1
|
Liu Y, Cong H, Bi C, Zha H, Yu S, Zhao L, Zhu Q. Molecular characterization and functional analysis of peroxiredoxin 1 (Prx1) from roughskin sculpin (Trachidermus fasciatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:513-526. [PMID: 38103084 DOI: 10.1007/s10695-023-01281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
Peroxiredoxin1(Prx1), also known as natural killer enhancing factor A (NKEF-A), is a crucial antioxidant involving in various cellular activities and immune response against bacterial and viral infection in fish. In the present study, a full-length Prx1 cDNA sequence (TfPrx1) was firstly cloned from roughskin sculpin (Trachidermus fasciatus), which was composed of 1044 bp nucleotides encoding a peptide of 199 amino acids with a molecular weight of 22.35 kDa and a theoretical pI of 6.42, respectively. The predicted peptide was a typical 2-cys Prx containing two conserved characteristic motifs 43FYPLDFTFVCPTEI56 and 170GEVCPA175 with the two conserved peroxidatic and resolving cysteine residuals forming disulfide bond. Quantitative real-time PCR analysis showed that TfPrx1 was ubiquitously expressed in all tested tissues with the highest expression in the intestine. It could be significantly induced following LPS injection and heavy metal exposure. Recombinant TfPrx1 (rTfPrx1) displayed insulin disulfide reduction and ROS-scavenging activity in a concentration-dependent manner, and further exhibited DNA and cytoprotective effects under oxidative stress. These results suggested that TfPrx1 protein may play an important role in fish immune protection from oxidative damage.
Collapse
Affiliation(s)
- Yingying Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Haiyan Cong
- Department of Central Lab, Weihai Municipal Hospital, Weihai, 264209, Shandong, China
| | - Caihong Bi
- Weihai No. 4 High School, Weihai, 264209, Shandong, China
| | - Haidong Zha
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Shanshan Yu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Lihua Zhao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Qian Zhu
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
2
|
Kang JB, Son HK, Park DJ, Jin YB, Shah FA, Koh PO. Modulation of thioredoxin by chlorogenic acid in an ischemic stroke model and glutamate-exposed neurons. Neurosci Lett 2024; 825:137701. [PMID: 38395190 DOI: 10.1016/j.neulet.2024.137701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Ischemic stroke increases the production of reactive oxygen species (ROS), which can eventually lead to neuronal death. Thioredoxin is a small reductase protein that acts as an eliminator of ROS and protects neurons from brain damage. Chlorogenic acid is known as a phenolic compound that has a neuroprotective effect. We investigated the change of thioredoxin expression by chlorogenic acid in a middle cerebral artery occlusion (MCAO) animal model. Adult rats were injected intraperitoneally with phosphate buffered saline or chlorogenic acid (30 mg/kg) 2 h after MCAO. MCAO damage induced neurological defects and increased ROS and lipid peroxidation levels, however, chlorogenic acid mitigated these changes. MCAO damage reduced thioredoxin expression, which was mitigated by chlorogenic acid treatment. The interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) was decreased in MCAO animals, chlorogenic acid treatment prevented this decrease. In cultured neurons, chlorogenic acid dose-dependently attenuated glutamate-induced decreases in cell viability and thioredoxin expression. Glutamate toxicity downregulated bcl-2 and upregulated bax, cytochrome c, and caspase-3, however, chlorogenic acid attenuated these changes. The mitigating effect of chlorogenic acid was lower in thioredoxin siRNA-transfected cells than in non-transfected cells. These results provide evidence that chlorogenic acid exerts potent antioxidant and neuroprotective effects through regulation of thioredoxin and modulation of ASK1 and thioredoxin binding in ischemic brain injury. These findings indicate that chlorogenic acid exerts a neuroprotective effect by regulating thioredoxin expression in cerebral ischemia and glutamate exposure conditions.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Hyun-Kyoung Son
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Dong-Ju Park
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Yeung-Bae Jin
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Fawad-Ali Shah
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Phil-Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea.
| |
Collapse
|
3
|
Balasubramanian P, Vijayarangam V, Deviparasakthi MKG, Palaniyandi T, Ravi M, Natarajan S, Viswanathan S, Baskar G, Wahab MRA, Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathol Res Pract 2024; 254:155080. [PMID: 38219498 DOI: 10.1016/j.prp.2023.155080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Peroxiredoxin 2 (PRDX2), a characteristic 2-Cys enzyme is one of the foremost effective scavenger proteins against reactive oxygen species (ROS) and hydrogen peroxide (H2O2) defending cells against oxidative stress. Dysregulation of this antioxidant raises the quantity of ROS and oxidative stress implicated in several diseases. PRDX2 lowers the generation of ROS that takes part in controlling several signalling pathways occurring in neurons, protecting them from stress caused by oxidation and an inflammatory harm. Depending on the aetiological variables, the kind of cancer, and the stage of tumour development, PRDX2 may behave either as an onco-suppressor or a promoter. However, overexpression of PRDX2 may be linked to the development of numerous cancers, including those of the colon, cervix, breast, and prostate. PRDX2 also plays a beneficial effect in inflammatory diseases. PRDX2 being a thiol-specific peroxidase, is known to control proinflammatory reactions. The spilling of PRDX2, on the other hand, accelerates cognitive impairment following a stroke by triggering an inflammatory reflex. PRDX2 expression patterns in vascular cells tend to be crucial to its involvement in cardiovascular diseases. In vascular smooth muscle cells, if the protein tyrosine phosphatase is restricted, PRDX2 could avoid the neointimal thickening which relies on platelet derived growth factor (PDGF), a vital component of vascular remodelling. A proper PRDX2 balance is therefore crucial. The imbalance causes a number of illnesses, including cancers, inflammatory diseases, cardiovascular ailments, and neurological and neurodegenerative problems which are discussed in this review.
Collapse
Affiliation(s)
| | - Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
4
|
Stacey P, Mensinkai A, Bansal P, Hosseini SH, Lavigne A, Gwardjan B, Leylachian S, Deng Z(J, Chari V, Giles S, Nesathurai S. Using Nutraceuticals to Help Manage Traumatic Spinal Cord Injury. Pharmaceuticals (Basel) 2024; 17:71. [PMID: 38256904 PMCID: PMC10820888 DOI: 10.3390/ph17010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Traumatic spinal cord injury (TSCI) is a significant public health challenge that has an adverse impact on functional independence, quality of life, and life expectancy. Management of people's chronic conditions is a key aspect of contemporary medical practice. Our study was an open label, single arm, prospective pilot study to evaluate the feasibility of treating people with TSCI. The study intervention was treatment with oral selenium and vitamin E. Participants were 18 years or older and experienced a TSCI at least one year prior to enrollment. Daily doses of 50 mcg of selenium and 400 IU of vitamin E were administered. Participants had radiologic (MRI tractography) and clinical (ASIA) assessments prior to initiating treatment, and these assessments were repeated after one year of treatment. Four subjects completed the full twelve-month study. Adherence, based on pill counts, was approximately 75% in all subjects. There were no adverse events related to study medications. During the treatment period, subjects reported improvement in certain symptoms. There was no significant difference in ASIA scores before and after the intervention. Combination treatment with vitamin E and selenium has been demonstrated as safe for TSCI patients. It is possible to use DTI values to locate the epicenter of a lesion as well as gauge the extent of injury. MRI tractography may serve as a meaningful surrogate endpoint. The results of this study suggest that it is feasible to conduct a larger long-term clinical trial to evaluate the efficacy of combination treatment of TSCI.
Collapse
Affiliation(s)
- Paul Stacey
- Department of Physical Medicine and Rehabilitation, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada (V.C.)
- Division of Physical Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Arun Mensinkai
- Department of Diagnostic Imaging, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada
- Department of Medical Imaging, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Pankaj Bansal
- Department of Physical Medicine and Rehabilitation, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada (V.C.)
- Division of Physical Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Seyed-Hossein Hosseini
- Department of Physical Medicine and Rehabilitation, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada (V.C.)
- Division of Physical Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Andrew Lavigne
- Department of Physical Medicine and Rehabilitation, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada (V.C.)
- Division of Physical Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Basia Gwardjan
- Division of Physical Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sayna Leylachian
- Division of Physical Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zhihui (Joy) Deng
- Department of Physical Medicine and Rehabilitation, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada (V.C.)
- Division of Physical Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Vinjamuri Chari
- Department of Physical Medicine and Rehabilitation, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada (V.C.)
- Division of Physical Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sandra Giles
- Department of Medical Imaging, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Shanker Nesathurai
- Department of Physical Medicine and Rehabilitation, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada (V.C.)
- Division of Physical Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
5
|
Antiviral Function of NKEF against VHSV in Rainbow Trout. BIOLOGY 2021; 10:biology10101045. [PMID: 34681144 PMCID: PMC8533630 DOI: 10.3390/biology10101045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary An antioxidant protein has been identified in a sample of erythrocytes exposed to a fish virus. We evaluated the role of this protein as an antiviral molecule in fish. Through silencing and overexpression assays we determined the antiviral effect of this protein in the infectivity of the virus. In conclusion, this antioxidant protein may be a potential target for new therapeutic strategies against viral infections. Abstract Natural killer enhancing factor (NKEF) belongs to the peroxiredoxin family of proteins, a group of antioxidants that has been extensively studied in mammals. Recently, we identified NKEF in the immunoprecipitated proteome of rainbow trout red blood cells (RBCs) exposed to viral hemorrhagic septicemia virus (VHSV). In the present study, we evaluated the role of NKEF in the antiviral response of rainbow trout against VHSV by examining the expression profile of NKEF in VHSV-exposed RBCs and rainbow trout gonad-2 (RTG-2) cell line. We found an in vitro correlation between decreased VHSV replication and increased NKEF expression after RBCs were exposed to VHSV, however this was not found in RTG-2 cells where the infection highly increased and nkef transcripts remained almost unchanged. In addition, siRNA silencing of the nkef gene in rainbow trout RBCs and RTG-2 cells resulted in increased VHSV replication. We also found a correlation between nkef gene silencing and a decrease in the expression of genes related to type 1 interferon (IFN1) pathway. These findings indicated that NKEF is involved in the antiviral mechanisms of rainbow trout RBCs against VHSV and thus support its antiviral role and implication in the modulation of their immune response. Finally, overexpression of NKEF in an EPC cell line significantly reduced VHSV infectivity and was coupled to an increment in IFN1-related genes. In conclusion, NKEF may be a potential target for new therapeutic strategies against viral infections.
Collapse
|
6
|
Adaptive remodelling of blue pigmenting Pseudomonas fluorescens pf59 proteome in response to different environmental conditions. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
de Melo MS, Das K, Gismondi E. Inorganic mercury effects on biomarker gene expressions of a freshwater amphipod at two temperatures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111815. [PMID: 33387774 DOI: 10.1016/j.ecoenv.2020.111815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is a global contaminant resulting of both natural processes and human activities. In aquatic environments, studies conducted on vertebrates highlighted changes of gene expression or activity of antitoxic and oxidative enzymes. However, although Hg is a highly toxic compound in aquatic environments, only a few studies have evaluated the lethal and sublethal effects of inorganic Hg on Gammarus sp. Therefore, this study aimed at evaluating the effects of inorganic Hg (HgCl2) on the expression of 17 genes involved in crucial biological functions or mechanisms for organisms, namely respiration, osmoregulation, apoptosis, immune and endocrine system, and antioxidative and antitoxic defence systems. The study was performed in males of the freshwater amphipod Gammarus pulex exposed to two environmentally relevant concentrations (50 and 500 ng/L) at two temperature regime fluctuations (16 °C and 20 °C +/-2 °C) for 7 and 21 days. Results showed that G. pulex mortality was dependent on Hg concentration and temperature; the higher the concentration and temperature, the higher the mortality rate. In addition, the Integrated Biomarker Response emphasized that HgCl2 toxicity was dependent on the concentration, time and temperature of exposure. Overall, antioxidant and antitoxic defences, as well as the endocrine and immune systems, were the biological functions most impacted by Hg exposure (based on the concentration, duration, and temperature tested). Conversely, osmoregulation was the least affected biological function. The results also demonstrated a possible adaptation of G. pulex after 21 days at 500 ng/L, regardless of the exposure temperature. This study allowed us to show that Hg deregulates many crucial biological functions after a short exposure, but that during a long exposure, an adaptation phenomenon could occur, regardless of temperature.
Collapse
Affiliation(s)
- Madson Silveira de Melo
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Laboratory of Animal Ecology and Ecotoxicology (LEAE), Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 allée du 6 Août, 4000, Liège, Belgium
| | - Krishna Das
- Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 allée du 6 Août, 4000, Liège, Belgium.
| |
Collapse
|
8
|
Mahdavi A, Bagherniya M, Mirenayat MS, Atkin SL, Sahebkar A. Medicinal Plants and Phytochemicals Regulating Insulin Resistance and Glucose Homeostasis in Type 2 Diabetic Patients: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:161-183. [PMID: 33861444 DOI: 10.1007/978-3-030-64872-5_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes is a major health problem affecting more than four hundred million adults worldwide. The transition from normal glucose tolerance to type 2 diabetes (T2D) is preceded by increased Insulin resistance (IR), an independent predictor of the development of T2D in high risk (e.g. obese populations, pre-diabetes) individuals. Insulin deficiency resulting from increased IR results in progressive glucose homeostasis dysfunction. Data has shown that IR is affected by many different factors such as genetics, age, exercise, dietary nutrients, obesity, and body fat distribution. One of the most important factors is diet, which plays an essential role in addressing T2D and metabolic syndrome. Nutraceuticals and medicinal plants have been shown to have efficacy in preventing chronic diseases like cancer, non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, diabetes mellitus and metabolic syndrome, likely through the anti-inflammatory properties found in nutraceuticals. However, the effect of these compounds, including traditional plant medicines, herbal formulations or their extracts on IR have not been systematically investigated. The objective of this review was to assess the reported effects of medicinal plants and bioactive natural compounds on IR. The findings confirm that most of the herbal bioactive compounds including resveratrol, garlic, curcumin, cinnamon, ginger, nuts, berberine, anthocyanin, soybean, flaxseed, vegetable oils, and soluble fibers have benefit in their efficacy for decreasing IR, fasting blood sugar (FBS), fasting insulin and HbA1c.
Collapse
Affiliation(s)
- Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Sadegh Mirenayat
- Students' Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
9
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
10
|
Joardar N, Guevara-Flores A, Martínez-González JDJ, Sinha Babu SP. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era. Int J Biol Macromol 2020; 165:249-267. [DOI: 10.1016/j.ijbiomac.2020.09.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
11
|
Kim EJ, Kim YJ, Lee HI, Jeong SH, Nam HJ, Cho JH. Upregulation of Peroxiredoxin-2 in Well-Differentiated Pancreatic Neuroendocrine Tumors and Its Utility as a Biomarker for Predicting the Response to Everolimus. Antioxidants (Basel) 2020; 9:antiox9111104. [PMID: 33182509 PMCID: PMC7696978 DOI: 10.3390/antiox9111104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/12/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) account for 2–3% of pancreatic malignancies. Peroxiredoxins (Prdxs), which are major cellular antioxidants, are involved in multiple oncogenic signaling pathways. We investigated the role of peroxiredoxin-2 in QGP-1 human pNEN cell line and patient-derived pNEN tissue. To validate the cancer stem cell-like cell characteristics of QGP-1 cells in spheroid culture, in vitro analyses and xenografting were performed. Furthermore, immunohistochemical staining was conducted to verify the overexpression of Prdx2 in pNEN tissue. Prdx2 expression was high at the mRNA and protein levels in QGP-1 cells. Prdx2 was also overexpressed in patient-derived pNEN tissue. Silencing of Prdx2 using siRNA induced overexpression and phosphorylation of ERK and AKT in QGP-1. Cell proliferation was increased by treating QGP-1 cells with siPrdx2, and the IC50 of everolimus increased suggesting resistance to everolimus. Interestingly, QGP-1 spheroid cells, which exhibited cancer stem cell-like features, exhibited lower expression of Prdx2 and mTOR. The results suggest that Prdx2 expression level and its activity may be a potential predictive biomarker for therapeutic response or resistance to everolimus in pNEN.
Collapse
Affiliation(s)
- Eui Joo Kim
- Division of Gastroenterology, Department of Internal Medicine, Gil Medical Center, College of Medicine Gachon University, Incheon 21565, Korea; (E.J.K.); (Y.J.K.); (H.J.N.)
| | - Yoon Jae Kim
- Division of Gastroenterology, Department of Internal Medicine, Gil Medical Center, College of Medicine Gachon University, Incheon 21565, Korea; (E.J.K.); (Y.J.K.); (H.J.N.)
| | - Hye In Lee
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Seok-Hoo Jeong
- Division of Gastroenterology, Department of Internal Medicine, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea;
| | - Hyo Jung Nam
- Division of Gastroenterology, Department of Internal Medicine, Gil Medical Center, College of Medicine Gachon University, Incheon 21565, Korea; (E.J.K.); (Y.J.K.); (H.J.N.)
| | - Jae Hee Cho
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: ; Tel.: +82-2-2019-3310
| |
Collapse
|
12
|
Mun YC, Ahn JY, Yoo ES, Lee KE, Nam EM, Huh J, Woo HA, Rhee SG, Seong CM. Peroxiredoxin 3 Has Important Roles on Arsenic Trioxide Induced Apoptosis in Human Acute Promyelocytic Leukemia Cell Line via Hyperoxidation of Mitochondrial Specific Reactive Oxygen Species. Mol Cells 2020; 43:813-820. [PMID: 32975211 PMCID: PMC7528683 DOI: 10.14348/molcells.2020.2234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
NB4 cell, the human acute promyelocytic leukemia (APL) cell line, was treated with various concentrations of arsenic trioxide (ATO) to induce apoptosis, measured by staining with 7-amino-actinomycin D (7-AAD) by flow cytometry. 2', 7'-dichlorodihydro-fluorescein-diacetate (DCF-DA) and MitoSOXTM Red mitochondrial superoxide indicator were used to detect intracellular and mitochondrial reactive oxygen species (ROS). The steady-state level of SO2 (Cysteine sulfinic acid, Cys-SO2H) form for peroxiredoxin 3 (PRX3) was measured by a western blot. To evaluate the effect of sulfiredoxin 1 depletion, NB4 cells were transfected with small interfering RNA and analyzed for their influence on ROS, redox enzymes, and apoptosis. The mitochondrial ROS of NB4 cells significantly increased after ATO treatment. NB4 cell apoptosis after ATO treatment increased in a time-dependent manner. Increased SO2 form and dimeric PRX3 were observed as a hyperoxidation reaction in NB4 cells post-ATO treatment, in concordance with mitochondrial ROS accumulation. Sulfiredoxin 1 expression is downregulated by small interfering RNA transfection, which potentiated mitochondrial ROS generation and cell growth arrest in ATO-treated NB4 cells. Our results indicate that ATO-induced ROS generation in APL cell mitochondria is attributable to PRX3 hyperoxidation as well as dimerized PRX3 accumulation, subsequently triggering apoptosis. The downregulation of sulfiredoxin 1 could amplify apoptosis in ATO-treated APL cells.
Collapse
Affiliation(s)
- Yeung-Chul Mun
- Department of Hematology and Oncology, Ewha Womans University College of Medicine, Seoul 07985, Korea
| | - Jee Young Ahn
- Department of Hematology and Oncology, Ewha Womans University College of Medicine, Seoul 07985, Korea
| | - Eun Sun Yoo
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul 07985, Korea
| | - Kyoung Eun Lee
- Department of Hematology and Oncology, Ewha Womans University College of Medicine, Seoul 07985, Korea
| | - Eun Mi Nam
- Department of Hematology and Oncology, Ewha Womans University College of Medicine, Seoul 07985, Korea
| | - Jungwon Huh
- Department of Laboratory Medicine, Ewha Womans University College of Medicine, Seoul 07985, Korea
| | - Hyun Ae Woo
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chu Myong Seong
- Department of Hematology and Oncology, Ewha Womans University College of Medicine, Seoul 07985, Korea
| |
Collapse
|
13
|
Large yellow croaker peroxiredoxin IV protect cells against oxidative damage and apoptosis. Mol Immunol 2020; 127:150-156. [PMID: 32971402 DOI: 10.1016/j.molimm.2020.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/23/2022]
Abstract
Oxidative stress and inflammation lead to cell damage and are implicated in many disease states. High concentrations of hydrogen peroxide (H2O2) may mediate cells apoptosis by increasing intracellular reactive oxygen species (ROS) levels. In this study, we established a LYCK-PrxIV cell line (large yellow croaker head kidney cell line stably expressing peroxiredoxin IV). The level of nitric oxide (NO), superoxide anion and hydrogen peroxide (H2O2) in this LYCK-PrxIV cells were significantly lower than those in control cells of LYCK-pcDNA3.1 (LYCK cell line stably transfected by pcDNA3.1 vector). Additionally, when exposed to H2O2, cell apoptosis was significantly alleviated in LYCK-PrxIV than in control cells. Meanwhile, the ROS level and ATP content were maintained more stable in LYCK-PrxIV than in LYCK-pcDNA3.1. The over-expression of LcPrxIV in LYCK-PrxIV cells induced a declined mRNA expression of LcCXC, LcCC, LcIL-8 and LcTNF-α2, as well as an increase of LcIL-10 mRNA expression, when compared to LYCK-pcDNA3.1. On the other hand, the expression of chemokine LcCXC, LcCC and LcTNF-a2 increased in LYCK-pcDNA3.1 after H2O2 stimulation, while that of LcIL-8 and LcIL-10 decreased. The regualtion of gene expression in LYCK-PrxIV cells was almost the same as that in LYCK-pcDNA3.1, but the change fold was much more moderate. These results suggest that LcPrxIV may be an indispensable ROS scavenger protecting LYCK cells against oxidative damage as well as the subsequent apoptosis and inflammatory response, which provides a clue that LcPrxIV may be an assist in fish immune response.
Collapse
|
14
|
Kim MJ, Han C, White K, Park HJ, Ding D, Boyd K, Rothenberger C, Bose U, Carmichael P, Linser PJ, Tanokura M, Salvi R, Someya S. Txn2 haplodeficiency does not affect cochlear antioxidant defenses or accelerate the progression of cochlear cell loss or hearing loss across the lifespan. Exp Gerontol 2020; 141:111078. [PMID: 32866605 DOI: 10.1016/j.exger.2020.111078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Thioredoxin 2 (TXN2) is a small redox protein found in nearly all organisms. As a mitochondrial member of the thioredoxin antioxidant defense system, TXN2 interacts with peroxiredoxin 3 (PRDX3) to remove hydrogen peroxide. Accordingly, TXN2 is thought to play an important role in maintaining the appropriate mitochondrial redox environment and protecting the mitochondrial components against oxidative stress. In the current study, we investigated the effects of Txn2 haplodeficiency on cochlear antioxidant defenses, auditory function, and cochlear cell loss across the lifespan in wild-type (WT) and Txn2 heterozygous knockout (Txn2+/-) mice backcrossed onto CBA/CaJ mice, a well-established model of age-related hearing loss. Txn2+/- mice displayed a 58% decrease in TXN2 protein levels in the mitochondria of the inner ears compared to WT mice. However, Txn2 haplodeficiency did not affect the thioredoxin or glutathione antioxidant defense in both the mitochondria and cytosol of the inner ears of young mice. There were no differences in the levels of mitochondrial biogenesis markers, mitochondrial DNA content, or oxidative DNA and protein damage markers in the inner ears between young WT and Txn2+/- mice. In a mouse inner ear cell line, knockdown of Txn2 did not affect cell viability under hydrogen peroxide treatment. Consistent with the tissue and cell line results, there were no differences in hair cell loss or spiral ganglion neuron density between WT and Txn2+/- mice at 3-5 or 23-25 months of age. Furthermore, Txn2 haplodeficiency did not affect auditory brainstem response threshold, wave I latency, or wave I amplitude at 3-5, 15-16, or 23-25 months of age. Therefore, Txn2 haplodeficiency does not affect cochlear antioxidant defenses, accelerate degeneration of cochlear cells, or affect auditory function in mice across the lifespan.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Kevin Boyd
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | | | - Upal Bose
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Peter Carmichael
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Paul J Linser
- Whitney Laboratory, University of Florida, St Augustine, FL, USA
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Zhang B, Lyu J, Yang EJ, Liu Y, Wu C, Pardeshi L, Tan K, Chen Q, Xu X, Deng CX, Shim JS. Class I histone deacetylase inhibition is synthetic lethal with BRCA1 deficiency in breast cancer cells. Acta Pharm Sin B 2020; 10:615-627. [PMID: 32322466 PMCID: PMC7161709 DOI: 10.1016/j.apsb.2019.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene, which is frequently mutated in breast and ovarian cancers. BRCA1 plays a key role in the homologous recombination directed DNA repair, allowing its deficiency to act as a therapeutic target of DNA damaging agents. In this study, we found that inhibition of the class I histone deacetylases (HDAC) exhibited synthetic lethality with BRCA1 deficiency in breast cancer cells. Transcriptome profiling and validation study showed that HDAC inhibition enhanced the expression of thioredoxin interaction protein (TXNIP), causing reactive oxygen species (ROS)-mediated DNA damage. This effect induced preferential apoptosis in BRCA1 -/- breast cancer cells where DNA repair system is compromised. Two animal experiments and gene expression-associated patients' survival analysis further confirmed in vivo synthetic lethality between BRCA1 and HDAC. Finally, the combination of inhibitors of HDAC and bromodomain and extra-terminal motif (BET), another BRCA1 synthetic lethality target that also works through oxidative stress-mediated DNA damage, showed a strong anticancer effect in BRCA1 -/- breast cancer cells. Together, this study provides a new therapeutic strategy for BRCA1-deficient breast cancer by targeting two epigenetic machineries, HDAC and BET.
Collapse
|
16
|
de Melo MS, Nazari EM, Müller YMR, Gismondi E. Modulation of antioxidant gene expressions by Roundup® exposure in the decapod Macrobrachium potiuna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110086. [PMID: 31864119 DOI: 10.1016/j.ecoenv.2019.110086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate-based herbicides (GBH), including Roundup®, are the most used herbicides in agricultural and non-agricultural areas, which can reach aquatic environments through drift during application or surface runoff. Some studies, mostly in fish, demonstrated that GBH caused oxidative stress in non-target animals. However, only few information is available on the GBH effects in the antioxidant and stress proteins of many other organisms, such as freshwater crustaceans. Thus, we aimed to investigate the effects of environmentally relevant GBH concentrations on the relative transcript expression (RTE) of the superoxide dismutase (sod1), catalase (cat), selenium-dependent glutathione peroxidase (gpx), glutathione-S-transferase (gst), thioredoxin (txn), heat shock protein (hsp70 and hsp90) in the hepatopancreas of the ecologically important freshwater prawn Macrobrachium potiuna. Moreover, this study aimed to assess the gender-differences responses to GBH exposure. Male and female prawns were exposed to three Roundup WG® concentrations (0.0065, 0.065 and 0.28 mg of glyphosate/L) and a control group (0.0 mg/L) for 7 and 14 days. In general, males had an under-expression of the studied genes, indicating an oxidative stress and possible accumulation of ROS in the hepatopancreas. In the opposite, females had an overexpression of the same genes, indicating a more robust antioxidant system, in order to cope with the possible ROS increase after Roundup WG® exposure. Therefore, results confirmed that gender could be a confounding factor in ecotoxicological assessment of GBH effects. Additionally, this work highlights that sod1, cat, gpx, gst, txn, hsp70 and hsp90 gene expressions seem to be useful biomarkers to investigate the oxidative stress caused by Roundup WG® in Macrobrachium sp.
Collapse
Affiliation(s)
- Madson Silveira de Melo
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Evelise Maria Nazari
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara Maria Rauh Müller
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 allée du 6 Août, 4000, Liège, Belgium.
| |
Collapse
|
17
|
Zhang Y, Mi K, Ding X, Li Y, Wang T, Dou T, Ding J, Wei W. Characterization of a classical 2-cysteine peroxiredoxin1 gene from Chinese soft-shelled turtle Pelodiscus sinensis with its potent antioxidant properties and putative immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103456. [PMID: 31336106 DOI: 10.1016/j.dci.2019.103456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Peroxiredoxin family members could function in host defense against oxidative stress, and modulate immune response. In the present study, a 2-cysteine peroxiredoxin gene named PsPrx1 was isolated from Chinese soft-shelled turtle Pelodiscus sinensis. The PsPrx1 cDNA was composed of 1130 bp, consisted of 199 amino acid residues and included a Redoxin and AphC-TSA domain. As detected by qPCR, PsPrx1 was ubiquitously expressed in the examined tissues with the higher levels in liver and spleen. Upon the immune challenge with A. jandaei bacteria and oxidative stress with ammonia pressure, both mRNA and protein expression level in liver could be significantly enhanced. The results of immunohistochemical examinations showed PsPrx1 was mainly distributed at the junction between the hepatic cells. The general functional properties of PsPrx1 were confirmed using purified rPsPrx1 protein. From the results, rPsPrx1 protein was confirmed to exhibit antioxidant activity and antibacterial properties. The potential for scavenging extracellular H2O2 was evidenced by the purified rPsPrx1 protein in vitro system. In the mixed-function oxidase assay, rPsPrx1 also exhibited a dose-dependent inhibition of DNA damage. These results suggest that rPsPrx1 was implicated defense against microbial pathogens and oxidants, and would provide important information to further understand the functional mechanism of Prx1 in P. sinensis immunity.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaihang Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xueming Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yue Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Tao Wang
- Hanjiang District Fisheries Administration, Yangzhou, China
| | - Tianming Dou
- Hanjiang District Fisheries Administration, Yangzhou, China
| | - Jiabiao Ding
- Hanjiang District Fisheries Administration, Yangzhou, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Mohammadi F, Soltani A, Ghahremanloo A, Javid H, Hashemy SI. The thioredoxin system and cancer therapy: a review. Cancer Chemother Pharmacol 2019; 84:925-935. [PMID: 31367788 DOI: 10.1007/s00280-019-03912-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/25/2019] [Indexed: 12/01/2022]
Abstract
Thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH are key members of the Trx system that is involved in redox regulation and antioxidant defense. In recent years, several researchers have provided information about the roles of the Trx system in cancer development and progression. These reports indicated that many tumor cells express high levels of Trx and TrxR, which can be responsible for drug resistance in tumorigenesis. Inhibition of the Trx system may thus contribute to cancer therapy and improving chemotherapeutic agents. There are now a number of effective natural and synthetic inhibitors with chemotherapy applications possessing antitumor activity ranging from oxidative stress induction to apoptosis. In this article, we first described the features and functions of the Trx system and then reviewed briefly its correlations with cancer. Finally, we summarized the present knowledge about the Trx/TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Fariba Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Alsagaby SA, Alhumaydhi FA. Proteomics insights into the pathology and prognosis of chronic lymphocytic leukemia. Saudi Med J 2019; 40:317-327. [PMID: 30957124 PMCID: PMC6506661 DOI: 10.15537/smj.2019.4.23598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable malignant disease of B-lymphocytes characterized by drastically heterogeneous clinical courses. Proteomics is an advanced approach that allows a global profiling of protein expression, providing a valuable chance for the discovery of disease-related proteins. In the last 2 decades, several proteomics studies were conducted on CLL to identify aberrant protein expression underpinning the malignant transformation and progression of the disease. Overall, these studies provided insights into the pathology and prognosis of CLL and reveal protein candidates with the potential to serve as biomarkers and/or therapeutic targets of the tumor. The major findings reported in these studies are discussed here.
Collapse
MESH Headings
- Biomarkers, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Molecular Targeted Therapy
- Prognosis
- Proteomics/trends
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, Faculty of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia. E-mail.
| | | |
Collapse
|
20
|
Liu S, Ding R, Nie X. Assessment of oxidative stress of paracetamol to Daphnia magna via determination of Nrf1 and genes related to antioxidant system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:73-80. [PMID: 30954018 DOI: 10.1016/j.aquatox.2019.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Paracetamol (APAP) is one of the most widely used anti-inflammatory and analgesic drugs in human being health care and has been universally detected in various aquatic environments. However, its potential adverse effects and toxic mechanisms on freshwater invertebrates still remain unclear. In the present study, the effects of APAP on the expressions of Nrf1 and the antioxidant related genes including GCLC, GST, GPX, CAT, TRX, TrxR and Prx1 in Daphnia magna (D. magna) were evaluated after 24, 48 and 96 h, and the changes of GPX, GST and CAT enzyme activities, as well as the GSH and MDA content under APAP exposure for 48 h were also determined. Results showed that paracetamol affected the expressions of Nrf1 and antioxidant related genes in D. magna, which were related to the exposure time and concentration of APAP. Nrf1 was inhibited at 48 h, but induced at 96 h under the APAP exposure, being about two fold of the control in 5.0 μg/L. CAT were significantly induced in all treatments. But Prx decreased in an concentration-dependent manner in all treatments. In comparison with the mRNA expression, antioxidant enzymes activity displayed less changes in D. magna. Overall, APAP exposure altered the expression of Nrf1 and genes related to antioxidant system and disturbed the redox homeostasis of D. magna.
Collapse
Affiliation(s)
- Sijia Liu
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Rui Ding
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress. Biomed Pharmacother 2018; 106:714-723. [DOI: 10.1016/j.biopha.2018.06.139] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/09/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022] Open
|
22
|
Lee CM, Park SH, Nam MJ. Anticarcinogenic effect of indole-3-carbinol (I3C) on human hepatocellular carcinoma SNU449 cells. Hum Exp Toxicol 2018; 38:136-147. [DOI: 10.1177/0960327118785235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many cruciferous vegetables, including cabbage, contain indole-3-carbinol (I3C), which is a known anticarcinogen. However, the anticarcinogenic effects of I3C on liver cancer have not been investigated. Therefore, this study was conducted to evaluate the anticarcinogenic effects of I3C in human hepatocellular carcinoma (HCC) SNU449 cells. The results of MTT and WST-1 assays indicated that treatment of SNU449 cells with I3C decreased viability in dose- and time-dependent manners, while colony formation assays indicated that I3C also inhibited proliferation of SNU449 cells. Moreover, fluorescence-activated cell sorter analysis showed that I3C induced apoptosis in SNU449 cells in dose- and time-dependent manners. Furthermore, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling revealed that I3C induced DNA fragmentation in SNU449 cells in a time-dependent manner, while Western blotting showed that apoptotic proteins such as p53, cleaved PARP, caspase-3, and caspase-7 were activated in SNU449 cells following treatment with I3C. Finally, reactive oxygen species-related protein peroxiredoxin-1 and thioredoxin-1 expression decreased in I3C-treated SNU449 cells. The aim of our study is to investigate the unknown mechanisms responsible for the apoptotic effects of I3C on human HCC SNU449 cells, and the results suggest that I3C may be useful for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- CM Lee
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - S-H Park
- Department of Biological and Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - MJ Nam
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
23
|
Lee D, Moawad AR, Morielli T, Fernandez MC, O'Flaherty C. Peroxiredoxins prevent oxidative stress during human sperm capacitation. Mol Hum Reprod 2018; 23:106-115. [PMID: 28025393 DOI: 10.1093/molehr/gaw081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/15/2016] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION Do peroxiredoxins (PRDXs) control reactive oxygen species (ROS) levels during human sperm capacitation? SUMMARY ANSWER PRDXs are necessary to control the levels of ROS generated during capacitation allowing spermatozoa to achieve fertilizing ability. WHAT IS KNOWN ALREADY Sperm capacitation is an oxidative event that requires low and controlled amounts of ROS to trigger phosphorylation events. PRDXs are antioxidant enzymes that not only act as scavengers but also control ROS action in somatic cells. Spermatozoa from infertile men have lower levels of PRDXs (particularly of PRDX6), which are thiol-oxidized and therefore inactive. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from a cohort of 20 healthy nonsmoker volunteers aged 22-30 years old over a period of 1 year. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Sperm from healthy donors was capacitated with fetal cord serum ultrafiltrate (FCSu) in the absence or presence of thiostrepton (TSP), inhibitor of 2-Cys PRDXs or 1-Hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol lithium (MJ33), inhibitor of calcium independent-phospholipase A2 (Ca2+-iPLA2) activity of PRDX6, added at different times of incubation. Capacitation was also induced by the dibutyryl cAMP+3-isobuty1-1-methylxanthine system. Sperm viability and motility were determined by the hypo-osmotic swelling test and computer-assisted semen analysis system, respectively. Capacitation was determined by the ability of spermatozoa to undergo the acrosome reaction triggered by lysophosphatidylcholine. Percentages of acrosome reaction were obtained using the FITC-conjugated Pisum sativum agglutinin assay. Phosphorylation of tyrosine residues and of protein kinase A (PKA) substrates were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis immunoblotting with specific antibodies. Actin polymerization was determined by phalloidin labeling. MAIN RESULTS AND THE ROLE OF CHANCE TSP and MJ33 prevented sperm capacitation and its associated actin polymerization in spermatozoa incubated with 10% FCSu (capacitation inducer) compared to non-capacitated controls (P < 0.05) without altering sperm viability. PKA substrates and tyrosine phosphorylations were prevented in FCSu-treated spermatozoa in a differential fashion depending on the type and the time of addition of the inhibitor used compared to non-capacitated controls (P < 0.05). TSP and MJ33 promoted an increase of lipid peroxidation in spermatozoa (P < 0.01) and these levels were higher in those spermatozoa incubated with the inhibitors and FCSu compared to those capacitated spermatozoa incubated without the inhibitors (P < 0.0001). Inhibition of 2-Cys PRDXs by TSP generated an oxidative stress in spermatozoa, affecting their viability compared to controls (P < 0.05). This oxidative stress was prevented by nuclephile D-penicillamine (PEN). MJ33 also promoted an increase of lipid peroxidation and impaired sperm viability compared to non-treated controls (P < 0.05) but its effect was not circumvented by PEN, suggesting that not only peroxidase but also Ca2+-iPLA2 activity of PRDX6 are necessary to guarantee viability in human spermatozoa. LARGE SCALE DATA Not applicable. LIMITATIONS REASONS FOR CAUTION We focused on the global effect of PRDXs inhibitors on human sperm capacitation and in two of its associated phosphorylation events. Thus, other phosphorylation events and mechanisms necessary for capacitation may also be affected. WIDER IMPLICATIONS OF THE FINDINGS PRDXs are the major antioxidant system in ejaculated spermatozoa and are necessary to allow spermatozoon to achieve fertilizing ability (capacitation and acrosome reaction). STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Canadian Institutes of Health Research (MOP 133661) and the Fonds de Recherché en Santé Quebec (FRSQS #22151) to C.O. The authors have nothing to disclose.
Collapse
Affiliation(s)
- Donghyun Lee
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada
| | - Adel R Moawad
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Tania Morielli
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada
| | - Maria C Fernandez
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada
| | - Cristian O'Flaherty
- The Research Institute of the McGill University Health Centre, Montréal, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
24
|
Connor DE, Chaitanya GV, Chittiboina P, McCarthy P, Scott LK, Schrott L, Minagar A, Nanda A, Alexander JS. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:169-183. [PMID: 28549769 PMCID: PMC7303909 DOI: 10.1016/j.pathophys.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. METHODS Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. RESULTS Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. CONCLUSIONS Consistent CSF elevation of CA-I and Prx-2 with concurrent depletion of Hp and Tf may represent a useful combination of biomarkers for the prediction of severity and prognosis following brain injury.
Collapse
Affiliation(s)
- David E Connor
- Baptist Health Neurosurgery Arkansas, Little Rock, AR, United States.
| | - Ganta V Chaitanya
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States.
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD, United States.
| | - Paul McCarthy
- Department of Medicine, Sect. of Nephrology, University of Maryland, Baltimore, MD, United States.
| | - L Keith Scott
- Department of Critical Care Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Lisa Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Anil Nanda
- Department of Neurosurgery, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| |
Collapse
|
25
|
PRDX2 in Myocyte Hypertrophy and Survival is Mediated by TLR4 in Acute Infarcted Myocardium. Sci Rep 2017; 7:6970. [PMID: 28765537 PMCID: PMC5539327 DOI: 10.1038/s41598-017-06718-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/16/2017] [Indexed: 01/04/2023] Open
Abstract
Peroxiredoxin 2 (PRDX2) is an antioxidant and molecular chaperone that can be secreted from tumor cells. But the role of PRDX2 in acute myocardial infarction (AMI) is not clear. In the current study, we demonstrate the role of PRDX2 from clinical trials, H9c2 cells and in a mouse model. ELISA analysis shows that serum concentrations of VEGF and inflammatory factor IL-1β, TNF-α and IL-6 were increased in AMI patients compared to a control group. The expression of PRDX2 was also upregulated. In vivo experiments show that the expression of PRDX2 inhibits hypoxia-induced oxidative stress injury to H9c2 cells. However, PRDX2 expression promotes TLR4 mediated inflammatory factor expression and VEGF expression under hypoxia conditions. PRDX2 overexpression in H9c2 cells also promotes human endothelial cell migration, vasculogenic mimicry formation and myocardial hypertrophy related protein expression. The overexpression of PRDX2 inhibits ROS level and myocardial injury after AMI but promotes inflammatory responses in vivo. Immunocytochemistry and immunofluorescence analysis show that overexpression of PRDX2 promotes angiogenesis and myocardial hypertrophy. Taken together, our results indicate that PRDX2 plays two roles in acute infarction – the promotion of cell survival and inflammatory myocardial hypertrophy.
Collapse
|
26
|
Park SJ, Kim JH, Kim TS, Lee SR, Park JW, Lee S, Kim JM, Lee DS. Peroxiredoxin 2 regulates PGF2α-induced corpus luteum regression in mice by inhibiting ROS-dependent JNK activation. Free Radic Biol Med 2017; 108:44-55. [PMID: 28323129 DOI: 10.1016/j.freeradbiomed.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 11/25/2022]
Abstract
Luteal regression is a natural and necessary event to regulate the reproductive process in all mammals. Prostaglandin F2α (PGF2α) is the main factor that causes functional and structural regression of the corpus luteum (CL). It is well known that PGF2α-mediated ROS generation is closely involved in luteal regression. Peroxiredoxin 2 (Prx2) as an antioxidant enzyme plays a protective role against oxidative stress-induced cell death. However, the effect of Prx2 on PGF2α-induced luteal regression has not been reported. Here, we investigated the role of Prx2 in functional and structural CL regression induced by PGF2α-mediated ROS using Prx2-deficient (-/-) mice. We found that PGF2α-induced ROS generation was significantly higher in Prx2-/- MEF cells compared with that in wild-type (WT) cells, which induced apoptosis by activating JNK-mediated apoptotic signaling pathway. Also, PGF2α treatment in the CL derived from Prx2-/- mice promoted the reduction of steroidogenic enzyme expression and the activation of JNK and caspase3. Compared to WT mice, serum progesterone levels and luteal expression of steroidogenic enzymes decreased more rapidly whereas JNK and caspase3 activations were significantly increased in Prx2-/- mice injected with PGF2α. However, the impaired steroidogenesis and PGF2α-induced JNK-dependent apoptosis were rescued by the addition of the antioxidant N-acetyl-L-cysteine (NAC). This is the first study to demonstrate that Prx2 deficiency ultimately accelerated the PGF2α-induced luteal regression through activation of the ROS-dependent JNK pathway. These findings suggest that Prx2 plays a crucial role in preventing accelerated luteal regression via inhibition of the ROS/JNK pathway.
Collapse
Affiliation(s)
- Sun-Ji Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; Renal Division, School of medicine, Washington University in St Louis, MO, USA
| | - Jung-Hak Kim
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Shin Kim
- Embryology Laboratory, Neway Fertility, 115 East 57th Street Suite 500, New York, NY 10022, USA
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do, Republic of Korea
| | - Jeen-Woo Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Jeollabuk-do, Republic of Korea
| | - Jin-Man Kim
- Cancer Research Institute and Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
27
|
Abbaszadeh HA, Peyvandi AA, Sadeghi Y, Safaei A, Zamanian-Azodi M, Khoramgah MS, Rezaei-Tavirani M. Er:YAG Laser and Cyclosporin A Effect on Cell Cycle Regulation of Human Gingival Fibroblast Cells. J Lasers Med Sci 2017; 8:143-149. [PMID: 29123635 DOI: 10.15171/jlms.2017.26] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Periodontitis is a set of inflammatory disorders characterized by periodontal attachment loss and alveolar bone resorption. Because of deficiency in periodontitis mechanical therapy, this study was aimed to explore the molecular influence of the erbiumdoped: yttrium aluminum garnet (Er:YAG) laser and cyclosporin A (CsA) on human gingival fibroblasts (HGFs) for improvement in periodontal diseases therapy. Methods: We focused on articles that studied the proteome profiles of HGFs after treatment with laser irradiation and application of CsA. The topological features of differentially expressed proteins were analyzed using Cytoscape Version 3.4.0 followed by module selection from the protein-protein interaction (PPI) network using Cluster ONE plugin. In addition, we performed gene ontology (GO) enrichment analysis for the densely connected region and key proteins in both PPI networks. Results: Analysis of PPI network of Er:YAG laser irradiation on HGFs lead to introducing YWHAZ, VCP, HNRNPU, YWHAE, UBA52, CLTC, FUS and IGHG1 as key proteins while similar analysis revealed that ACAT1, CTSD, ALDOA, ANXA2, PRDX1, LGALS3, ARHGDI and EEF1A1 are the crucial proteins related to the effect of drug. GO enrichment analysis of hubbottleneck proteins of the 2 networks showed the different significant biological processes and cellular components. The functional enrichments of module of Er:YAG laser network are included as fatty acid transmembrane transport, cytokinesis, regulation of RNA splicing and asymmetric protein localization. There are not any significant clusters in network of HGF treated by CsA. Conclusion: The results indicate that there are 2 separate biomarker panels for the 2 treatment methods.
Collapse
Affiliation(s)
- Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center and Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Hearing Disorders Research Center and Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Safaei
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian-Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Khoramgah
- Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
28
|
Ding J, Fishel ML, Reed AM, McAdams E, Czader MB, Cardoso AA, Kelley MR. Ref-1/APE1 as a Transcriptional Regulator and Novel Therapeutic Target in Pediatric T-cell Leukemia. Mol Cancer Ther 2017; 16:1401-1411. [PMID: 28446640 DOI: 10.1158/1535-7163.mct-17-0099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 12/14/2022]
Abstract
The increasing characterization of childhood acute lymphoblastic leukemia (ALL) has led to the identification of multiple molecular targets but has yet to translate into more effective targeted therapies, particularly for high-risk, relapsed T-cell ALL. Searching for master regulators controlling multiple signaling pathways in T-ALL, we investigated the multifunctional protein redox factor-1 (Ref-1/APE1), which acts as a signaling "node" by exerting redox regulatory control of transcription factors important in leukemia. Leukemia patients' transcriptome databases showed increased expression in T-ALL of Ref-1 and other genes of the Ref-1/SET interactome. Validation studies demonstrated that Ref-1 is expressed in high-risk leukemia T cells, including in patient biopsies. Ref-1 redox function is active in leukemia T cells, regulating the Ref-1 target NF-κB, and inhibited by the redox-selective Ref-1 inhibitor E3330. Ref-1 expression is not regulated by Notch signaling, but is upregulated by glucocorticoid treatment. E3330 disrupted Ref-1 redox activity in functional studies and resulted in marked inhibition of leukemia cell viability, including T-ALL lines representing different genotypes and risk groups. Potent leukemia cell inhibition was seen in primary cells from ALL patients, relapsed and glucocorticoid-resistant T-ALL cells, and cells from a murine model of Notch-induced leukemia. Ref-1 redox inhibition triggered leukemia cell apoptosis and downregulation of survival genes regulated by Ref-1 targets. For the first time, this work identifies Ref-1 as a novel molecular effector in T-ALL and demonstrates that Ref-1 redox inhibition results in potent inhibition of leukemia T cells, including relapsed T-ALL. These data also support E3330 as a specific Ref-1 small-molecule inhibitor for leukemia. Mol Cancer Ther; 16(7); 1401-11. ©2017 AACR.
Collapse
Affiliation(s)
- Jixin Ding
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa L Fishel
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - April M Reed
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Erin McAdams
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Magdalena B Czader
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angelo A Cardoso
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana. .,Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
29
|
Azarian B, Sajedin SM, Azimi A, Raigani M, Vaziri B, Davami F. Proteomics Profiling of Chimeric-Truncated Tissue Plasminogen activator Producing- Chinese Hamster Ovary Cells Cultivated in a Chemically Defined Medium Supplemented with Protein Hydrolysates. IRANIAN BIOMEDICAL JOURNAL 2017; 21:154-66. [PMID: 28187683 PMCID: PMC5392218 DOI: 10.18869/acadpub.ibj.21.3.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Culture media enrichment through the addition of protein hydrolysates is beneficial for achieving higher protein expression. Methods In this study, designing the optimum mixture of four soy and casein-derived hydrolysates was successfully performed by design of experiment and specific productivity increased in all predicted combinations. Protein profile of recombinant CHO (rCHO) cells producing tissue plasminogen activator in a serum-free medium (SFM) supplemented with designed hydrolysate additives was compared to that of rCHO cells cultivated in SFM. Results Identification of differentially expressed proteins using two-dimensional gel electrophoresis coupled with MALDI-TOF/TOF revealed the role of energy metabolism related proteins and importance of prevention of oxidative stress by this special media enrichment strategy. Up-regulation of mitochondrial enzymes, pyruvate dehydrogenase E1 and Peroxiredoxin-III, as well as other proteins involved in metabolic pathways, and uridine monophosphate/cytidine monophosphate kinase indicated higher metabolic activity. Furthermore, along with antioxidant effect of peptones, proteins with antioxidant function such as ferritin and peroxiredoxin-III were up-regulated. Conclusion Understanding molecular mechanisms involved in enhancement of protein expression can provide new approaches for efficiently engineering rCHO cell. These results support the competence of proteomics studies in finding new insights to biochemical pathways for a knowledge-based optimization of media compositions.
Collapse
Affiliation(s)
- Bahareh Azarian
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Matin Sajedin
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Microbiology, Science and Research Branch, Islamic Azad University, Guilan, Iran
| | - Amin Azimi
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mozhgan Raigani
- Eukaryotic Expression Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behrouz Vaziri
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Eukaryotic Expression Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Shao FY, Du ZY, Ma DL, Chen WB, Fu WY, Ruan BB, Rui W, Zhang JX, Wang S, Wong NS, Xiao H, Li MM, Liu X, Liu QY, Zhou XD, Yan HZ, Wang YF, Chen CY, Liu Z, Chen HY. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy. Oncotarget 2016; 6:30939-56. [PMID: 26439985 PMCID: PMC4741579 DOI: 10.18632/oncotarget.5132] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy.
Collapse
Affiliation(s)
- Fang-Yuan Shao
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-Yun Du
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Dong-Lei Ma
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Wen-Bo Chen
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Wu-Yu Fu
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bi-Bo Ruan
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen Rui
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia-Xuan Zhang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Sheng Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Nai Sum Wong
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hao Xiao
- University of the Chinese Academy of Sciences, Beijing, China
| | - Man-Mei Li
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Xiao Liu
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiu-Ying Liu
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Xiao-Dong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hai-Zhao Yan
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yi-Fei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Chang-Yan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Zhong Liu
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Hong-Yuan Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
31
|
Zhang H, Wei Q, Li C, Jiang C, Zhang H. Comparative Proteomic Analysis Provides Insights into the Regulation of Flower Bud Differentiation in Crocus SativusL. J Food Biochem 2016. [DOI: 10.1111/jfbc.12254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hengfeng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road, Xuanwu District, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry Universtiy, Longpan Road, Xuanwu District, Nanjing 210037, People's Republic of China
- Department of Landscape and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Fenghuang Road, Hailing District, Taizhou 225300, People's Republic of China
| | - Qingcui Wei
- Department of Landscape and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Fenghuang Road, Hailing District, Taizhou 225300, People's Republic of China
| | - Chengzhong Li
- Department of Landscape and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Fenghuang Road, Hailing District, Taizhou 225300, People's Republic of China
| | - Chunmao Jiang
- Department of Landscape and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Fenghuang Road, Hailing District, Taizhou 225300, People's Republic of China
| | - Huanchao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road, Xuanwu District, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry Universtiy, Longpan Road, Xuanwu District, Nanjing 210037, People's Republic of China
| |
Collapse
|
32
|
Kopalli SR, Cha KM, Jeong MS, Lee SH, Sung JH, Seo SK, Kim SK. Pectinase-treated Panax ginseng ameliorates hydrogen peroxide-induced oxidative stress in GC-2 sperm cells and modulates testicular gene expression in aged rats. J Ginseng Res 2016; 40:185-95. [PMID: 27158240 PMCID: PMC4845052 DOI: 10.1016/j.jgr.2015.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022] Open
Abstract
Background To investigate the effect of pectinase-treated Panax ginseng (GINST) in cellular and male subfertility animal models. Methods Hydrogen peroxide (H2O2)-induced mouse spermatocyte GC-2spd cells were used as an in vitro model. Cell viability was measured using MTT assay. For the in vivo study, GINST (200 mg/kg) mixed with a regular pellet diet was administered orally for 4 mo, and the changes in the mRNA and protein expression level of antioxidative and spermatogenic genes in young and aged control rats were compared using real-time reverse transcription polymerase chain reaction and western blotting. Results GINST treatment (50 μg/mL, 100 μg/mL, and 200 μg/mL) significantly (p < 0.05) inhibited the H2O2-induced (200 μM) cytotoxicity in GC-2spd cells. Furthermore, GINST (50 μg/mL and 100 μg/mL) significantly (p < 0.05) ameliorated the H2O2-induced decrease in the expression level of antioxidant enzymes (peroxiredoxin 3 and 4, glutathione S-transferase m5, and glutathione peroxidase 4), spermatogenesis-related protein such as inhibin-α, and specific sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor) in GC-2spd cells. Similarly, the altered expression level of the above mentioned genes and of spermatogenesis-related nectin-2 and cAMP response element-binding protein in aged rat testes was ameliorated with GINST (200 mg/kg) treatment. Taken together, GINST attenuated H2O2-induced oxidative stress in GC-2 cells and modulated the expression of antioxidant-related genes and of spermatogenic-related proteins and sex hormone receptors in aged rats. Conclusion GINST may be a potential natural agent for the protection against or treatment of oxidative stress-induced male subfertility and aging-induced male subfertility.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Kyu-Min Cha
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Min-Sik Jeong
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Sang-Ho Lee
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Jong-Hwan Sung
- Il Hwa Co., Ltd., Ginseng Research Institute, Guri, Korea
| | - Seok-Kyo Seo
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
- Corresponding author. Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| |
Collapse
|
33
|
Yuan J, Jiang J, Jiang L, Yang F, Chen Y, He Y, Zhang Q. Insights into Trx1, TRP14, and Prx1 homologs of Paralichthys olivaceus: molecular profiles and transcriptional responses to immune stimulations. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:547-561. [PMID: 26559691 DOI: 10.1007/s10695-015-0158-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Thioredoxin (Trx) proteins are involved in several cellular processes, such as anti-oxidative stress and cellular redox homeostasis. In this study, we isolated the full-length cDNAs of PoTrx1 and PoTRP14 from Japanese flounder (Paralichthys olivaceus). PoTrx1 is 723 bp in length, with a 366-bp open reading frame (ORF) that encodes for 121 amino acids. PoTRP14 is 909 bp in length, with a 372-bp ORF that encodes for 123 amino acids. PoTrx1 and PoTRP14 are highly conserved in Cys-Gly-Pro-Cys and Cys-Pro-Asp-Cys forms, respectively. Tissue distribution analysis revealed that the transcripts of PoTrx1 and PoTRP14 were ubiquitously expressed in all tested tissues and particularly abundant in immunity-related organs, such as the liver, intestine, gill, and spleen. Development expression profiles indicated that PoTrx1 transcript was expressed from the neurula stage to the 1 day post-hatching stage; the maximum transcript levels were recorded at the somatic stage. The mRNA level of PoTRP14 was constantly expressed at all examined developmental stages, reaching the peak at the before-hatching stage. Prx1 is a peroxiredoxin family member that serves similar functions to PoTrx1 and PoTRP14. A primary hepatocyte culture system was established to examine the immunoregulatory properties of PoTrx1, PoTRP14, and Prx1 in response to lipopolysaccharide, CuSO4, and H2O2 stimulation. Results revealed that the transcript levels of PoTrx1, PoTRP14, and Prx1 were significantly up-regulated in a time-dependent manner after the immunostimulant challenge. These data suggest that PoTrx1, PoTRP14, and Prx1 play critical roles in anti-oxidation and immunoregulation.
Collapse
Affiliation(s)
- Junqing Yuan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jiajun Jiang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Liming Jiang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Fang Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yan Chen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yan He
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Quanqi Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
34
|
Abu N, Yeap SK, Pauzi AZM, Akhtar MN, Zamberi NR, Ismail J, Zareen S, Alitheen NB. Dual Regulation of Cell Death and Cell Survival upon Induction of Cellular Stress by Isopimara-7,15-Dien-19-Oic Acid in Cervical Cancer, HeLa Cells In vitro. Front Pharmacol 2016; 7:89. [PMID: 27065873 PMCID: PMC4814465 DOI: 10.3389/fphar.2016.00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/18/2016] [Indexed: 11/14/2022] Open
Abstract
The Fritillaria imperialis is an ornamental flower that can be found in various parts of the world including Iraq, Afghanistan, Pakistan, and the Himalayas. The use of this plant as traditional remedy is widely known. This study aims to unveil the anti-cancer potentials of Isopimara-7,15-Dien-19-Oic Acid, extracted from the bulbs of F. imperialis in cervical cancer cell line, HeLa cells. Flow cytometry analysis of cell death, gene expression analysis via cDNA microarray and protein array were performed. Based on the results, Isopimara-7,15-Dien-19-Oic acid simultaneously induced cell death and promoted cell survival. The execution of apoptosis was apparent based on the flow cytometry results and regulation of both pro and anti-apoptotic genes. Additionally, the regulation of anti-oxidant genes were up-regulated especially thioredoxin, glutathione and superoxide dismutase- related genes. Moreover, the treatment also induced the activation of pro-survival heat shock proteins. Collectively, Isopimara-7,15-Dien-19-Oic Acid managed to induce cellular stress in HeLa cells and activate several anti- and pro survival pathways.
Collapse
Affiliation(s)
- Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Swee K Yeap
- Laboratory of Immunotherapeutics and Vaccine (LIVES), Institute of Bioscience, Universiti Putra Malaysia Serdang, Malaysia
| | - Ahmad Z Mat Pauzi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - M Nadeem Akhtar
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Kuantan, Malaysia
| | - Nur R Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Jamil Ismail
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Kuantan, Malaysia
| | - Seema Zareen
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Kuantan, Malaysia
| | - Noorjahan B Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia Serdang, Malaysia
| |
Collapse
|
35
|
Abstract
Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Urology Research Laboratory, Surgery Department (Urology Division), Faculty of Medicine, McGill University; The Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
36
|
Ozkosem B, Feinstein SI, Fisher AB, O'Flaherty C. Absence of Peroxiredoxin 6 Amplifies the Effect of Oxidant Stress on Mobility and SCSA/CMA3 Defined Chromatin Quality and Impairs Fertilizing Ability of Mouse Spermatozoa. Biol Reprod 2016; 94:68. [PMID: 26792942 PMCID: PMC4829091 DOI: 10.1095/biolreprod.115.137646] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/15/2016] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress, the imbalance between reactive oxygen species production and antioxidant defenses, is associated with male infertility. Peroxiredoxins (PRDXs) are antioxidant enzymes with a wide distribution in spermatozoa. PRDX6 is highly abundant and located in all subcellular compartments of the spermatozoon. Infertile men have lower levels of sperm PRDX6 associated with low sperm motility and high DNA damage. In order to better understand the role of PRDX6 in male reproduction, the aim of this study was to elucidate the impact of the lack of PRDX6 on male mouse fertility. Spermatozoa lacking PRDX6 showed significantly increased levels of cellular oxidative damage evidenced by high levels of lipid peroxidation, 8-hydroxy-deoxyguanosine (DNA oxidation), and protein oxidation (S-glutathionylation and carbonylation), lower sperm chromatin quality (high DNA fragmentation and low DNA compaction, due to low levels of protamination and a high percentage of free thiols), along with decreased sperm motility and impairment of capacitation as compared with wild-type (WT) spermatozoa. These manifestations of damage are exacerbated by tert-butyl hydroperoxide treatment in vivo. While WT males partially recovered the quality of their spermatozoa (in terms of motility and sperm DNA integrity), Prdx6(-/-) males showed higher levels of sperm damage (lower motility and chromatin integrity) 6 mo after the end of treatment. In conclusion, Prdx6(-/-) males are more vulnerable to oxidative stress than WT males, resulting in impairment of sperm quality and ability to fertilize the oocyte, compatible with the subfertility phenotype observed in these knockout mice.
Collapse
Affiliation(s)
- Burak Ozkosem
- Urology Research Laboratory, Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aron B Fisher
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cristian O'Flaherty
- Urology Research Laboratory, Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada Department of Surgery (Urology Division), McGill University, Montréal, Québec, Canada Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
37
|
Korean red ginseng protects against doxorubicin-induced testicular damage: An experimental study in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Hampton MB, O’Connor KM. Peroxiredoxins and the Regulation of Cell Death. Mol Cells 2016; 39:72-6. [PMID: 26810076 PMCID: PMC4749878 DOI: 10.14348/molcells.2016.2351] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 11/27/2022] Open
Abstract
Cell death pathways such as apoptosis can be activated in response to oxidative stress, enabling the disposal of damaged cells. In contrast, controlled intracellular redox events are proposed to be a significant event during apoptosis signaling, regardless of the initiating stimulus. In this scenario oxidants act as second messengers, mediating the post-translational modification of specific regulatory proteins. The exact mechanism of this signaling is unclear, but increased understanding offers the potential to promote or inhibit apoptosis through modulating the redox environment of cells. Peroxiredoxins are thiol peroxidases that remove hydroperoxides, and are also emerging as important players in cellular redox signaling. This review discusses the potential role of peroxiredoxins in the regulation of apoptosis, and also their ability to act as biomarkers of redox changes during the initiation and progression of cell death.
Collapse
Affiliation(s)
- Mark B. Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8140,
New Zealand
| | - Karina M. O’Connor
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8140,
New Zealand
| |
Collapse
|
39
|
Kasparova D, Neckar J, Dabrowska L, Novotny J, Mraz J, Kolar F, Zurmanova J. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems. Physiol Genomics 2015; 47:612-20. [PMID: 26465708 DOI: 10.1152/physiolgenomics.00058.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
It has been documented that adaptation to hypoxia increases myocardial tolerance to ischemia-reperfusion (I/R) injury depending on the regimen of adaptation. Reactive oxygen species (ROS) formed during hypoxia play an important role in the induction of protective cardiac phenotype. On the other hand, the excess of ROS can contribute to tissue damage caused by I/R. Here we investigated the relationship between myocardial tolerance to I/R injury and transcription activity of major antioxidant genes, transcription factors, and oxidative stress in three different regimens of chronic hypoxia. Adult male Wistar rats were exposed to continuous normobaric hypoxia (FiO2 0.1) either continuously (CNH) or intermittently for 8 h/day (INH8) or 23 h/day (INH23) for 3 wk period. A control group was kept in room air. Myocardial infarct size was assessed in anesthetized open-chest animals subjected to 20 min coronary artery occlusion and 3 h reperfusion. Levels of mRNA transcripts and the ratio of reduced and oxidized glutathione (GSH/GSSG) were analyzed by real-time RT-PCR and by liquid chromatography, respectively. Whereas CNH as well as INH8 decreased infarct size, 1 h daily reoxygenation (INH23) abolished the cardioprotective effect and decreased GSH/GSSG ratio. The majority of mRNAs of antioxidant genes related to mitochondrial antioxidant defense (manganese superoxide dismutase, glutathione reductase, thioredoxin/thioredoxin reductase, and peroxiredoxin 2) were upregulated in both cardioprotective regimens (CNH, INH8). In contrast, INH23 increased only PRX5, which was not sufficient to induce the cardioprotective phenotype. Our results suggest that the increased mitochondrial antioxidant defense plays an important role in cardioprotection afforded by chronic hypoxia.
Collapse
Affiliation(s)
- Dita Kasparova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Neckar
- Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic; and
| | | | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jaroslav Mraz
- National Institute of Public Health, Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic; and
| | - Jitka Zurmanova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic;
| |
Collapse
|
40
|
Lin Z, Zhao D, Wang Y, Zhao W, Yin X, Zhou X, Zhang Z, Yang L. Downregulation of β-Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein: Proteomics-Based Identification in Early-Stage Prion Disease. NEURODEGENER DIS 2015; 15:193-201. [PMID: 26022183 DOI: 10.1159/000371553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are known as neurodegenerative diseases of the central nervous system with a long incubation period. Alzheimer's disease (AD) and prion diseases share the hallmark of severe neuronal loss, although their pathogenic mechanisms are similarly incomplete. It appears that these two neurodegenerative diseases share a complex deterioration of function involved in the onset of neuronal loss. To investigate presymptomatic biochemical changes indicative of the initial stage of prion diseases and decipher the pathophysiological mechanisms of these two neurodegenerative diseases, we performed a differential proteomic analysis on brain tissues of 263K-infected hamsters during the presymptomatic period and transgenic APPSWE, PSEN1dE9 mice (a mouse model of AD). We identified 7 differentially expressed proteins including the β-soluble N-ethylmaleimide-sensitive factor attachment protein (β-SNAP) by 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The β-SNAP expression patterns in the brains of cases and controls were further quantified by Western blotting. β-SNAP showed an early decrease followed by a progressive depletion. The expression of β-SNAP was also significantly downregulated in the mouse model of AD. β-SNAP is brain-specific and known to bind to the SNAP receptors and is therefore involved in the control of neurotransmitter release as well as in constitutive vesicular transport. Our results suggest that presynaptic failure and abnormalities in neurotransmission may be early events in the development of neuronal dysfunction.
Collapse
Affiliation(s)
- Zhu Lin
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lu L, Qi Z, Zhang J, Wu W. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography. Toxins (Basel) 2015; 7:1738-48. [PMID: 25996604 PMCID: PMC4448171 DOI: 10.3390/toxins7051738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 11/23/2022] Open
Abstract
Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase) were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed.
Collapse
Affiliation(s)
- Lina Lu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Zhijun Qi
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Jiwen Zhang
- College of Science, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Wenjun Wu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
42
|
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6:456-480. [PMID: 25897356 PMCID: PMC4398902 DOI: 10.4239/wjd.v6.i3.456] [Citation(s) in RCA: 744] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM.
Collapse
|
43
|
Ma Y, Li R, Zhang Y, Zhou L, Dai Y. Knockdown of peroxiredoxin 5 inhibits the growth of osteoarthritic chondrocytes via upregulating Wnt/β-catenin signaling. Free Radic Biol Med 2014; 76:251-60. [PMID: 25236745 DOI: 10.1016/j.freeradbiomed.2014.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/21/2022]
Abstract
Peroxiredoxin 5 is a member of the peroxiredoxin family, which has been shown to act as an antioxidant whose main function is to reduce reactive oxygen species in cells. Peroxiredoxin 5 has been found to be abnormally elevated in human osteoarthritic chondrocytes. However, the detailed mechanism by which peroxiredoxin 5 modulates human osteoarthritic chondrocytes' survival has not been elucidated. In the current study, we demonstrated that peroxiredoxin 5 knockdown activated osteoarthritic chondrocytes apoptosis, and decreased scavenging of endogenous reactive oxygen species. Furthermore, silencing of peroxiredoxin 5 resulted in an altered expression of proteins associated with Wnt signaling. Collectively, these results demonstrated that the regulatory effects of peroxiredoxin 5 can be partially attributed to Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yini Ma
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Chongqing 400016, People's Republic of China
| | - Rongheng Li
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Chongqing 400016, People's Republic of China.
| | - Yudi Zhang
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Chongqing 400016, People's Republic of China
| | - Lingyun Zhou
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Chongqing 400016, People's Republic of China
| | - Yehong Dai
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Chongqing 400016, People's Republic of China
| |
Collapse
|
44
|
Luo GJ, Yao WF, He Y, Luo CF, Li XY, Hei ZQ. Ulinastatin prevents acute lung injury led by liver transplantation. J Surg Res 2014; 193:841-8. [PMID: 25277357 DOI: 10.1016/j.jss.2014.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/30/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Little is known regarding the effect of ulinastatin (UTI) on acute lung injury (ALI) induced by orthotopic liver transplantation. This study aims to investigate the protective effect of UTI on ALI induced by orthotopic autologous liver transplantation (OALT) in a rat model and to explore the potential underlying mechanism. MATERIALS AND METHODS Rats were randomly allocated into the following four groups (n = 8 each): (i) sham control group (group sham); (ii) model group (underwent OALT) (group model); (iii) low-dose UTI-treated group (group u1), with UTI (50 U/g) administered intravenously both before the portal vein was occluded and after liver reperfusion started; and (iv) high-dose UTI-treated group (group uh), with UTI (100 U/g) given in the same way as group ul. The lung pathologic parameters, lung water content, and levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, malondialdehyde (MDA), superoxide dismutase (SOD) activity, RanBP-type and C3HC4-type zinc finger-containing protein 1 (RBCK1), and peroxiredoxin-2 (Prx-2) were assessed 8 h after OALT was performed. RESULTS According to histology, there was severe damage in the lung of group model accompanied by increases in the TNF-α, IL-1β, IL-6, and MDA levels and decreases in SOD activity and the expression of RBCK1 and Prx-2. UTI treatment significantly reduced the pathologic scores, lung water content, and TNF-α, IL-1β, IL-6, and MDA levels while restoring the SOD activity and expression of RBCK1 and Prx-2. Furthermore, compared with group u1, treatment with a high dose of UTI resulted in a better protective effect on the lung when assessed by the TNF-α, IL-1β, IL-6, and MDA levels and SOD activity. CONCLUSIONS UTI dose-dependently attenuates ALI that is induced by OALT in this rat model, which is mainly due to the suppression of the inflammatory response and oxidant stress, which may, in turn, be mediated by the upregulation of RBCK1 and Prx-2 expression.
Collapse
Affiliation(s)
- Gang-Jian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei-Feng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye He
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen-Fang Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yun Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zi-Qing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
45
|
|
46
|
Song LL, Tu YY, Xia L, Wang WW, Wei W, Ma CM, Wen DH, Lei H, Xu HZ, Wu YL. Targeting catalase but not peroxiredoxins enhances arsenic trioxide-induced apoptosis in K562 cells. PLoS One 2014; 9:e104985. [PMID: 25115845 PMCID: PMC4130628 DOI: 10.1371/journal.pone.0104985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/16/2014] [Indexed: 11/25/2022] Open
Abstract
Despite considerable efficacy of arsenic trioxide (As2O3) in acute promyelocytic leukemia (APL) treatment, other non-APL leukemias, such as chronic myeloid leukemia (CML), are less sensitive to As2O3 treatment. However, the underlying mechanism is not well understood. Here we show that relative As2O3-resistant K562 cells have significantly lower ROS levels than As2O3-sensitive NB4 cells. We compared the expression of several antioxidant enzymes in these two cell lines and found that peroxiredoxin 1/2/6 and catalase are expressed at high levels in K562 cells. We further investigated the possible role of peroxirdoxin 1/2/6 and catalase in determining the cellular sensitivity to As2O3. Interestingly, knockdown of peroxiredoxin 1/2/6 did not increase the susceptibility of K562 cells to As2O3. On the contrary, knockdown of catalase markedly enhanced As2O3-induced apoptosis. In addition, we provide evidence that overexpression of BCR/ABL cannot increase the expression of PRDX 1/2/6 and catalase. The current study reveals that the functional role of antioxidant enzymes is cellular context and treatment agents dependent; targeting catalase may represent a novel strategy to improve the efficacy of As2O3 in CML treatment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis/physiology
- Arsenic Trioxide
- Arsenicals/pharmacology
- Catalase/antagonists & inhibitors
- Catalase/genetics
- Catalase/metabolism
- Cell Line, Tumor
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Knockdown Techniques
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Oxides/pharmacology
- Peroxiredoxins/antagonists & inhibitors
- Peroxiredoxins/genetics
- Peroxiredoxins/metabolism
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Li-Li Song
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Yao Tu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xia
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Wang
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wei
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Min Ma
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Hua Wen
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hu Lei
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han-Zhang Xu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (HX); (YW)
| | - Ying-Li Wu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (HX); (YW)
| |
Collapse
|
47
|
Abstract
The ejaculated spermatozoon, as an aerobic cell, must fight against toxic levels of reactive oxygen species (ROS) generated by its own metabolism but also by other sources such as abnormal spermatozoa, chemicals and toxicants, or the presence of leukocytes in semen. Mammalian spermatozoa are extremely sensitive to oxidative stress, a condition occurring when there is a net increase in ROS levels within the cell. Opportunely, this specialized cell has a battery of antioxidant enzymes (superoxide dismutase, peroxiredoxins, thioredoxins, thioredoxins reductases, and glutathione s-transferases) working in concert to assure normal sperm function. Any impairment of the antioxidant enzymatic activities will promote severe oxidative damage which is observed as plasma membrane lipid peroxidation, oxidation of structural proteins and enzymes, and oxidation of DNA bases that lead to abnormal sperm function. Altogether, these damages occurring in spermatozoa are associated with male infertility. The present review contains a description of the enzymatic antioxidant system of the human spermatozoon and a reevaluation of the role of its different components and highlights the necessity of sufficient supply of reducing agents (NADPH and reduced glutathione) to guarantee normal sperm function.
Collapse
|
48
|
Won YJ, Kim BK, Shin YK, Jung SH, Yoo SK, Hwang SY, Sung JH, Kim SK. Pectinase-treated Panax ginseng extract (GINST) rescues testicular dysfunction in aged rats via redox-modulating proteins. Exp Gerontol 2014; 53:57-66. [DOI: 10.1016/j.exger.2014.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 12/20/2022]
|
49
|
Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis 2014; 5:e1183. [PMID: 24743738 PMCID: PMC4001304 DOI: 10.1038/cddis.2014.149] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
5-Fluorouracil (5-FU) is a widely used anticancer drug for the treatment of colorectal cancer (CRC). However, resistance to 5-FU often prevents the success of chemotherapy. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional regulator and a possible target to overcome 5-FU resistance. The present study examined epigenetic changes associated with Nrf2 induction in a human CRC cell line (SNUC5) resistant to 5-FU (SNUC5/5-FUR). Nrf2 expression, nuclear translocation, and binding to promoter were higher in SNUC5/5-FUR cells than in SNUC5 cells. The activated Nrf2 in SNUC5/5-FUR cells led to an increase in the protein expression and activity of heme oxygenase-1 (HO-1), an Nrf2-regulated gene. SNUC5/5-FUR cells produced a larger amount of reactive oxygen species (ROS) than SNUC5 cells. The siRNA- or shRNA-mediated knockdown of Nrf2 or HO-1 significantly suppressed cancer cell viability and tumor growth in vitro and in vivo, resulting in enhanced 5-FU sensitivity. Methylation-specific (MS) or real-time quantitative MS-PCR data showed hypomethylation of the Nrf2 promoter CpG islands in SNUC5/5-FUR cells compared with SNUC5 cells. Expression of the DNA demethylase ten-eleven translocation (TET) was upregulated in SNUC5/5-FUR cells. ROS generated by 5-FU upregulated TET1 expression and function, whereas antioxidant had the opposite effect. These results suggested that the mechanism underlying the acquisition of 5-FU resistance in CRC involves the upregulation of Nrf2 and HO-1 expression via epigenetic modifications of DNA demethylation.
Collapse
|
50
|
Dhanwani R, Khan M, Lomash V, Rao PVL, Ly H, Parida M. Characterization of chikungunya virus induced host response in a mouse model of viral myositis. PLoS One 2014; 9:e92813. [PMID: 24667237 PMCID: PMC3965460 DOI: 10.1371/journal.pone.0092813] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 02/25/2014] [Indexed: 11/30/2022] Open
Abstract
While a number of studies have documented the persistent presence of chikungunya virus (CHIKV) in muscle tissue with primary fibroblast as the preferable cell target, little is known regarding the alterations that take place in muscle tissue in response to CHIKV infection. Hence, in the present study a permissive mouse model of CHIKV infection was established and characterized in order to understand the pathophysiology of the disease. The two dimensional electrophoresis of muscle proteome performed for differential analysis indicated a drastic reprogramming of the proteins from various classes like stress, inflammation, cytoskeletal, energy and lipid metabolism. The roles of the affected proteins were explained in relation to virus induced myopathy which was further supported by the histopathological and behavioural experiments proving the lack of hind limb coordination and other loco-motor abnormalities in the infected mice. Also, the level of various pro-inflammatory mediators like IL-6, MCP-1, Rantes and TNF-α was significantly elevated in muscles of infected mice. Altogether this comprehensive study of characterizing CHIKV induced mouse myopathy provides many potential targets for further evaluation and biomarker study.
Collapse
Affiliation(s)
- Rekha Dhanwani
- Department of Virology, Defence Research & Development Establishment (DRDE), Gwalior, India
| | - Mohsin Khan
- Department of Virology, Defence Research & Development Establishment (DRDE), Gwalior, India
| | - Vinay Lomash
- Department of Pharmacology and Toxicology, Defence Research & Development Establishment (DRDE), Gwalior, India
| | | | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Saint Paul, Minnestoa, United States of America
| | - Manmohan Parida
- Department of Virology, Defence Research & Development Establishment (DRDE), Gwalior, India
| |
Collapse
|