial (HPDE) cells. There was no difference in HPK1 mRNA levels in PDA cell lines or primary PDA compared with those in HPDE cells or ductal epithelium in chronic pancreatitis and normal pancreas, respectively. Treatment of Panc-1 cells with a proteasome inhibitor, MG132, increased the HPK1 protein levels in a dose-dependent manner, suggesting that alteration in proteasome activity contributes to the loss of HPK1 protein expression in pancreatic cancer. Like the endogenous HPK1, both wild-type HPK1 and its kinase-dead mutant, HPK1-M46, overexpressed in Panc-1 cells, were also targeted by proteasome-mediated degradation. After MG132 withdrawal, wild-type HPK1 protein expression was markedly decreased within 24 hours, but kinase-dead HPK1 mutant protein expression was sustained for up to 96 hours. Therefore, HPK1 kinase activities were required for the loss of HPK1 protein in PDAs. Furthermore, restoring wild-type HPK1 protein in PDA cells led to the increase in p21 and p27 protein expression and cell cycle arrest. Thus, HPK1 may function as a novel tumor suppressor and its loss plays a critical role in pancreatic cancer.
Collapse
Affiliation(s)
- Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Simonen M, Ibig-Rehm Y, Hofmann G, Zimmermann J, Albrecht G, Magnier M, Heidinger V, Gabriel D. High-Content Assay to Study Protein Prenylation. ACTA ACUST UNITED AC 2008; 13:456-67. [DOI: 10.1177/1087057108318757] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mevalonate pathway leads to synthesis of cholesterol and isoprenoid lipids. Prenyltransferases attach the isoprenoid lipids to the C-terminus of several small guanosine triphosphate—binding proteins. The prenyl groups are essential for the biological activity of these proteins. The prenyltransferases and other components of the mevalonate pathway are either present or potential drug targets for cancer, osteoporosis, restenosis, or high serum cholesterol level. Until recently, cellular assays to study protein prenylation have been tedious, low-throughput assays. The authors have developed a high-content imaging-based assay to study protein prenylation. The assay is based on a green fluorescent protein (GFP) reporter, which is tagged with the prenylation motif of human H-Ras. The C-terminus of H-Ras targets GFP to the plasma membrane. When protein prenylation is inhibited, the tagged GFP cannot be localized to plasma membrane but is soluble in the cells. The localization of the GFP reporter can be analyzed in the 96- or 384-well format using automated microscopy and automated image analysis. Information about cell number and nuclear intensity can be obtained from the same images. In compound screening, these readouts provide valuable information about the toxicity of the compounds. The authors have validated their assay using several inhibitors of the mevalonate pathway as well as siRNA against farnesyl pyrophosphate synthase, a critical enzyme in the synthesis of the isoprenoid lipids. ( Journal of Biomolecular Screening 2008:456-467)
Collapse
Affiliation(s)
- Marjo Simonen
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland,
| | - Yvonne Ibig-Rehm
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Gabriele Hofmann
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Johann Zimmermann
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | - Maxime Magnier
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Valerie Heidinger
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Daniela Gabriel
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| |
Collapse
|
44
|
Watanabe M, Fiji HDG, Guo L, Chan L, Kinderman SS, Slamon DJ, Kwon O, Tamanoi F. Inhibitors of protein geranylgeranyltransferase I and Rab geranylgeranyltransferase identified from a library of allenoate-derived compounds. J Biol Chem 2008; 283:9571-9. [PMID: 18230616 DOI: 10.1074/jbc.m706229200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein geranylgeranylation is critical for the function of a number of proteins such as RhoA, Rac, and Rab. Protein geranylgeranyltransferase I (GGTase-I) and Rab geranylgeranyltransferase (RabGGTase) catalyze these modifications. In this work, we first describe the identification and characterization of small molecule inhibitors of GGTase-I (GGTI) with two novel scaffolds from a library consisting of allenoate-derived compounds. These compounds exhibit specific inhibition of GGTase-I and act by competing with a substrate protein. Derivatization of a carboxylic acid emanating from the core ring of one of the GGTI compounds dramatically improves their cellular activity. The improved GGTI compounds inhibit proliferation of a variety of human cancer cell lines and cause G(1) cell cycle arrest and induction of p21(CIP1/WAF1). We also report the identification of novel small molecule inhibitors of RabGGTase. These compounds were identified first by screening our GGTI compounds for those that also exhibited RabGGTase inhibition. This led to the discovery of a common structural feature for RabGGTase inhibitors: the presence of a characteristic six-atom aliphatic tail attached to the penta-substituted pyrrolidine core. Further screening led to the identification of compounds with preferential inhibition of RabGGTase. These compounds inhibit RabGGTase activity by competing with the substrate protein. These novel compounds may provide valuable reagents to study protein geranylgeranylation.
Collapse
Affiliation(s)
- Masaru Watanabe
- Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California-Los Angeles, 609 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Statin-induced inhibition of HIV-1 release from latently infected U1 cells reveals a critical role for protein prenylation in HIV-1 replication. Microbes Infect 2008; 10:471-80. [PMID: 18406652 DOI: 10.1016/j.micinf.2008.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/10/2008] [Accepted: 01/14/2008] [Indexed: 01/03/2023]
Abstract
Latent infection of human immunodeficiency virus type 1 (HIV-1) represents a major hurdle in the treatment of acquired immunodeficiency syndrome (AIDS) patients. Statins were recently reported to suppress acute HIV-1 infection and reduce infectious virion production, but the precise mechanism of inhibition has remained elusive. Here we demonstrate that lypophilic statins suppress HIV-1 virion release from tumor necrosis factor alpha-stimulated latently infected U1 cells through inhibition of protein geranylgeranylation, but not by cholesterol depletion. Indeed, this suppression was reversed by the addition of geranylgeranylpyrophosphate, and a geranylgeranyltransferase-1 inhibitor reduced HIV-1 production. Notably, silencing of the endogenous Rab11a GTPase expression in U1 cells by RNA interference destabilized Gag and reduced virion production both in vitro and in NOD/SCID/gammac null mice. Our findings thus suggest that small GTPase proteins play an important role in HIV-1 replication, and therefore could be attractive molecular targets for anti-HIV-1 therapy.
Collapse
|
46
|
Falsetti SC, Wang DA, Peng H, Carrico D, Cox AD, Der CJ, Hamilton AD, Sebti SM. Geranylgeranyltransferase I inhibitors target RalB to inhibit anchorage-dependent growth and induce apoptosis and RalA to inhibit anchorage-independent growth. Mol Cell Biol 2007; 27:8003-14. [PMID: 17875936 PMCID: PMC2169159 DOI: 10.1128/mcb.00057-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/05/2007] [Accepted: 09/04/2007] [Indexed: 01/30/2023] Open
Abstract
Geranylgeranyltransferase I inhibitors (GGTIs) are presently undergoing advanced preclinical studies and have been shown to disrupt oncogenic and tumor survival pathways, to inhibit anchorage-dependent and -independent growth, and to induce apoptosis. However, the geranylgeranylated proteins that are targeted by GGTIs to induce these effects are not known. Here we provide evidence that the Ras-like small GTPases RalA and RalB are exclusively geranylgeranylated and that inhibition of their geranylgeranylation mediates, at least in part, the effects of GGTIs on anchorage-dependent and -independent growth and tumor apoptosis. To this end, we have created the corresponding carboxyl-terminal mutants that are exclusively farnesylated and verified that they retain the subcellular localization and signaling activities of the wild-type geranylgeranylated proteins and that Ral GTPases do not undergo alternative prenylation in response to GGTI treatment. By expressing farnesylated, GGTI-resistant RalA and RalB in Cos7 cells and human pancreatic MiaPaCa2 cancer cells followed by GGTI-2417 treatment, we demonstrated that farnesylated RalB, but not RalA, confers resistance to the proapoptotic and anti-anchorage-dependent growth effects of GGTI-2417. Conversely, farnesylated RalA but not RalB expression renders MiaPaCa2 cells less sensitive to inhibition of anchorage-independent growth. Furthermore, farnesylated RalB, but not RalA, inhibits the ability of GGTI-2417 to suppress survivin and induce p27(Kip1) protein levels. We conclude that RalA and RalB are important, functionally distinct targets for GGTI-mediated tumor apoptosis and growth inhibition.
Collapse
Affiliation(s)
- Samuel C Falsetti
- Drug Discovery Program, The H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sjogren AKM, Andersson KM, Liu M, Cutts BA, Karlsson C, Wahlstrom AM, Dalin M, Weinbaum C, Casey PJ, Tarkowski A, Swolin B, Young SG, Bergo MO. GGTase-I deficiency reduces tumor formation and improves survival in mice with K-RAS-induced lung cancer. J Clin Invest 2007; 117:1294-304. [PMID: 17476360 PMCID: PMC1857236 DOI: 10.1172/jci30868] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 01/30/2007] [Indexed: 11/17/2022] Open
Abstract
Protein geranylgeranyltransferase type I (GGTase-I) is responsible for the posttranslational lipidation of CAAX proteins such as RHOA, RAC1, and cell division cycle 42 (CDC42). Inhibition of GGTase-I has been suggested as a strategy to treat cancer and a host of other diseases. Although several GGTase-I inhibitors (GGTIs) have been synthesized, they have very different properties, and the effects of GGTIs and GGTase-I deficiency are unclear. One concern is that inhibiting GGTase-I might lead to severe toxicity. In this study, we determined the effects of GGTase-I deficiency on cell viability and K-RAS-induced cancer development in mice. Inactivating the gene for the critical beta subunit of GGTase-I eliminated GGTase-I activity, disrupted the actin cytoskeleton, reduced cell migration, and blocked the proliferation of fibroblasts expressing oncogenic K-RAS. Moreover, the absence of GGTase-I activity reduced lung tumor formation, eliminated myeloproliferative phenotypes, and increased survival of mice in which expression of oncogenic K-RAS was switched on in lung cells and myeloid cells. Interestingly, several cell types remained viable in the absence of GGTase-I, and myelopoiesis appeared to function normally. These findings suggest that inhibiting GGTase-I may be a useful strategy to treat K-RAS-induced malignancies.
Collapse
Affiliation(s)
- Anna-Karin M. Sjogren
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Karin M.E. Andersson
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Meng Liu
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Briony A. Cutts
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Christin Karlsson
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Annika M. Wahlstrom
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Martin Dalin
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Carolyn Weinbaum
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Patrick J. Casey
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Andrej Tarkowski
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Birgitta Swolin
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Stephen G. Young
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Martin O. Bergo
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
48
|
Abstract
Posttranslational modification is critical for the function of the gene products of ras oncogenes, which are frequently mutated in cancer. Ras proteins are modified by farnesyltransferase (FTase), but many related small GTPases that also end in a CAAX motif (where C is cysteine, A is often an aliphatic amino acid, and X is any amino acid) are modified by a closely related enzyme known as geranylgeranyltransferase type I (GGTase-I). Accordingly, inhibitors for both of these enzymes have been developed, and those active against FTase are in clinical trials. In this issue of the JCI, Sjogren et al. report the development of a mouse strain homozygous for a conditional allele of the gene that encodes GGTase-I (see the related article beginning on page 1294). They found that ablation of the GGTase-I-encoding gene in cells destined to produce lung tumors driven by oncogenic K-Ras resulted in delayed onset and decreased severity of disease, validating in a genetic model the theory that GGTase-I is a good target for anti-cancer drug development.
Collapse
Affiliation(s)
- Mark R Philips
- Department of Medicine, NYU Cancer Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
49
|
Woods J, Snape M, Smith MA. The cell cycle hypothesis of Alzheimer's disease: Suggestions for drug development. Biochim Biophys Acta Mol Basis Dis 2007; 1772:503-8. [PMID: 17223322 DOI: 10.1016/j.bbadis.2006.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/08/2006] [Accepted: 12/11/2006] [Indexed: 11/16/2022]
Abstract
The cell cycle of hypothesis of neural dysfunction in chronic neurodegenerative conditions such as Alzheimer's disease (AD) offers a unified approach to understanding both existing and novel strategies for drug development. At the present time, a ligand based approach is a pragmatic solution for identifying new chemical leads on which to base future discovery and optimisation. We have pursued a ligand based approach on the basis of public domain data to identify existing compounds capable of abrogating the cell cycle at the G0-G1 interface. Selected on this basis, irrespective of the tissue under study, we identified several classes of compounds as potential chemical leads. Of these compounds, at least ten have already been shown to be neuroprotective in animal models of acute neurodegeneration. Such compounds could form the basis of a screening exercise after development of suitable screening tools. Progressing of chemical leads through such an approach will be more efficient if future leads display relevant "drug-like" properties. Further, drug development in this arena should take account of the special concerns raised by targeting an elderly population. This will involve accounting for frequent polypharmacy in the aging population, and age-related alterations in physiology.
Collapse
Affiliation(s)
- Jack Woods
- Department of Experimental Psychology, South Parks Road, Oxford OX1 3UD, UK
| | | | | |
Collapse
|
50
|
Debidda M, Williams DA, Zheng Y. Rac1 GTPase Regulates Cell Genomic Stability and Senescence. J Biol Chem 2006; 281:38519-28. [PMID: 17032649 DOI: 10.1074/jbc.m604607200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho family small GTPase Rac1 has been shown to play multiple roles in cell regulation, including actin cytoskeleton organization, transcriptional activation, microtubule dynamics, and endocytosis. Here, we report a novel role of Rac1 in regulating genomic stability and cell senescence. We observed in primary mouse embryonic fibroblasts that deletion of rac1 by gene targeting, as well as expression of the constitutively active Rac1 mutant L61Rac1, led to decreased cell growth that was associated with altered cell cycle progression at both G(1)/S and G(2)/M phases, increased apoptosis, and premature senescence. The senescence induction by either loss or gain of Rac1 activity was due at least in part to an increase in cellular reactive oxygen species (ROS). rac1 gene deletion caused a compensatory up-regulation of a closely related family member, Rac3, in mouse embryonic fibroblasts, the activity of which induced ROS production independently of Rac1. Furthermore, the Rac1-regulated ROS production and senescence correlated with the extent of DNA damage in the Rac1(-/-) and L61Rac1 cells. Treatment of these cells with a ROS inhibitor inhibited phospho-H2AX-positive nuclear focus formation. Finally, phospho-Ser(15) p53 was significantly increased in L61Rac1 and Rac1(-/-) cells, and genetic deletion of p53 from these cells readily reversed the senescence phenotype, indicating that Rac1 is functionally dependent on p53 in regulating cell senescence. Taken together, our results show that Rac1 activity serves as a regulator of cell senescence through modulation of cellular ROS, genomic stability, and p53 activity.
Collapse
Affiliation(s)
- Marcella Debidda
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|