1
|
A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genet 2021; 17:e1009492. [PMID: 33882063 PMCID: PMC8092661 DOI: 10.1371/journal.pgen.1009492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors. The origin of novelties is a central topic in evolutionary biology. A fundamental question is how organisms constrained by natural selection can divert from existing schemes to set up novel structures or pathways. Among the most important strategies are exaptations, which represent pre-adaptation strategies. Many examples exist in biology, at both morphological and molecular levels, such as the one reported here that focuses on an unusual structural feature called the π-turn. It is found in the structure of the most ancestral nuclear receptors RXR and HNF4. The analyses trace back the complex evolutionary history of the π-turn to more than 500 million years ago, before the Cambrian explosion and show that this feature was essential for the heterodimerization capacity of RXR. Nuclear receptor lineages that emerged later in evolution lost the π-turn. We demonstrate here that this loss in nuclear receptors that heterodimerize with RXR was critical for the emergence of high affinity receptors, such as the vitamin D and the thyroid hormone receptors. On the other hand, the conserved π-turn in RXR allowed it to accommodate multiple heterodimer interfaces with numerous partners. This structural exaptation allowed for the remarkable diversification of nuclear receptors.
Collapse
|
2
|
Miyashita Y, Numoto N, Arulmozhiraja S, Nakano S, Matsuo N, Shimizu K, Shibahara O, Fujihara M, Kakuta H, Ito S, Ikura T, Ito N, Tokiwa H. Dual conformation of the ligand induces the partial agonistic activity of retinoid X receptor α (RXRα). FEBS Lett 2018; 593:242-250. [DOI: 10.1002/1873-3468.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Yurina Miyashita
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED-CREST; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Nobutaka Numoto
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Sundaram Arulmozhiraja
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
| | - Shogo Nakano
- School of Food and Nutritional Sciences; University of Shizuoka; Japan
| | - Naoya Matsuo
- Department of Chemistry; Rikkyo University; Tokyo Japan
| | | | - Osamu Shibahara
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Sohei Ito
- School of Food and Nutritional Sciences; University of Shizuoka; Japan
| | - Teikichi Ikura
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Nobutoshi Ito
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Hiroaki Tokiwa
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED-CREST; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- AMED; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- Research Center for Smart Molecules; Rikkyo University; Tokyo Japan
| |
Collapse
|
3
|
Jonsson S, Sveinbjornsson G, de Lapuente Portilla AL, Swaminathan B, Plomp R, Dekkers G, Ajore R, Ali M, Bentlage AEH, Elmér E, Eyjolfsson GI, Gudjonsson SA, Gullberg U, Gylfason A, Halldorsson BV, Hansson M, Holm H, Johansson Å, Johnsson E, Jonasdottir A, Ludviksson BR, Oddsson A, Olafsson I, Olafsson S, Sigurdardottir O, Sigurdsson A, Stefansdottir L, Masson G, Sulem P, Wuhrer M, Wihlborg AK, Thorleifsson G, Gudbjartsson DF, Thorsteinsdottir U, Vidarsson G, Jonsdottir I, Nilsson B, Stefansson K. Identification of sequence variants influencing immunoglobulin levels. Nat Genet 2017. [DOI: 10.1038/ng.3897] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Zhang X, Zhou H, Su Y. Targeting truncated RXRα for cancer therapy. Acta Biochim Biophys Sin (Shanghai) 2016; 48:49-59. [PMID: 26494413 DOI: 10.1093/abbs/gmv104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
Retinoid X receptor-alpha (RXRα), a unique member of the nuclear receptor superfamily, is a well-established drug target, representing one of the most important targets for pharmacologic interventions and therapeutic applications for cancer. However, how RXRα regulates cancer cell growth and how RXRα modulators suppress tumorigenesis are poorly understood. Altered expression and aberrant function of RXRα are implicated in the development of cancer. Previously, several studies had demonstrated the presence of N-terminally truncated RXRα (tRXRα) proteins resulted from limited proteolysis of RXRα in tumor cells. Recently, we discovered that overexpression of tRXRα can promote tumor growth by interacting with tumor necrosis factor-alpha-induced phosphoinositide 3-kinase and NF-κB signal transduction pathways. We also identified nonsteroidal anti-inflammatory drug Sulindac and analogs as effective inhibitors of tRXRα activities via a unique binding mechanism. This review discusses the emerging roles of tRXRα and modulators in the regulation of cancer cell survival and death as well as inflammation and our recent understanding of tRXRα regulation by targeting the alternate binding sites on its surface.
Collapse
Affiliation(s)
- Xiaokun Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, CA 92037, USA
| | - Hu Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Su
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Zhang XK, Su Y, Chen L, Chen F, Liu J, Zhou H. Regulation of the nongenomic actions of retinoid X receptor-α by targeting the coregulator-binding sites. Acta Pharmacol Sin 2015; 36:102-12. [PMID: 25434990 DOI: 10.1038/aps.2014.109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/28/2014] [Indexed: 12/31/2022] Open
Abstract
Retinoid X receptor-α (RXRα), a unique member of the nuclear receptor superfamily, represents an intriguing and unusual target for pharmacologic interventions and therapeutic applications in cancer, metabolic disorders and neurodegenerative diseases. Despite the fact that the RXR-based drug Targretin (bexarotene) is currently used for treating human cutaneous T-cell lymphoma and the fact that RXRα ligands (rexinoids) show beneficial effects in the treatment of cancer and diseases, the therapeutic potential of RXRα remains unexplored. In addition to its conventional transcription regulation activity in the nucleus, RXRα can act in the cytoplasm to modulate important biological processes, such as mitochondria-dependent apoptosis, inflammation, and phosphatidylinositol 3-kinase (PI3K)/AKT-mediated cell survival. Recently, new small-molecule-binding sites on the surface of RXRα have been identified, which mediate the regulation of the nongenomic actions of RXRα by a class of small molecules derived from the nonsteroidal anti-inflammatory drug (NSAID) Sulindac. This review discusses the emerging roles of the nongenomic actions of RXRα in the RXRα signaling network, and their possible implications in cancer, metabolic and neurodegenerative disorders, as well as our current understanding of RXRα regulation by targeting alternate binding sites on its surface.
Collapse
|
6
|
Sun J, Narayanasamy S, Curley RW, Harrison EH. β-Apo-13-carotenone regulates retinoid X receptor transcriptional activity through tetramerization of the receptor. J Biol Chem 2014; 289:33118-24. [PMID: 25324544 DOI: 10.1074/jbc.m114.610501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoid X receptor (RXRα) is activated by 9-cis-retinoic acid (9cRA) and regulates transcription as a homodimer or as a heterodimer with other nuclear receptors. We have previously demonstrated that β-apo-13-carotenone, an eccentric cleavage product of β-carotene, antagonizes the activation of RXRα by 9cRA in mammalian cells overexpressing this receptor. However, the molecular mechanism of β-apo-13-carotenone's modulation on the transcriptional activity of RXRα is not understood and is the subject of this report. We performed transactivation assays using full-length RXRα and reporter gene constructs (RXRE-Luc) transfected into COS-7 cells, and luciferase activity was examined. β-Apo-13-carotenone was compared with the RXRα antagonist UVI3003. The results showed that both β-apo-13-carotenone and UVI3003 shifted the dose-dependent RXRα activation by 9cRA. In contrast, the results of assays using a hybrid Gal4-DBD:RXRαLBD receptor reporter cell assay that detects 9cRA-induced coactivator binding to the ligand binding domain demonstrated that UVI3003 significantly inhibited 9cRA-induced coactivator binding to RXRαLBD, but β-apo-13-carotenone did not. However, both β-apo-13-carotenone and UVI3003 inhibited 9-cRA induction of caspase 9 gene expression in the mammary carcinoma cell line MCF-7. To resolve this apparent contradiction, we investigated the effect of β-apo-13-carotenone on the oligomeric state of purified recombinant RXRαLBD. β-Apo-13-carotenone induces tetramerization of the RXRαLBD, although UVI3003 had no effect on the oligomeric state. These observations suggest that β-apo-13-carotenone regulates RXRα transcriptional activity by inducing the formation of the "transcriptionally silent" RXRα tetramer.
Collapse
Affiliation(s)
- Jian Sun
- From the Department of Human Sciences and
| | - Sureshbabu Narayanasamy
- From the Department of Human Sciences and College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Robert W Curley
- College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | | |
Collapse
|
7
|
Affiliation(s)
- Pengxiang Huang
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Vikas Chandra
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| |
Collapse
|
8
|
Rhee EJ, Nallamshetty S, Plutzky J. Retinoid metabolism and its effects on the vasculature. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:230-40. [PMID: 21810483 DOI: 10.1016/j.bbalip.2011.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/15/2011] [Accepted: 07/06/2011] [Indexed: 12/16/2022]
Abstract
Retinoids, the metabolically-active structural derivatives of vitamin A, are critical signaling molecules in many fundamental biological processes including cell survival, proliferation and differentiation. Emerging evidence, both clinical and molecular, implicates retinoids in atherosclerosis and other vasculoproliferative disorders such as restenosis. Although the data from clinical trials examining effect of vitamin A and vitamin precursors on cardiac events have been contradictory, this data does suggest that retinoids do influence fundamental processes relevant to atherosclerosis. Preclinical animal model and cellular studies support these concepts. Retinoids exhibit complex effects on proliferation, growth, differentiation and migration of vascular smooth muscle cells (VSMC), including responses to injury and atherosclerosis. Retinoids also appear to exert important inhibitory effects on thrombosis and inflammatory responses relevant to atherogenesis. Recent studies suggest retinoids may also be involved in vascular calcification and endothelial function, for example, by modulating nitric oxide pathways. In addition, established retinoid effects on lipid metabolism and adipogenesis may indirectly influence inflammation and atherosclerosis. Collectively, these observations underscore the scope and complexity of retinoid effects relevant to vascular disease. Additional studies are needed to elucidate how context and metabolite-specific retinoid effects affect atherosclerosis. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Eun-Jung Rhee
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
9
|
Zhang H, Zhou R, Li L, Chen J, Chen L, Li C, Ding H, Yu L, Hu L, Jiang H, Shen X. Danthron functions as a retinoic X receptor antagonist by stabilizing tetramers of the receptor. J Biol Chem 2011; 286:1868-75. [PMID: 21084305 PMCID: PMC3023482 DOI: 10.1074/jbc.m110.166215] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/05/2010] [Indexed: 12/11/2022] Open
Abstract
Retinoic X receptor (RXR) is a promising target for drug discovery against cancer and metabolic syndromes. Here, we identified a specific RXRα antagonist, danthron, from the traditional Chinese medicine rhubarb. Danthron repressed all tested RXRα-involved response element transcription, including the RXRE, PPRE, FXRE, and LXRE. Results from native PAGE and isothermal titration calorimetry (ITC)-based assays indicated that danthron bound to the tetrameric RXRα-LBD in a specific stoichimetric ratio, and such a binding could influence the corepressor SMRT affinity to the receptor. Additionally, a unique tetrameric structure of the apo-RXRα ligand-binding domain (LBD) was determined, which exhibited a larger tetramer interface and different ligand-binding pocket size compared with the one previously reported. Together with the biochemical and biophysical results, the determined crystal structure of danthron-soaked RXRα-LBD suggested a new mechanism for danthron antagonism to tetrameric RXRα. Moreover, the in vivo efficient improvement of insulin sensitivity by danthron was observed in diet-induced obese (DIO) mice. Thus, our findings were expected to supply new insights into the structural basis of RXRα antagonist for its further potential therapeutic application.
Collapse
Affiliation(s)
- Haitao Zhang
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Rong Zhou
- the East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, and
| | - Li Li
- the East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, and
| | - Jing Chen
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Lili Chen
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Chenjing Li
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Hong Ding
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Liang Yu
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Lihong Hu
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Hualiang Jiang
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Xu Shen
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
- the East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, and
- the E-Institutes of Shanghai Municipal Education Commission, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
10
|
Abstract
The vitamin A metabolite all-trans-retinoic acid (RA) regulates multiple biological processes by virtue of its ability to regulate gene expression. It thus plays critical roles in embryonic development and is involved in regulating growth, remodeling, and metabolic responses in adult tissues. RA can also suppress carcinoma cell growth and is currently used in treatment of some cancers. Growth inhibition by RA may be exerted by induction of differentiation, cell cycle arrest, or apoptosis, or by a combination of these activities. Paradoxically, in the context of some cells, RA not only fails to inhibit growth but, instead, enhances proliferation and survival. This review focuses on the involvement of RA in regulating apoptotic responses. It includes brief overviews of transcriptional signaling by RA and of apoptotic pathways, and then addresses available information on the mechanisms by which RA induces apoptosis or, conversely, inhibits cell death and enhances survival.
Collapse
Affiliation(s)
- Noa Noy
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
11
|
Yasmin R, Kannan-Thulasiraman P, Kagechika H, Dawson MI, Noy N. Inhibition of mammary carcinoma cell growth by RXR is mediated by the receptor's oligomeric switch. J Mol Biol 2010; 397:1121-31. [PMID: 20188110 DOI: 10.1016/j.jmb.2010.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 12/01/2022]
Abstract
Ligands that activate the nuclear receptor retinoid X receptor (RXR) display potent anticarcinogenic activities, but the mechanisms by which these compounds inhibit carcinoma cell growth are poorly understood. While RXR can regulate gene expression due to its intrinsic ligand-activated transcription function, this receptor can also regulate transcription by functioning as a ligand-controlled DNA architectural factor. It was thus reported that apo-RXR self-associates into tetramers and that each dimer within these tetramers can separately bind to an RXR response element. Hence, DNA binding by RXR tetramers may bring distant genomic regions into close physical proximity. As ligand binding induces the dissociation of RXR tetramers into dimers, it can alter gene expression by modulating the DNA architecture. Here, we show that inhibition of mammary carcinoma cell growth by RXR ligands stems from the ability of these compounds to regulate the oligomeric state of RXR and is independent of the direct intrinsic transcriptional activity of the receptor. The data suggest that compounds that trigger dissociation of RXR tetramers may comprise a novel class of anticarcinogenic agents.
Collapse
Affiliation(s)
- Rubina Yasmin
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4965, USA
| | | | | | | | | |
Collapse
|
12
|
Ziouzenkova O, Plutzky J. Retinoid metabolism and nuclear receptor responses: New insights into coordinated regulation of the PPAR-RXR complex. FEBS Lett 2007; 582:32-8. [PMID: 18068127 DOI: 10.1016/j.febslet.2007.11.081] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 11/28/2007] [Indexed: 12/31/2022]
Abstract
Retinoids, naturally-occurring vitamin A derivatives, regulate metabolism by activating specific nuclear receptors, including the retinoic acid receptor (RAR) and the retinoid X receptor (RXR). RXR, an obligate heterodimeric partner for other nuclear receptors, including peroxisome proliferator-activated receptors (PPARs), helps coordinate energy balance. Recently, many groups have identified new connections between retinoid metabolism and PPAR responses. We found that retinaldehyde (Rald), a molecule that can yield RA through the action of retinaldehyde dehydrogenases (Raldh), is present in fat in vivo and can inhibit PPAR gamma-induced adipogenesis. In vitro, Rald inhibits RXR and PPAR gamma activation. Raldh1-deficient mice have increased Rald levels in fat, higher metabolic rates and body temperatures, and are protected against diet-induced obesity and insulin resistance. Interestingly, one specific asymmetric beta-carotene cleavage product, apo-14'-carotenal, can also inhibit PPAR gamma and PPAR alpha responses. These data highlight how pathways of beta-carotene metabolism and specific retinoid metabolites may have direct distinct metabolic effects.
Collapse
Affiliation(s)
- Ouliana Ziouzenkova
- Department of Human Nutrition, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
13
|
de Groot A, de Rosny E, Juillan-Binard C, Ferrer JL, Laudet V, Pierce RJ, Pebay-Peyroula E, Fontecilla-Camps JC, Borel F. Crystal Structure of a Novel Tetrameric Complex of Agonist-bound Ligand-binding Domain of Biomphalaria glabrata Retinoid X Receptor. J Mol Biol 2005; 354:841-53. [PMID: 16274693 DOI: 10.1016/j.jmb.2005.09.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 09/28/2005] [Accepted: 09/29/2005] [Indexed: 01/20/2023]
Abstract
Nuclear receptors form an important class of transcription regulators in metazoans. To learn more about the evolution of these proteins, we have initiated structural studies on nuclear receptor ligand-binding domains from various animals. Here we present the crystal structure of the ligand-binding domain (LBD) of the retinoid X receptor (RXR) from the mollusc Biomphalaria glabrata. The structure reveals a novel tetrameric association in which each monomer is complexed to the human RXR ligand 9-cis retinoic acid and to a human co-activator-derived peptide. The ligand and the co-activator peptide are bound in essentially the same manner as observed in previously reported human RXR LBD structures, suggesting that the mechanisms of RXR-mediated transcription regulation are very similar in mollusc and human. The structure shows further that binding of ligand and co-activator peptide does not necessarily lead to the typical holo-conformation in which helix 12 (H12) folds back and packs against the LBD. Within a canonical dimer, only one monomer is in this closed agonist conformation. The other monomer is in an open conformation with H12 protruding from the LBD core, occupying the H12 interaction groove of another open monomer in an adjacent dimer in a domain swapping fashion, thus resulting in a tetrameric association. Additional tetramer interfaces are formed between H11 of the closed LBD and H6 of the open LBD. This novel holo-tetramer configuration may have a biological role in activating genes whose promoters are poorly recognised by dimers but much more efficiently by the corresponding tetramers.
Collapse
Affiliation(s)
- Arjan de Groot
- Laboratoire de Cristallographie et Cristallogenèse des Protéines, Institut de Biologie Structurale 'Jean-Pierre Ebel' (UMR 5075, CEA-CNRS-UJF), 41 rue Jules Horowitz, 38027 Grenoble cedex 1, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yasmin R, Williams RM, Xu M, Noy N. Nuclear import of the retinoid X receptor, the vitamin D receptor, and their mutual heterodimer. J Biol Chem 2005; 280:40152-60. [PMID: 16204233 DOI: 10.1074/jbc.m507708200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nuclear receptor retinoid X receptor (RXR) can regulate transcription through homotetramers, homodimers, and heterodimers with other nuclear receptors such as the vitamin D receptor (VDR). The mechanisms that underlie the nuclear import of RXR, VDR, and RXR-VDR heterodimers were investigated. We show that RXR and VDR translocate into the nucleus by distinct pathways. RXR strongly bound to importinbeta and was predominantly nuclear in the absence of ligand. Importin binding and nuclear localization of RXR were modestly enhanced by its ligand, 9-cis-retinoic acid. On the other hand, VDR selectively associated with importinalpha. Importin association and correspondingly nuclear import of VDR were markedly augmented by 1,25(OH)2D3. RXR-VDR dimerization inhibited the ability of RXR to bind importinbeta and to mobilize into the nucleus using its own nuclear localization signal. In contrast, VDR recruited RXR-VDR heterodimers to importinalpha and mediated nuclear import of the heterodimers in response to 1,25(OH)2D3. Hence nuclear import of RXR-VDR heterodimers is mediated preferentially by VDR and is controlled by the VDR ligand. The observations reveal a novel mechanism by which an RXR heterodimerization partner dominates the activity of the heterodimers.
Collapse
Affiliation(s)
- Rubina Yasmin
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
15
|
Gu P, Morgan DH, Sattar M, Xu X, Wagner R, Raviscioni M, Lichtarge O, Cooney AJ. Evolutionary trace-based peptides identify a novel asymmetric interaction that mediates oligomerization in nuclear receptors. J Biol Chem 2005; 280:31818-29. [PMID: 15994320 DOI: 10.1074/jbc.m501924200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Germ cell nuclear factor (GCNF) is an orphan nuclear receptor that plays important roles in development and reproduction, by repressing the expression of essential genes such as Oct4, GDF9, and BMP15, through binding to DR0 elements. Surprisingly, whereas recombinant GCNF binds to DR0 sequences as a homodimer, endogenous GCNF does not exist as a homodimer but rather as part of a large complex termed the transiently retinoid-induced factor (TRIF). Here, we use evolutionary trace (ET) analysis to design mutations and peptides that probe the molecular basis for the formation of this unusual complex. We find that GCNF homodimerization and TRIF complex formation are DNA-dependent, and ET suggests that dimerization involves key functional sites on both helix 3 and helix 11, which are located on opposing surfaces of the ligand binding domain. Targeted mutations in either helix of GCNF disrupt the formation of both the homodimer and the endogenous TRIF complex. Moreover, peptide mimetics of both of these ET-determined sites inhibit dimerization and TRIF complex formation. This suggests that a novel helix 3-helix 11 heterotypic interaction mediates GCNF interaction and would facilitate oligomerization. Indeed, it was determined that the endogenous TRIF complex is composed of a GCNF oligomer. These findings shed light on an evolutionarily selected mechanism that reveals the unusual DNA-binding, dimerization, and oligomerization properties of GCNF.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/physiology
- Amino Acid Sequence
- Cell Line
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Dimerization
- Evolution, Molecular
- Genes, Reporter
- Molecular Sequence Data
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Peptides/genetics
- Peptides/metabolism
- Peptides/physiology
- Point Mutation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptor Cross-Talk/physiology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Retinoic Acid/physiology
- Response Elements
Collapse
Affiliation(s)
- Peili Gu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Yasmin R, Yeung KT, Chung RH, Gaczynska ME, Osmulski PA, Noy N. DNA-looping by RXR Tetramers Permits Transcriptional Regulation “at a Distance”. J Mol Biol 2004; 343:327-38. [PMID: 15451664 DOI: 10.1016/j.jmb.2004.08.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/23/2004] [Accepted: 08/23/2004] [Indexed: 10/26/2022]
Abstract
RXR, a member of the superfamily of nuclear hormone receptors, regulates gene transcription in response to 9-cis-retinoic acid. We previously showed that, among nuclear receptors, RXR is unique in that it self-associates into homotetramers, and that these tetramers dissociate rapidly upon ligation. Here, we report that binding of RXR tetramers to DNA containing two RXR response elements results in a dramatic DNA-looping. RXR can thus juxtapose distant DNA sequences, enabling transcriptional regulation by far-upstream factors. We show that RXR functions as a DNA architectural factor and that, while this activity is regulated by 9-cis-retinoic acid, it is distinct from and independent of the receptor's intrinsic transcriptional activity. The data establish RXR as the first identified architectural factor whose activity is regulated by a small ligand, and demonstrate a novel mechanism of transcriptional regulation by retinoids.
Collapse
Affiliation(s)
- Rubina Yasmin
- Division of Nutritional Sciences, Savage Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hewson QC, Lovat PE, Pearson ADJ, Redfern CPF. Retinoid signalling and gene expression in neuroblastoma cells: RXR agonist and antagonist effects on CRABP-II and RARbeta expression. J Cell Biochem 2003; 87:284-91. [PMID: 12397610 DOI: 10.1002/jcb.10310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
9-cis Retinoic acid (RA) induces gene expression in neuroblastoma cells more effectively and with different kinetics than other RA isomers, and could be acting in part through Retinoid X Receptors (RXRs). The aim of this study was to characterise the effects of an RXR agonist and RXR homodimer antagonist on the induction of cellular RA binding protein II (CRABP-II) and RA receptor-beta (RARbeta) in neuroblastoma cells in response to different retinoids. The RXR agonist, LDG1069, was as effective as all-trans RA in inducing gene expression, but less effective than 9-cis RA. The RXR-homodimer antagonist, LG100754, inhibited the induction of CRABP-II mRNA in SH-SY5Y neuroblastoma cells by 9-cis RA or the RXR-specific agonist LGD1069, but had no effect when used with all-trans RA. Conversely, LG100754 did not inhibit induction of RARbeta mRNA by 9-cis or all-trans RA, or by LGD1069. RAR- and RXR-specific ligands used together induced CRABP-II and RARbeta as effectively as 9-cis RA. These results demonstrate the value of combining RXR- and RAR-specific ligands to regulate RA-inducible gene expression. The possibility that RXR-homodimers mediate, in part, the induction of CRABP-II by 9-cis RA and RXR-specific ligands is discussed.
Collapse
Affiliation(s)
- Quentin Campbell Hewson
- Department of Child Health, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
19
|
Shaw N, Elholm M, Noy N. Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem 2003; 278:41589-92. [PMID: 12963727 DOI: 10.1074/jbc.c300368200] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Retinoic acid (RA) modulates transcription of numerous target genes, thereby regulating a myriad of biological processes. It is well established that RA functions by activating retinoic acid receptors (RARs), which, in turn, control cell differentiation, proliferation, and apoptosis. However, perplexing reports of diverse and sometime opposing actions of RA have been published. Hence, while RA induces apoptosis and inhibits cell growth in some settings, it potentiates proliferation and acts as an anti-apoptotic agent in others. These observations raise the possibility that signaling pathways other than RAR may be involved in mediating RA activities. Here we show that RA is a high affinity ligand for another nuclear receptor, namely the orphan receptor peroxisome proliferator-activated receptor (PPAR) beta/delta. We demonstrate that while RA does not activate PPARalpha and PPARgamma, it binds to PPARbeta/delta with nanomolar affinity, modulates the conformation of the receptor, promotes interaction with the coactivator SRC-1, and efficiently activates PPARbeta/delta-mediated transcription. Transcriptional signaling by RA is thus exerted by a dual pathway, providing a rationale for understanding divergent cellular responses to this hormone.
Collapse
Affiliation(s)
- Natacha Shaw
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
20
|
Margeat E, Bourdoncle A, Margueron R, Poujol N, Cavaillès V, Royer C. Ligands differentially modulate the protein interactions of the human estrogen receptors alpha and beta. J Mol Biol 2003; 326:77-92. [PMID: 12547192 DOI: 10.1016/s0022-2836(02)01355-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The interactions of human estrogen receptor subtypes ERalpha and ERbeta with DNA and a 210 amino acid residue fragment of the coactivator protein SRC-1 bearing three nuclear receptor interaction motifs were investigated quantitatively using fluorescence anisotropy in the presence of agonist and antagonist ligands. ERalpha and ERbeta were found to bind in a similar manner to DNA, and both salt and temperature affected the affinity and/or stoichiometry of these interactions. The agonist ligands estradiol, estrone and estriol did not modify the binding of ERalpha to the fluorescein-labeled target estrogen response element. However, in the case of ERbeta, these ligands led to the formation of some higher-order protein-DNA complexes and a small decrease in affinity. The partial agonist 4-hydroxytamoxifen had little effect on either ER subtype, whereas the pure antagonist ICI 182,780 led to the cooperative formation of protein-DNA complexes of higher order than dimer, as further demonstrated by competition experiments and gel mobility-shift assays. In addition to DNA binding, the interaction of both ER subtypes with the Alexa488-labeled SRC-1 coactivator fragment was investigated by fluorescence anisotropy. The agonist ligands estrone, estradiol, estriol, genistein and ethynyl estradiol exhibited distinct capacities for inducing the recruitment of SRC-1 that were not correlated with their affinity for the receptor. Moreover, estrone and genistein exhibited subtype specificity in that they induced SRC-1 recruitment to ERbeta with much higher efficiency than in the case of ERalpha. The differential coactivator recruitment capacities of the ER agonists and their receptor subtype coactivator recruitment specificity may be linked to the molecular structure of the agonists with respect to their interactions with a specific histidine residue located at the back of the ligand-binding pocket. Altogether, these quantitative in vitro studies of ER interactions reveal the complex energetic and stoichiometric consequences of changes in the chemical structures of these proteins and their ligands.
Collapse
Affiliation(s)
- Emmanuel Margeat
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR5048, 29, rue de Navacelles, 34090, Cedex, Montpellier, France
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The nuclear receptor RXR is an obligate partner in many signal transduction pathways. We report the high-resolution structures of two complexes of the human RXRalpha ligand-binding domain specifically bound to two different and chemically unrelated agonist compounds: docosa hexaenoic acid, a natural derivative of eicosanoic acid, present in mammalian cells and recently identified as a potential endogenous RXR ligand in the mouse brain, and the synthetic ligand BMS 649. In both structures the RXR-ligand-binding domain forms homodimers and exhibits the active conformation previously observed with 9-cis-RA. Analysis of the differences in ligand-protein contacts (predominantly van der Waals forces) and binding cavity geometries and volumes for the several agonist-bound RXR structures clarifies the structural features important for ligand recognition. The L-shaped ligand-binding pocket adapts to the diverse ligands, especially at the level of residue N306, which might thus constitute a new target for drug-design. Despite its highest affinity 9-cis-RA displays the lowest number of ligand-protein contacts. These structural results support the idea that docosa hexaenoic acid and related fatty acids could be natural agonists of RXRs and question the real nature of the endogenous ligand(s) in mammalian cells.
Collapse
Affiliation(s)
- Pascal F Egea
- Laboratoire de Biologie et Génomique Structurales, Université Louis Pasteur, Parc d'Innovation BP163, 67404 Illkirch cedex, France
| | | | | |
Collapse
|
22
|
Egea PF, Rochel N, Birck C, Vachette P, Timmins PA, Moras D. Effects of ligand binding on the association properties and conformation in solution of retinoic acid receptors RXR and RAR. J Mol Biol 2001; 307:557-76. [PMID: 11254382 DOI: 10.1006/jmbi.2000.4409] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In higher eukaryotes, vitamin A derived metabolites such as 9-cis and all-trans retinoic acid (RA), are involved in the regulation of several essential physiological processes. Their pleiotropic physiological effects are mediated through direct binding to cognate nuclear receptors RXRs and RARs that act as regulated transcription factors belonging to the superfamily of nuclear hormone receptors. Hormone binding to the structurally conserved ligand-binding domain (LBD) of these receptors triggers a conformational change that principally affects the conserved C-terminal transactivation helix H12 involved in transcriptional activation. We report an extensive biophysical solution study of RAR alpha, RXR alpha LBDs and their corresponding RXR alpha/RAR alpha LBD heterodimers combining analytical ultracentrifugation (AUC), small-angle X-ray and neutron scattering (SAXS and SANS) and ab initio three-dimensional shape reconstruction at low resolution. We show that the crystal structures of RXRs and RARs LBDs correlate well with the average conformations observed in solution. Furthermore we demonstrate the effects of 9-cisRA and all-transRA binding on the association properties and conformations of RXR alpha and RAR alpha LBDs in solution. The present study shows that in solution RAR alpha LBD behaves as a monomer in both unliganded and liganded forms. It confirms the existence in solution of a ligand-induced conformational change towards a more compact form of the LBD. It also confirms the stability of the predicted RXR alpha/RAR alpha LBD heterodimers in solution. SAS measurements performed on three different types of RXR alpha/RAR alpha LBD heterodimers (apo/apo, apo/holo and holo/holo) with respect to their ligand-binding site occupancy show the existence of three conformational states depending on the progressive binding of RA stereoisomers on RAR alpha and RXR alpha LBD subunits in the heterodimeric context. These results suggest that the subunits are structurally independent within the heterodimers. Our study also underlines the particular behaviour of RXR alpha LBD. In solution unliganded RXR alpha LBD is observed as two species that are unambiguously identified as homotetramers and homodimers. Molecular modelling combined with SAS data analysis allows us to propose a structural model for this autorepressed apo-tetramer. In contrast to the monomeric state observed in the crystal structure, our data show that in solution active holo-RXR alpha LBD bound to 9-cisRA is a homodimer regardless of the protein concentration. This study demonstrates the crucial role of ligands in the regulation of homodimeric versus heterodimeric association state of RXR in the NR signalling pathways.
Collapse
Affiliation(s)
- P F Egea
- Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, Parc d'Innovation BP163 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Gampe RT, Montana VG, Lambert MH, Wisely GB, Milburn MV, Xu HE. Structural basis for autorepression of retinoid X receptor by tetramer formation and the AF-2 helix. Genes Dev 2000; 14:2229-41. [PMID: 10970886 PMCID: PMC316898 DOI: 10.1101/gad.802300] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 9-cis-retinoic acid receptors (RXRalpha, RXRbeta, and RXRgamma) are nuclear receptors that play key roles in multiple hormone-signaling pathways. Biochemical data indicate that, in the absence of ligand, RXR can exist as an inactive tetramer and that its dissociation, induced by ligand, is important for receptor activation. In this article we report the inactivated tetramer structures of the RXRalpha ligand-binding domain (LBD), either in the absence of or in the presence of a nonactivating ligand. These structures reveal that the RXR LBD tetramer forms a compact, disc-shaped complex, consisting of two symmetric dimers that are packed along helices 3 and 11. In each monomer, the AF-2 helix protrudes away from the core domain and spans into the coactivator binding site in the adjacent monomer of the symmetric dimer. In this configuration, the AF-2 helix physically excludes the binding of coactivators and suggests an autorepression mechanism that is mediated by the AF-2 helix within the tetramer. The RXR-tetramer interface is assembled from amino acids that are conserved across several closely related receptors, including the HNF4s and COUP transcription factors, and may therefore provide a model for understanding structure and regulation of this subfamily of nuclear receptors.
Collapse
Affiliation(s)
- R T Gampe
- GlaxoWellcome Research and Development, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
24
|
Klinge CM. Role of estrogen receptor ligand and estrogen response element sequence on interaction with chicken ovalbumin upstream promoter transcription factor (COUP-TF). J Steroid Biochem Mol Biol 1999; 71:1-19. [PMID: 10619353 DOI: 10.1016/s0960-0760(99)00124-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Estrogen-responsive genes are regulated by altering the balance of estrogen receptor (ER) interaction with transcription activators and inhibitors. Here we examined the role of ER ligand on ER interaction with the Chicken Ovalbumin Upstream Promoter Transcription Factor (COUP-TF) orphan nuclear receptor. COUP-TF binding to half-site estrogen response elements (EREs) was increased by the addition of estradiol (E2) -liganded ER (E2-ER), but not by ER liganded with the antiestrogens 4-hydroxytamoxifen (4-OHT-ER) or tamoxifen aziridine (TAz-ER). ER did not bind to single half-sites. Conversely, COUP-TF enhanced the ERE binding of purified E2-ER, but did not affect TAz-ER-ERE binding. In contrast, only antiestrogens enhanced direct interaction between ER and COUP-TF as assessed by GST pull-down assays. Identical results were obtained using either purified bovine or recombinant human ERalpha. Co-immunoprecipitation assays showed that ER and COUP-TF interact in extracts from MCF-7 and ERalpha-transfected MDA-MB-231 cells. Here we document that ER ligand impacts COUP-TF-ER interaction. COUP-TF interaction is mediated by the DNA binding and ligand-binding domains of ER. We suggest that changes in ER conformation induced by DNA binding reduce ER-COUP-TF interaction. Transient transfection of human MCF-7 breast cancer cells with a COUP-TFI expression vector repressed E2-induced luciferase reporter gene expression from single or multiple tandem copies of a consensus ERE. COUP-TFI stimulated 4-OHT-induced luciferase activity from a minimal ERE. Alone, COUP-TFI increased transcription from ERE half-sites or a single ERE in a sequence-dependent manner. These data provide evidence that the ERE sequence and its immediate flanking regions influence whether COUP-TF enhances, inhibits, or has no effect on ER ligand-induced ERE reporter gene expression and that COUP-TFI activates gene transcription from ERE half-sites. We suggest that COUP-TFI plays a role in mitigating estrogen-responsive gene expression.
Collapse
Affiliation(s)
- C M Klinge
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, KY 40292, USA.
| |
Collapse
|
25
|
Gee AC, Carlson KE, Martini PG, Katzenellenbogen BS, Katzenellenbogen JA. Coactivator peptides have a differential stabilizing effect on the binding of estrogens and antiestrogens with the estrogen receptor. Mol Endocrinol 1999; 13:1912-23. [PMID: 10551784 DOI: 10.1210/mend.13.11.0373] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The effectiveness of estrogens in stimulating gene transcription mediated by the estrogen receptor (ER) appears to depend on ER interactions with coactivator proteins. These coactivators bind to ER when it is liganded with an estrogen agonist, but not when it is liganded with an estrogen antagonist. Because estrogen agonists are known to induce a conformation in ER that stabilizes coactivator binding, we asked whether coactivator binding to ER causes a reciprocal stabilization of agonist ligand binding. We used a fluorescent ligand for ER, tetrahydrochrysene-ketone, to monitor the rates of ligand dissociation from ERalpha and ERbeta, and to see how this process is affected by the p160-class coactivator, steroid receptor coactivator-1 (SRC-1). We used a 15-amino acid peptide corresponding to the second nuclear receptor box LXXLL motif in SRC-1 (NR-2 peptide), which is known to interact with the ER ligand-binding domain, a mutant peptide with an LXXAL sequence (NR-2A peptide), and a 203-amino acid fragment of SRC-1, termed the nuclear receptor domain (SRC1-NRD), embodying all three of the internal NR boxes of this protein. Both the NR-2 peptide and the SRC1-NRD fragment markedly slow the rate of dissociation of the agonist ligands tetrahydrochrysene-ketone, estradiol, and diethylstilbestrol, increasing the half-life of the ER-agonist complex by up to 50- to 60-fold. The SRC1-NRD has much higher potency in retarding ligand dissociation than does the NR-2 peptide; it is maximally effective at 30 nM, and it appears to bind with the stoichiometry of one SRC1-NRD per ER dimer. The peptides had little effect on the dissociation rate of antagonist ligands. Consistent with these results, we find that increasing the concentration of SRC-1 in cells by transfection of an expression plasmid encoding SRC-1 causes a 17-fold increase in the potency of estradiol in an estrogen-responsive reporter gene transcription assay. Thus, there is multifactorial control over receptor-coactivator interaction, its strength being determined by the agonist vs. antagonist nature of the ligand and the particular structure of the agonist ligand, and by the receptor subtype and the NR box sequence. The stabilizing effect of coactivator on ER-agonist ligand complexes may be important in determining the potency of estrogen agonists in a cell and may also underlie the tissue-selective pharmacology of certain synthetic estrogens.
Collapse
Affiliation(s)
- A C Gee
- Department of Chemistry, University of Illinois, Urbana 61801, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Gene transcription is often regulated by small ligands, enabling cells to respond to external and metabolic stimuli. Of particular interest are the mechanisms by which hydrophobic hormones modulate the transcriptional activities of proteins of the nuclear receptor superfamily. It was previously shown that, in the absence of ligand, the retinoid X receptor (RXRalpha) forms tetramers with a high affinity and a pronounced positive co-operativity such that tetramers become the receptor's predominant species tat concentrations as low as 60-70 nM. It was shown further that while RXR tetramers are remarkably stable in the absence of ligand, ligand-binding induces their rapid dissociation into smaller species, dimers and monomers. Here, the functional consequences of the self-association properties of RXR were studied by examining two point mutants of RXR that displayed aberrant oligomerization behaviors. One mutant, mRXRalpha-R321A, was found to form tetramers with a wild-type affinity, but these tetramers failed to dissociate upon ligand-binding. This mutant was found to be impaired in its ability to associate with the nuclear receptor co-activator p/CIP and to activate transcription in response to the RXR ligand 9-cis-retinoic acid. The other mutant, mRXRalpha-F318A, self-associated into dimers with a wild-type affinity, but was unable to form tetramers. This mutant displayed substantial transcriptional activity even in the absence of ligand. We previously proposed, based on in vitro studies that RXR acts as an auto-silencer by sequestering itself into tetramers, and that an important role for the ligand in activating this receptor is to release active species, dimers and monomers, from the transcriptionally inactive tetrameric pool. The observations reported here provide in-cell evidence in support of this model and indicate that ligand induced dissociation of tetramers is the first step in signalling by RXR.
Collapse
Affiliation(s)
- S Kersten
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, NY, 14853, USA
| | | | | | | | | |
Collapse
|
27
|
Lee SK, Choi HS, Song MR, Lee MO, Lee JW. Estrogen receptor, a common interaction partner for a subset of nuclear receptors. Mol Endocrinol 1998; 12:1184-92. [PMID: 9717844 DOI: 10.1210/mend.12.8.0146] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear receptors regulate transcription by binding to specific DNA response elements as homodimers or heterodimers. Herein, the yeast and mammalian two-hybrid tests as well as glutathione-S-transferase pull-down assays were exploited to demonstrate that estrogen receptor (ER) directly binds to a subset of nuclear receptors through protein-protein interactions between ligand-binding domains. These receptors include hepatocyte nuclear factor 4, thyroid hormone receptor (TR), retinoic acid receptor (RAR), ERbeta, and retinoid X receptor (RXR). In yeast cells, a LexA fusion protein to the human ER ligand-binding domain (LexA/ER-LBD) was an inert transactivator of a LacZ reporter gene controlled by upstream LexA-binding sites. However, LexA/ER-LBD differentially modulated the LacZ reporter gene expression when coexpressed with native TRs, RARs, or RXRs. Similarly, cotransfection of these receptors in CV1 cells up- or down-regulated transactivations by ER. From these results, we propose that ER is a common interaction partner for a subset of receptors, and these interactions should mediate novel signaling pathways in vivo.
Collapse
Affiliation(s)
- S K Lee
- College of Pharmacy, Chonnam National University, Kwangju, Korea
| | | | | | | | | |
Collapse
|
28
|
Lefebvre B, Mouchon A, Formstecher P, Lefebvre P. Distinct modes of interaction of the retinoic acid receptor alpha with natural and synthetic retinoids. Mol Cell Endocrinol 1998; 139:161-9. [PMID: 9705084 DOI: 10.1016/s0303-7207(98)00065-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinoids regulate key cellular processes through their binding to their cognate nuclear receptors, RARs and RXRs. Synthetic ligands mimic most of their biological effects and alteration of their chemical structure confers selectivity for RAR isotypes alpha, beta or gamma. In this study, we have examined the contribution of a domain (L box) of hRARalpha located at the C-terminus of the ligand binding domain (LBD), between helices H11 and H12, to the ligand binding activity of this receptor. By site-directed mutagenesis, we demonstrate that, in the absence of the ligand-dependent activation domain 2 (AF2-AD), the receptor discriminates between classes of structurally distinct retinoids. This property was lost in the presence of the AF2-AD domain, evidencing major structural transitions in this part of the receptor. We propose that ligand binding occurs in two steps: first, the ligand interacts with the LBD in its opened, holo-receptor conformation in which the L box plays a crucial role in defining the ligand binding repertoire of hRARalpha; secondly, the LBD adopts its closed conformation in which the ligand interacts with the receptor mostly through its carboxylic moiety.
Collapse
Affiliation(s)
- B Lefebvre
- INSERM U 459, Laboratoire de Biochimie Structurale, Faculté de Médecine Henri Warembourg, Lille, France
| | | | | | | |
Collapse
|